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Metric spaces of shapes and applications:
compression, curve matching and low-dimensional

representation
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∗

In this paper we present three metrics on classes of 2D shapes
whose outlines are simple closed planar curves. The first, a C1-type
metric on classes of shapes with Lipschitz tangent angle, allows for
estimates of massiveness such as ε-entropy. A Sobolev-type metric
on piecewise C2 curves allows for efficient curve matching based on
a multiscale wavelet-like analysis. Finally, the Weil-Petersson met-
ric, a Riemannian metric on the class of smooth diffeomorphisms
of S1 → R

2, allows a low dimensional shape representation, an N -
Teichon, whose initial conditions are closely linked to curvature.
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1. Introduction

From a mathematical perspective, spaces of embedded plane curves are
among the simplest nonlinear infinite-dimensional spaces, offering the most
tractable setting for explicitly computing results on Banach manifolds. From
an applications perspective, shape data is incredibly complex, high-dimen-
sional, and nonlinear.

One way to address that complexity is by identifying the data with
linear function spaces. As we show in Sections 2 and 3, this approach can
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be quite effective in certain contexts. In order to do standard data analysis,
however, the nonlinearity of the space must be accounted for, with shape
data parameterized by a shape manifold. Even a simple statistic such as an
average shape computed assuming linearity will be quite different from one
computed in a way that respects the true underlying geometry. We describe
one realization of a shape manifold in Section 4.

There have been many efforts in characterization and quantification of
discrete shape spaces, for example, by Kendall [49], Bookstein [50], Dryden
and Mardia [51], and Kent and Mardia [52], and of continuous shape spaces
using, for example, level sets and active contours [54], or shock graphs [53].
Recently, an effort to understand the underlying geometry of shape space
in both discrete and continuous settings has generated several successful
frameworks including [15, 19, 23].

In this paper we are adopting a framework of Pattern Theory, in particu-
lar, a Riemannian geometric approach to the shape spaces. In this paradigm
a shape is considered to be a point in some infinite dimensional manifold.
Comparison is performed by the means of introducing a metric on this space
and computing a geodesic. This offers a mathematically elegant and con-
sistent framework. Deforming the shape along the geodesic demonstrates
that shapes remain in the same class (for example, non-self intersecting C1

curves) while transforming from one to another. This is an important con-
sideration in some applications. For example, in computational anatomy,
transforming the shape along the geodesic means that the template organ
is morphing diffeomorphically into a target organ while remaining a plausi-
ble organ at every point along the geodesic. The metric measures the cost
of this transformation. It will allow us to compute the Karcher mean, an
average shape; linearize the shape space; and perform statistics. The pure
Riemannian approach comes at a significant computational cost, however,
and at the current state of numerical algorithms is not suitable when time
is a concern.

The pure Riemannian framework is the most geometrically principled of
the three presented here. By thoughtfully weakening the metric, however,
the other two frameworks maintain the geometric philosophy of the Rie-
mannian setting while increasing efficiency. The C1-type in Section 2 metric
replaces L2 with L∞ and retains tangent angle information in shape similar-
ity. This allows for estimation of the complexity of shape classes, as well as
of individual shapes. The H1/2-type metric used in Section 3 can be viewed
as a weakened linearization of the diffeomorphic approach. It makes similar
guarantees about regularity, but exchanges the Riemannian framework for
substantial gains in computational complexity for tasks such as matching.
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Two of our metrics, the C1- and Sobolev-type metrics, exploit power-
ful techniques for function spaces by working in geometrically important
function classes associated to shapes. For the C1-type metric, the function
class is the collection of arclength parameterized tangent angle functions
{θ(s)}. In this setting we are able to obtain estimates on the complexity
of shape space as well as a criterion for comparing the relative efficiency
of curve representations. For the Sobolev-type metric, we take the class of

tangent approximations {β(s, t)}, where β(s, t) = arg γ(s+1)−γ(s)
γ(s)−γ(s−t) for an ar-

clength parametrized curve γ. This multiscale analysis provides a wavelet-
like analysis of the curve, providing both theorems about regularity and
practical algorithms for curve alignment. The third metric, the Riemannian
Weil-Petersson metric, induces a hyperbolic geometry on shape space allow-
ing for unique geodesics. We consider particular singular solutions to the
geodesic equation, an N -Teichon, which possess tractable evolution equa-
tions. Estimates of the curvature of the shape’s boundary in Section 4.5
allow us to construct an N -Teichon, that will provide essentially a linear,
low-dimensional representation for a shape.

1.1. C1-type metric

Section 2 introduces standard measures of massiveness: ε-entropy for com-
pact classes of curves with Lipschitz tangent angle, and expected code length
in an adaptive coding scheme for the non-compact setting. In the 1950’s,
Kolmogorov introduced the notion of ε-entropy as a measure of massiveness
for sets in spaces where the unit ball was not compact [16]. Given a compact
subset K of a metric space (X, ρ), with a minimal ε-covering containing Nε

elements, the ε-entropy of K is given by Hε(K, ρ) = log2Nε. The logarithm
reflects the fact that the number of ε-balls required to cover K in an infinite-
dimensional space is on the order of C1/ελ , for constants C and λ depending
on K. The notion of ε-entropy has been useful as an invariant of topological
vector spaces [21], a way of measuring sizes of spaces of solutions to PDE’s
[12], and, in recent years, as a measure of efficiency in tasks of data com-
pression [13, 14, 22]. We are most interested in this last application and its
relationship to efficient coverings for recognition purposes. In general, opti-
mal compression rates are obtained using a “true” probability distribution
on the data, something we do not have due to the reasons mentioned above.
Assuming a uniform probability on shapes, ε-entropy offers a kind of “best
in the worst case,” or minimax, compression rate.

The idea of adaptive coding arose in the data compression community
in the early 1980’s, introduced by Rissanen and Langdon in [17] as an al-
ternative to arithmetic coding. Arithmetic coding compresses data using a
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known, fixed statistical model, and has near-optimal compression rate when
the data comes from the model used to compress it. To accommodate situ-
ations where the model is neither known nor fixed, Rissanen and Langdon
developed a strategy to adapt the model to data (hence “adaptive” cod-
ing), continually updating the model as new data arrives. In this situation,
the notion of optimality is not well-defined. Instead, Rissanen proposes a
minimum description length (MDL) criterion for evaluating efficiency: the
encoding resulting in the shortest expected code length is the most efficient
[20].

Our main results in Section 2 are ε-entropy estimates for classes of curves
with uniformly bounded arclength and Lipschitz tangent angle function. We
obtain a tight estimate for the ε-entropy of general curves, and a slightly
weaker one for closed curves, where the requirement of closure impedes the
search for a lower bound. We also present the codelength for an adaptive
encoding of curves that draws on the techniques developed for the ε-entropy
estimates.

1.2. H1/2-type metric

In Section 3 we recall some geometric variants of Sobolev spaces introduced
in [2], where the authors applied the techniques (using an H3/2-type met-
ric) to the problem of denoising curves. Here we use the H1/2 variant of
the spaces and consider curve matching. The goal of these constructions is
to provide a multiscale analysis of a curve which is, in most respects, like
having a linear structure on the highly nonlinear space of curves. This repre-
sentation encodes information similar to the “shape-tree” of Felzenszwalb [7]
and “shape contexts” introduced in [1] by Belongie and Malik, while making
the space of curves into a linear-like space in a simple and computationally
convenient way.

Given a constant-speed curve γ : [0, 2π) → C, define the angles

β(θ, t) = arg
γ(θ + t)− γ(θ)

γ(θ)− γ(θ − t)

Modulo translation, rotation, and scale, these angles provide a lift of the
curve γ (a 1-dimensional object) into the strip [0, 2π) × [0,∞) with coor-
dinate (θ, t). The theorem here is that β angles behave essentially like the
Haar wavelet coefficients of γ′, and working with them is almost like working
with wavelet coefficients. In particular, weighted L2 norms of the coefficient
energies over space and scale give information about the local Sobolev regu-
larity of the curve when it is viewed as a collection of Lipschitz graphs. There
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are several possible variants, all with slightly different behaviors in practice,
but the same theorems apply in each case. For example, the complex second
differences

δ(θ, t) = γ(θ + t) + γ(θ − t)− 2γ(θ)

are the Haar coefficients of γ′. The complex second differences provide a
rich and robust shape descriptor for the purpose of curve matching. This
multiscale shape descriptor works well in applications, and the mathematics
are simple and appealing. Further, it offers a nice way to understand what
geometry is being measured when fractional order differential operators are
applied to curve evolutions, as is done in the final section with the Weil-
Petersson metric.

1.3. Weil-Petersson metric

In Section 4, we consider the Weil-Petersson (WP) metric on the coset space
PSL2(R)\Diff(S1). This coset space (or its completion in the WP metric
or in the Teichmüller topology) is known as the universal Teichmüller space
and is well-known in many contexts: in the classification of Riemann surfaces
[35], conformal and quasi-conformal maps [41], string theory [26] and most
recently computer vision [46]. Its completion in the WP metric is an infinite
dimensional homogeneous complex Kähler-Hilbert manifold [47].

