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High performance computing for spherical
conformal and Riemann mappings
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A classical way of finding the harmonic map is to minimize the
harmonic energy by the time evolution of the solution of a non-
linear heat diffusion equation. To arrive at the desired harmonic
map, which is a steady-state of this equation, we propose an ef-
ficient quasi-implicit Euler method and analyze its convergence
under some simplifications. If the initial map is not close to the
steady-state solution, it is difficult to find the stability region of
the time steps. To remedy this drawback, we propose a two-phase
approach for the quasi-implicit Euler method. In order to accel-
erate the convergence, a variant time step scheme and a heuristic
method to determine an initial time step are developed. Numerical
results clearly demonstrate that the proposed method achieves high
performance for computing the spherical conformal and Riemann
mappings.
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1. Introduction

Conformal surface parameterizations have been studied intensively, and most
works deal with genus zero surfaces. The basic approaches are harmonic en-
ergy minimization [1, 3, 5, 11, 21, 26], Cauchy-Riemann equation approx-
imation [24], Laplacian operator linearization [2, 15], angle-based flatten-
ing method [28, 29] and circle packing [18, 19], among others. In harmonic
energy minimization, a discrete harmonic map is introduced in [5] to ap-
proximate the continuous harmonic map by minimizing a metric dispersion
criterion. Due to the conformal nature of harmonic maps from a genus zero
closed surfaces to the unit sphere, Gu and Yau [11] proposed a nonlinear
optimization method by minimizing the harmonic energy iteratively on the
unit sphere until convergence to a harmonic map. The method has been ap-
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plied to brain mapping [9, 32], surface classification [13] and global surface
parameterizations [12].

The evolution of computing a conformal map f from genus zero closed
surfaces to the unit sphere is carried out by a nonlinear heat diffusion equa-
tion

df

dt
= −Δf ,(1)

with f to be constrained on the unit sphere. In [9, 11, 14], the explicit (for-
ward) Euler method has been used to produce a steady-state solution of
the nonlinear heat diffusion equation (1). The explicit scheme is attractive
for its simplicity. Unfortunately, it is known to have a small stability region
that leads to extremely small time steps. While the implicit (backward) Eu-
ler method has a much larger stability region, it involves nonlinear systems.
In this step, it is crucial to have a successful iterative method and a good
way to produce the associated initial guess when the time step is relatively
large. To tackle this challenging problem, the semi-implicit Euler methods
[4, 8, 30, 31, 34] have been proposed to simplify the nonlinearity of the sys-
tems and improve the computational cost in each iteration. In this paper,
we propose a two-phase approach for the underlying quasi-implicit Euler
method (QIEM) to solve the nonlinear heat diffusion equation (1). Phase-I
QIEM is used to quickly find an approximate solution which is close to the
steady-state solution; Phase-II QIEM is then applied to compute the steady-
state solution using the approximate solution produced by Phase-I QIEM.
The advantages of the two-phase QIEM are that it only needs to solve a
linear system and allows a large time step in each iteration.

For the iterative methods of solving the steady-state ODE systems, the
adaptive methods [7, 16, 22, 34] for controlling the time step in each itera-
tion are proposed to accelerate its convergence. In this paper, we not only
propose a heuristic method to estimate the initial time step, but also de-
velop an adaptive method to control the time step so that the two-phase
QIEM possesses high performance. Promising numerical results illustrate
the efficiency and stability of the proposed algorithms.

This paper is outlined as follows. In Section 2, we briefly discuss the
conformal mappings for genus zero surfaces. In Section 3, the quasi-implicit
Euler method is proposed to solve the nonlinear heat diffusion equation (1).
Convergence of the simplified QIEM with suitable assumptions is shown in
Section 4. In Section 5, we propose a practical two-phase QIEM. A heuristic
method to estimate the initial time step and an adaptive method to con-
trol the time step are also proposed in this section. Numerical experiments
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to validate and measure the timing performance of the proposed schemes
are demonstrated in Section 6. Finally, we conclude the paper in the last
section.

2. Conformal mappings

2.1. Spherical conformal mapping

In this subsection, we introduce the spherical conformal mapping for genus
zero closed surfaces from the point of view that a map is conformal if and
only if it is harmonic. That is, we shall introduce how to use the heat flow
method to deform a mapping into the harmonic map under a special nor-
malization condition.

Suppose M is a triangular mesh of a genus zero closed surface with n
vertices {v1, · · · , vn}. We denote all piecewise linear functions defined on M
by CPL(M), which forms a linear space.

Definition 2.1 (Discrete harmonic energy). Let f = (f1, f2, f3) : M → R3

with f1, f2, f3 ∈ CPL(M). The harmonic energy of f is defined as

Eh(f) =
3∑

�=1

Eh(f�)(2a)

with

Eh(f�) =
1

2

∑
[vi,vj ]∈M

kij (f�(vi)− f�(vj))
2 , � = 1, 2, 3,(2b)

where {kij} forms a set of harmonic weights assigned on each edge [vi, vj ] ∈
M and is chosen such that the quadratic form of (2b) is positive definite.

Definition 2.2. Let f = (f1, f2, f3) : M → R3 with f1, f2, f3 ∈ CPL(M).
The piecewise Laplacian operator of f is defined by

Δdf = (Δdf1,Δdf2,Δdf3)

with

Δdf�(vi) =
∑

[vi,vj ]∈M
kij (f�(vi)− f�(vj)) , � = 1, 2, 3,

in which kij are the harmonic weights in (2b).
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Let f(v) and n(f(v)) denote the image of the vertex v ∈ M and the nor-
mal on the target plane at f(v), respectively. Then the normal and tangent
components of Δdf are defined as

(Δdf(v))
⊥ =< Δdf(v),n(f(v)) > n(f(v))(3)

and

(Δdf(v))
‖ = Δdf(v)− (Δdf(v))

⊥ ,(4)

respectively, where < ·, · > denotes the inner product in R3. Moreover, a map
f : M1 → M2 is harmonic, if and only if f only has a normal component,
and the tangential component is zero, i.e.,

Δdf = (Δdf)
⊥ .(5)

Remark 2.1. Note that if we take

aii :=
∑

[vi,vj ]∈M
kij , aij := −kij , i �= j,(6)

for i, j = 1, . . . , n and define A ≡ [aij ] ∈ Rn×n, then the discrete Laplacian
operator Δdf in (2) can be represented as the matrix form

Δdf = Af = (Af1, Af2, Af3).

