Dynamics of Partial Differential Equations

Volume 18 (2021)

Number 2

Global well-posedness for the fifth-order Kadomtsev–Petviashvili II equation in anisotropic Gevrey spaces

Pages: 101 – 112

DOI: https://dx.doi.org/10.4310/DPDE.2021.v18.n2.a2

Authors

Aissa Boukarou (Laboratoire de Mathématiques et Sciences appliquées, Université de Ghardaia, Algeria)

Daniel Oliveira da Silva (Department of Mathematics, Nazarbayev University, Nur-Sultan, Kazakhstan)

Kaddour Guerbati (Laboratoire de Mathématiques et Sciences appliquées, Université de Ghardaia, Algeria)

Khaled Zennir (Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass, Saudi Arabia)

Abstract

We show that the fifth-order Kadomtsev–Petviashvili II equation is globally well-posed in an anisotropic Gevrey space, which complements earlier results on the well-posedness of this equation in anisotropic Sobolev spaces.

Keywords

KPII equation, Gevrey spaces, radius of spatial analyticity

2010 Mathematics Subject Classification

Primary 35Q35. Secondary 35Q53.

The full text of this article is unavailable through your IP address: 3.145.16.251

Received 27 July 2020

Published 10 May 2021