As we will explain in Section 4.1 below, a particular dense subset of
the universal Teichmüller space T (1) is given by PSL2(R)\Diff(S1), where
Diff(S1) is the group of orientation preserving C∞ diffeomorphisms of S1,
and PSL2(R) is a subgroup of the Möbius selfmaps of the unit disk, see (8)
and the surrounding discussion. This coset space is a Riemannian manifold
for the WP metric and has another realization as the space of smooth sim-
ple closed curves modulo translations and scalings. We will use the terms
‘shape,’ ‘diffeomorphism,’ ‘fingerprint,’ or ‘welding map’ to refer to members
in this dense subset of T (1).

We have chosen Weil-Petersson metric for two main reasons. First, any
two smooth shapes can be connected with a Weil-Petersson geodesic [30].
Second, all sectional curvatures of the metric are negative [47]. Thus geo-
desics connecting two shapes are unique [36].

Geodesic equations of groups of diffeomorphisms on a general Lie group
G were first studied in Arnold’s ground-breaking paper [24]. Arnold con-
sidered in particular the group of volume preserving diffeomorphisms of
Euclidean space in its L2 metric and found the geodesic equation for the
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vector field 
v(
x, t) to be Euler’s fluid flow equation (see [25] for a full expo-
sition). Other examples include the periodic Korteweg-deVries (KdV) equa-
tion and the periodic Camassa-Holm (C-H) equation [27]. These equations
are geodesic equations on the Virasoro group, a central extension by S1 of
the group Diff(S1) of the diffeomorphisms of S1, for the L2 and H1 metric
respectively. KdV and C-H are two completely integrable partial differential
equations and have soliton solutions. Holm and collaborators have found that
the geodesic equation onDiff(Rn) admits special solutions with many of the
properties of solitons: for each fixed time, they are diffeomorphisms which
are largely localized in space and retain their general shape as they evolve;
furthermore they interact somewhat like KdV solitons [29]. There are not,
however, infinitely many conserved quantities so they are not true solitons.

The focus of this paper is a type of singular solution to the EPDiff, which
we call Teichons. Singular solutions first arose as peakons (from ‘peaked
solitons’) for a completely integrable Hamiltonian water wave equation, C-
H in [27]. The peaks occurred where velocity profiles of the C-H equation
had discontinuity in their slops and correspond to Dirac delta distributions
of the associated momentum. The EPDiff equation for other metrics was
later found independently in [48], and its singular solutions were shown
to be important as landmarks in shape analysis [32, 44]. Later they were
shown to comprise a singular momentum map for the right action of the
diffeomorphisms on embeddings in any dimension [33]. Currently, the use of
EPDiff and its landmark solutions is standard in shape analysis [34, 42, 43].

It turns out that considering the Weil-Petersson metric on the coset
space PSL2(R)\Diff(S1) yields another example of a geodesic equation that
is similar to KdV and C-H. This equation describing evolution of the velocity
field v(t, θ) is

(1) mt + 2mvθ + vmθ = 0, where m = −H(vθ + vθθθ),

and H is the periodic Hilbert transform defined by convolution with
1
2π ctn(θ/2).

It is not known if (1) is completely integrable but it admits a class of
soliton-like solutions which we consider in this paper: solutions in which
m can be represented as a finite sum of weighted Dirac delta functions.
Darryl Holm suggested the portmanteau Teichons to describe these soliton-
like solutions on Teichmüller space and their corresponding geodesics. We
adopt this terminology in this paper.

We use anN -Teichon ansatz (a sum ofN Teichons) to reduce the integro-
differential equation (1) to a finite-dimensional system of ordinary differen-
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Table 1: Summary of properties of the three metrics discussed in this paper

Metric & Curve Class Properties
C1-type, formula (2) – mainly used to determine shape complexity;

curves with Lipschitz tangent – linearizes via geometrically relevant function
space;

– allows for MDL-type modeling comparisons
– mainly used for matching;

H1/2-type, formulas (6),(7) – results on par with state of the art;
C0 curves – strong statements about regularity;

– rich multiscale descriptor;
– trades geodesics for fast computation
– produces Hα measures for any α

H3/2-type, formula (11) – mainly used for computing unique geodesics;
C∞ curves – slow computation of geodesics;

– allows for low-dimensional Teichon representation

tial equations. The main idea is then to represent any shape by the initial ve-
locity that would send the unit circle to the shape via the geodesic equation.
The initial velocity will be constructed from an N -Teichon, thus providing
a low-dimensional representation for a given shape. Because of the unique-
ness of the geodesic in the WP metric, this representation is well-posed. The
algorithm that computes a Teichon geodesic between any two given shapes
was described in [40]. Note that in [40] authors did not look for the optimal
number of Teichons. In Section 4.5 we derive estimates that suggest a way
to choose the Teichons to represent a particular shape.

Section 4 is organized as follows. Section 4.1 introduces the background
on universal Teichmüller space T (1), fingerprints (also called welding maps),
and the Weil-Petersson metric. With the WP metric, Section 4.2 discusses
the geodesic equation on the Teichmüller space (also known as EPDiff), and
Section 4.3 discusses Teichon solutions of EPDiff. In Section 4.5 we derive
an estimate of the curvature of the shape produced by an N -Teichon.

2. Measures of massiveness with a C1-type metric

Partially motivated by applications to compression, a subset of the mathe-
matical community has been interested in questions about efficient ε-approx-
imation in Banach spaces. We present the earliest such results for curves,
first presented in [18] without complete proof. A lesson from results on Ba-
nach spaces is that when ε-balls are rectangular instead of round, they stack
more efficiently and therefore give a clear sense of how large an infinite-
dimensional metric space might be. The Hausdorff metric, the typical L∞-
type metric on plane curves, is the simplest metric inducing rectangular
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Figure 1: Left: These concentric circles have Hausdorff and ρ1 distances both
equal to the difference in radii of the circles. Right: The Hausdorff and ρ1
distances may be different for these circles, depending on the value of d. If
d ≥ π/2, ρ1 will equal the Hausdorff distance. If d < π/2, the Hausdorff
distance will equal d while ρ1 = π/2, the difference of tangent angles at the
circled intersection point P .

ε-balls. For curves, however, orientation is often viewed as more relevant to
similarity than location. We therefore introduce a C1-type metric on curves.
See Figure 1.

Consider E , the set of all embeddings of the unit circle into R2 passing
through the origin with horizontal tangent angle. Among these embeddings
are curves with Lipschitz tangent angle, denoted E1. With analogous nota-
tion for immersions, we obtain classes I and I1. For curves that are not
necessarily closed, we have C and C1. Naturally, E1 ⊂ I1 ⊂ C1.

Let γ1, γ2 ∈ C1. For p ∈ γi, θ(p) will indicate the tangent angle to γi at
the point p. A C1-type metric is quite natural:

(2) ρ1(γ1, γ2) = max
i=1,2
i �=j

(
max
q∈γi

min
p∈γj

(|p− q|+ λ |θ(p)− θ(q)|)
)
,

where λ is a dimension-normalizing constant.

2.1. Totally bounded spaces

Restricting to plane curves with length bounded by L and fixed Lipschitz
constant K, we obtain totally bounded spaces EK,L ⊂ IK,L ⊂ CK,L (these
last two are compact). We can then measure the massiveness of these spaces
by counting the minimum number of ε-balls in an ε-covering, taking λ > 1/K
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in Equation 2. Taking logarithms of that minimum number yields the ε-

entropy of the space [16].

Definition 1. Let Nε be the cardinality of a minimal ε-covering for a totally

bounded subset X of a metric space (M, ρ). The ε-entropy of (X , ρ) is then:

Hε(X , ρ) = log2Nε.

Our ε-entropy results for curves will draw on the following two results

for functions, stated here without proof.

Theorem 1. [16] For I = [a, b], C > 0, define:

F(C) =
{
f : I → R | f(a) = 0, |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I

}
,

and ρ∞(f, g) = supx∈I |f(x)− g(x)|. Then:

Hε(F(C), ρ∞) =

{ |b−a|C
ε − 1 C|b−a|

ε ∈ Z+[
C|b−a|

ε

]
else.

Theorem 2. [18] Let I = [a, b], and define:

F0(C) =

{
f ∈ F(C) | f(b) = 0,

∫
I
f = 0

}
.

There exists a 2ε-separated set in (F0, L
∞) with m2ε elements, where m2ε 	

2
C|b−a|

ε .

We now present results for curves. Note that we will pay an estimation

tax of (1 + K2δ
4 ) for viewing objects as curves instead of functions.

Theorem 3. With notation as above,

(a) Hε(C1
K,L, ρ1) ∼ KL

ε .

(b) Hε(I1
K,L, ρ1) ∼ C

ε , for
KL−2π

ε ≤ C ≤ KL.

Proof. We compute the ε-entropy for a class by finding an ε-covering to

obtain an upper bound, a 2ε-separated set (a collection of elements in the

class that must each belong to a distinct ε-ball) to obtain a lower bound, so

that the upper and lower bounds are asymptotically equal as ε → 0. Note
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that an ε-covering for C1
K,L provides an upper bound for the other curve

classes as well.
Denote the function class consisting of associated tangent angle functions

to curves in C1
K,L by Θ1

K,L = {θ(s) : [0, L] → R | |θ(s1)− θ(s2)| ≤ K|s1− s2|,
θ(0) = 0}. Here we take s to be an arclength parameter with γ(0) = 0 for
each γ ∈ C.

