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Simultaneous global exact controllability in projection of

infinite 1D bilinear Schrodinger equations
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ABSTRACT. The aim of this work is to study the controllability of infinite
bilinear Schrédinger equations on a segment. We consider the equations (BSE)
101pI —AI + u(t)Byd in the Hilbert space L2((0,1),C) for every j €
N*. The Laplacian —A is equipped with Dirichlet homogeneous boundary
conditions, B is a bounded symmetric operator and u € L?((0,T), R) with T' >
0. We prove the simultaneous local and global exact controllability of infinite
(BSE) in projection. The local controllability is guaranteed for any positive
time and we provide explicit examples of B for which our theory is valid.
In addition, we show that the controllability of infinite (BSE) in projection
onto suitable finite dimensional spaces is equivalent to the controllability of a

finite number of (BSE) (without projecting). In conclusion, we rephrase our
controllability results in terms of density matrices.
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1. Introduction

1.1. The problem. In this work, we consider infinite particles constrained in
a one-dimensional bounded region and subjected to an external control field. A
suitable choice for such setting is to model the dynamics of these particles by infin-
itely many bilinear Schrodinger equations in the Hilbert space 5 = L%((0,1),C)

{@'aﬂpj(t) = Au;(t) + u(t) B, (L), te(0,T), T >0,

(BSE) 45(0) = 40 € L2((0,1), ), jeN-.

The Laplacian A = —A is equipped with homogeneous Dirichlet boundary condi-
tions such that

D(A) = H?((0,1),C) N Hy((0,1), C).

The bounded symmetric operator B models the action of the external field, while
the control function u € L?((0,7T),R) represents its intensity.

We study the controllability of the infinite bilinear Schrédinger equations (BSE)
at the same time 7', with one unique control v and by projecting onto suitable finite
dimensional subspaces of 7.

In order to detail the purpose of the work, we introduce the following notations.
We denote by I'} the unitary propagator in ¢ generated by the dynamics of
the (BSE) in a time interval [0,¢] (when it is defined). Let ¥ := (¢;)jen- an
orthonormal system of . We call 7y (V) with N € N* the orthogonal projector

(1.1) TN () . — span{yp, + k< N}.

We say that two sequences of functions (wjl) FEN, (1!}?) jen= C S are unitarily equiv-
alent when there exists T' € U () (the space of the unitary operators in ) such
that

¢ =Ty, Vj e N*.

The aim of this work is to study the existence of orthonormal systems ¥ of
A 50 that, for any N € N* and for any suitable (¢f)jen+ and (¢7)jen- unitarily
equivalent, there exist 7> 0 and u € L?((0,T),R) such that

(1.2) T3 (0) TR! = i (9) vj e N

7o
If we denote by (-, -) 12 the usual L?—scalar product, then the identities (1.2) become
<wk7 %w]l>L2 :<¢k7¢j2>L27 V]7kEN*7 kSN

In order to achieve the result, we show that the simultaneous global exact con-
trollability in projection onto suitable N dimensional spaces is equivalent to the
controllability of N problems (BSE) (without projecting).

1.2. Main results. Let ||-||z2 be the norm of the Hilbert space 5 = L?((0,1),C)
and (-,-)r2 be the corresponding scalar product. Let

(5)jen-, (Aj)jen-
respectively be the eigenfunctions and the eigenvalues of A such that

(1.3) ¢j(x) = V2sin(jnz), \j =252, Vj € N*.
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We notice that (¢;),en+ forms a complete orthonormal system of .7 and we consider
the spaces

N|=

- 3 e
Hiyy = D(AR), -l =1 g, = (D IR o))
k=1

(®(H{yy) = {(¥5)jen- C Hiy| sup 195l 3y < o0}

For s € N*, we call H*® := H*((0,1),C), H} := H}((0,1),C) and, for N € N*, we
define

(1.4) IV = {(j,k) e N* x {1,...,N} : j>k}.

Assumptions I. The operator B is bounded and symmetric in the Hilbert
space s = L*((0,1),C). In addition, it satisfies the following conditions.

(1) For any N € N*, there exists Cy > 0 such that [(¢r, B;) 2| > %{; for
every 7,k € N* with j < N.

(2) Ran(B|H(zo)) C H(QO) and Ran(B|H?O)) C H*n H}.

(3) For every N € N* and for every (4, k), (I, m) € IN such that (4, k) # (I,m)
and j2 — k? — 1> + m? = 0, we have

(05, Bdj)r2 — (dr, Bow) 2 — (1, Boy) 12 + (Pm, Bdm) 2 # 0.

The first condition in Assumptions I quantifies how much B mixes eigenstates,
while the second fixes its regularity. The third condition instead is required in order
to decouple, through perturbation theory techniques, the eigenvalues resonances
appearing in the proof of the following statement.

The next theorem states one of the main results of the work that is the si-
multaneous global exact controllability in projection of infinite (BSE). In order to
keep this introduction as simple as possible, we postpone to Section 3 the second
important result of the work which is the simultaneous local exact controllability
in projection for any positive time (Theorem 3.1).

THEOREM 1.1. Let I'} be the unitary propagator in € generated by the dy-
namics of the (BSE) in the time interval [0,t] with B satisfying Assumptions I.
Assume that U := (1) jen+ C H(30) is an orthonormal system of A . Let (1) en-

and (1/)12')3‘61\1* C H(30) be complete orthonormal systems of F and T e U(H) be

the unitary operator such that (fqp?)jeN* = (Y})jen=. If the following condition is

J
satisfied

(1.5) (Te)j<n C Hy,
with N € N*, then there exist T >0, u € L*((0,T),R) and (0y)r<n C R such that
(16) <wk’1ﬂfw]1‘>L2 = eigk <¢k71/)J2‘>L27 v]vk € N*7 k< N.

Theorem 1.1 allows to control with a single v and at the same time 7" any finite
number of components of infinitely many solutions of the problems (BSE). We
notice that the statement is ensured up to phases in the components which prevents
to formulate the result in terms of projectors. In addition, the orthonormal system
(1j)jen+ has to verify a H, ?0) —compatibility condition exposed in (1.5). Despite this
assumption may seem unusual, it spontaneously appears when we try to control in
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projection infinite (BSE). We provide further discussions on the subject in Remark
4.2 where we show that it is a natural constraint for this kind of problems.

When we want to control in projection with respect to the target orthonormal
system by using Theorem 1.1, we choose ¥ = ¥2. In this case, we notice that

Tyy);en = T93)jen = (¥])jen C Hy,
and the H (:’O)fcompatibility condition (1.5) is trivially satisfied. In addition,
e (YR ) 2 = %0y ;= €% (YR 02) 2, V) k€N,
Thus, the relations (1.6) become

{m(w)ww} = mn (T2) eiy2, ¥j < N,

T (UAT%p) = 1n (02) 92, Vj > N.

(1.7)

As U2 is composed by orthonormal elements, the projector appearing in the first
line of (1.7) acts as the identity operator and the right-hand side of the second line
is equal to 0. These facts lead to the following corollary.

COROLLARY 1.2. Let I'} be the unitary propagator in € generated by the
dynamics of the (BSE) in the time interval [0,t] with B satisfying Assumptions 1.
Let U' = (¢])jen+, ¥* = (¢3)jen C H{y) be complete orthonormal systems of
. For every N € N*, there exist T > 0, u € L*((0,T),R) and (6;)j<n C R such
that

Tt = efiy?, Vj <N,
v (02) Tl =0, Vj > N.

Here, one can notice the parallelism between our results with the ones provided
in the important work [16] by Morancey and Nersesyan. Indeed, Corollary 1.2
implies the controllability of any finite number of bilinear Schrodinger equations
when B satisfies Assumptions I. Similar results are provided in [16] and here we
rephrase the main one.

THEOREM 1.3. [16, Main Theorem] Let the bilinear Schrédinger equation (BSE)
be considered with B = M,, a multiplication operator for a function u € H*. Fized
N € N*, there exists Q a residual set of H* (an intersection of countably many
subsets of H* with dense interiors) such that, for every B = M,, with u € Q, the
following result is satisfied. For any (Y} )k<n, (V3)k<n C HEQ’O) unitarily equivalent,

there exist T > 0 and u € L*((0,T),R) such that T} = 3 for every k < N.

As we show in Section 4.2, the controllability of infinite (BSE) in projection is
equivalent to the controllability of a finite number of (BSE) (without projecting).
In view of this fact, similar statements to Theorem 1.1 can be provided by using the
theory developed in Section 4.2 and the one from [16]. Even though such results
can be really interesting, they are ensured with respect to abstract control operators
B (of multiplicative type) and then the controllability is only generically verified.
From this perspective, our purpose is different. We aim to ensure the simultaneous
global exact controllability when simple and explicit hypotheses on the problem,
such as Assumptions I, are satisfied. This fact allows us to provide examples of B
for which the result is guaranteed, i.e. B : 1 € 5 + 1% (we refer to Example
2.2 for further details on this case and for other examples). Our goal is achieved
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by using different techniques from [16] whose disadvantage is the loss of control on
the phase terms appearing in Theorem 1.1 and Corollary 1.2.

The other main contributions of the work are the following. First, we prove the
equivalence between the controllability of infinitely many (BSE) in projection and
the controllability of a finite number of equations without projection. Second, we
prove the local controllability in any positive time 7" > 0 which is stated in Section
3. Third, we use Theorem 1.1 and Corollary 1.2 in order to ensure the global exact
controllability in projection for density matrices in Section 5.

1.3. A brief bibliography. Global approximate controllability results for the
bilinear Schrédinger equation are provided with different techniques in literature.
For instance, adiabatic arguments are considered by Boscain, Chittaro, Gauthier,
Mason, Rossi and Sigalotti in [6] and [7]. The controllability is achieved with
Lyapunov techniques by Mirrahimi in [14] and by Nersesyan in [17]. Lie-Galerkin
arguments are used by Boscain, Boussaid, Caponigro, Chambrion, Mason and Siga-
lotti in [5], [8] and [10].

The exact controllability of the bilinear Schrodinger equation (BSE) is in gen-
eral a more delicate matter as a consequence of the results provided in the work
on bilinear systems [2] by Ball, Mardsen and Slemrod. There, they prove that the
(BSE) is not exactly controllable in the Hilbert space where it is defined when B
is a bounded operator and u € L7, (R*,R) (even though it is well-posed).