Many different ways [1, 3, 5, 10, 11] are proposed to determine the edge
weights kij in (2) so that the associated coefficient matrix A in (6) is sym-
metric positive semi-definite. A widely used edge weighting is the cotangent
weighting proposed in [26]. The matrix A associated with cotangent weights
has been shown to be symmetric positive semi-definite [17].

A classical way to find the harmonic map f : M → S2 is to minimize the
discrete harmonic energy (2) by time evolution according to the nonlinear
heat diffusion process

df

dt
= −Δdf .

However, f(M, t) is constrained on the unit sphere S2 so that it needs to
project −Δdf onto the tangent plane of the sphere. Therefore, from (3)–(5),
the evolution of f is according to the nonlinear heat diffusion equation:

df(v)

dt
= − (Δdf(v))

‖ = − (Δdf(v)− < Δdf(v),n(f(v)) > n(f(v))) .(7)
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One major difficulty is that the solution to the conformal mapping from
M to S2 is not unique but forms a Möbius group. In order to determine a
unique solution, the additional zero mass-center constraint is required.

Definition 2.3. A mapping f : M1 → M2 satisfies the zero mass-center
condition if and only if ∫

M1

fdσM1
= 0,

where dσM1
is the area element on M1.

All conformal maps from M to S2 satisfying the zero mass-center constraint
are unique up to the Euclidean rotation group.

2.2. Riemann mapping

The spherical conformal mapping for genus zero closed surfaces can be uti-
lized to find a conformal mapping (Riemann mapping) from a simply con-
nected surface M with a single boundary ∂M to a two-dimensional (2D)
unit disk D. The procedures for finding Riemann mapping are stated as fol-
lows. For a given simply connected triangular mesh M with boundary ∂M ,
there exists a symmetric closed surface Mc, called a double covering of M
[10], which covers M twice, i.e., for each face in M , there are two preim-
ages in Mc. Applying the spherical conformal mapping to Mc, a conformal
map from Mc to the unit sphere S2 is found. Next, a Möbius transformation
τ : C̄ → C̄

τ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1

is used to adjust the conformal map such that ∂M is mapped to the equator
of the unit sphere. Finally, the stereographic projection φ : S2 → C

φ(x, y, z) =

(
x

1− z
,

y

1− z

)
, (x, y, z) ∈ S

2

is applied to map the lower hemisphere conformally to the unit disk D.

3. Quasi-implicit Euler method

Solving the steady-state problems in (7) is the most time consuming step
in finding conformal mappings. In this section, we shall propose an efficient
algorithm to solve (7).

For convenience, we give the following definition.
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Definition 3.1. Given

u ≡

⎡
⎢⎣
u1
...
un

⎤
⎥⎦ ∈ R

n×3, v ≡

⎡
⎢⎣
v1
...
vn

⎤
⎥⎦ ∈ R

n×3,

we define the operator ≺ u,v � as

≺ u,v �= diag
(
u1v

�
1 , · · · ,unv

�
n

)
.

3.1. Explicit and implicit Euler methods

For solving the steady-state problem in (7), an explicit (forward) Euler

method has been proposed in [9, 11, 14] by the following updating

f (m+1) − f (m)

δt
= −

(
Δdf

(m)− ≺ Δdf
(m), f (m) � f (m)

)
= −

(
A− ≺ Af (m), f (m) �

)
f (m).

Here the matrix A is the coefficient matrix of the Laplacian operator as in (6)

with the edge weights kij . The advantage of the explicit Euler method is that

it only needs matrix-vector multiplications in each iteration. By choosing

time step δt carefully, the associated energy can be monotonically diminished

at each iteration [9], for example, when δt is chosen close to the square of

the minimum of the edge lengths of M [11]. However, in order to ensure

numerical stability, the explicit technique always requires a very small time

step which results in a significant drawback – a very slow convergence rate.

To remedy this obstacle, one may apply the implicit (backward) Euler

method, which is A-stable over a wide range of time steps, to solve (7) as

follows:

f (m+1) − f (m)

δt
= −

(
Δdf

(m+1)− ≺ Δdf
(m+1), f (m+1) � f (m+1)

)
= −

(
A− ≺ Af (m+1), f (m+1) �

)
f (m+1),(8)

or equivalently,

[I + (δt)A] f (m+1) − (δt) ≺ Af (m+1), f (m+1) � f (m+1) = f (m).
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We may rewrite the above equation as the nonlinear systems F (f (m+1),
f (m)) = 0, where

F (f (m+1), f (m)) ≡ −vec
(
f (m)

)
+{

(I3 ⊗ [I + (δt)A])− (δt)
(
I3⊗ ≺ Af (m+1), f (m+1) �

)}
vec
(
f (m+1)

)
.

The unknown vectors f (m+1) of F (f (m+1), f (m)) can be solved by Newton’s
method

vec
(
f
(m+1)
i+1

)
= vec

(
f
(m+1)
i

)
− J

(
f
(m+1)
i

)−1
F (f

(m+1)
i , f (m))(9)

with f
(m+1)
0 = f (m), where J(f (m+1)) is the Jacobian matrix of F (f (m+1),

f (m)).
The implicit Euler method in (8) required to solve a linear system if

Newton’s method is applied. Although the Jacobian matrix J(f
(m+1)
i ) can

be reordered as a banded matrix (see Appendix and Figure 9) so that direct
methods can be applied, its size is enlarged to three times that of the matrix
A.

3.2. Quasi-implicit Euler method

In order to avoid solving the nonlinear system in implicit Euler methods,
some semi-implicit Euler methods [4, 8, 30, 31, 34] have been proposed to
improve the computational cost in each iteration. Based on these, we propose
the following quasi-implicit Euler method (QIEM) for solving the nonlinear
heat diffusion equation in (7):

f (m+1) − f (m)

δt
= −

(
Δdf

(m+1)− ≺ Δdf
(m), f (m) � f (m+1)

)
= −

(
A− ≺ Af (m), f (m) �

)
f (m+1).

That is, in each iteration, the new vector f (m+1) is generated by solving the
linear system [

I + δt
(
A− ≺ Af (m), f (m) �

)]
f (m+1) = f (m).(10)

As an implicit Euler method, the QIEM has a wider range of stable time
steps. Moreover, according to the discussion at the end of Subsection 3.1,
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we see that QIEM is much more efficient than the implicit Euler method
by comparing the computational costs of solving the linear systems in (9)
and (10).

4. Convergence analysis of QIEM

In this section, we analyze the convergence of QIEM under the simplification
of normalization of f (m+1).