1) Upper Bound: Take δ so that ε = δ +
√
δ
λ , and set ξ = 3/2. Be-

gin by partitioning possible arclengths l, 0 < l ≤ L, into sequential
subintervals of width δξ

4 with the first subinterval given by (0, δ
ξ

4 ].

There will be [4Lδξ ] such subintervals. Parametrize a curve γ ∈ C1
K,L of

length l ∈ (li − δξ

4 , li] so that γ(0) = 0, the tangent angle θ(0) = 0,

and |dγdt | = l
li
. For curves associated to each arclength subinterval,

|θ(t1)− θ(t2)| ≤ l
li
K ≤ K.

Each class Θ1
K,li

then admits an L∞ δ-covering with at most 2
Kli
δ ≤

2
KL

δ elements by Theorem 1. This generates an ε-covering for (C1
K,li

, ρ1).

To see this, lift a δ-ball of tangent angle functions in Θ1
K,li

to its curve

primitives in C1
K,li

. This lifted ball will have ρ1 radius of 2li sin
δ
2+λδ ≈

(li + λ)δ.
We must refine the lifted covering to give a ρ1 ε-covering. To do so,
we correct for location (the first term in ρ1) in three directions every
Δ = δξ−1

4 in arclength, introducing discontinuities into the curves at
the centers of the refined balls. See Figure 2. The length of the discon-
tinuity is δξ

4 + δΔ
2 . We claim this procedure produces an ε-covering for

(C1
K,li

, ρ1).

To see this, suppose |γ(0)− γ̂(0)| ≤ δξ/2, |θ(t)− θ̂(t)| ≤ δ, and suppose
that for k = 0, 1, . . . , [ liΔ ]−Δ, |γ(kΔ)− γ̂(kΔ)| ≤ δξ/2. Then:

|γ((k + 1)Δ)− γ̂((k + 1)Δ)| ≤
∫ (k+1)Δ

kΔ
2

∣∣∣∣∣sin θ − θ̂

2

∣∣∣∣∣ dt+ δξ

2

≤ δΔ+
δξ

2

=
3δξ

4
.

Once we correct γ̂ to return to within δξ/2 of any γ at t = kΔ for each
0 ≤ k ≤ [ liΔ ]−Δ, we will have refined the lifted covering of (C1

K,li
, ρ1)

to an ε-covering.
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Figure 2: Refining the lifted covering to maintain the required ρ1 radius by
introducing jump discontinuities to the centers of the refined covering.

Let P = limt→kΔ− γ̂(t) for some k. Consider the closed disk of radius
δξ

4 centered at P . We set γ̂(kΔ) to be one of the three points at a

distance of 3δξ

8 away from P along one of the radii at an angle of

0, π/3 or 2π/3 around the disk. If γ is in the refined ball associated to

γ̂, γ(kΔ) will be within the disk and will have distance from γ̂(kΔ) of

no more than 3
√
3δξ

8 < δξ

2 . The curves γ, γ̂ then satisfy our conditions

in the interval [kΔ, (k + 1)Δ) and are therefore at a distance of no

more than 3δξ

4 there. As the tangent angles of two curves in a lifted

ball are no more than δ apart, we have that each curve γ is within

ε = δξ + λδ of at least one center γ̂ of the refined covering.

Repeating the above process for each k and each li produces an ε-

covering with at most [ 4L√
δ3
]2m balls, where m = [KL

δ ] + log 3[ 4L√
δ
],

giving the desired asymptotic result.

2) Lower Bound for C1
K,L: We construct a 2ε-separated set of curves

by generating functions and viewing their realizations as plane curves.

This turns out to be more delicate than one might initially suspect.

Choose δ so that ε = δ

1+K2

4

and set L′ = L/
√
1 +K2δ. Subdivide

[0, L′] into subintervals Ik = [k
√
δ, (k + 1)

√
δ], k = 0, 1, . . . , [ L

′√
δ
]. For

each Ik, apply Theorem 2 with C = K, ε = δ, a = k
√
δ, b = (k+1)

√
δ

to obtain a collection of functions fi,k, i = 1, . . . , [ K√
δ
], satisfying for

all i, k:

• ||fi,k − fj,k|| ≥ 2δ for i 
= j
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• fi,k(a) = fi,k(b) = 0

•
∫
Ik
fi,k = 0

• ||Fi,k||∞ ≤ K
√
δ

2 .

From these, we generate for each i, k a primitive gi,k so that g′i,k = fi,k.
These primitives have curvature bounded by K and satisfy for all i, k:

• gi,k(k
√
δ) = gi,k((k + 1)

√
δ) = 0

• gi,k at x, θi,k(kδ) = θi,k((k + 1)δ) (where θi,k(x) denotes the tan-
gent angle to the curve (x, gi,k(x)))

• ||θi,k − θj,k|| ≥ 2δ

1+K2δ

4

= 2ε.

Create a functions {gi} on [0, L′] by concatenating all possible se-
quences {gi,k}k. Since each function gi,k has length given by:

∫
Ik

√
1 + f2

i,k ≤
∫
Ik

√
1 + (K

√
δ

2
)2

=
√
δ ·
√

1 +
K2δ

4
,

the total arclength of any gi (viewed now as a plane curve) is no more
than:

L′

δ

√
δ ·
√

1 +
K2δ

4
= L.

Furthermore, ρ1(gi, gj) ≥ 2ε for i 
= j. Recall that λ > 1/K, and
note that if gi 
= gj , we may assume (possibly by swapping labels i
and j) that g′i has slope K and g′j has slope −K on some interval
I = [x0, x0 + δ/K] which means |g′i(x0 + δ/K) − g′j(x0 + δ/K)| ≥ 2δ.
Without loss of generality, we may take x0 = 0. Now consider the
ρ1-distance of gj to the point (δ/K, gi(δ/K)):

ρ1(gi, gj) ≥ ρ1 ((δ/K, gi(δ/K)) , gj)

≥ min
x

1

λ

∣∣∣∣ δK − x

∣∣∣∣+ |θi(δ/K)− θj(x)|

= min
x

1

λ

∣∣∣∣ δK − x

∣∣∣∣+ ∣∣arctan g′i(δ/K)− arctan g′j(x)
∣∣

≥ min
x

1

λ

∣∣∣∣ δK − x

∣∣∣∣+ 1

1 + K2δ
4

∣∣g′i(δ/K)− g′j(x)
∣∣
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≥ min
x

1

λ

∣∣∣∣ δK − x

∣∣∣∣+ 1

1 + K2δ
4

|δ +Kx|

≥ 2δ

1 + K2δ
4

= 2ε

The last inequality arises from finding the minimizing x = δ/K.
Hence the curves described by the functions {gi} give a 2ε-separated
set for ρ1. All that remains is accounting: Each subinterval Ik pro-

duces m functions fi,k where m 	 2
K

√
δ

δ , and there are [L
′

δ ] subin-
tervals, which gives a total number of curves in the 2ε-separated set

asymptotically equal to 2
K

√
δ

δ
·L′

δ = 2
KL

ε .
3) Lower Bound for I1K,L: The lower bound for closed curves slightly

modifies the argument for open curves. Generating a theorem like The-
orem 2 that will generate closed curves corresponds to an unsolved
question in partition theory. Instead, we sacrifice tightness of our lower
bound.
Again, select δ so that ε = δ√

1+K2δ

4

. Take L′ to satisfy

2L′ ≤ L√
1 + K2δ

4

− 2π

K

and generate functions gi as above that are ρ1 2ε-separated. Taking
any two such functions (not necessarily distinct), join two halves of
a circle of radius 1/K to form a closed curve with Lipschitz tangent
angle, Lipschitz constant K, and length bounded by L. The number
of such curves is 2m where m 	 2KL′

δ = KL−2π
ε .

2.2. Applications to adaptive coding for unbounded spaces

We replace the finite ε-covering giving an upper bound for the above ε-
entropy estimates for the totally bounded spaces CK,L and IK,L with a
countable ε-covering in the full curve spaces C1 and I1. Changing philos-
ophy only slightly, one may view the ε-entropy of a class as the minimum
number of bits required in a uniform encoding of the elements of that class
with ε error. From this perspective, we consider a countable covering of a
non-bounded space as an adaptive (non-uniform) encoding of the elements
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of that space. The bits required for encoding a particular element represent
the complexity of encoding that element in the given scheme. The number
of balls will be infinite, but the number of bits for any given element will
be finite. Again, we are interested in asymptotic behavior of the bit rate as
ε → 0.

We have seen that, given a good L∞ approximation for the tangent angle
function for a curve, obtaining a good ρ1 approximation for the curve itself
requires only lower order terms. In other words, the leading term in an adap-
tive approximation for a curve in C comes entirely from approximating the
corresponding tangent angle. The following theorem for functions therefore
tells the whole story for curves.

Theorem 4. For every ε > 0, there exists a countable codebook Fε =
{f1, f2, . . .}, depending only on ε, with the following property. For every Lip-
schitz function f defined on [a, b] so that f(a) = 0 and f ′(x) is continuous
a.e., there are constants C(f, δ) such that for all δ > 0, there is a codeword
fn ∈ Fε such that ||f − fn||∞ ≤ ε and fn has description length:

L(fn) ≤
[∫ |f ′|+ δ

ε

]
+ C(f, δ).