Despite this non-controllability result, many authors have addressed the prob-
lem for weaker notions of controllability by considering suitable subspaces of D(A).
This idea was preliminarily introduced by Beauchard in [3] and popularized by the
work in [4]. In [4], Beauchard and Laurent prove the local exact controllability of
(BSE) in a neighborhood of the first eigenfunction of A in SN H?O) when B is a
suitable multiplication operator. The same kind of operators are considered in [15],
where Morancey ensures the simultaneous local exact controllability in SN H (‘0’0) for

at most three problems (BSE) and up to phases. In the work [16], Morancey and
Nersesyan extend such result and prove Theorem 1.3.

1.4. Scheme of the work. In Section 2, we fix the notations considered in
the work and we present some preliminary features of the problem such as the
well-posedness of the (BSE) in the space H, (30) proved in [4].

In Section 3, we ensure Theorem 3.1 which states the simultaneous local exact
controllability in projection for any positive time up to phases. In order to motivate
the modification of the problem, we emphasize the obstructions to overcome.

In Section 4, we prove Theorem 1.1. First, we show that the simultaneous global
exact controllability in projection is equivalent to the controllability of finite (BSE)
in Proposition 4.1. Second, we ensure with Proposition 4.5 the simultaneous global
exact controllability of finite (BSE) by using the theory from Section 3 and a global
approximate controllability. The propositions 4.1 and 4.5 lead to Theorem 1.1.

In Section 5, we rephrase our results in terms of density matrices, while in Section
6, we provide some conclusive comments on the work.

In Appendix A, we briefly discuss the solvability of the so-called moment problems,
while in Appendix B, we develop the perturbation theory techniques adopted in
the work.
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2. Auxiliary results

2.1. Notations and preliminaries. We denote by % the Hilbert space
L?((0,1),C) equipped with the norm || - |2 and the scalar product (-,-)> such
that

(g2 = / T@)g(@)de,  Vf.ge .

Let % be a Banach space. We introduce for s > 0,

Nl

Hiyy =D(A1D), |-l = (Z ks nil?)
@1 W) = {ere € # | S0 Il <o),

>(#) = {(%‘)jeN* C A | sup illz < OO}~

We recall that (¢;)jen+ is a complete orthonormal system of % composed by
eigenfunctions of A defined in (1.3) and related to the eigenvalues (A;),en+. Fixed

U= (¢;)jen C I, S (V) == span{y); : j < N},
we define 7 (¥) the orthogonal projector such that
(2.2) WN(\I/> I — %N(\I’)

REMARK 2.1. If a bounded operator B satisfies Assumptions I, then B €

L(H(QO),H(2 )). Indeed, B is closed in 47, so for every (uy)nen- C % such that

Up, ﬁ u and Bu, ﬁ v, we have Bu = v. Now, for every (u,)nen C H(20) such

H? H?
that u, —9% w and Bu, -9 v, the convergences with respect to the Z-norm are
implied and Bu = v. Hence, the operator B is closed in H(o) and B € L(H(zo), H(ZO))

The same argument leads to B € L(H(?’O), H3 N HE) since Ran(B|H€,O)) C H*N H.

EXAMPLE 2.2. Assumptions I are satisfied for B : ¢ +— 2%1). Indeed, the
condition 1) is guaranteed as

_11 k ( 1)j+k

<¢J7x ¢k:> (J k)) - (j;k)zﬂ.m Vi k €N, j#Ek,
(P, T2 k)12 = § — 37372, Vk € N*,
The point 2) of Assumptions I is trivially true, while the condition 3) is due to

the following implication. For every N € N* and (j, k), (I,m) € IV such that
(4,k) # (I,m) and j? — k? — 1% + m? = 0, we have

2 k22 4 m 2 £,

We notice that the same properties are valid for other control operators. For in-
stance, if we consider B : ¢ € J —— sm( )1/), then Assumptions I are satisfied
thanks to the identities

325k . .
(¢, Bor)r2 = _7r(16j4+16k478j2]78k2732k2j2+1) Vi, keN, j#k,
<¢kaB¢k>L2 :%+m, Vk € N*.
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The same is true for the operator B : ¢ € J# +—— 231. Finally, an example of
operator B satisfying Assumptions I which is not of multiplicative type is

. (T
B:yped — Z Paj-1(p2j—1,2%) + Z P2j <¢2j,Sln (51‘)1/)>1/)-
JEN* JEN*
2.2. Well-posedness. In the current subsection, we cite an important result
of well-posedness for the following problem in 7%

01 (t) = A () + u(t) pp(t), t€(0,7T),
$(0) =° € L2((0,1),C).

PROPOSITION 2.3. [4, Lemma 1; Proposition 2] Let u € H?, T > 0, ¢° € H(Bo)
and u € L*((0,T),R). There exists a unique mild solution of (2.3) in H(SO), i.e.
RS CO([O,T],H(?’O)) so that

¢
Y(t) = e Aty0 — g / ey (s)ump(s)ds, Yt e [0,T).
0

Moreover, for every R > 0, there exists C = C(T, u, R) > 0 such that, if
lull 20, 17),r) < R, then, for every Y0 € H?O), the solution satisfies

I lleoqom,mz,) < Cll¥°ll ), @)z = W)z, Ve [0,T].

REMARK 2.4. The result of Proposition 2.3 is not only valid for multiplication
operators, but also for other suitable operators B. Indeed, the same proofs of [4,
Lemma 1] and [4, Proposition 2] lead to the well-posedness of the (BSE) when B
is a bounded symmetric operator such that

B e L(Hy), H*NH;),  BeL(Hf),

(2.3)

which are verified if B satisfies Assumptions I, thanks to Remark 2.1.

Let T} be the unitary propagator in 4% generated by the (BSE) in the time
interval [0,¢]. For any mild solution ¢; in L?((0,1),C) of the j-th problem (BSE)
with j € N*, we have

T4 (0) = 5(t) -
As a consequence of Remark 2.4, it follows (I');) en- € €°°(H(30)) for every
(¢))jen- € £° (H(So))- We refer to (2.1) for the definition of the space £ (H(?’O)).

2.3. Time reversibility. An important feature of the bilinear Schrodinger
equation is the time reversibility. If we consider 1 (t) = ['*4)° and we substitute ¢
with T'— t for T' > 0 in a bilinear Schrodinger equation, then we have

i0, 1% 0 = —AT% 9 — (T — t)BT%_,9°, te(0,7),
Df_o¥® = Dpu® =y,
We define the operator I'¥ such that s 0= Tl for a(t) := u(T — t) and
(2.4) 07" = (~A —u(t)B)Ifv, te(0.7),
' Tyt = ' € L2((0,1),C).
As 0 = TET%p0 and ¢! = TuIEapl it follows T = (M%) ~! = (I'%)*. The operator
' describes the reversed dynamics of I' induced by the system (2.4) and generated
by the Hamiltonian (—A — u(t)B).
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3. Simultaneous local exact controllability in projection

3.1. Main result. In this section, we examine the simultaneous local exact
controllability in projection stated by the following theorem.

THEOREM 3.1. Let I'} be the unitary propagator in € generated by the dy-
namics of the (BSE) in the time interval [0,t] with B satisfying Assumptions I.
Let N € N*. For every T" > 0, there exist an open set O in €°°(H(30)) and an

orthonormal system U = (¢;)jen+ € O such that the following result is verified.
Let () jen- € O be a complete orthonormal system and T € U(A#) be such that
(fz/);)jeN* = (¥)jen-- If (TY;)j<n C H?O), then there exist (0;)j<n C R and
u € L%((0,T),R) such that

<wkar%¢j>L2 :ei9j<wk7w]1‘>L2a VJ,ICEN*, J§N7 k§N7
<¢k,r%¢g>L2 :<1/)k7¢]1>L27 v.]7k6N*a .]>N7 kSN

In other words, the following identities are satisfied (with wn (V) defined in (1.1)):

TN (O)Dse; = ey (0)y), Vj e N*, j <N,
N (U) Ty, = WN(\I/)l/}jl-, Vj e N*, j > N.

3.2. Introductive discussion. We start by explaining why we need to mod-
ify the problem in order to prove Theorem 3.1. Let ® = (¢;);en+ be a complete
orthonormal system composed by eigenfunctions of A. For every j € N*| we de-
note ¢;(t,z) = e t¢;(z) with ¢ > 0. From now on, we adopt the notation
¢i(t) = ¢;(t,-). Let € > 0 and T > 0. We consider the set

Oer = {(TPj)jeN* €™ (H(?’O)) complete orthonormal system of 7 such

that sup 3~ K%l(uy, 64(T) 2 — {65 (), (D) 2 < e}.

jEN*

(3.1)

We would like to prove to validity of Theorem 3.1 in the neighborhood O 1 for
e, T > 0 with respect to the projector mn(®) (see the definition (2.2)). Then,

Thd; = > dr(T)(¢x(T), T ;) L2, ¢;(T) = e g, Vj € N
k=1
is the solution of the j-th (BSE) with initial data ¢; at time T' > 0. We consider
the infinite matrix «(u) such that
Oék’j(’u/) = <¢k(T)7F%¢j>L27 Vkaj € N*7 k S N.