The QIEM with simplification of the normalization of f (m+1) is stated
as follows. Given f (0) ∈ Rn×3 with ‖e�i f (0)‖2 = 1√

n
for i = 1, . . . , n, i.e.,

‖f (0)‖F = 1, we define f (m+1) by

f (m+1) =
1√
n
D−1/2

m A−1
m f (m),(11)

for m = 0, 1, . . ., where

Am = I + δt
(
A− ≺ Af (m), f (m) �

)
,(12)

Dm =≺ A−1
m f (m), A−1

m f (m) � .(13)

Note that ‖e�i f (m+1)‖2 = 1√
n
for i = 1, . . . , n and ‖f (m+1)‖F = 1.

Let us consider the Schur decomposition

QmΛmQ�
m = A− ≺ Af (m), f (m) �,

where Qm ≡ [q1,m, · · · , qn,m]� is orthonormal and Λm = diag(λ
(m)
1 , · · · ,

λ
(m)
n ) with λ

(m)
i being the eigenvalues. Here, we assume λ

(m)
i �= 0 for i =

1, . . . , n. Then

1√
n
‖D−1/2

m ‖2 =
1√
n
max

i
{‖e�i A−1

m f (m)‖−1
2 }

=
1√
n
max

i

{
‖q�i,m (I + δtΛm)−1Q�

mf (m)‖−1
2

}

=
δt√
n
max

i

{
‖q�i,mΛ−1

m Q�
mf (m) +Om

(
1

δt

)
‖−1
2

}
,(14)

where Om (1/δt) is dependent on (i,m). Given a small positive value ηm > 0,
there exists T0 > 0 such that

‖Om

(
1

δt

)
‖2 ≤ ηm, ∀ δt ≥ T0(15)
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which implies that

1√
n
‖D−1/2

m ‖2 ≤
δt√
n
max

i

{∣∣∣‖q�i Λ−1
m Q�

mf (m)‖2 − ηm

∣∣∣−1
}

≡ δt√
n

1

am
.(16)

By the definition of f (m+1) in (11), it holds that

Em+1 ≡ f (m+1) − f (m)

=
1√
n
D−1/2

m A−1
m Em +

1√
n
D−1/2

m

(
A−1

m −A−1
m−1

)
f (m−1)

+
1√
n

(
D−1/2

m −D
−1/2
m−1

)
A−1

m−1f
(m−1).(17)

Assume

|1− δtλm| = min
i

|1 + δtλ
(m)
i | > 1(18)

for δt > 0, where λm > 0.

Lemma 4.1. Let Am, Dm and Em be defined in (12), (13) and (17), re-
spectively. Let am and λm be defined in (16) and (18), respectively. Assume

√
namλm − 3 > 0.(19)

Then

1√
n
‖D−1/2

m A−1
m Em‖F <

1

3
‖Em‖F

for all

δt > T1 ≡ max

{ √
nam√

namλm − 3
, T0

}

where T0 is defined in (15).

Proof. From the assumption in (19), we have(√
namλm − 3

)
δt >

√
nam, for δt > T1

which is equivalent to

−3δt >
√
nam (1− δtλm)
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and then

3δt <
√
nam|1− δtλm|.(20)

Combing the results in (16) and (20), it holds that

1√
n
‖D−1/2

m A−1
m Em‖F ≤ 1√

n

δt

am|1− δtλm|‖Em‖F <
1

3
‖Em‖F .

Lemma 4.2. Assume that

αm ≡ am
√
nλmλm−1 − 3b(1 + 1/

√
n) > 0,(21)

where b ≡ max1≤i≤n ‖e�i A‖2. Then

1√
n
‖D−1/2

m

(
A−1

m −A−1
m−1

)
f (m−1)‖F <

1

3
‖Em‖F(22)

for all

δt > T2 ≡ max

{
T0,

−βm +
√

β2
m − 4αmγm

2αm

}
,

where T0 is defined in (15) and

βm = −am
√
n
(
λm + λm−1

)
, γm = am

√
n.

Proof. By the definition of Am in (12), it holds that

1√
n
D−1/2

m

(
A−1

m −A−1
m−1

)
f (m−1)

=
1√
n
D−1/2

m A−1
m (Am−1 −Am)A−1

m−1f
(m−1)

=
δt√
n
D−1/2

m A−1
m

(
≺ Af (m), f (m) � − ≺ Af (m−1), f (m−1) �

)
A−1

m−1f
(m−1)

=
δt√
n
D−1/2

m A−1
m

(
≺ Af (m), Em � + ≺ AEm, f (m−1) �

)
A−1

m−1f
(m−1).

Since

‖ ≺ Af (m), Em � ‖2 ≤ max
i

‖e�i A‖2‖f (m)‖F ‖Em‖F

= max
i

‖e�i A‖2‖Em‖F ≡ b‖Em‖F
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and

‖ ≺ AEm, f (m−1) � ‖2 = max
i

|
(
e�i AEm

)(
e�i f

(m−1)
)�

|

≤ max
i

‖e�i AEm‖2max
i

‖e�i f (m−1)‖2

≤ max
i

‖e�i A‖2
1√
n
‖Em‖F ≡ b√

n
‖Em‖F ,

we have

1√
n
‖D−1/2

m

(
A−1

m −A−1
m−1

)
f (m−1)‖F

≤ (δt)2√
n

b+ b/
√
n

|1− δtλm| · |1− δtλm−1|am
‖Em‖F ‖f (m−1)‖F

=
(δt)2√

n

b+ b/
√
n

|1− δtλm| · |1− δtλm−1|am
‖Em‖F .(23)

By the definitions of αm, βm and γm, it follows that

β2
m − 4αmγm = na2m

(
λm − λm−1

)2
+ 12

√
namb(1 + 1/

√
n) > 0.

Using the assumption αm > 0, for all δt > T2, we have(
δt− −βm +

√
β2
m − 4αmγm

2αm

)(
δt− −βm −

√
β2
m − 4αmγm

2αm

)
> 0

which implies that

√
nam

[
1−
(
λm + λm−1

)
δt+ λmλm−1 (δt)

2
]
> 3b(1 + 1/

√
n) (δt)2 .

Consequently,

(δt)2√
n

b+ b/
√
n

|1− δtλm| · |1− δtλm−1|am
<

1

3
.(24)

Substituting (24) into (23), the result in (22) is obtained.

Lemma 4.3. Assume that

min
1≤i≤n

‖q�i,mΛ−1
m Q�

mf (m)‖2 > ηm,(25)
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3
(
|λm|+ |λm−1|

)
(b+ b/

√
n) + 6|λmλm−1| <

√
namam−1cmλ2

mλ2
m−1|λm|,

(26)

where ηm is defined in (15) and

cm = min
i

(
‖q�i,mΛ−1

m Q�
mf (m)‖2 + ‖q�i,m−1Λ

−1
m−1Q

�
m−1f

(m−1)‖2 − ηm − ηm−1

)
.