Proof. Since f ′ is continuous a.e. and bounded, f ′ is Riemann integrable.
Therefore, for any δ, there exists a step function g taking on rational values,
with a finite number of jumps at rational points {x′j}, so that |f ′| ≤ g and∫
g ≤

∫
|f ′| + δ. On each subinterval Ij = [xj , xj+1) where g is constant, f

is therefore Lipschitz with constant g(xj). Denote the number of jumps by
m.

Using g, determine a variably spaced finite number of points {xk} so

that for any k,
∫ xk+1
xk

g ≤ ε. In particular, on each subinterval Ij , select the
points spaced ε

g(x′
j)

apart. There will be at most:

[
g(x′j)|Ij |

ε

]
+ 1 =

[∫
Ij
g(x)

ε

]
+ 1

such points. Take {xk} to be the collection of {x′j} together with these
equally spaced points.

Construct an approximation fn for f . We claim there exists a piecewise
linear function φn, with slope ±g(xk) on the interval Jk = [xk, xk+1), van-
ishing at a, so that f ⊂ K(φn), where K(φn) is the corridor of width 2ε
with φn as its top boundary. On J1, take φn(x) = g(0)x. Certainly, since f
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is Lipschitz with constant g(0) on I1, f ⊂ K(φn). Inductively, assume φn

has been constructed so that f ⊂ K(φn) for x ≤ xk. We wish to define φn

for Ik so that f remains in K(φn). Since f is Lipschitz with constant g(xk)
on Ik and f ⊂ K(φn) for x ≤ xk, one of the following is true:

(a) f(xk+1) ∈ [φn(xk)−g(xk)(x−xk), φn(xk)+g(xk)(x−xk)] ⊂ [φn(xk)−
ε, φn(xk) + ε],

(b) f(xk+1) ∈ [φn(xk)− g(xk)(x− xk)− 2ε, φn(xk) + g(xk)(x− xk)− 2ε]
⊂ [φn(xk)− 3ε, φn(xk)− ε].

If (a) is true, then defining φn to have positive slope on Ik gives f ⊂ K(φn).
If (b) is true, then defining φn to have negative slope on Ik gives the desired
result. And so we have constructed a φn so that f ⊂ K(φn). Taking fn to
be the center of the corridor K(φn), we have ||f − fn||∞ ≤ ε.

Encode f by encoding fn, or equivalently, φn. To do so requires de-
scribing g, which in turn requires describing the collection of points {xk} as
outlined above. We must also describe the sequence of signs ± to assign to
the slopes g(x′j) at each of the points {xk}. Since g has rational jumps at
rational values, encoding g requires a fixed and finite number of bits depend-
ing only on f and δ, yielding the constant C(f, δ). Describing a sign requires
a single bit. As this must be done at each of the {xk}, we see encoding the
sequence of signs requires at most:

∑
j

([∫
Ij
g

ε

]
+ 1

)
+m ≤

[∫
[a,b] g

ε

]
+ 2m

bits. Then, absorbing 2m into C(f, δ), the total number of bits required to
describe fn satisfies:

L(fn) ≤
∫
g

ε
+ C(f, δ) ≤

∫
|f ′|+ δ

ε
+ C(f, δ),

as claimed.

Corollary 1. Suppose γ ∈ C has curvature κ(s), s an arclength parameter.
Then the leading term in the number of bits for an adaptive encoding of γ
with ε-accuracy in the metric ρ1 is at most:[∫ |κ(s)| ds+ δ

ε

]
.
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Corollary 1 gives a measure of the complexity of a particular shape. It
also allows now for an intrinsic evaluation of curve-based shape representa-
tions for any given shape. Fix δ > 0. Presented with two candidate shape
representations, the one requiring fewer bits for the given shape is the one

that more efficiently captures that shape’s structure (this is Rissanen’s min-
imum description length [20]). For a comparison of boundary representation
to the medial axis representation based on Corollary 1, see [18] where we
obtain a precise criterion for when the boundary is more efficient.

3. Curve matching with a Sobolev-type metric

One of the most important problems in shape is curve matching – finding

similar points on a pair of curves, for example in an object recognition prob-
lem. One typically wishes to introduce a notion of shape similarity (which
may or may not be a metric) on a space of curves in order to make statements
about which curves most closely resemble each other. We here introduce a
multiscale analysis on curves which can be used to provide a local or global
measure of similarity between a pair of curves. These geometric Sobolev-type
metrics have their roots in a theorem from harmonic analysis which relates

L2 norms of fractional derivatives to averages of finite differences, and they
provide both effective algorithms and strong statements about regularity.

3.1. Some classical results

Our wavelet-like constructions are motivated by the following theorem (see

Stein [5]):

Theorem 5. Let f : Rn → R be in L2 ∩ C1. Then∫
Rn

∫
Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2

dt

|t|n dx = cn

∫
Rn

n∑
k=1

∣∣∣∣ ∂f∂xk

∣∣∣∣2 dx
where cn depends only on the dimension.

Changing the power of |t| reweights the various scales and will increase
or decrease the number of derivatives being taken. For 0 < α < 2 we have
that

‖f (α)‖2L2 = cn,α

∫
Rn

∫
Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2α

dt

|t|n dx.
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While it is tempting to look at the second differences and think of the
second derivative, this is not particularly useful here. The second differences
are in fact the Haar wavelet coefficients of f ′, so the theorem is really looking
at the first derivative. Note that the integral does not even converge at
α = 2.

There is also a local statement:

Theorem 6. For almost every x ∈ Rn, the function f : Rn → R has a weak
derivative in the L2 sense at x iff∫

Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2

dt

|t|n < ∞.

Again, if we introduce the parameter α we get corresponding statements
for the order-α derivative.

Remark 1. The function

F (x, t) = f(x+ t) + f(x− t)− 2f(x)

defines, modulo affine functions, a lift of f : Rn → R to the space of functions
Rn × Rn → R. One may define the square function SF as

SF (x)2 ≡
∫
Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2

dt

|t|n .

One now sees that Theorems 5 and 6 both relate regularity of f to the square
function SF . We will use very similar square functions later, when we lift
a curve Γ ⊂ R2 to a function β : R × R → R which has a similar square
function associated with it.

Let γ(s) be an arclength1 parametrization of a smooth curve Γ ⊂ R2

and let {zn}Ni=1 be a collection of sample points taken at equal arclength
along Γ (we are not yet assuming any noise in the samples). Given the
parametrization γ(s) = x(s)+ iy(s), we define the angle β(s, t) with respect
to γ by

β(s, t) ≡ arg
γ(s+ t)− γ(s)

γ(s)− γ(s− t)
.

1Arclength sampling is not at all necessary; we assume it mostly for a concise pre-
sentation. The results can easily be modified if, for example, the sampling intervals
are bounded above and below.



190 Matt Feiszli et al.

We introduce the α “norm”2 for curves, defined for closed curves as

‖γ‖2α =

∫ L

0

∫ L/2

0
β(s, t)2

dt

|t|2α−1
ds(3)

where L is the length of Γ, and for open curves as

‖γ‖2α =

∫ L

0

∫ min(s,L−s)

0
β(s, t)2

dt

|t|2α−1
ds.(4)

In making computations on discretized closed curves3 we will use the equiv-
alent dyadic variant

‖γ‖2α =

N∑
n=1

K∑
k=1

β(n, k)22−2k(1−α)(5)

where

β(n, k) = arg
γn+2k−1 − γn
γn − γn−2k−1

.

These constructions give geometric variants of theorem (5); the β’s are to
curves what the second differences are to functions. The next subsection

gives these results in the dyadic case.

3.2. The mapping from β’s to wavelet coefficients

Consider Γ ⊂ C which is the graph of a Lipschitz function; i.e. Γ = {x +
iA(x)} ⊂ C where A : R → R satisfies ‖A′‖∞ < M . If γ : R → C is an

arclength parametrization of Γ we define φ : R → [− arctanM, arctanM ]
a.e. by writing

γ′(s) = eiφ(s).

2It is not correct to refer to this as a norm on curves; we have not imposed a
linear structure on the space of curves. However, these integrals of β angles play
a role analogous to the Sobolev norms on function spaces and the β’s themselves
share many features with wavelet coefficients from the point of view of analysis. We
hope the reader will forgive this abuse of terminology.

3Open curves can be handled as well; the easiest method is simply truncating
the sum near the endpoints.
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Let D be the set of dyadic intervals of R. Given I ∈ D, we write xI for
the midpoint of I and x+I , x

−
I for the right and left endpoints, respectively.

Denote by hI the Haar wavelet associated with I:

hI(x) =

{
|I|−1/2, x ∈ [xI , x

+
I ]

−|I|−1/2, x ∈ [x−I , xI).

We will generally write xI for intervals in the domain of a function and sI
for intervals in the domain of a curve. Given our curve γ(s), we may consider
the dyadic β angles

βIγ = arg
γ(s+I )− γ(sI)

γ(sI)− γ(s−I )

as well as the Haar coefficients of γ′

aI = 〈γ′, hI〉.