We would like to ensure the existence of € > 0 and T" > 0 such that for any
(¢j)jen+ € Oer, there exists u € L2((0,7),R) such that

N ()T} = nn(P)Y;,  Vje N

This result can be proved by studying the local surjectivity of a for 7' > 0. To this
purpose, we want to use the inverse mapping theorem and study the surjectivity of
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the Fréchet derivative of « the infinite matrix v(v) := (d,«(0)) - v such that

T . .
Vr,j (V) 1 = <c/)k(T), —i/o e_ZA(T_s)v(s)Be_’As¢jds>

L2

T
—i/ v(s)eii()‘j*)"“)sdsBkJ, Vi ke N k<N,
0

with By ; = (¢r, Boj)r2 = (Bor, ¢;)2 = B, k. The surjectivity of v consists in
proving the solvability of the moment problem

T
Thj _ —i(Aj=Ai)s . .
(3.2) = —z/ u(s)e "\ NTARI g, Vj, ke N*, k<N,
j 0

for each infinite matrix x := (xj ), xen+ belonging to a suitable space. To this end,
k<N

one would use Corollary A.9 which is consequence of the Haraux’s Theorem but
an obstruction appears. The terms (A\; — \g);j ken+ in the moment problem (3.2)
k<N

present the so-called eigenvalues resonances. Forr;lally, for some j, k,n,m € N* such
that j # k, n # m, (j,k) # (n,m) and k,m < N, there holds \; — Ay = A\, — Ay,
which implies

T T
(3.3) Thi _ _i/ u(s)e_i()‘j_Ak)sds — —i/ U(S)e_i()‘"_)‘m)sds _ M
BkJ 0 0 Bn,m

An example of eigenvalues resonance is Ay — A\ = Ag — A4, but many others can
be listed. For instance, all the diagonal terms of 7 since A\; — A, = 0 for j = k.
The relation (3.3) represents a constraint on the considered matrices x which is not
naturally satisfied in our framework.

In order to avoid this phenomenon, we adopt the following strategy. First, we
consider the Hamiltonian characterizing the bilinear Schrédinger equations (BSE)
and we use the following decomposition

(3.4) A+u(t)B = (A+uoB) +ui(t)B, up € R, uy € L*((0,T),R).

Second, we consider A+ ugB instead of A. We repeat the previous steps by consid-
ering (¢}°)jen~ a complete orthonormal system of 7 composed by eigenfunctions
of A+ ugB and (/\;*0 )jen+ the corresponding eigenvalues. By using uoB as a per-
turbation in A + ugB, we modify the eigenvalues gaps

AU Ao, VjkeN*, k<N

in order to remove all the non-diagonal resonances. Afterwards, we consider a
depending on the parameter ug (instead of «v) such that it is defined by the elements
ay,;(u) = <e*i)‘ZOT¢Z°,F%¢}‘O>L2 with k,5 € N* and & < N. Now, we rotate the
terms of @ in order to remove the resonances on the diagonal terms. We denote by
a" the obtained map, which is defined by the elements

a;i(u) )
o’ (u) = m;:;gu;'@k,j(u), Vi, ke N, k< N.
In conclusion, we use the inverse mapping theorem with respect to the map a"o.
The first step of our strategy is not so different from the techniques leading to
[16, Main Theorem], however it presents an important difference. In our work, we
seek for explicit conditions on the operator B such that the perturbative argument
is valid. On the contrary, the authors of [16] prove the existence of Q, a residual
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subset of H*((0,1),R) (in the spirit of Theorem 1.3), such that the controllability
holds when B is a multiplication operator by a function p € Q.

3.3. The modified problem. In this subsection, we rewrite the (BSE) by
applying the decomposition (3.4) and we introduce the groundwork required to
apply the strategy discussed in Section 3.2. Let wu(t) = ug + u1(t) with up € R,
uy € L2((0,T),R) and T > 0. We consider the following Cauchy problems

0y (t) = (A +uoB)1;(t) + ua (t) B, (1), t€(0,7),
¥j = ;(0), Je N

As B is bounded, A+uoB has pure discrete spectrum. We recall that (A}°)jen- are
the eigenvalues of A+ ugB and ®"° := (‘ﬁu) jen= is a complete orthonormal system
of 2 made by corresponding eigenfunctions. Fixed N € N*, for every T > 0 and

€o > 0, we denote

(3.5)

O = {W’j)jeN* €l (H(?’O)) complete orthonormal system of .7 such

that sup 3 K%]{u, 61" (T) 22 — (6} (T), 6} (D))o < o},

JjEN*

(3.6)

with ¢3°(T) := e_i’\?UTqS?O. We choose |ug| small such that A° # 0 for every
k € N* (Lemma B.4). The modification of the problem imposes to define the space

1
Hiyy = D(IA+uoBIH), |- Iz, —(Z|\)\“°| N

However, we consider from now on ug in the neighborhood provided by Lemma
B.6 so that H, (3 0 = 3 . As introduced in Section 3.2, we consider the map a with

elements oy, j(u1) = ( W(T), F“"“‘l(b“")m for k < N and j € N*. The map a"° is
the infinite matrix with elements
(37) aZ?j(ul) = |ZJ ]Ezlg|ak73(u1) v]7k € N*a ja k S N7

oy (ur) = g, j(ur), Vj,k € N*, j >N, k<N.

Now, we study the space where a*° takes value. Let ftﬁ be the propagator of the
reversed dynamics defined in Section 2.3 for t € [0,7], u € L*((0,T),R) and T > 0.
For every k € N*, ug € R and u; € L?((0,7T),R), from Proposition 2.3, Remark 2.4
and Lemma B.6, there exists C' > 0 so that

—+oo
Zy o ) = D2 N T 0, ool = [T g,
j=1

< O™ g3 IT) < oo
Thus, each (a%(u1))jen- € h3(C) (defined in (2.1)). For every (¢j);en+ such that
(¥j)jens € OL 1 or such that (;)jen- = (F%ﬁ“lqb?o)jew, we have

ik = (00,0112 = (D U (Woms 80100 Y Gl 6V 22 )

meN* leN*

- <<<wm,¢;+°>mmew7 (s 61) 2)meres ) o Wik < N.
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The last relations imply that a“ : uw € L?((0,T),R) — (% (w))k jen € QN
; k<N
where

QN = {(xm)k,jew* € (B(C)Y] zrk €R,

E<N

((@j)iens, (@rp)ien-) e = Ok, Yk, j < N}~

Now, T94  u € L2((0,T),R) — DY) € HY with ¢ € Hf is C' (see [3,
Proposition 47] or [15, Section 2] for further details) and the same is true for
F(T')zp cu € L?((0,T),R) — ') € H(3 for every ¢ € H (0)- Finally, the map

a" s u e L*((0,7),R) — (0 (u))k jen- € QY
k<N

is C! thanks to the identities aj, ; (u1) = (¢°(T), I’%ﬁ"lgb;‘)) = (f%o""al o0 (T), 65°)
for every k, j € N* with k¥ < N. We denote by v“ (v) = ((d,,a™)(0))-v the Fréchet

derivative of a"°. Defined 7y ;(v) = ((dy,@)(0)) - v, the elements of v (v) are

Yo = (3,505 + kg — Ok s R(j5)) Vj,k € N*, j,k <N,
’}/g?j:ﬁk,jv Vj,kGN*,ng,j>N
and then, for B;jo] = (¢,.°, B¢;L°>L2 for k < N and j € N*,
u ~ . T —i(AY0—N}0)s u . * .
(3.8) W = ’yk’i: —i [, ui(s)e A57 =A%) dsB};, Vi, k € N* k # 7,
V% = RAkk) =0, Vk € N*.
The relation /% = 0 is due to the fact that (i9y) € R since 7y, ; = —7jk for

J,k < N. Hence, the diagonal elements of "¢ are all equal to 0 due to the rotations
adopted in the definition a*°. Since OSO‘JT is composed by orthonormal elements,
the tangent space of OZ)OT in the point ®"0 is

Toa 0Ly ={ ()i € (H)| (610, 5) 1 =~ iz |-

The last relation implies that v%° : w € L?((0,T),R) (W5 (w))k jen= € aN
§ k<N
where

GN = {(Z'k,j)k,jeN* S (hg(C))N| Tk,j = 7@, Tk = 0, Vk,j < N}

E<N
REMARK 3.2. When the third point of Remark B.9 is valid, the controllability
in O 1 (defined in (3.6)) with €o > 0 ensures the controllability in O r (defined
n (3.1)) for suitable € > 0. Let (¢)jen+ € O and T € U(s#) be such that
(fzpj)jeN* = (¢‘T;U)j€N* and satisfying (fgé;‘“)jSN C H(?’O). There exists C' > 0 so
that, for every k < N,
(39) D1l = Y T, 65°)rel* < CITG;0 | s) < oo,

JjeEN* JjeN*
(#;°(1),0;) 2
[{6;°(T).%5) 2]
-0l -nl
and €% = 1 for j > N, the relation (3.9) yields that (e (¢1°(T),v;)12); ken-
k<N

thanks to Lemma B.4 and Lemma B.6. Now, fixed el = forj < N
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belongs to QY where

QN = {(@k )k jen- € QN | sup Y KSfa; — 6k |* < e}
h<N RSN [eRe

When a0 is surjective in QY there exist 7 > 0 and u € L?((0,7),R) such that

.0l -2 N
(3.10) (e ( Zo7wj>L2)j,§<€]§* = (e <¢ZL°,F%¢}°>L2)$§<€]§M
07 . Qy(u1) :
with ¢ T Tutp IS
el =1, j > N.

Thus, the surjectivity of the map a*° in Qé\g ensures the validity of Theorem 3.1
with respect to the projector my (®4) in OEO°7T and in O, p for a suitable € > 0.

3.4. Proof of Theorem 3.1. In the next proposition, we state the simulta-
neous local exact controllability in projection for any 7" > 0 up to phases. The
result implies Theorem 3.1.

PRrROPOSITION 3.3. Let N € N* and B satisfy Assumptions 1. For every T > 0,
there exist € > 0 and ug € R such that the following result is verified. Let (w]l)jeN* €

Ocr (defined in (3.1)) and T e U(H) be such that (f%l‘)jeN* = (¢7°)jen+- If

(f(b}‘o)jgjv C H?O), then there exist (0;)j<n and u € L*((0,T),R) such that

VR

TN (QUOTH G0 = iy (@)} VjeN', j>N.