Then there exists T3 > 0 such that

1√
n
‖
(
D−1/2

m −D
−1/2
m−1

)
A−1

m−1f
(m−1)‖F <

1

3
‖Em‖F

for δt ≥ T3.

Proof. We rewrite the third term on the right hand side of (17) as

1√
n

(
D−1/2

m −D
−1/2
m−1

)
A−1

m−1f
(m−1)

=
1√
n
(Dm −Dm−1)

{
D−1/2

m D
−1/2
m−1

(
D1/2

m +D
1/2
m−1

)−1
}
A−1

m−1f
(m−1).

(27)

From (14) and (15), we have

wi ≡ e�i

(
D1/2

m +D
1/2
m−1

)
ei

=
1

δt

{
‖q�i,mΛ−1

m Q�
mf (m) +Om(

1

δt
)‖2

+ ‖q�i,m−1Λ
−1
m−1Q

�
m−1f

(m−1) +Om−1(
1

δt
)‖2
}

≥ 1

δt

{
‖q�i,mΛ−1

m Q�
mf (m)‖2 + ‖q�i,m−1Λ

−1
m−1Q

�
m−1f

(m−1)‖2 − ηm − ηm−1

}
for δt ≥ T0, which implies that

‖
(
D1/2

m +D
1/2
m−1

)−1
‖2 = max

1≤i≤n
w−1
i =

{
min
1≤i≤n

wi

}−1

≤ δt
{
min
i

(
‖q�i,mΛ−1

m Q�
mf (m)‖2+ ‖q�i,m−1Λ

−1
m−1Q

�
m−1f

(m−1)‖2− ηm− ηm−1

)}−1

≡ δt

cm
.

(28)
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On the other hand,

Dm −Dm−1

=≺ A−1
m f (m), A−1

m f (m) � − ≺ A−1
m f (m), A−1

m f (m) �
=≺ A−1

m f (m), (A−1
m −A−1

m−1)f
(m) � + ≺ A−1

m f (m), A−1
m−1Em �

+ ≺ A−1
m Em, A−1

m−1f
(m−1) � + ≺ (A−1

m −A−1
m−1)f

(m−1), A−1
m−1f

(m−1) � .

(29)

From (23), it follows that

‖A−1
m −A−1

m−1‖2 ≤
(b+ b/

√
n)δt

|1− δtλm| · |1− δtλm−1|
‖Em‖F .(30)

From (18), (29) and (30) with the results ‖f (m−1)‖F = ‖f (m)‖F = 1, we have

‖Dm −Dm−1‖2
≤ ‖ ≺ A−1

m f (m), (A−1
m −A−1

m−1)f
(m) � ‖2 + ‖ ≺ A−1

m f (m), A−1
m−1Em � ‖2

+ ‖ ≺ A−1
m Em, A−1

m−1f
(m−1) � ‖2

+ ‖ ≺ (A−1
m −A−1

m−1)f
(m−1), A−1

m−1f
(m−1) � ‖2

≤ (‖A−1
m ‖2 + ‖A−1

m−1‖2)‖A−1
m −A−1

m−1‖2 + 2‖A−1
m ‖2‖A−1

m−1‖2‖Em‖2

≤
(

1

|1− δtλm| +
1

|1− δtλm−1|

)
(b+ b/

√
n)δt

|1− δtλm| · |1− δtλm−1|
‖Em‖F

+
2

|1− δtλm| · |1− δtλm−1|
‖Em‖F .

(31)

Using (18), (28), (31) and the assumption (26), (27) implies that

1√
n
‖
(
D−1/2

m −D
−1/2
m−1

)
A−1

m−1f
(m−1)‖F

≤ 1√
n
‖Dm −Dm−1‖2‖D−1/2

m ‖2‖D−1/2
m−1 ‖2‖

(
D1/2

m +D
1/2
m−1

)−1
‖2‖A−1

m−1‖2

≤ 1√
n

δt

am

δt

am−1

1

|1− δtλm|
δt

cm

{
2

|1− δtλm| · |1− δtλm−1|
+(

1

|1− δtλm| +
1

|1− δtλm−1|

)
(b+ b/

√
n)δt

|1− δtλm| · |1− δtλm−1|

}
‖Em‖F
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=
(δt)3√

namam−1cm(1− δtλm)2|1− δtλm−1|
×{

2 +

(
1

|1− δtλm| +
1

|1− δtλm−1|

)
(b+ b/

√
n)δt

}

<
1

3
‖Em‖F , (by the assumption (26))

for δt ≥ T3 with large enough T3.

Using the results in Lemmas 4.1, 4.2 and 4.3 into (17), we can easily
show the decrease of the error ‖Em‖F .
Theorem 4.1. Assume that inequalities of (19), (21), (25) and (26) hold.
Then there exists T > 0 such that

‖Em‖F ≡ ‖f (m+1) − f (m)‖F < ‖f (m) − f (m−1)‖F ≡ ‖Em−1‖F

for all δt > T .

Now, we consider a more simplified case for f (m) and f (m+1) without
normalization. Assume

‖e�i f (m−1)‖2 = 1, for i = 1, . . . , n.(32)

Let

f (m) = A−1
m−1f

(m−1), f (m+1) = A−1
m f (m),

where Am is defined in (12) and

αm = λm−1λm,

βm = λm + λm−1 + 4b
√
n.

where λm is defined in (18). Then f (m−1), f (m) and f (m+1) satisfy the fol-
lowing result.

Theorem 4.2. Assume αm, β2
m − 4αm > 0. If δt satisfies that

δt >

{
(
√
n+ 1)/λm, if λm > 0;

(
√
n− 1)/(−λm), if λm < 0,

(33)

and

δt >
βm +

√
β2
m − 4αm

2αm
,



HPC for spherical conformal and Riemann mappings 237

then ‖f (m+1) − f (m)‖F < ‖f (m) − f (m−1)‖F .
Proof. From (12), we have

Em+1 ≡ f (m+1) − f (m) = A−1
m f (m) −A−1

m−1f
(m−1)

= A−1
m f (m) −A−1

m f (m−1) +A−1
m f (m−1) −A−1

m−1f
(m−1)

= A−1
m Em +A−1

m (Am−1 −Am)A−1
m−1f

(m−1)

= A−1
m Em + (δt)A−1

m

(
≺ Af (m), f (m) �

− ≺ Af (m−1), f (m−1) �
)
A−1

m−1f
(m−1)