We see that in the sense of distributions, the Haar coefficients of γ′ in fact
agree with the second differences of γ, up to a rescaling:

aI = 〈γ′, hI〉
= |I|−1/2

(
γ(s+I ) + γ(s−I )− 2γ(sI)

)
.

Geometrically, aI is a vector joining γ(sI) to the opposing vertex of the paral-
lelogram defined by the three points (γ(s+I ), γ(sI), γ(s

−
I )). The next theorem

shows that on Lipschitz graphs, the β’s are almost the wavelet coefficients
aI . While this is pointwise false, it becomes true after integrating. We first
state a lemma. Decompose aI into “tangential” and “normal” components

aI = atI + anI

where

atI = proj�IaI

anI = proj�⊥I aI

and � is the line joining γ(s−I ) to γ(s+I ) (see figure 3). We think of � as a
rough tangent line, thus the terminology. We will use the fact that |aI |2 =
|atI |2 + |anI |2. Our next lemma says that the β’s and the normal components
anI agree up to a rescaling; the proof is a simple geometric argument.
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Figure 3: Wavelet coefficients of complex-valued γ′ in the continuous setting.
Left: The wavelet coefficients a(s, t) are, up to the L2 rescaling, given by the
vector δ(s, t) joining γ(s) to the opposite vertex of the parallelgram. Right:
Again up to rescaling, the “normal” and “tangential” parts an, at are given
by the projections of δ onto the line � joining γ(s− t) to γ(s+ t).

Lemma 1 (β is anI ). With β, γ, φ, aI defined as above,

|anI | ∼ |βI ||I|1/2

with constant that depends only on M .

In fact, under certain conditions, we can use β in place of the entire
coefficient aI . Pointwise, this is false, but on Lipschitz graphs, anI controls
atI after integrating, when α is large enough. The next theorem makes this
precise. Let I be a dyadic partition of the domain of A.

Theorem 7 (β’s are almost wavelet coefficients). For 0 < α < 1,∑
I∈I

|aI |2|I|−2α ∼
∑
I∈I

β2
I |I|1−2α

with constant that depends only on the Lipschitz constant M .

Remark 2. The condition α > 0 in Theorem 7 is necessary, and the coun-
terexample for other α contains the gist of the proof. Consider the curve
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Figure 4: The condition α > 0 is necessary in Theorem 7. For α < 0, the
cost of the wiggly part vanishes as the number of wiggles increases.

of length 2 obtained by joining the line segment [−1, 0] ⊂ R to 2k triangle
functions with sides of slope ±M , as shown in figure 4. Let γ be an arclength
parametrization of this curve. Note that the rightmost endpoint of the curve
lies at ( 1√

1+M2
, 0), independent of k, so the tangential part of the largest aI

is non-zero. If I is a dyadic partition of [−1, 1] we see there are 2k non-zero
βI ’s which share some common value β. We have∑

I∈I
β2
I |I|1−2α = β22k

(
2−k
)1−2α

= β222αk.

If α < 0 we can make this arbitrarily small by increasing k, so no variant
of Theorem 7 can hold.

In light of Theorem 7 it follows that statements about local regularity
of γ(s) which can be obtained via decay of wavelet coefficients can be trans-
lated immediately into an equivalent statement about the β’s. For example,
Theorem 7 has an immediate corollary:

Corollary 2 (Characterization of Sobolev spaces via β). For 0 < s < 1,
γ ∈ H1+s iff ∑

I∈I
β2
I |I|1−2α ≤ ∞

Proof. By Theorem 7, the fractional derivative seminorms induced by the
aI and the β’s are comparable, and γ is always in L2 by construction, hence
this is simply a restatement of the definition of H1+s.

In summary, studying the β angles and their decay at small scales is
equivalent to studying the wavelet coefficients of the derivative γ′. Any state-
ment about regularity obtained using one construction translates immedi-
ately into a corresponding statement about the other. In the next sections
we will construct matching algorithms based on square functions of β and
other related quantities.
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Figure 5: Curve alignment. These are two images from the MPEG7 dataset.
The point γ1(θ) on the blue curve Γ1 is matched to γ2 ◦ σ(θ) on Γ2.

3.3. Curve matching

We now apply the theoretical results of the previous section to design a
family of curve matching algorithms. Let γ1, γ2 : [0, 2π) → C be unit-speed
parametrizations of some pair of plane curves Γ1,Γ2. For simplicity we will
assume these are Jordan curves; the main reason is that the periodic versions
of all our formulas are simpler to state than the versions which allow for
endpoints of arcs. We normalize both curves to have length 2π.

A standard technique to define a distance between two curves is to con-
sider all aligning homeomorphisms σ : [0, 2π] → [0, 2π] which define corre-
spondences between points γ1(θ) on Γ1 and γ2 ◦ σ(θ) on Γ2 (see Figure 5).
One then uses geometric criteria to associate a cost with the map σ. For
example, using the β angles described above, one could match curves as
follows. For i = 1, 2, define the angles on the i-the curve at scale t:

βi(θ, t) = arg
γi(θ + t)

γi(θ − t)
.

In analogy with square functions in analysis (see [6]), we now define a type
of geometric square function associated with the angles β. In fact, more
generally we can allow β to be any lift of a curve to R2 (or some subset of
R2 and make the following definition.

Definition 2 (Geometric square function). Let S be the space of simple
closed curves of length 2π and let P : S → [0, 2π]×R be any lift. Define the
square function associated with P to be

SαP (θ, t)2 =

∫ ∞

0
P (θ, t)2

dt

t2α−1
.
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In the case where P = β, for example, we recover the geometric Sobolev
norms introduced in the previous section. If γ is an arclength parametriza-
tion of a curve, then

‖γ‖2α =

∫ 2π

0
Sαβ(θ)

2dθ.

As we discuss below, we will consider lifts other than β.

Now given a map σ : [0, 1] → [0, 1] and a choice of α ∈ (0, 2) we define
the matching cost

K(σ) =

∫ 2π

0

∫ ∞

0
(β1(θ, t)− β2(σ(θ), t))

2 dt

t2α
dθ.(6)

This is the natural norm on the lift β which is compatible with the square
function Sβ. To define a distance, one chooses a class Σ of maps (say, home-
omorphisms, or Lipschitz mappings), and defines

d2(Γ1,Γ2) = inf
σ∈Σ

K(σ)

or the symmetric variant

d2sym(Γ1,Γ2) = d2(Γ1,Γ2) + d2(Γ2,Γ1).

We have the following properties for dsym.

Proposition 1. Let Γ1,Γ2 be continuous closed curves and let Σ be the set
of homeomorphisms [0, 1] → [0, 1]. The distance dsym defined by

d2sym(Γ1,Γ2) = d2(Γ1,Γ2) + d2(Γ2,Γ1)

satisfies

1) dsym(Γ1,Γ2) ≥ 0
2) dsym(Γ1,Γ2) = dsym(Γ2,Γ1)
3) dsym(Γ1,Γ2) = 0 iff Γ1 = Γ2.

Proof. Non-negativity and symmetry are obvious. We claim that d(Γ1,Γ2) =
0 iff Γ2 = Γ1 essentially follows from the fact that β is a lift. Indeed, assume
we have two curves Γ1 
= Γ2, but d(Γ1,Γ2) = 0. The second condition implies
β1 = β2 a.e., and since β is continuous in θ and t we have β1 ≡ β2, hence
Γ1 = Γ2.
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3.4. Discretization and computation

In order to achieve greater robustness, we wish to weaken the matching cost
(6) significantly. In the discrete setting, we proceed as follows. Say we have
N sample points taken at arclength along each curve. We wish to map some
M ≤ N points on Γ1 to similar points on Γ2. The aligning transformation
σ then becomes a map

σ : {1, 2, ...,M} → {1, 2, ..., N}(7)

Once we fix a maximum scale of interest K, our distance can be approxi-
mated as

d(Γ1,Γ2) = min
σ∈ΣN

M∑
n=1

K∑
k=1

k−(1+2α)|β1(n, k)− β2(σ(n), k)|2

where ΣN is some class of admissible discrete alignments and the βi(n, k)
are the β’s computed about the n-th point on curve i at scale k. By scale k,
we mean the k-th dyadic scale; i.e. if z(n) are equally-spaced points along a
curve, then set

β(n, k) = arg
(
z(n+ 2k)− z(n)

)
− arg(z(n)− z(n− 2k))

for k = 0, 1, 2, ...,K. In our experiments below, we have made the following
choices:

1) Each curve is resampled to 256 uniformly-spaced points. We match
128 randomly-chosen points on Γ1 to their best matches on Γ2 and
vice-versa to compute dsym.

2) ΣN is the collection of all injective maps σ : {1, 2, ..., 128} → {1, 2, ...,
256}, without any regard for topology.

3) The β’s are computed at 7 dyadic scales. We weight each scale corre-
sponding to the choice of α = 1/2 to produce a H(1/2)-type norm.

4) The optimal match may be computed with, for example, the Hungar-
ian algorithm; in practice we use a fast greedy algorithm which loops
through a random permutation of the 128 points on Γ1, pairing each
point to the best match on Γ2 that has not already been paired. We
have not observed any significant difference between the classification
performance of this naive greedy algorithm compared to the optimal
match.
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5) The symmetric distance dsym was used in all experiments.