TN (U505 = eimy (2U0); VjeN*, j <N,
70
PRrROOF. 1) Let ug belong to the neighborhoods defined in Appendix B by
Lemma B.4, Lemma B.5, Lemma B.6 and Remark B.9. As discussed in Remark
3.2, the surjectivity in Q¥ of the map a0 guarantees the simultaneous local exact
controllability in projection up to phases in O 7.
We want to use the inverse mapping theorem by considering that GV is the
tangent space of QY in the point (0x ;) jen = a0 (0). If v is surjective in GV
E<N

for T > 0, then a0 is surjective in QY for e small enough. The surjectivity of %
corresponds to the solvability of the moment problem

T
(3.11) z% /By = —i/ u(s)e "’ A3 g, Vi, ke N, E<N
0
for every (a:ZOJ)J ren- € G We notice that the equations (3.11) for k = j are
E<N

redundant as 7,y = 0 and 2% = 0 for every k < N since (Igoj)kkjfjl\\][* € GV . The
same is true for j, k < N such that j < k since a
(T,k) k<N, (viw(w)jeen  with  we L*((0,T),R),

are skew-hermitian matrices. Thus, we can prove the solvability of (3.11) for k < j

DL — 3\N 3\N

and 7 = k = 1. Now, we have (me’j)jykeN* € (h*)Y and (’V;:,Oj)j,keN* € (h)".
k<N k<N

Lemma B.5 yields that

(22%5/Bi) s pene € (O, (3/ Biti) e € (CCDT.

k<N k<N
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Thanks to Lemma B.8, for IV defined in (1.4), there exists

4 = s ( inf ,\?‘0_/\“0_)\710_'_)\%)
AéleN (j,k),(n}’l’I}’L)EIN\A | J k n m |
(3,k)#(n,m)
> = inf AU — AL — \Uo - \U0| > ()
(j,k),(n,m)eIN\A " 7

(G, k)#(n,m)

where A runs over the finite subsets of IV (we refer to the second point of the
proof for further details on ¢’). The solvability of the moment problem (3.11) is
guaranteed from Corollary A.9 for T > % by considering the sequence of numbers
obtained by reordering

Uo _ \Uo
()‘j /\k )j,keN*, k<N *
k<j or j=k=1

Indeed, 21 = 0 and Remark B.9 ensures that A\7° — A0 £ N — \Jo for every
(4,k), (I,m) € I™ (see (1.4)) such that (j, k) # (n,m). In conclusion, the solvability
of the moment problem implies the surjectivity of y*° and the inverse mapping
theorem ensures the surjectivity of a*0 in QY for T' > 0 large and suitable e. The
proof is achieved as discussed in Remark 3.2.

2) We show that the controllability ensured in 1) is valid for every positive time
T > 0 by proving that ¢4’ = +oo. Let

AM = {(j,n) € (N*)?| jyn > M; j#n}, M eN"

Thanks to the identity (B.2) from the proof of Lemma B.4, for |ug| small enough
and for j > n, we have

(3.12) AN < An + O(|ugl),
(3.13) ALO— A0 > Nj = A — O(luol) = 7°(2n + 1) — O(Jugl).
Hence, for every K € R, there exists My > 0 large enough such that

inf A0 — v > K.
(j,n)eAMK| / |

Now,

9 > su ( inf AUO _ \HO| _ [\Uo +)\“0)
’ACFN (j,k),(mm)eIN\A‘ J W= |
(G k) #(n,m)

> sup ( inf

MeN*  (j,n)eAM /\jo R 2/\]\})) >0

where A are the subsets of I defining ¢’. In conclusion, for |ug| small enough, the
relations (3.12)-(3.13) yield

! > . . . _ _
g > A}gnoo((jﬂg)nefw IAj = Anl = 22x — O(Juol))
> lim 2M + 1 —2N?7% — O(|uo|) = +o0.

T M—oo

Finally, 4’ = +oc and then the local exact controllability proved in the first point of
the proof holds for every positive time since the result is valid for every T' > %. ]
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4. Simultaneous global exact controllability in projection

4.1. Preliminaries. The common approach adopted in order to prove global
exact controllability results consists in gathering the global approximate controlla-
bility and the local exact controllability. Nevertheless, this strategy can not be used
to prove the controllability in projection as the propagator I'}. does not preserve
the space 7 (W) H) for any U := (¢;)jen- C Hy). For instance, let ¥ = (1);) jen-
be an orthonormal system and !, 2 € H (30) be unitarily equivalent. Even though
there exist Ty, T > 0, u; € L%((0,71),R) and us € L2((0,7),R) such that

TN (UTE Y = 7y (V)T e,
it is not guaranteed the existence T > 0 and a control u € L?((0,7T),R) such that
N (O)Tphr = mn ()¢ho.

To this purpose, we adopt an alternative strategy based on the result presented
in the following subsection. There, we prove that the controllability in projection of
infinite bilinear Schrodinger equations is equivalent to the controllability (without
projecting) of a finite number of them. Hence, we ensure the simultaneous global
exact controllability for N € N* (BSE) in (H, (?’O))N . In such space, we can concate-

nate and reverse dynamics as it is preserved by the dynamics. The result leads to
Theorem 1.1.

4.2. Equivalence between controllability of finite bilinear Schrédinger
equations and infinitely many equations in projection.

PROPOSITION 4.1. The two following assertions are equivalent with N € N*,
(1) Let (¢;)jeN* and (z/sz-)jeN* C H(30) be a couple of complete orthonormal systems
of . Let T be the unitary operator such that (fwjz)jeN* = (%b})jeN*- For any
U= (¢;)<n C H(?’O) orthonormal system of 7 such that (f%')jgN C H(?’O), there
exist T >0 and u € L*((0,T),R) such that

(e, Trj) e = (Yr,¥f)re, Vi k€N, k< N.
In other words, the following identities are satisfied (with wn (V) defined in (1.1)):
TN ()T = 7n (0)1)5, Vj € N*.
(2) Let (¥f)j<n and (F)j<n C H?o) be a couple of orthonormal systems in .
There exist T > 0 and u € L*((0,T),R) such that
Ll = 7, Vj < N.

PROOF. (2) = (1) Let ¥% := (¢3)en- € H?o) be an orthonormal system.
We consider (¢})jeN*7 (¢]2)jeN* C H(?’o) complete orthonormal systems. Let I' €

U() be such that fq/}? = %1 and fz{zi € H(SO) for every k < N. We notice that the
controllability stated in the point (2) of Theorem 4.1 is also valid for the reversed
dynamics discussed in Section 2.3. Hence, there exist 7 > 0 and u € L?((0,T),R)
such that

Fpeg =To,  Vk<N.
Thus,

Toyd e = w3, vl e, Vi ke N, k<N
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Let u be introduced in Section 2.3. The claim is proved since, for every j, k € N*
with &k < N,

(CFYY ) e = (W), T30 12 = (WL, TyR) 12 = (2, 4}) 12

(1) = (2) Let (w})jSN, (Q/JJZ)J‘SN C H?o) be two orthonormal systems of JZ.
We complete them by defining (’(/J]l) JEN*, (z/)JQ) jen+ C H (30) two complete orthonor-

mal systems of . Now, thanks to the point (1), there exist T > 0 and u €
L?((0,T),R) such that

TN (Ut = mn (82) 43, Vj € N*.

As U2 is composed by orthogonal elements and I'#- is unitary, the claim is proved
since

Tt = 42, Vj < N,
TN (P?) Tyt = 0, Vj>N. O

REMARK 4.2. The previous proof contains the reason why we need to impose
a H (‘?’O)—compatibility condition such as (1.5) in order to obtain the controllabilty
in projection of infinitely many (BSE). In particular, let 7' > 0, u € L?((0,T),R),
T € UW), (¥))jen C Hfy and (¥])jen- C Hf) be a complete orthonormal
system of J#. We know that if for every j, k € N* and k < N, we have

(Tipap i) 2 = <f¢;,¢k>m, = W}»fgwk)m = <¢}af¢k>L2-

The last relation is equivalent to f?wk = fz/;k for every k < N. Now, f? is the
propagator of the reversed dynamics introduced in the previous section and it pre-
serves H (30). This fact tells that the controllability in projection can be ensured only

when a H g’o)—compatibility condition such as (1.5) is guaranteed. Namely, when r

and (¢;);en- are such that f?/}k € H(30) for every k < N.

4.3. Simultaneous approximate controllability. In this section, we prove
the simultaneous global approximate controllability for finite number of (BSE).

DEFINITION 4.3. The problems (BSE) are said to be simultaneously globally
approximately controllable in H(?’O) when, for every N € N* 1,...,¢¥n € H(30)7

I e U(s2) such that Loy, ....Tpy € H(SO) and € > 0, there exist 7" > 0 and

u € L*((0,7),R) such that ||[%)y — fzpkH@) < eforevery 1 <k <N.

THEOREM 4.4. Let B satisfy Assumptions I. The problems (BSE) are simulta-
neously globally approximately controllable in H(30),

PROOF. In the point 1) of the proof, we suppose that (A, B) admits a non-
degenerate chain of connectedness (see [8, Definition 3]). We treat the general case
in the point 2) of the proof.
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1) Preliminaries. Let m, be the orthogonal projector m,, : J# — I,

span{¢; : j < m} for every m € N*. Up to reordering of (¢x)ren-, the cou-
ples (7 ATty T BTy ) for m € N* admit non-degenerate chains of connectedness
in A, Let || [lpv(r) = I [ Bv(om)r) and [| - || o = Il - H|L(H H) for s > 0.
Thanks to the validity of Assumptions I, we have B : H? 0 H? 0)° Let us denote

SU(n,) ={T e U(Hn,) : ((¢5,T¢r)12)jk<n, € SU(N1)}.

Claim. For every ¢ > 0, there exist Ny € N* with N; > N and Iy, € U(s#) such
that 7y, (®)Tn, 7, (D) € SU(Hy,) and

(4.1) ITnyé; — Tojllz <e, Vi< N.

Let N7 € N* be such that Ny > N. We apply the orthonormalizing Gram-
Schmidt process to (ﬂNl(fb)f(éj)jSN and we define the sequence ((Zj)jgv that we
complete in ((EJ)]< N,, an orthonormal basis of L%ﬂNl We complete agaln such
sequence in an orthonormal basis of 7 that we call (¢] )jen+. The operator r N, 1S

the unitary map such that r N Oj = qﬁ], for every j € N*. In conclusion, we consider
N; large enough such that the statement is verified.