= A−1
m Em + (δt)A−1

m

(
≺ Af (m), f (m) � − ≺ Af (m), f (m−1) �

+ ≺ Af (m), f (m−1) � − ≺ Af (m−1), f (m−1) �
)
A−1

m−1f
(m−1).(34)

By Definition 3.1, it holds that

‖ ≺ Af (m), f (m−1) � − ≺ Af (m−1), f (m−1) � ‖2

= ‖ ≺ AEm, f (m−1) � ‖2 = max
1≤i≤n

∣∣∣∣e�i AEm

(
f (m−1)

)�
ei

∣∣∣∣ .
By the assumption in (32), we have

‖ ≺ Af (m), f (m−1) � − ≺ Af (m−1), f (m−1) � ‖2
≤ max

1≤i≤n
‖e�i AEm‖2 ≤ max

1≤i≤n
‖e�i A‖2‖Em‖F ≡ b‖Em‖F .(35)

On the other hand, using f (m) = A−1
m f (m−1) and (12), (18) and (32), it holds

that

‖ ≺ Af (m), f (m) � − ≺ Af (m), f (m−1) � ‖2
= max

1≤i≤n

∣∣∣e�i AA−1
m f (m−1)E�

mei

∣∣∣
≤ max

1≤i≤n
‖e�i A‖2 ‖A−1

m ‖2 ‖f (m−1)‖2 ‖Em‖F

≤ b
√
n

|1− λmδt|‖Em‖F .(36)

The assumption in (33) implies that

√
n

|1− λmδt| < 1
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and

1

|1− λmδt| <
1√
n
<

1

2
, if n > 4.(37)

Consequently, from (36),

‖ ≺ Af (m), f (m) � − ≺ Af (m), f (m−1) � ‖2 < b‖Em‖F .(38)

From (34), (35) and (38), we get

‖Em+1‖F < ‖A−1
m ‖2‖Em‖F + 2b (δt) ‖A−1

m ‖2‖A−1
m−1‖2‖f (m−1)‖2‖Em‖F

<

{
1

|1− λmδt| +
2b (δt)

√
n

|1− λm−1δt| |1− λmδt|

}
‖Em‖F .(39)

By the assumption that αm, β2
m − 4αm > 0, for all

δt >
βm +

√
β2
m − 4αm

2αm
,

we have(
δt− βm +

√
β2
m − 4αm

2αm

)(
δt− βm −

√
β2
m − 4αm

2αm

)
> 0

which implies that[
1−
(
λm + λm−1

)
δt+ λmλm−1 (δt)

2
]
> 4b

√
nδt

and

2b (δt)
√
n

|1− λm−1δt| |1− λmδt| <
1

2
.(40)

Substituting (37) and (40) into (39), it holds that ‖Em+1‖F < ‖Em‖F .

5. Practical implementation

In this section, we shall discuss how to efficiently compute the steady-state
solution of (7) with zero mass-center normalization by QIEM.

We remark that the QIEM algorithm is mainly used to compute con-
formal parameterization for regular meshes. For meshes with sharp tails,
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some artificial foldings may happen in the iterative process. In this case,

one can take some local refinement to remesh the region with sharp tails.
Furthermore, if the artificial foldings still happen with mesh refinement or

the refinement skill is not available, we recommend that one can switch to

the efficient approach of the conformal correction proposed in [23] to remedy
this drawback.

5.1. The initial mapping f (0)

For the spherical conformal mapping on genus-zero closed surfaces, the initial
map f (0) in (10) is to construct an one-to-one and onto smooth map from

a given genus-zero closed surface to the unit sphere. In practice, we choose
the Gauss map as the initial map f (0), which is defined as follows:

Definition 5.1 (Gauss map). G : M → S2, G(v) = n(v), where n(v) is the
unit normal vector at v ∈ M .

The corresponding Gauss map can be computed, for instance, as the weighted
sum of normals on the adjacent faces weighed by their areas [25].

For the case of simply connected surfaces with a single boundary, i.e.,

computing the Riemann mapping, we use the idea described in [20] to con-
struct a harmonic-type initial map. Specifically, we first parametrize the

open surface onto a unit disk by the harmonic map. Using the stereographic
projection, the resulting mesh is mapped to a lower hemisphere. Then the

harmonic-type initial map is obtained by reflecting the hemisphere’s image

along the equatorial plane to built a full unit sphere.

For genus-0 closed surfaces, if the initial Gauss map is not a good one,

one may first divide it into two meshes with the identical boundary and
then perform the barycentric mapping for each of them with an appropri-

ate weight, such as harmonic [26], mean value [6] or semi-cotangent [33].

Then, similar to the previous mentioned harmonic-type initialization for the
Riemann mapping, we can get a better initial map.

5.2. Adaptive time step control

The convergence of solving the steady-state solution of the time-dependent
differential equations with fixed time step δt may be very slow. In order

to accelerate the convergence, we propose a time step controlling scheme
to control δt in (10) for each iteration m. As a consequence, the sequence

{f (m)} can be convergent as soon as possible.
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Let δt0 be an initial time step determined by the strategy introduced in

lines 1–5 of Algorithm 5.1 and δtmax denote the maximal time step so that δt

is set to be δtmax if δt > δtmax. The strategy of choosing δt in each iteration is

based on the decrement of the harmonic energy Eh(f), i.e., the time steps are

chosen such that the harmonic energy is always decreasing in each iteration.

This objective can be achieved by the descending and accelerating strategies

of time step controls. The descending strategy is used to determine δt so

that Eh(f (m+1)) is always decreasing, i.e., Eh(f (m+1))−Eh(f (m)) < ε, in each

m = 0, 1, . . . , k for some k and tolerance ε. Given ε, δt0 and an increment

α, we describe this strategy as follows.

(S2.a): If Eh(f (m+1))− Eh(f (m)) ≥ ε, then we reduce δt to be δt := 1
2δt and

recompute f (m+1) from (10). This step prevents the sequence {f (m)}
converges to a map whose harmonic energy is a local extreme.

(S2.b): If the new Eh(f (m+1)) is still larger than Eh(f (m)) when δt has been

repeatedly reduced three times, then we reduce the initial δt0 to be

δt0 := δt0/α and restart the algorithm with m = 0.

The iteration in (10) with the descending strategy is repeated till

Eh(f (m+1)) is closed enough to Eh(f (m)). After the descending strategy, the

following accelerating strategy is used to increase δt and to speed up the

convergence further.

(S2.c): If Eh(f (m+1)) satisfies that |Eh(f (m+1))−Eh(f (m))| < 10×|Eh(f (m))−
Eh(f (m−1))|, then δt is increased by δt := min(δtmax, δt×α); otherwise,

δt need to be reduced by δt := δt/α, and we recompute f (m+1) from

(10).