Remark 3. The choice of H1/2 is natural in the following way: if one
assumes that the boundaries in the dataset have been corrupted by a white
noise of a fixed (but unknown) variance, the H1/2 norm weights each scale
according to the signal-to-noise ratio in that octave. Indeed, the empirical
results confirm that this is a reasonable choice, as the best results are obtained
very close to H1/2. H1/2 is also the Sobolev critical exponent at which the
curve becomes continuous.

3.4.1. Other multiscale geometric quantities In addition to comput-
ing the angles β, we also implement the same algorithm, but replacing the
β’s with the log ratio of point separation to arclength4. We denote this by

�(n, k) = log
|z(θ + t)− z(θ − t)|

2t
.

Since Theorem 5 also holds in the case of complex-valued functions, we con-
sider the complex second differences; these are not naturally scale-invariant
so we normalize by the length of the underlying arc, which is 2−k given our
normalizations described above.

δ(n, k) = 2−k
(
z(n+ 2k) + z(n− 2k)− 2z(n)

)
Rotation-invariance was achieved for the complex second differences in

two ways. Best performance was obtained by rotating so the tangent to Γ1

pointed along the real axis before computing the δ’s about a given point. Ro-
tating so the “coarse tangents”, i.e. the line joining the endpoints of the arc
at scale k, pointed along the real axis gave only slightly lesser performance,
with the loss almost certainly owing to the fact that this allows inconsistent
matching to take place across scales.

Summarizing, we have not one method, but a family of curve matching
algorithms based on the distance dsym. The matching algorithm is the same
in all cases; the only difference is the geometry under consideration. We have
tried several multiscale measures, swapping the angles β for the complex
differences δ or the length ratios �. In each case we use dyadic scales and make
the scale-invariant choice of placing equal weight on each scale (equivalent
to looking at the 3/2 derivative). We list the choices here and summarize
the discussion above; experimental results appear in the next section.

4This is asymptotically the angle β(s, t)2, so one can use � to study local reg-
ularity. We use it here to capture distortion of inter-point distances which is not
captured by β.
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1) Angles β
These are the β angles described above.

2) Complex second differences δ, tangent normalization
The complex second differences correspond to thinking of the curve
as a complex-valued function γ on the unit circle with |γ′| = 1 and
applying Theorem 5. We normalize the second differences by arclength,
as described above. “Tangent normalization” means that we achieve
rotation invariance by rotating the curve so the tangent line coincides
with the real axis before computing δ’s about each point.

3) Complex second differences δ, “coarse tangent” normalization
This differs from the previous only in how we achieve rotation invari-
ance: instead of rotating so the tangent to the curve lies along the real
axis, we rotate differently at each point and each scale. We rotate so
the “coarse tangent”, i.e. the line joining the endpoints of the arc at
scale k, lies along the real axis.

4) Distance ratios �
These are the ratios of point separation to arclength, as described
above.

5) Blend: β, �
This is a blended distance obtained by normalizing β and � so the mean
distances are equal and then summing the two, equally weighted.

3.5. Experimental results: MPEG7 CE Shape-1 Part B

The MPEG7 CE Shape-1 B test dataset is generally felt to be of the hard-
est datasets in the literature for testing shape classification algorithms. The
dataset contains 20 binary images in each of 70 categories. Some are hand-
drawn, some were extracted by thresholding digital images, some are car-
toons, etc. The dataset has essentially every possible major source of dif-
ficulty, including occluders, noise, and widely-varying resolutions. On the
other hand, it does not have many examples of shapes with articulated
parts. In any event, the standard test benchmark is the following.

1) For each image Ik in the dataset, 1 ≤ k ≤ 1400

a) Choose 40 other images from the dataset

b) Count how many of the 40 are in the same category as Ik (max
possible is 20)

2) Final score is called the “bull’s-eye percentage”:

BEP =
total images in correct class

28000



Metric spaces of shapes and applications 199

Figure 6: Some sample images from the MPEG7 test dataset. In certain
categories, like the spoons, guitar, and key images in the bottom row, it is
not clear that any shape-based algorithm (nor human subjects) would be
able to correctly classify the images. Image from Veltkamp/Latecki ’00.

(28000 = 20 ∗ 1400 correct is the best possible.)

Some representative results from existing methods. Many, many more
approaches exist, some with very good scores.

Method BEP

Shape-tree [7] 87.7

Inner-distance Shape Context [3] 85.4

Shape Context [1] 76.51

Curvature Scale Space [4] 75.44

We report the following results using the methods described above:

Method BEP

Complex second differences δ, tangent normalization 85.64

Complex second differences δ, coarse tangent normalization 84.57

Blend: β, � 78.59

Angles β 75.43

Distance ratios � 74.21
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The complex second differences yield performance nearly equal to the shape-

tree method even using a much weaker matching algorithm. The β an-

gles and log-distance ratios � both perform reasonably well alone, but con-

spire to give better performance when blended. The blend was created

by normalizing both distances by the mean distance and summing their

squares with equal weight on each. The point seems to be that measuring

angle and distance alone is good; measuring them both together is bet-

ter.

3.6. Remarks

TheH1/2-type methods described here use a rich multiscale curve descriptor,

similar to the shape-tree and shape context methods mentioned above. The

descriptor is rich enough that a fast greedy algorithm produces very good

results. If K is the number of scales at which β is computed, and N is the

number of sample points, then the alignment is O(KN2) where the bulk of

the time is spent computing the fragment-to-fragment distance matrix. Most

important, the constant is small and an entire pass through the MPEG7

dataset using MATLAB on a 2009 Mac Pro workstation can be completed

in less than 20 minutes. Repeating the same experiments using the O(N3)

Hungarian matching algorithm, rather than the greedy algorithm, resulted

in negligible increases in performance (on the order of .5%) while increasing

the runtime to approximately 12 hours, again in MATLAB on the same

workstation.

The multiscale descriptor used here can also be used as a local descriptor

to perform optimal alignments of one curve to another using a dynamic pro-

gramming algorithm which preserves fragment order along the curve. The

resulting algorithm is very similar to the dynamic time warping (DTW)

methods in common use in applications such as handwriting recognition,

with a rich local descriptor (see [11] for related geometric algorithms). In the

case of the MPEG7 dataset, the dynamic programming alignments actually

produced worse results than the greedy nontopological algorithm described

above. However, this should not be terribly surprising when one looks at

the dataset, since many curves within a given class exhibit different topolo-

gies, or strikingly different placement of salient features. Fragment-based

approaches are more relevant when feature locations change significantly.

In informal experiments, the H1/2 multiscale descriptor appears to be a

promising candidate for a local descriptor in handwriting recognition algo-

rithms.
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4. Weil-Petersson metric: conformal mappings, fingerprints,
and Teichons

4.1. Shapes as diffeomorphisms of the circle S1

4.1.1. Fingerprints Let Dint be the open unit disk in the complex plane
C, i.e. Dint = {z ∈ C | |z| < 1}, and let Dext = {z ∈ C | |z| > 1} be its
exterior.

For every simple closed curve Γ in C denote by Γint its union with the
region enclosed by it, and denote by Γext its union with the infinite region
outside of Γ (including ∞).

Then by the Riemann mapping theorem, for all Γ there exist two con-
formal maps

fint : Dint → Γint, fext : Dext → Γext.

The interior map fint is unique up to replacing fint by fint◦A for any Möbius
transformation A : Dint → Dint, where A is defined as

A(z) =
az + b

b̄z + ā
, |a|2 − |b|2 = 1.(8)

This subgroup of Möbius group of selfmaps of the circle is denoted PSL2(R).
The map fext is normalizated such that fext maps ∞ to ∞, and that its

differential carries the real positive axis of the D-plane at infinity to the real
positive axis of the Γ-plane at infinity.

Thus we define the map ψ which is called the ‘fingerprint’ (in Teichmüller
theory this is known as a ‘welding map’) of the shape

ψ = f−1
int ◦ fext ∈ PSL2(R)\Diff(S1).(9)

Note, that fext(S
1) = Γ, f−1

int (Γ) = S1. The fingerprint ψ : S1 → S1 is a
real-valued orientation-preserving diffeomorphism, and it uniquely identifies
the shape Γ (modulo scaling and rigid translations). Due to the Möbius
transformation ambiguity in the choice of fint, we see by construction that
ψ is a member of the right coset space PSL2(R)\Diff(S1). An example of a
shape along with four realizations of its fingerprint is given in Figure 7.

The inverse map from diffeomorphisms to shapes is called welding, and
is defined as follows: starting with ψ, construct an abstract Riemann surface
by ‘welding’ the boundaries of Dint and Dext via ψ. The resulting Riemann
surface must be conformally equivalent to the Riemann sphere. Choose a
conformal map f from the welded surface to the sphere taking ∞ ∈ Dext to
itself and having real positive derivative there. Let Γ = f(S1) (for details
and the numerical implementation see [46]).
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Figure 7: Left: an ellipse. Right: various welding map representatives
of the ellipse shape corresponding to the same equivalence class in
PSL2(R)\Diff(S1).