Finite dimensional controllability. Let T,4 be the set of (j,k) € {1,..., Ny }?
such that Bj 1= (¢;, Bor)r2 # 0 and |\j — A\g| = [Ny, — Ai| with m, 1 € N* implies
{4,k} = {m,1} for B,,; = 0. For every (j,k) € {1,...,N1}* and 6 € [0,27), we
define Eﬁ i the N1 x Nj matrix with elements

(Efk)Jk = e, (E]e,k)k,j =—", (E?,k-)l,m =0,
for (I,m) € {1, ..., N1 }>\ {(4, k), (k, j)} Let

ad_{ : (j,k) € Tua, 6 €10,2m)}
and Lie(F,q). Fixed v a piecewise constant control taking value in Eqq and 7 > 0,
we introduce the control system on SU(Ny)

z(t) = z(t)v(t), te(0,7),
(42) {x(O) = IdSU(Nl)-

Claim. (4.2) is controllable, i.e. for R € SU(Ny), there exist p € N*, My, ..., M, €
Ead, a1, ..., € RT such that R = e Mo ... 0e%wMs,
For every (j,k) € {1,..., N1}, we define the Ny x N; matrices Rj i, Cj i and
D as follows. For (I,m) € {1,..., N1}*\ {(4, k), (k,j)}, we have
(Rj)im =0, (Rjr)jk = =(Rjr)k; =1,
(Cip)m =0, (Cir)jk = (Cikr = i-
Moreover, for (1,m) € {1,... N} \ {(1,1), (j. )},
(Dj)im =0, (Diha ==(Dj)j; =i
We denote by su(Ny) the Lie algebra of SU(Ny) and we consider its basis
e:={Rjr}jn<ny U{C)rtjn<ny U{Dj}j<n, -
Thanks to [18, Theorem 6.1], the controllability of (4.2) is equivalent to prove that

Lie(Eqq) 2 su(Ny). The claim is valid as it is possible to obtain the matrices R} j,
Cj.r and Dj for every j,k < N; by iterated Lie brackets of elements in Fqg4.
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Finite dimensional estimates. The previous claim and the fact that the matrix
(@5, TNy @) 2)j k<, € SU(N1) ensure the existence of p € N*, My, ..., M, € Equq
and oy, ..., € R such that

(43) ({05, le Gr)r2)jR<nNg = e Mg oMy,

For every [ < p, we call I'; the operator in SU (s, ) such that ((¢;, fl¢k>)j,k§N =
e®Mi | The identity (4.3) yields

(4.4) 73, (®) T, 7n, (B) =Ty 0.0 T,

Claim. For every | < p and T} from (4.4), there exist (T%);cn- C RT and (ul,)pen-
such that u!, : (0,T.) — R for every n € N* and

’U.l ~
(4.5) Jim Tt ox — L1l L2 = 0, Vk < Ny,
sup ||ub || By () < o0, sup [lug, || Lo ((0,7),%) < 00,
(4 6) neN* neN*

sup Tl|uf, || Lo (0,1).1) < o0
neN*

We consider the results developed in [9, Section 3.1 & Section 3.2] by Cham-
brion and leading to [9, Proposition 6] since (A, B) admits a non-degenerate chain
of connectedness (defined in [8, Definition 3]). Each I'; corresponds to a rotation
in a two dimensional space for every | € {1,...,p}. This work allows to explicit
(T!)1en+ C RT and (ul)),en- satisfying (4.6) such that each !, : (0,T!) — R and

'lLl ~
nh_{folo ‘|7TN1(¢)]‘—‘TZ¢I€ —Ligyllr2 =0, VEk < Ni.

~ 1 —~
As Ty € SU (4, ), we have lim,, ||F;7¢k —Tydrllrz =0 for £ < Ny.
Infinite dimensional estimates.

Claim. There exist K1, K5, K3 > 0 such that for every ¢ > 0, there exist T" > 0
and u € L?((0,T),R) such that |[T%¢y — T'gy|lrz < € for every k < N; and

lullpv(r) < K1, |l oo (0,1),R) < Ko, Tllullpo(0,1),r) < K3-

Let us assume that 1) (c) be valid with p = 2. Nevertheless, the following
result is valid for any p € N*. By definition of I'y € SU (4, ), for every k < Ny,
there exist 1 < [, < Ny and «;, € C with |ay,| = 1 such that I'yér = oy, ¢,
Thanks to (4.5), for n € N* sufficiently large,

’LL2 ul o~ o~ ’LL2 ul ~
T 7 de — Toladullze < [IT7 T b — Tadhillze
U2 ~
-+ ||alkPT§¢lk — alkFggblkHLz < €, Vk < Ny.

The identity (4.4) leads to the existence of Ky, K5, K3 > 0 such that for every

€ > 0, there exist 7' > 0 and u € L?((0,7T),R) such that | T%¢x — Tn, éill 2 < € for
every k < N and

lull vy < K1, |lullpeo,ryr) < Koy Tllullpoe0,m)r) < Ks.

The relation (4.1) and the triangular inequality achieve the claim.
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Global approximate controllability with respect to the L?-norm. Let us

recall that (¢;)j<n C H(30) and T' € U(A#) satisfies (f?/Jj)jSN C H(?’o)'

Claim. There exist K1, K5, K3 > 0 such that for every € > 0, there exist 7" > 0
and u € L?((0,T),R) such that ||[T%y — Dy ||p2 < € for every k < N and

4.7 Nulpv < Ki, lullLos (0,7),r) < Ka2, Tl|ull Lo (0,1),R) < K.

We assume that ||1);]| 2 = 1 for every j € N*, but the same proof is also valid
for the generic case. From the previous claim, there exist two controls respectively
steering (¢;);<n close to (¥;);<n and (¢;)<n close to (f¢j)j§N thanks to the
fact that N; > N. Vice versa, thanks to the time reversibility (see Section 2.3),
there exists a control steering (¢;)j<n close to (¢;);<n. In other words, there exist
Ty, Ty > 0, u; € L2((0,71),R) and uy € L?((0,T),R) such that

€ ~
P75 = djllee < 3, IT72 05 — Tyllz2 <

€
-, Vi < N.
B J=
The chosen controls u; and ug satisfy (4.7). The claim is proven as

ITHT Y — Tille < ITRTE Y —TRojlle + TR ¢ —Tjlle <€, Vi< N.

Global approximate controllability with respect to the H (30)-norm.

Claim. There exist T > 0 and u € L*((0,7),R) such that ||[[%y — fqpk||(3) <€
for every k < N.

We consider the propagation of regularity developed by Kato in [11]. We notice
that i(A + u(t)B — ic) is maximal dissipative in H(QO) for suitable ¢ > 0. Let A > ¢
and HElo) = D(A(N — A)) = HE‘O). We know that AB : HZLO) C H(QO) — H(QO)
and the arguments of Remark 2.1 imply that B € L(HE‘O),H(QO)). For T' > 0 and
u € BV((0,T),R), we have ||u(t)B(i\ — A)~L|| (2) < 1and

M:= sup |[|(ix—A—u®)B)™| L(H2, A% )

te[0,7T] (0)°77(0)
+oo
< sup Y[ (u(t)B(iA = A)7H! | g < +oo.
tel0, 7],

We know [k + f(-)llsvo,r).r) = IflBV(07)R) for f € BV((0,T),R)and k € R.
Equivalently,

N = ||iN—A—u(-)B _
Ik u(-)B || Bv (l0.1).L(T4 12, )
= llulsvery I B as, w2 ) < oo

We call U* the propagator generated by A + uB — ic such that UM = e “‘T'¥).
Thanks to [11, Section 3.10], for every ¢ € Hflo)’ it follows

I(A+u(T)B = i\U || 2) < MMV [[(A = i)l 2)
which implies, for C; := || A(A+ w(T)B —i\) =1 || (2) < 09,

T4l gy < CLMeMNFT[4h]| gy,
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For every T > 0, u € BV((0,7),R) and ¢ € H,, there exists C(K) > 0 de-

pending on K = (||ull pv (7. |ull Lo ((0,7),8), Tllwll o= ((0,7),r)) such that [[T4a]|4) <
C(K)1b[|(4)- When (4.6) is verified, there exists C' > 0 such that, for every n € N*,

ul
(4.8) Tz My < C.

For every v € HZ‘O), from the Cauchy-Schwarz inequality, we have [[Ay|2, <

(A2, ) 12 < |42 2 [l = and AR ||, < ((A%0, A)12)” < [|A%0]12. ]| Av |22,
which imply

(4.9) 191Gy < IlZ2l1v1Cs)-

In conclusion, the claim of the global approximate controllability with respect to
the L?-norm and the relations (4.8)-(4.9) ensure the claim.

2) Conclusion. Assume that (A, B) does not admit a non-degenerate chain of
connectedness. We decompose

A+u(-)B = (A+uyB) +u(-)B, up €R, wuy € L*((0,T),R).

We notice that, if (A, B) satisfies Assumptions I, then Remark B.7 and Remark
B.9 are valid. We consider ug belonging to the neighborhoods provided by such
remarks and we denote by (¢,°)ren+ a complete orthonormal system of # made
by eigenfunctions of A + ugB. Thanks to the first point of Remark B.9, the couple
(A + upB, B) admits a non-degenerate chain of connectedness. The step 1) of the
proof can be repeated by considering the sequence (¢;.°)ren- instead of (¢p)ren-
and the spaces D(]A + ugB|?) in substitution of H (30). The claim is equivalently
proved since, thanks to Remark B.7, there exist C7,C5 > 0 such that

Ci||A +uo B2 9|| < [[9llsy < Co|||A +uoB|24], Vi € HY). 0

4.4. Proofs of Theorem 1.1. In the current subsection, we provide the proof
of Theorem 1.1 which requires the following proposition.

PROPOSITION 4.5. Let N € N* and B satisfy Assumptions I. For any (¥} )k<n
(W3)k<n C H(So) orthonormal systems, there exist T > 0, u € L?((0,T),R) and
(k) k<N C R such that

Thap) = eifreh?, Vk < N.

PRrOOF. Let N € N* and let ug € R belong to the neighborhoods provided by
Lemma B.5, Lemma B.6 and Remark B.9. Let a“° be the map with elements

laj,; (u1)]

ialu) 5 i (ua), Vi, k € N*, j, k< N,
Ok, (u1), Vi k€ N*, k>N, j<N.

The proof of Proposition 3.3 can be repeated in order to prove the local surjectivity
of a¥o for every T' > 0, instead of o™ introduced in (3.7). The discussion from
Remark 3.2 implies that this result corresponds to the simultaneous local exact
controllability up to phases of N problems (BSE) in the neighborhood

Ol = {(%‘)jSN C Hiy| (b, )2 = Gk sup |95 — ¢5°||7) < f}
J<N
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with € > 0. Hence, for any (Yx)r<y € Oy, there exist u € L?((0,T),R) and
(Hj)jgN C R such that

Theso = ey, Vj<N.