5.3. Two-phase quasi-implicit Euler method

To determine the initial map f (0) in (10) is a crucial cornerstone to implement

the QIEM for the evolution of conformal mappings on the unit sphere or

on the unit disk. If f (0) is not close to the steady-state solution, then it is

difficult to find a large stable convergence region of the time steps for solving

(7) by QIEM with time step controlling strategies (S2.a), (S2.b) and (S2.c).

To remedy this drawback, we propose a two-phase QIEM. If f (0) is not close

to the steady-state solution, the heuristic phase-I QIEM

f (m+1) − f (m)

δt
= −Δdf

(m+1) = −Af (m+1),
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i.e.,

(I + (δt)A) f (m+1) = f (m)

is used to compute f (m+1). When f (m) is close to the steady-state solution,
we switch to (10) with strategies (S2.a), (S2.b) and (S2.c) for computing
f (m+1), which we call the phase-II QIEM.

To set up a robust phase-I QIEM, we also propose an adaptive method,
just as in the phase-II QIEM, to control δt in each iteration. The strategy
described as follows is repeated until the difference |Eh(f (m+1)) − Eh(f (m))|
of the energy is less than a given tolerance ε3.

(S1.a): By the definition of A in (6), the row sums of A are equal to zero
which implies that there is a trivial solution f such that
(A− ≺ Af , f �) f = 0 and Eh(f) = 0. To avoid f (m) convergent to
this trivial solution, we reset δt0 to be the current δt and restart the
algorithm with the original f (0) and new δt0 when Eh(f (m)) is less than
a given small tolerance ε2.

(S1.b): If Eh(f (m+1)) does not decrease, then we reduce δt to be δt :=
max(1, 12δt) and recompute f (m+1) from (10).

(S1.c): If the difference of the energy is still larger than or equal to ε3 when
m has been larger than a given maximal iteration number mmax, then
we reset δt0 to be the current δt and restart the algorithm with original
initial closed surface f (0) and new δt0.

It is important to determine δt0 for solving the steady-state problem.
In general, the explicit Euler method has extremely narrow stability region
of time steps which leads to the extremely slow convergence. The implicit
Euler method has considerably wider stability region. However, it involves
nonlinear systems that have to be solved by iterative solvers. If the time step
is larger, then the initial guess of the iterative solver must be unrealistically
close to the solution of the nonlinear systems. For two phases of QIEM, a
heuristic method is proposed in Algorithm 5.1 to determine an initial time
step. Comparing the initial time step in Algorithm 5.1 with those for the
explicit and implicit Euler methods, our proposed time step is large. In
Section 6, we numerically show that the proposed two phases of QIEM with
an estimate initial time step in Algorithm 5.1 is highly efficient.

6. Numerical results

In this section, we conduct numerical experiments to evaluate the perfor-
mances of the computation of Riemann and sphere conformal mappings. All



242 Wei-Qiang Huang et al.

Algorithm 5.1 Two-phase quasi-implicit Euler method

Input: A genus zero triangular mesh M , an initial map f (0) with the harmonic
energy Eh(f (0)) and a threshold δE for the energy difference.

Output: Convergent steady-state solution f (m) with zero mass center.
1: Compute the areas Ai, i = 1, . . . , n, of all faces in M ;
2: Resort Ai for i = 1, . . . , n;
3: Compute the average A of the areas Ai for i = 0.45n, . . . , 0.55n;
4: Find the minimal positive integer k such that Ak/3−7 ≤ 3500.
5: Compute δt0 = Ak/3−7.
6: if f (0) is not close to the steady-state solution then
7: repeat
8: Solve the linear system

(I + (δt)A) f (m+1) = f (m).

9: Compute the mass sphere center c:

c =

(
n∑

i=1

A(vi)

)−1 [
A(v1) · · · A(vn)

]
f (m+1),(41)

where A(vi) is the sum of areas for the faces which have the common
vertex vi, i = 1, . . . , n;

10: Normalize f (m+1) by (f (m+1) − c)/‖f (m+1) − c‖ such that the mass center
of the resulting f (m+1) is at the unit sphere center;

11: Compute δt according to strategies (S1.a), (S1.b) and (S1.c) with mmax =
10, ε2 = 0.5 and ε3 = 0.1;

12: until |Eh(f (m+1))− Eh(f (m))| < 0.1
13: Set f (0) = f (m+1) and m = 0;
14: end if
15: repeat
16: Solve the linear system{

I + δt
(
A− ≺ Af (m), f (m) �

)}
f (m+1) = f (m).

17: Compute the mass sphere center c in (41);
18: Normalize f (m+1) by (f (m+1) − c)/‖f (m+1) − c‖ such that the mass center of

the resulting f (m+1) is at the unit sphere center;
19: Compute δt according to strategies (S2.a), (S2.b) and (S2.c) with α = 1.05

and ε = 0.05;
20: until |Eh(f (m+1))− Eh(f (m))| < δE
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Table 1: #V and #F denote the numbers of vertices and faces of M , respec-
tively. dim is the dimension of the matrix A

Figure #F #V dim Figure #F #V dim
1(a) 102256 51596 102258 2(a) 1005146 502575 502575
1(b) 135766 68430 135768 2(b) 858180 429092 429092
1(c) 136513 68802 136515 2(c) 284692 142348 142348
1(d) 127265 64156 127267 2(d) 39698 19851 19851
1(e) 127132 64095 127134
1(f) 130560 65802 130562
1(g) 140352 70720 140354
1(h) 139198 70180 139200

Figure 1: The eight different facial expressions of one person.

computations are carried out in MATLAB 2011b on a HP workstation with
two Intel Quad-Core Xeon X5687 3.6GHz CPUs, 48 GB main memory and
RedHat Linux operation system, using IEEE double-precision floating-point
arithmetic.

The benchmark problems come from the eight different facial expressions
for a person in Figure 1 and four different genus zero closed surfaces in
Figure 2, respectively. The corresponding mesh data are listed in Table 1.

Furthermore, we adapt the quasi-conformal (QC) distortion [27] to quan-
titatively measure the conformality (angle-preserving) of Riemann mappings
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Figure 2: The four different genus zero closed surfaces.

for models in Figure 1. The ideal conformality is 1, and larger value are worse
conformality. The parameterization results as well as the distribution of QC
distortions for each experiment are presented in Figure 3. On the other
hand, for the spherical conformal mappings, we directly compute the angle
differences between triangles on the surfaces models in Figure 2 and the
corresponding ones on the unit sphere. The frequency histograms of angle
differences are shown in Figure 4.