4.1.2. Weil-Petersson norm The Lie algebra of the group Diff(S1) is
given by the vector space Vec(S1) of smooth periodic vector fields v(θ)∂/∂θ
on the circle. The Weil-Petersson metric for v ∈ Vec(S1) can be expressed
as [45]:

‖v‖2WP =
∑
n∈Ẑ

|n3 − n||vn|2(10)

=

∫
S1

Lv(θ)v(θ)dθ.(11)

Here v(θ) =
∑∞

n=−∞ vne
inθ (where vn = v−n for the vector field to be

real), and Ẑ = Z\{n = 0,±1}. The Weil-Petersson operator L is an integro-
differential operator with the form

L = −H(∂3
θ + ∂θ).(12)

Above, H is the periodic Hilbert transform, defined as a convolution with
1
2π cot(θ/2).

The null space of the L operator is given by the vector fields whose
only Fourier coefficients are v−1, v0 and v1, i.e. vector fields of the type
(a+ b cos θ + c sin θ)∂/∂θ. These vector fields are exactly in the Lie algebra
sl2(R) of the Lie group PSL2(R).
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It is a known fact [39] that the above WP norm on vector fields can be
extended to the right-invariant WP-Riemannian metric on the coset space
PSL2(R)\Diff(S1).

Consider any two diffeomorphisms ψ0, ψ1 ∈ PSL2(R)\Diff(S1). The Rie-
mannian distance induced by the WP norm on vector fields is given by

L =

∫ 1

0
‖v(s)‖WPds, where v(θ, t) = ∂ψ(ψ−1(θ, t), t)/∂t.(13)

Vector fields v that minimize the distance (13) are geodesics on
PSL2(R)\Diff(S1).

4.2. The geodesic equation

The Euler-Poincaré equation for diffeomorphisms (hereafter ‘EPDiff’) is a
variant of Euler’s equations for fluid flow. It describes geodesics on the Lie
group of diffeomorphisms of Rn in any right invariant metric given on vector
fields by ‖v‖2 =

∫
Rn〈Lv, v〉dx for some positive definite self-adjoint operator

L (where 〈·, ·〉 is the canonical L2 pairing). The general EPDiff(Rn) is derived
in [24] and has the form

∂

∂t
Lv + (v · ∇)(Lv) + div v Lv +Dvt · Lv = 0,

where v is a smooth vector field in Rn, ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

)T is the diver-
gence operator, L is a self-adjoint differential operator and Dv is a Jacobian
matrix.

The above formula extends to the setting of the homogeneous space
PSL2(R)\Diff(S1) [37, 39]. Thus given a path φt(θ) = φ(θ, t) in Diff(S1),
let v(θ, t) = ∂φ

∂t (φ
−1(θ, t), t) be the scalar vector field it defines on a circle

and let L be the Weil-Petersson differential operator L = −H(∂3
θ+∂θ). Then

EPDiff takes the form

(14) (Lv)t + v.(Lv)θ + 2vθ.Lv = 0.

Above, v(θ, t) is called the velocity of the path, m(θ, t) = Lv(θ, t) is the
momentum, and this equation is the same as introduced in (1). We note
in particular that the momentum can be a distribution. The v → m map
may be inverted by the relation v(θ, t) = G∗m(θ, t), where G is the Green’s
function G(θ) of the WP operator L. The Green’s function G(θ) is obtained
as a solution to LG = Proj(δ0), where δ0 is the Dirac measure centered
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Figure 8: Green’s function (15) of the Weil-Petersson operator L = −H(∂3
θ+

∂θ).

at θ = 0, and Proj(δ0) is the projection of δ0, such that 0th, ±1st Fourier

coefficients of Proj(δ0) are zero. Expression for G(θ) has been computed in

[38], see Fig. 8:

G(θ) = (1− cos θ) log [2(1− cos θ)] +
3

2
cos θ − 1.(15)

4.3. Teichons, singular solutions of EPDiff

The EPDiff equation (14) admits momenta solutions that, once initialized as

a sum of N Dirac measures, remain a sum of N Dirac measures for all time

[27, 33]. In reference to this self-similarity property, these singular solutions

are named Teichons (or N -Teichons).

For a solution to EPDiff (14), we employ the N -Teichon ansatz

m(θ, t) =

N∑
j=1

pj(t)δ(θ − qj(t)),(16a)

v(θ, t) =

N∑
j=1

pj(t)G(θ − qj(t)),(16b)

where δ � δ0 is the origin-centered Dirac mass. Plugging these expressions

into EPDiff (14), we obtain a system of ODEs describing the evolution of
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the momentum coefficients pk and the Teichon locations qk:

(17)

⎧⎨⎩ ṗk = −pk
∑N

j=1 pjG
′(qk − qj),

q̇k =
∑N

j=1 pjG(qk − qj).

Momenta m must lie in the horizontal space, i.e. m(θ, t) must have vanish-
ing 0th and ±1st Fourier coefficients. Using (16a), we obtain a set of three
constraints for (qk, pk), linear in pk:

(18)

N∑
j=1

pj =

N∑
j=1

pje
iqj =

N∑
j=1

pje
−iqj = 0.

If they are satisfied at time t = 0 they will be satisfied for all t. The Teichons
never collide: the Teichon locations qk retain their initial ordering on S1 for
all time.

The system (17) is a Hamiltonian system and can be efficiently solved
using a symplectic integrator, for example Lobatto IIIA-B (for details see
[38]).

4.4. Numerical simulations

We start with the initial shape as a circle, and evolve it with an N -Teichon.
In other words we have the vector field of the form

(19) v(θ, t) =

N∑
k=1

pk(t)G(θ − qk).

The evolution of the shape is the result of the corresponding evolution of
the fingerprint

(20)
∂ψ(θ, t)

∂t
= v(ψ(θ, t), t), ψ(θ, 0) = θ.

Note, we are not solving a boundary value problem, but an initial value
problem. In other words we specify the initial velocity (i.e. pk(0) and qk(0)),
solve forward equations (17) to obtain evolution of {pk(t)}Nk=1, {qk(t)}Nk=1.
We plug this into (19), thus obtaining the time evolution of the velocity field.
Integrating the flow equation (20) will yield the evolution of the fingerprint
ψ(θ, t). Performing the welding procedure will give us the time evolution of
the corresponding shape. We consider a few cases below.
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Figure 9: Final shapes of the 4-Teichon evolution for d0 = 0.2 and p0 =
1, 2, 3, 4 and 5. Asterisks indicate location of Teichons: on the circle at the
initial time t = 0; on the final shape at time t = 1.

4.4.1. Case N = 4, d0 = 0.2 The initial configuration that determines
the velocity field is

p(t = 0) = (p0,−p0, p0,−p0), q(t = 0) =

(
2π − d0

2
,
d0
2
, π − d0

2
, π +

d0
2

)
.

In Fig. 9 you can see an eye-like shape, that is the result of the evolution
from the circle by the above velocity field, for d0 = 0.2 and variable p0. The
estimates for the evolution of p(t), d(t) and the shape were derived in [38].
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Figure 10: Final shapes at T = 1 of the 4-Teichon evolution for d0 = π/2 and
p0 = 0.5, 1, 1.5, 2, 2.5, 3 (from left to right, from top to bottom). For p0 = 0
the final shape is the initial circle. Asterisks indicate location of Teichons:
on the circle at the initial time t = 0; on the final shape at time t = 1.

4.4.2. Case N = 4, d = π/2 In this case we consider the four 1-

Teichons to be distributed equidistantly on the circle at t = 0. Initial con-

figuration is

p(t = 0) = (p0,−p0, p0,−p0), q(t = 0) = (π/4, 3π/4, 5π/4, 7π/4).

In Fig. 10 you can see the range of shapes that one gets with the initial

configuration of Teichons with d0 = π/2 and p0 ranging from 0.5 to 3. The

integration scheme failed to compute evolution of p(t), q(t) for p0 > 3.
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Figure 11: Snapshots of the evolution of the curvature of the shape, taken at
times t = k/10, k = 0, . . . , 9 with initial conditions p0 = 1, d0 = π/2. Crosses
show positions of Teichons at a given time, circles show initial positions of
Teichons.
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Figure 11: (Continued.)

In Fig. 11 we show the evolution of curvature from t = 0 to t = 1
for a configuration of Teichons where d0 = π/2, p0 = 1. Curvature has
been estimated by fitting a second degree polynomial. Namely, assume that
the curve is described by a finite sequence of points {m(k)}Nk=1. We fix an
approximation scale, an integer D ≥ 1. For each k we are looking for three
two-dimensional vectors a(k), b(k), c(k) such that:

m(k + l) ≈ a(k)
l2

2
+ b(k)l + c(k).

The curvature at a point m(k) is then approximated via the formula:

κ(k) =
det[b(k), a(k)]

|b(k)|3 .

In the graphs in this section we have used approximation scale D = 3.
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Figure 12: Final shape at t = 1 of a 6-Teichon. Asterisks indicate locations
of Teichons: on the circle at the initial time t = 0; on the final shape at time
t = 1.

It shows an interesting behavior of an N-Teichon solution: the resulting
curve consists of arcs of the circles, at least for some initial time. If Teichons
run into each other, then the curvature between them becomes larger, thus
they produce a circle of the radius that gets smaller with time. On the
intervals where Teichons are moving away from each other, the curvature
decreases, thus producing circles of larger and larger radii.