Thanks to Theorem 4.4, we have the following result. For any (111]1)j§ N C H (‘0’0)

composed by orthonormal elements, there exist 7 > 0 and u; € L?((0,7}),R) such

that, for all j < N,
u U €
T3 ) — o5 lls) < =

N

The local controllability is also valid for the reversed dynamics (see Section 2.3)
and for every T > 0, there exist u € L%((0,T),R) and (6;);<n C R such that

(T ) jen = (€9T50%) ey = (e UTFIM Y] j<n = (64°)j<n-

Then, there exist 7o > 0 and uy € L2((0,T%),R) such that (e*i‘gifqﬁw})jgz\; =
(¢5°)j<n. Now, the same property is valid for the reversed dynamics of (2.4) and,
for every (1/1]2)j§ N CH (30) composed by orthonormal elements, there exist 75 > 0,
uz € L*((0,T3),R) and (0);<y C R such that (e‘ieglﬂfg 2)i<n = (#5°)j<n. In
conclusion, for ug(-) = us(T3 — ), the proof is achieved as

(e—i(9j—9})1“ggf%§ })jgN = (d}?)jgzv- H

= (D)) j<n € ONr.

PROOF OF THEOREM 1.1. The claim is proved as the implication (2) = (1)
in the proof of Theorem 4.1 thanks to the validity of Proposition 4.5. (]

5. Global exact controllability in projection for density matrices

Let ¢!, 1% € 5. We define the rank one operator |¢)1)(1)?| such that [1)1) (1|1 =
(2 ah) 2 for every o € H#. For any I' € U(H#), we have

Lly") (W2 = |Tyh) (7], [ (W0 = 1) (Ty2).
Let 5% be an infinite dimensional Hilbert space. In quantum mechanics, any sta-
tistical ensemble can be described by a wave function (pure state) or by a density

matrix (mixed state) which is a positive operator of trace 1. For any density matrix
p, there exists a sequence (1);) en+ C S such that

(5.1) p= Z Lilbs) (51 Z lj=1, 1;>0, VjeN".
jEN* JEN*

The sequence (1) jen+ is a set of eigenvectors of p and () jen- are the corresponding
eigenvalues. If there exists jo € N* such that [;, = 1 and I; = 0 for each j # jo, then
the corresponding density matrix represents a pure state up to a phase. For this
reason, the density matrices formalism is said to be an extension of the common
formulation of the quantum mechanics in terms of wave function. We also notice
that for any density matrix p and a complete orthonormal system (1;);en+ in 22,
there exists a positive hermitian matrix (pj,k)j,keN* such that

(5.2) p="Y_ piklt) (Wl

J,keN*
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Now, for any other density matrix p, there exists an orthonormal system (1;]) JEN*,
such that

(5.3) p= > piklds) ¥l

j,kEN~
Let us consider 7' > 0 and a time dependent self-adjoint operator H(t) (called
Hamiltonian) for ¢ € (0,7). The dynamics of a general density matrix p is described
by the Von Neumann equation

(5.4) {Z‘éf (t) = [H(#), p(1)], te(0,T),

p(0) = p°, ([H,pl = Hp — pH),

for p° the initial solution of the problem. The solution is p(t) = U;p(0)U;, where
U, is the unitary propagator generated by H(¢). In the present work, we have
A = L*((0,1),C), H(t) = A+u(t)B and Uy corresponds to I'#. In this framework,
the problem (5.4) is said to be globally exactly controllable if, for any couple of
density matrices p! and p?, there exist T > 0 and u € L?((0,T),R) such that

o =i (T4)".
Thanks to the decomposition (5.1), the controllability of (5.4) is equivalent (up
to phases) to the simultaneous controllability of the infinite bilinear Schrodinger

equations (BSE). This idea is behind the following theorem which follows from
Corollary 1.2.

THEOREM 5.1. Let B satisfy Assumptions I. Let p' and p? be two density
matrices with eigenfunctions in H(o) and T' € U(H€) be such that

pt = prf*.

1) Let ¥ := (¢;)jen+ be an orthonormal system composed by the eigenfunctions of
p*. For any N € N*, there exist T > 0 and u € L*((0,T),R) such that

mn (0) T (TF) " wn(¥) = 7n (0) p* wn (D).

2) Let ¥ := (¢;)j<n C H(30) be an orthonormal system such that (f%‘)jSN C H(?’O)
with N € N*. Let (pj)jk<n be the positive hermitian matriz such that

TN (0)p TN (V) = ) (V.-

Jk<N

There exist T > 0, uw € L*((0,T),R) and (0j)jr<n such that

TN (0) T (T8 an (W) = > ™k p; lap) (Wi
J,k<N

PROOF. 1) Let (¢ )jeN* c H} (0) be an orthonormal system made by eigenfunc-
tions of p'. We have

Pt = L)Wl =" Ll (1.
j=1 j=1

The sequence (I;)jen- C RT corresponds to the spectrum of p' and p?. Now,
thanks to Corollary 1.2, there exist 7' > 0, u € L*((0,T),R) and (6;);<n such that
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TN (W) Tiap; = eimn (W) 9 for every j < N, while mx () Tiap; = nn () 1h; for
every j > N. Thus,

v (¥) Dipp' (T)* Zl | (W) Dippg) (o Dy () €|

+ Z Ll (0) Ty (I Tk (1) |

j*N+1
Zl TN (U) [0) (W)|mn (0) = 7n (0) pPrn (D).

2) The second point of the theorem follows from the same arguments of the first one.
In particular, the statement follows by decomposing p? with respect to (¢;)jen- as
done in (5.2). Such step provides a positive hermitian matrix (p; x); ren-. Now, we
define (w )jen+ as the orthonormal system such that (5.3) is valid for the density
matrix p'. The claim is proved by simultaneously steering (1/1 )jen+ in (¥;);jen
with respect to the projector m(¥) by using Corollary 1.2. (]

6. Conclusion

In this manuscript, we study the controllability of the infinite bilinear Schrédinger
equations (BSE) at the same time T, with one unique control v and by projecting
onto suitable finite dimensional subspaces of 7. The first result of the work is the
simultaneous local exact controllability of infinite bilinear Schrodinger equations
in projection in any positive T' > 0. The property is stated by Theorem 3.1 and
Proposition 3.3. Our second achievement is Theorem 4.1 which shows that the
simultaneous global exact controllability of the (BSE) in projection onto a suit-
able N dimensional space is equivalent to the controllability of N problems (BSE)
(without projecting). Finally, we prove Theorem 1.1 which states the simultaneous
global exact controllability in projection of infinite (BSE). The result is guaran-
teed when the orthogonal projector is defined by an orthonormal systems verifying
a H(30) compatibility condition exposed in (1.5). In conclusion, we rephrase the
main results in terms of density matrices.

Here, one could wonder if the techniques developed in this manuscript can be
applied to study the controllability of infinite (BSE) (without projecting). Never-
theless, a direct application is not possible. Indeed, one of the crucial points of our
strategy is the possibility of decoupling with a uniform gap the eigenvalues reso-
nances appearing in the proof of Theorem 3.1 (see Section 3.2 for further details).
We obtain such property via perturbation theory techniques thanks to the fact that
eigenvalues resonances are finite when we project onto finite dimensional spaces.

In any case, a possible approach that might lead to the controllability of infinite
(BSE) is the following. As already done in our work, one could perturb in order
to decouple the eigenvalues resonances appearing in the proof of the simultaneous
local exact controllability. In such framework, we do not expect to have a uniform
spectral gap and then the Haraux’s Theorem A.8 can not be applied. As a conse-
quence, the solvability of the moment problem (such as (3.11)) appearing in this
proof can not be achieved in ¢2. Nevertheless, we do not exclude the possibility of
proving its solvability in some spaces h® with s € [0,1) (defined in 2.1) by using
more refined techniques as the Beurling’s Theorem [13, Theorem 9.2] (see also [1,
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Chapter 1.2]). If such result would be valid, then the well-posedness of the (BSE)
can be provided in H (304)“3 by imposing slightly more regularity on the operator B
and we might conclude the proof as done in the current work.

Appendix A. Moment problem
We denote by (-,-)12(0,7) the scalar product in L((0,7),C) with T' > 0.

DEFINITION A.1. Let (fx)kez be a family of functions in L?((0,7),C) with 7' >
2

0. The family (fi)rez is said to be minimal if and only if fj, & span{f; : j # k:}L
for every k € Z.

DEFINITION A.2. A biorthogonal family to (fx)rez C L?((0,T),C) is a se-
quence of functions (gr)rez in L*((0,T),C) such that (fi,g;)r2(0,r) = Ok,; for
every k,j € Z.

REMARK A.3. When (fx)kez is minimal, there exists an unique biorthogonal

J—
family (gx)kez to (fi)kez belonging to X := span{f; :j € Z} . Its existence
follows from the fact that (gx)rez can be constructed by setting

9/«:(fk—ﬁkfk)ka—mf/c||222(o7T)7 Vk €Z

L2
where 7, is the orthogonal projector onto span{f; : j # k} . The unicity follows
as, for any biorthogonal family (g; )rez in X, we have (gx — gi, fj)r2(0,r) = 0 for
every j,k € Z, which implies g = g,i for every k € Z.

REMARK A.4. If a sequence of functions (fi)rez C L*((0,7),C) admits a
biorthogonal family (gx)recz, then it is minimal. Indeed, if we assume that there

exists k € Z such that f, € span{f; : j # k} g , then the relations (fx, g;)z2(0,7) =0
for every j € Z\ {k} would imply (fx, gr)r2(0,r) = 0 which is absurd.

DEFINITION A.5. Let (fi)gez be a family of functions in L?((0,7),C) with
2

_
T > 0. The family (fx)rez is a Riesz basis of span{f; : j € Z} = if and only if it is
isomorphic to an orthonormal system.

2

REMARK A.6. Let (fi)rez be a Riesz basis of X := span{f;:j € Z}L . The
sequence (fi)rez is minimal and its biorthogonal family is uniquely defined in X
thanks to Remark A.3. Finally, this biorthogonal family forms a Riesz basis of X.