As shown in the histograms of Figure 3 as well as Figure 4, we see that
most of the QC distortions for Riemann mappings are close to 1 and most
of the angle differences for the spherical conformal mappings are close to 0,
these demonstrate that the conformality for the obtained maps is promising
and satisfactory.

6.1. Efficiency of computing Riemann mapping by Algorithm 5.1

In this subsection, we demonstrate the efficiency of Algorithm 5.1 in solv-
ing the nonlinear heat diffusion equation (7) with zero mass center by (i)
comparing the efficiency of the explicit, implicit and quasi-implicit Euler
methods, (ii) robustness in choosing initial time step and (iii) high perfor-
mance computing for the benchmark human faces in Figure 1. In (i) and (ii),
we use the human face in Figure 1(a) as the benchmark problem. The stop-
ping tolerance δE is taken as 10−9. The initial map f (0) are all constructed
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Figure 3: The Riemann mapping results and measurements of quasi-
conformal distortion for mesh models in Figure 1.
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Figure 4: Angle difference histograms of spherical conformal mapping for
mesh models in Figure 2.

by the harmonic-type initial map (see Section 5.1). Such f (0) is close to the
steady-state solution so that the phase-I QIEM, i.e., lines 7–13, is skipped
in Algorithm 5.1. Only phase-II QIEM, i.e., lines 15–20, is used to compute
the steady-state solution.

For each experiment, the initial δt0’s are chosen as large as possible
in order to accelerate the convergence of each method. In particular, for
the QIEM method, we determine the initial time δt0 through the technique
introduced in Section 5.2.

• Comparison for the explicit, implicit and quasi-implicit Euler
methods: The initial time steps δt0 for the explicit, implicit and quasi-
implicit Euler methods are set to 0.003, 5 and 2881.05, respectively.
For explicit Euler method, δt = δt0 is fixed in each iteration. In order
to accelerate the convergence of the implicit Euler method, we apply an
adaptive method to control time step. The energy Eh(f (m)) produced
by Algorithm 5.1 is strictly monotonically decreasing so that δt = δt0
is fixed at each iteration. The numerical results of the explicit, implicit



HPC for spherical conformal and Riemann mappings 247

Table 2: Efficiency comparison

Explicit Euler Implicit Euler QIEM
δt 0.003 5 2,881.05
#it 2,412,000 108 10

CPU time (sec.) 113,911.89 5,554.88 4.23

Figure 5: Convergence behavior of the computed harmonic energy produced
by explicit, implicit and quasi-implicit Euler methods.

and quasi-implicit Euler methods are shown in Table 2. The notation
#it in Table 2 denotes the total iteration number used to compute
the solution. The convergence behaviors for these three methods are
shown in Figure 5. From these numerical results, we see that the QIEM
outperforms the explicit and implicit Euler methods greatly.

• Robustness of choosing initial time step in Algorithm 5.1:
The numerical results have validated that the QIEM with the time
step δt = 2881.05, which is estimated by Algorithm 5.1, outperforms
the other two methods by big margins. Now, we demonstrate the ro-
bustness of Algorithm 5.1 with the harmonic-type initial map f (0) for
solving (7) with the human face in Figure 1(a). Four different initial
time steps δt0, namely (1, 10, 100, 1000), are applied to solve the
steady-state problem and the maximum δtmax of time steps is equal to
2881.05. The associated numerical results are shown in Table 3 and the
convergence behaviors of the harmonic energy are shown in Figure 6.
The notation δtend in Table 3 denotes the time step at the final itera-
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Table 3: Numerical results for Algorithm 5.1 with different initial time step
δt0

δt0 1 10 100 1000
δtend 467.6 495.6 579.2 1551
#it 129 83 39 13

CPU time (sec.) 52.4 33.9 16.1 5.63

Figure 6: Convergence behavior of the computed harmonic energy produced
by the phase-II quasi-implicit Euler method with different initial time step
δt0.

tion. The results in Table 3 and Figure 6 show that no matter which
initial time step is used, the adaptive controlling processes in Algo-
rithm 5.1 performs well. The time step in each iteration is effectively
increasing and the convergence of the solution is accelerated. Further-
more, these results also show that the QIEM with a harmonic-type
initial f (0) has a wide stability region and the process of estimating
time step in Algorithm 5.1 provides a near optimal initial time step.
The adaptive controlling time step is not only robust for the human
face problems but also for other benchmark problems. Figure 7(b)
presents the numerical results for applying Algorithm 5.1 to compute
the Riemann mapping of the human hand in Figure 7(a). As shown
in Figure 7(b), the time step is reduced from 3348.76 to 837.19 at the
fourth iteration and then gradually increased to 3348.7. At the 41st
iteration, it is again reduced to 1518.71 so that the harmonic energies
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Figure 7: The computed harmonic energies and time steps in each iteration
of phase-II QIEM for the human hand.

are always decreasing. In each iteration, the time step is kept greater
than or equal to 837.19 such that it only requires 56 iterations and
103.3 seconds to compute the Riemann mapping.
We remark that the parameterization result for the human hand model
has a large QC distortion as in Figure 7(a). The main reason is that
the shape of the human hand model is not suitable for fixed-boundary
parameterization on the unit disc. The primary intention of presenting
this experiment here is to show the advantages of the adaptive time
step controlling.
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Table 4: Numerical results for the benchmark problems produced by Algo-
rithm 5.1 with harmonic-type initial map f (0)

Figure δt0 #it tc (sec.) Figure δt0 #it tc (sec.)
1(a) 2881.1 10 4.23 1(e) 2155.6 10 5.46
1(b) 3377.7 8 4.80 1(f) 3307.4 15 8.11
1(c) 3375.1 7 4.34 1(g) 2102.3 13 8.08
1(d) 2890.6 11 6.02 1(h) 3474.0 11 16.9

• High performance computing for Algorithm 5.1: We demon-
strate the high performance computing for Algorithm 5.1 with harmon-
ic-type initial map f (0) in solving the benchmark problems in Figure 1.
The numerical results are shown in Table 4. The notation tc in the ta-
ble denotes the total CPU time for computing the conformal map by
Algorithm 5.1. From Table 4, Algorithm 5.1 provides a large initial
time step δt0. Using such δt0, it only needs 7 ∼ 15 iterations in Algo-
rithm 5.1 to compute the steady-state solution of (7). The associated
CPU times are less than 17 seconds for Figure 1, which illustrates the
high performance of Algorithm 5.1.