4.4.3. Case N = 6 We consider an example of a 6-Teichon with

p(t = 0) = (2,−1.4142, 1.4142,−2, 1,−1),

q(t = 0) =

(
−π

4
,−π

6
,
π

6
,
π

4
,
3π

4
,
5π

4

)
.

The values of pk were adjusted such that the constraints (18) are met. The
resulting shape at t = 1 is presented in Fig. 12.

The curvature evolution for a 6-Teichon is shown in Figure 13. We ob-
serve a compound effect: Teichons that move toward each other produce
increases in curvature, and the ones that are closer at the initial time pro-
duce higher curvature than the ones that are further apart. Notice how this
is reflected in the shape: the right part of the shape has two sharp corners
(higher curvature) connected by a less curved arc, while the opposite side
has the same appearance as in the ellipse example. We derive the curvature
evolution estimates in Section 4.5.



Metric spaces of shapes and applications 211

Figure 13: Snapshots of the evolution of the curvature of the shape from
Fig. 12, taken at times t = k/10, k = 0, 1, . . . , 9 for a 6-Teichon. Crosses
show positions of Teichons at a given time, circles show initial positions of
Teichons.
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Figure 13: (Continued.)

4.5. Curvature evolution estimates

We will estimate the values of the curvature of the N -Teichon at the small

initial time ε. Recall, that the N -Teichon velocity is given by v(θ, t) =∑N
k=1 pk(t)G(θ− qk(t)). The flow equation for the fingerprint at time ε will

be

ψ(θ, ε) = θ + εv(θ, ε) + o(ε)

It has been shown in [28] that the differential of the welding map at the

origin (i.e. a unit circle) has the form

v(θ) �→ 1

2
(iv(θ) +Hv(θ))eiθ

∂

∂z
.
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In other words, if the fingerprint of the circle, ψ(θ) = θ, is perturbed by
εv(θ), then the resulting shape will be a perturbation of the circle eiθ:

r(θ) = eiθ +
ε

2
(iv(θ) +Hv(θ))eiθ + o(ε).

Computing derivatives with respect to θ yields (writing only the linear
terms):

r′(θ) = ieiθ + ε
eiθ

2

[
HR1(θ) + iR1(θ)

]
,

r′′(θ) = −eiθ + ε
eiθ

2

[
HR2(θ) + iR2(θ)

]
.

Above, R1(θ) = v′(θ) +Hv(θ) and R2(θ) = v′′(θ) + 2Hv′(θ)− v(θ).
Treating r′, r′′ as vectors in R2 and using the fomula κ = |r′×r′′|/〈r′, r′〉3/2

we get the curvature of the shape after time ε to be:

κ(ε) = 1− ε

2

(
Hv′′(θ) +Hv(θ)

)
+ o(ε).

Recall, that theWP operator is L=−H(∂3
θ+∂θ) and LG(θ)= 2

∑∞
k=2 cos(kθ).

Therefore

−H(G′′(θ) +G(θ)) = 2

∞∑
k=2

sin(kθ)

k

= sign(θ)π − θ − 2 sin θ.

The last equality is based on the sum of the series
∑

k sin(kθ)/k [31]. Then,
since v =

∑
pkG(θ − qk), we get

−H(v′′(θ) + v(θ)) = −
N∑
k=1

pk
[
HG′′(θ − qk) +HG(θ − qk)

]
=

N∑
k=1

pk [sign(θ − qk)π − θ + qk − 2 sin(θ − qk)]

=

N∑
k=1

pk [sign(θ − qk)π + qk] .

The two terms in the second line in the above equations equal to zero because
of the constraints (18). Finally, the curvature of the shape produced by a
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Figure 14: Examples of the geodesic computed by the shooting algorithm
that uses N -Teichons to approximate WP geodesics [40]. Left: Shooting from
a bell to a blob, two shapes in the MPEG-7 CE-Shape-1 database. Right:
Shooting from a circle to a fish. An artificial scaling is employed to make the
evolution clearer. Highlighted points show how the 4 specific points evolve
on each shape.

Teichon for small enough initial time has the approximation:

(21) κ(θ) = 1 + ε/2

N∑
k=1

pk [sign(θ − qk)π + qk] + o(ε).

One can see that for small ε the curvature is a piecewise constant function
of θ. Thus the Teichon evolution produces shapes that consist of piecewise
circular arcs of various radii. From (21) one can see that the radii becomes
smaller (i.e. curvature becomes larger) when two Teichons run into each
other, for example when q1 < q2 and p1 = −p2 > 0. When Teichons’ mo-
menta point away from each other, the region between them experiences the
decrease in curvature, thus producing circles of larger radii. This behavior
is evident in Figs. 11 and 13.

In the future work we would like to investigate the behavior of the curva-
ture for all time t ∈ [0, 1]. The current approximation of curvature can serve
as a useful tool to make a better Teichons’ initialization for the shooting
method described in [40]. In Fig. 14 one can see examples of the geodesics
computed by the shooting algorithm using N -Teichons.

4.6. Shooting with an N-Teichon

In this section we will briefly describe the shooting algorithm from [40].
The idea of the shooting method is the following: given the initial shape
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(represented by fingerprint ψ0) and target shape (represented by fingerprint
ψ1), start with an initial guess for the positions qk(0) and momenta (or
‘strengths’) pk(0) of Teichons, construct the initial momentum m(θ, 0) =∑

pk(0)G(θ−qk(0)), and then solve forward the equation (17) to obtain time
evolution of qk(t), pk(t). This in turn will produce a time-varying velocity
field v(θ, t), which we integrate via the equation

v(θ, t) =
∂φ

∂t
(φ−1(θ, t), t),(22a)

φ(θ, t = 0) = ψ0.(22b)

to obtain φ(θ, t = 1). The final computed fingerprint φ(θ, t = 1), is com-
pared with the target fingerprint, ψ1, using the error term E. Based on this
comparison, we modify the initial shot configuration {pk(0), qk(0)}Nk=1 us-
ing the gradient of the error term E with respect to {pk(0), qk(0)}Nk=1 and
repeat the process. Because the fingerprints are members of a coset space
PSL2(R)\Diff(S1) we cannot use an L2 error function E. The suitable error
function is based on complex cross-ratios of points on the fingerprint, since
cross-ratios are invariant under PSL2(R) transformation.

The computational cost is highly varied. On a desktop computer it takes
5-20mins to compute a geodesics between simple shapes (for example, two
rotated ellipses). Shapes with that are less circular, with multiple concavities
and convexities require coarse-to-fine type of algorithm and can take 6-8
hours. In the future work, we would like to incorporate the formula (21) into
the initial guess for {pk(0), qk(0)}Nk=1, thus cutting down the computational
time to convergence.

5. Discussion

The first part of the paper discusses measures of massiveness (ε-entropy)
of a C1-type of metric on the space of planar curves and a related concept
of coding and compression of shapes. The resulting optimal curve approxi-
mations are piecewise circular arcs with jump discontinuities. In the second
part of the paper, variants of Sobolev type of metric are explored and they
prove to be robust and rich shape descriptors for the purpose of finding
similarity between planar curves. The paper concludes with a discussion of
an H3/2-like metric, the Weil-Petersson metric. In particular a special kind
of singular solutions are suggested as a way to parametrize and describe a
space of planar curves using a low-dimensional N -Teichon, thus providing a
way for a finite-dimensional encoding of the 2D shape.
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There are exciting prospects for these topics to be united. First, both
the Teichon representation and the geometric Sobolev representation pro-
vide appealing finite-dimensional candidates for computing the ε-entropy
of their respective shape spaces. Epsilon balls are easy to define in both
cases, and in particular the geometric Sobolev machinery makes it relatively
straightforward to describe the ε-balls in geometric terms.

Connections between approximation in these spaces are also of interest.
Results in the compression section using tangent angle functions can be
thought of as point-wise analogues of the β-angle approximations in the
shape matching section. Bounds such as those in Lemma 2 of [2] give a
natural entry point into discussions of approximation. In the C1 case, a
tangent angle function almost completely determines point location for the
associated curve. It would be interesting to examine the extent to which this
remains true in the Hα setting. With regard to the WP metric, connections
are less straightforward, yet both approximation schemes result in curves
consisting of piecewise circular arcs. It would be interesting to determine
how the resulting approximations differ and why.

Another exciting prospect is to establish connections and bounds relating
the length of the Weil-Petersson geodesic to the distance computed using
angles β(θ, t) when working at the H3/2 exponent. Indeed, β is known to be
control the Schwarzian derivative of the conformal maps used to construct
the Weil-Petersson welding map [10], and one can characterize the Weil-
Petersson metric in terms of Schwarzian derivatives. β alone will not prevent
the curve from self-intersecting, but it could be used to explain the local
behaviour of the WP metric.

Further, denoising with the Sobolev-type metric could be an initial step
before approximating the shape with Teichons: since Teichon approximation
depends on the curvature, distinguishing between noise and shape features is
a necessary step for any shape representation. In particular, H3/2 is the crit-
ical exponent at which the boundary curve will admit a continuous tangent.
Thus, a mostly smooth boundary arc which has even the slightest corner or
cusp will lie at infinite distance from the origin (such a curve is not H3/2). In
practice, this means denoising the curves prior to computation is essential if
one wishes to measure anything other than noise when computing geodesics.
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