Now, we provide an important property on the Riesz basis proved in [4, Ap-
pendix B.1].

PROPOSITION A.7. [4, Appendix B; Proposition 19] Let (fx)kez be a family
of functions in L*((0,T),C) with T > 0. The sequence (fi)rez is a Riesz basis of

2

span{fy : k € Z}L if and only if there exist Cy,Cy > 0 such that

T 2
Cyx)|2 < /0 ‘Zxkfk‘ ds < Cyx||2:, Vx = (v1)rez € 12(Z,C).
keZ

We are finally ready to present the so-called Haraux’s Theorem.
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THEOREM A.8. [13, Theorem 4.6] Let (wg)kez be a family of real numbers
satisfying the uniform gap condition & := infy4; |wi, —w;| > 0. Let

¢ :=sup inf |wr—wj| >0,
KCZk.JEL\K
ey

where K runs over the finite subsets of Z. For every bounded interval |I| > %,

there exist C1,Cy > 0 such that
Yl < [ Ju(oPde < oY [o?
kez T keZ
Jor every u(t) = 3, oy xre’rt with (vx)rez € 2(Z,C).
The following corollary follows from the Haraux’s Theorem and provides the

solvability of suitable moment problems as (3.2) and (3.11).

COROLLARY A.9. Let (Ag)ren+ be an ordered sequence of real numbers such
that \y =0 and & := infy; [Ny — A;| > 0. Let

’ .
@' = sup inf A — Al
KCN* k,jeEN*\K
k#j

where K runs over the finite subsets of N*. Fized T > 2w/9’, for every (xy)ren- €
(2(C), there exists u € L?((0,T),R) such that

T
(A1) xR = / u(s)e” M3 ds, Vk € N*.
0

PRrROOF. For k € N*, we call wp = A\, while we impose wy = —A_j for —k €
N*\{1}. We call Z* = Z\ {0}. The sequence (w)rez+\{—1} satisfies the hypotheses
of Theorem A.8 for

sup lwi —w;| =94,

inf
KCZ*\{-1} kvje(z*]}ifl})\K

where K runs over the finite subsets of Z* \ {—1}. Proposition A.7 and Theorem
A.8 ensure that the sequence (eiwkt)kez*\{_l} is a Riesz basis of

2
X :=span{e’wrt : k € Z* \ {—1}}L .

Thanks to Remark A.6, its unique biorthogonal family (vx)rez+\ (-1} in X is also
a Riesz basis of X. Thanks to Proposition A.7, there exist C,Cs > 0 such that

G Y lml < el <Co Yl
keZ\{—1} keZ\{—1}
with u(t) = > ez (213 Tevi(t) and (z)pez-\ (-1} € 2(2* \ {—1},C). Now,
w=" Y vl u) a0
keZ*\{—-1}
since (e“"kt)kez*\{,l} and (vg)gez=\{—1} are reciprocally biorthogonal. Hence,
G Y e uy o < lullfaerm <Co Y e )z

kezZ\{—1} kezZ\{—1}

The last relation yields the invertibility of the map

F u € X — (<ei“”“t,u>Lz(0’T)) S EQ(Z* \ {—1},@)

kez*\{—-1}
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Fixed (zx)ren+ € €2(C). We call (Tp)pez-\{-13 € *(Z* \ {-1},C) the sequence
such that Z), = xy, for k € N*, while 7, = T_j, for —k € N*\ {1}. For T > 27 /9",
the invertibility of the map F ensures the existence of u € L?((0,T),C) such that

T .
a?k:/ u(s)e™"“*ds

0
for every k € Z* \ {—1}. Thus,

{xk = foT u(s)e " Mesds = foTﬂ(S)efi’\’“SdS, vk € N*\ {1},
T
r1 = [, u(s)ds

Finally, if 1 € R, then (A.1) is valid with respect to a function u which is real. O

Appendix B. Analytic Perturbation

Let us consider the problem (3.5) and the eigenvalues (A}°) jen- of the operator
A + ugB. When B is a bounded symmetric operator satisfying Assumptions I
and A = —A is the Laplacian with Dirichlet type boundary conditions D(A) =
H?((0,1),C) N H}((0,1),C), thanks to [12, Theorem VII.2.6] and [12, Theorem
VII.3.9], the following proposition follows.

PRrROPOSITION B.1. Let B satisfy Assumptions I. There exists a neighborhood
D(0) of u = 0 in R small enough where the maps u Ay are analytic for every
Jj €N~

The next lemma proves the existence of perturbations, which do not shrink too
much the eigenvalues gaps.

LEMMA B.2. Let B satisfy Assumptions 1. There exists a neighborhood D(0)
in R of u =0 such that, for each ug € D(0), there exists r > 0 such that, for every
JeN,

A+ A
py = 2= +2 A

PRrOOF. Let D(0) be the neighborhood provided by Proposition B.1. We know
(A — p;) is invertible in a bounded operator and u; € p(A) (resolvent set of A).
Let 6 := minjens [Aj+1 — Aj|. We know that || (A — p;)7 || < suppen-

m < 2. Thus, for ug € D(0),

€ p(A+uB), (A +uoB — )| <

71 p—
[pj— Akl

_ _ 2
1A = 1) o Bl < Juol 1 (A = ) I B < S luol I B

and if |ug| < QIHBHI for e € (0,1), then || (A — ,uj)*luoB [ <1—e. The operator
(A4ugB—p;) is invertible and || (A+uoB—p;) "t || < £ as ||[(A4+ugB—p;) |2 >

1A = 1)lx — JuoBols > Slls — 24 ] o for every € D(A). The
parameter r stated in the lemma corresponds to 2/(d¢), while the neighborhood is
{uo € D(0) = |uo| <6(1 =€)/ BI)}- O

LEMMA B.3. Let B satisfy Assumptions I and quLk be the projector onto the
orthogonal space of ¢y,. There exists a neighborhood D(0) of 0 in R such that
(A+uoPs B —AP)
is invertible with bounded inverse from D(A) N ¢ to ¢y for every ug € D(0) and
ke N*.
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ProOOF. Let D(0) be the neighborhood provided by Lemma B.2. For any
ug € D(0), one can consider the decomposition (A + uquf;B -0 =(A=X°)+
uquf; B. The operator A — A} is invertible with bounded inverse when it acts on
the orthogonal space of ¢, and we estimate || ((A—A}°) |¢¢)_1u0Pdf;B I . However,

for every ¢ € D(A) N Rcm(qu;) such that |[¢||L2 = 1, we have
(A =X)Lz = min{[Aepn = A" A = el 2
Let &), := min {|Agy1 — AL°[, [A;° — Ak—1|}. Thanks to Lemma B.2, for |ug| small

Aec14Ae ARt
enough, \;° € ( k 12+ kS ’“+2 ’““) and then

A+ At
2

O > min{‘)\k_H —

Afterwards,
1
U -1 L
IH((A = X)) o Py, B < 67;@‘“0‘ Il Bl

and, if [ug| < (1 — )%y < {57 for v € (0,1), then it follows

(A =N, ) Mo Py Bl < (1—7) < 1.

The operator Ay, := (A= " +uoP;. B) is invertible when it acts on the orthogonal
1

2
ARl L2 2 1A = X)ell 2 = lluo Py, Bl 12
1
> 0kl[¥llze = Nluo Py BIHIYILe > 5 l1vllze-

In conclusion, || ((A— A\ + uOPtztB)‘w)_l [ <2 for every k € N*. O
k

space of ¢y and, for every ¢» € D(A) and r =

LEMMA B.4. Let B satisfy Assumptions I. There exists a neighborhood D(0) of
0 in R such that, for any ug € D(0), we have A7 # 0 and there exist two constants
C1,Cy > 0 such that

01/\j < /\;0 < CQAj, VJ € N*.
PRrROOF. Let ug € D(0) for D(0) the neighborhood provided by Lemma B.3.
We decompose the eigenfunction (b?“ = a;j¢; +n;, where a; is an orthonormalizing
constant and 7; is orthogonal to ¢;. Hence A\°¢,° = (A + uoB)(ardr + ni) and

ANlardr + N = Aapdr + Ak + woBagdr + uoBni. By projecting onto the
orthogonal space of ¢,

)\Znﬁk = A, + uoPékBakm + uonk Bny.

However, Lemma B.3 ensures that A + uOPd)Lk B — \;° is invertible with bounded
inverse when it acts on the orthogonal space of ¢ and then

(B.1) Ny = —ak((A—i—uoPd,lkB—)\ZO)‘%)_luonkBm.
Now,

Nj" = {ajd; +nj, (A+uoB)(ajéj +nj)) 12 = la|*Aj + wola;é;, Bajos)ra
+(a;jdj, (A+uoB)n;)rz + (nj, (A+uwoB)a;d;)rz + (nj, (A +ugB)n;) Lz
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By using the relation (B.1),
(i (A+uoB)n;) e = (nj, (A+ ugPy, B — Xi)n;) 2 + Ai°|n;]|7
= A |In;l17= — a;(nj, uo Py, Bo;) .