6.2. Efficiency of Algorithm 5.1 for computing spherical
conformal mapping

We have numerically illustrated the high performance of Algorithm 5.1 in
computing Riemann mapping. In this subsection, we demonstrate the impor-
tance of phase-I QIEM in computing spherical conformal mapping and then
show the performance for Algorithm 5.1 in solving the benchmark problems
in Figure 2.

• Effect of phase-I QIEM: We compare the efficiency of the phase-II
QIEM and Algorithm 5.1 for solving (7) with genus zero closed sur-
face in Figure 2(c). The numerical results produced by Algorithm 5.1
are shown in Figure 8. Since the initial map f (0) is far away from the
steady-state solution, in our numerical experiences, it is difficult to
find an initial time step such that the phase-II QIEM can be con-
vergent. The stability region of the time step in the phase-II QIEM
for computing spherical conformal mapping is extremely limited. On
the contrary, Algorithm 5.1 with initial time step δt0 = 2077.71 only
requires 41 iterations which obviously outperforms phase-II QIEM.
That is the phase-I QIEM in Algorithm 5.1 plays an important role in
computing spherical conformal mapping.
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Figure 8: The computed harmonic energies and time steps in each iteration
of the two-phase QIEM for the human torso in Figure 2(c).

Table 5: Numerical results for the benchmark problems in Figure 2 produced
by Algorithm 5.1

Figure #itI #itII tc (sec.) Figure #itI #itII tc (sec.)
2(a) 16 42 145.7 2(b) 8 121 234.6
2(c) 8 33 31.03 2(d) 5 80 6.117

• Performance of Algorithm 5.1: We demonstrate the high perfor-
mance computing of Algorithm 5.1 in computing spherical conformal
mapping for the benchmark problems in Figure 2. The numerical re-
sults are shown in Table 5. The notations #itI and #itII denote the
total iteration numbers for phase-I and phase-II QIEMs, respectively.
From the results in this table, we conclude that Algorithm 5.1 pos-
sesses high performance for computing the spherical conformal maps
of genus zero closed surfaces.

7. Conclusions

For genus zero closed surfaces, a mapping is conformal if and only if it
is harmonic. A traditional way to find the harmonic map is to minimize
the harmonic energy by the time evolution according to the nonlinear heat
diffusion (7). For this, we propose an efficient quasi-implicit Euler method
(QIEM), and apply it to compute conformal mappings from a genus zero
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closed surface to the unit sphere S2 (the spherical conformal mapping) as
well as from a simply connected surface with a single boundary to a 2D
disk D (the Riemann mapping). Furthermore, we analyze the convergence
of the QIEM under some simplifications. In order to accelerate the conver-
gence of this method, we develop a variant time step scheme and a heuristic
method to determine an initial time step. Numerical results validate that the
proposed algorithms possess high performance for computing the Riemann
mapping. For the spherical conformal map, we propose a two-phase QIEM.
In phase-I QIEM, the normal component of Δdf is omitted to accelerate the
computed map close to the steady-state solution as soon as possible. When
the computed map is close to the steady-state solution in phase-I QIEM,
we switch it to the phase-II QIEM. Numerical results confirm that the two-
phase QIEM also possesses high performance for computing the spherical
conformal map.
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Appendix

Here, we derive the Jacobian matrix J(f (m+1)) in (9) as follows. Let fk =
[f1k, · · · , fnk]� for k = 1, 2, 3. By Definition 3.1, it holds that, for k = 1, 2, 3,

(≺ Af , f � fk)i = e�i A[f1, f2, f3][fi1, fi2, fi3]
�fik

= e�i A (fi1f1 + fi2f2 + fi3f3) fik

= e�i A

⎛
⎝f2

ikfk +
∑
��=k

fikfi�f�

⎞
⎠

≡ gik.(42)

It implies that, for j �= i,

∂gik
∂fjk

=
∂

∂fjk

(
f2
ike

�
i Afk

)
= aijf

2
ik,

where ei is the ith column of the identity matrix, and

∂gik
∂fik

= e�i A (fi1f1 + fi2f2 + fi3f3) + fik
∂

∂fik

(
fike

�
i Afk

)
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= e�i A (fi1f1 + fi2f2 + fi3f3) + fike
�
i Afk + f2

ikaii

= e�i A (fi1f1 + fi2f2 + fi3f3 + fikfk) + f2
ikaii

≡ e�i Ah
(i)
k + f2

ikaii.

Consequently,[
∂gik
∂f1k

∂gik
∂f2k

· · · ∂gik
∂fnk

]
= f2

ike
�
i A+

(
e�i Ah

(i)
k

)
e�i

and ⎡
⎢⎣

∂g1k
∂f1k

· · · ∂g1k
∂fnk

...
...

∂gnk

∂f1k
· · · ∂gnk

∂fnk

⎤
⎥⎦ = D2

k,fA+Dk,h,(43)

where Dk,f = diag(f1k, f2k, · · · , fnk) and

Dk,h = diag
(
e�1 Ah

(1)
k , e�2 Ah

(2)
k , · · · , e�nAh

(n)
k

)
.

From (42), we have, for � �= k,

∂gik
∂fj�

= aijfikfi�, for j �= i;

and

∂gik
∂fi�

= fike
�
i Af� + fikfi�aii,

which implies that[
∂gik
∂f1�

∂gik
∂f2�

· · · ∂gik
∂fn�

]
= fikfi�e

�
i A+

{
fike

�
i Af�

}
e�i

and ⎡
⎢⎣

∂g1k
∂f1�

· · · ∂g1k
∂fn�

...
...

∂gnk

∂f1�
· · · ∂gnk

∂fn�

⎤
⎥⎦ = Dk,fD�,fA+Dk,�(44)

with
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Figure 9: Sparsity of the Jacobian matrix J(f
(m+1)
i ).

Dk,� = diag
(
fk1e

�
1 Af�, · · · , fkne�nAf�

)
.

From (43) and (44), the Jacobian matrix J1(f) of (I3⊗ ≺ Af , f �) vec(f) can
be represented as

J1(f) =

⎡
⎣ D2

1,fA+D1,h D1,fD2,fA+D1,2 D1,fD3,fA+D1,3

D2,fD1,fA+D2,1 D2
2,fA+D2,h D2,fD3,fA+D2,3

D3,fD1,fA+D3,1 D3,fD2,fA+D3,2 D2
3,fA+D3,h

⎤
⎦ .

Therefore, the Jacobian matrix J(f (m+1)) is equal to

J
(
f (m+1)

)
= I3 ⊗ [I + (δt)A]− (δt)J1(f

(m+1)).

The sparsities of J
(
f (m+1)

)
without/with column and row permutations are

shown in Figure 9.
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