However, (¢;, (A + uoB)n;)r2 = uo(¢j, Bnj)r2 = u()(Pdf; B¢j,m;)r2 and (n;, (A +
uoB)dj) 2 = uo(n;, Pdf;_ B¢j) 2. Thus, the last relations yields

(B.2) NS0 = laj|*A; + uola;* By + X° ;|72 + woa; (Py; By, ns) 2

One can notice that |a;| € [0,1] and ||n;||z2 are uniformly bounded in j. We show
that the first accumulates at 1 and the second at 0. Indeed, from the proof of
Lemma (B.3) and the relation (B.1), there exists C; > 0 such that
C
u — 2 1
(B.3)  nliZe < luol* I ((A+uoPg, B = X))~ I Pl | Bey | Z2 < 7
for r € (0, 1), which implies that lim;_, ||7;]| 2 = 0. Afterwards, by contradiction,

if |a;| does not converge to 1, then there exists (a;, )ren+ a subsequence of (a;);en-
such that |a;_| := limg_o |aj, | € [0,1). Now, we have

1= hm ”‘b ”L"’ < hm |a'JkH|¢)Jk”L2+H77JkHL2 - hm |a‘Jk|+||77]k||L2 |ajoo| <1

that is absurd. Then, lim;_, |a;| = 1. From (B.2), it follows that there exist two
constants C,Cy > 0 such that, for each j € N*, C1\; < )\}“’ < o)\ for |up| small
enough. The relation also implies that AJ° # 0 for every j € N* and [ug| small
enough. (I

LEMMA B.5. Let B satisfy Assumptions I. For every N € N*, there exist a
neighborhood D(0) of 0 in R and Cx > 0 such that, for any ug € D(0), we have

u u CN
‘<¢kO’B¢jO>L2| = 3

PrOOF. We start by choosing k € N* such that k& # j and ug € D(0) for D(0)
the neighborhood provided by Lemma B.4. Thanks to Assumptions I, we have

(6", Bo§©) 2| = [(ardr + i, Blajdj +ny)) 2|

(B4) akaJ _
> COn—=— 3 |ak<¢k, an>L2 + aj<nk, B¢j>L2 + <nk, an>L2|-

1) Expansion of (1, Bo;) 2, (¢x, Bnj)r2 and (1, Bn;)r2: Thanks to (B.1),

(e, Boy) 12 = (—ar((A+uoPg, B — Np°)| )™ uo Py, Bow, Py, Béj)1e

Vk,j € N*, j < N.

for every k € N* and 57 < N, while the operator ((A + uOPdf;B - )\ZO)|¢L)71
k
corresponds to

o0

(A= Xe)Pg) ™" D7 (uo((A = Nfo) Py ) Py BPy )"

n=0

for |up| small enough. For

=2 (wollA = NRL) T PLB) Py,
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we have
(nk, Boj) 12 = —uo(arMyBo, (A = N°) Py )~ Py Boj) 2
Thanks to B : D(A) — D(A), for every k € N* and j < N,
(A= Np0)Py )" Py Boj = Py BI(A = N Py )™ ¢

= [P5B, (A= N Pg) ' Py ] 0
= Py B((A=XN)Pg) 7 ¢
— (A= NPy )~ Py 1B, AJ((A = Ap0) Py ) gy

For By := ((A— A{°)P}) 1P} [B, A], we have

(A= Ni*)Pg )" Py Boj = Py (B+ Br) (N = A) ¢,
and, for every k € N* and j < N,

(B.5) (M, Boj)r2 = — 0

Aj— A0
For every £k € N* and 7 < N, we obtain
[, Bnj)rz| = [(Bnk,mj) 12| = [(uoar B((A — A\p°) Py )~ My Boy,

(a,MyBoy, (B + Bi)o;) 2

(B.6) ajakuo

- /\ )\uo <¢k‘7ij¢]>L2

with Ly := (A — AX%)BMi((A — A\f°)PL) ' P B((A — X*)P.L)~'M;B. Now,
there exists € > 0 such that |a;| € (¢,1) for every I € N*. Thanks to (B.5), (B.6)
and (B.4), there exists C'ny such that

U, wu, ~ 1
(60, Bo)a| 2 B s -

uoa; (A —Aj°) Py )" M;B;) 2| =

U

5 Mk B (B + By

(B.7) "

— |+ (B + B))éy, M Be;) 1
Xi = Al

Ory Lijd5)

vl

2) Features of the operators M, Ek and L;, ;. Each M, for k € N* is uniformly
bounded in L(H?

(07 H(QO)) when |ug| is small enough such that
o ((A = XY Po) ™ Py, BBy, M 1 sz, ) < L
The definition of By, implies that
BiPj, = ((A=A°)P;,) "' Py, B(A— \°)P;, — P}, BP;. .
Hence, the operators By, are uniformly bounded in k in L(H (2 0N Ran(P, ) H (20)
Ran(Pd)lk)). Third, one can notice that
B((A—=X")P;.)""M;B € L(Hp,, H))
for every j € N*. Then, for every k € N* and j < N,
(A= N BMy((A = N Py )T Py = (A= Aj°)B((A = Ap*) Py )™

3" (woPL B((A - Xe)PL) ™" PL
n=0

= (A= X*)((A = N\{*)P3, )" Pg, (By. + B) M
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with

My, =Y (uoPpLB((A—\©)P5)~")" P,
n=0
Finally, the operators Mk are uniformly bounded in L(H (20), H (20)) as Mj. Hence
Ly,; are uniformly bounded in L(H(QO) H(QO))
Let (F});en+ be an infinite uniformly bounded family of operators in L(H(O)7 H(o))
For every [, 7 € N*, there exists ¢; ; > 0 such that

DK (G Figy)ef* < oo, = {6k Fidj)re| < T3

k=1
for every k € N*. Now, the constant ¢; ; can be assumed uniformly bounded in [
since, for every k,j € N*,

sup\k (61, Fioos) 12| < sup > m*(bm, Figy) e < sup 1Fi65]1%) < .
meN*

Thus, for every infinite uniformly bounded family of operators (F});en+ in L(H(O), H(QO))
and for every j € N*, there exists a constant c¢; such that

C

3) Conclusion. We know that [A\; — A\f°|~! and |[\; — )\}‘0|_1 asymptotically
behave as k~2 thanks to Lemma B.4. From the previous point, the families of
operators (BMy (B + ék))keN*, (L.j)ken+ are uniformly bounded in L(H,, H{)
and BM;(B +§j) € L(H? (0)7 H(QO)) for every 1 < j < N. Hence, we use the relation
(B.8) in (B.7) and there exist Cy,Cs,C5,Cy > 0 depending on j € N* such that,
for |up| small enough and k € N* large enough,

Jpa 1 C'1|u0| OQ‘U/Q‘
UQ B ’L‘Lo > C _ —
(B.9) o Berhe = |Aj—A“°|k2 A = X7[R2
' 03|U0|2 C
= ATR2 T RS

Let K € N* be such that [(¢;°(T"), B¢°(T))r2| > Cy75 for every k > K. For
J € N*, the zeros of the analytic map ug — ([(¢,°(T), B3 (T))r2)k<k € RE
are discrete. Then, for [ug| small enough, [(¢;°(T), B$;°(T))r2| # 0 for every
k < K. Thus, for every j € N* and |ug| small enough, there exists C; > 0 such that
(@ (1), B3 (T)) 12| > % for every k € N*. In conclusion, the claim is achieved
for every k € N* and j < N with Cy = min{C; : j < N} O

LEMMA B.6. Let B satisfy Assumptions I. There exists a neighborhood D(0)
of 0 in R such that, for any ug € D(0), there exist Cy,Cy > 0 such that

1

(L Ielbte 1of) <1 < o L eiter 1)

PRrOOF. Let D(0) be the neighborhood provided by Lemma B.4. For |ug]
small enough, we prove that there exist C; > 0 such that |||A 4+ uoB|2%||2 <

[N
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Ci[||A[24)]| 2 for s = 3. We start with s = 4 and we recall that B € L(H) thanks
to Remark 2.1. For any ¥ € HELO), there exists Cy > 0 such that
(A +uoB)* ¢l 2 < |4 L2 + Juol*|| B*¥| 2
+luollA%l L2 (I Bl o) + N1 BI) < Colll APl .

Classical interpolation arguments (see for instance the proof of [8, Lemma 1]) imply
the validity of the relation also for s = 3. There exists C' > 0 such that

917, = 14 +uoBl36l1e < CIAE Y]z = Clllm,

for every ¢ € H, . Now, H? = D(|A|) = D(|A+uoB|) = H} and B : H, —

(0
H(20). The arguments of Remark 2.1 imply that B € L(H(QO)) and the opposite
inequality follows as above from the decomposition A = (A + uyB) — ugB. (|

REMARK B.7. Let B satisfy Assumptions I. The techniques of the proof of
Lemma B.6 also allow to prove that, for s € (0,3), there exists a neighborhood

1
D(0) of 0 in R such that (250:1 |()\;-‘“)%<¢"“ % 2) > < ||+ |l for any ug € D(0).

j I
LEMMA B.8. Let B satisfy Assumptions I and N € N*. Let € > 0 small enough
and IV be the set defined in (1.4). There exists a D. C R\ {0} such that, for each
ug € De7
inf IO = AR = AR+ A > e
(j,k),(n,m)erN
(3,k)#(n,m)
Moreover, for every § > 0 small there exists € > 0 such that dist(D.,0) < 4.

PROOF. Let us consider the neighborhood D(0) provided by Lemma B.3. The
maps u — A} — Ay — Ap + Al are analytic for each j,k,n,m € N* and u € D(0).
The number of elements such that

(B.10) Aj— A — A+ A =0, Vi,n,k,me N km< N
is finite. Indeed A\ = k?72 and (B.10) corresponds to j2 — k? = n? —m?2. We have
|72 — n?| = |k® — m?| < N2 — 1, which is satisfied for a finite number of elements.

Thus, for IV (defined in (1.4)), the following set is finite
Ri={((,k): (n,m)) € (IN)? = (. k) # (nym); Aj = Ak = An 4 Am = 0},

1) Let ((4, k), (n,m)) € R, the set V(; y.n.m) = {u € D| Af = A — AL+ AL, =0} is
a discrete subset of D(0) or equal to D(0). Thanks to the relation (B.2),

AY = A= Al 4 X = ag P A5 + ulag* By + X Insl72
+utt;(Py, By, ) 12 — lag* M — ulag|* By — Ajtllnk 7 2
— uag(Py, Bow, k) 12 — |an|*An — ulan]*Bon — Aj || 72
- uﬁ(Pdanqunn}Lz + J@m [*Am + | am|? Brm
+ X [0ml| 72 + 1l Py Bém, ) L2,
which implies
AY = A= Al N = ag Py — lar* Ak = lan*An + [am*Am
+ (la By j — lar|* By,
—|an|*Bnn + |am|2Bm’m)u + o(u).



SIMULTANEOUS GLOBAL EXACT CONTROLLABILITY IN PROJECTION 305

For |u| small enough, thanks to lim‘u|_,0\aj\2 = 1 and to the third point of As-
sumptions I, each map
u AL = AL = AL+ A

can not be constantly equal to 0. Then, V{;n,m) is discrete and V = {u €
D| 3(j,k,n,m) € R: A = Af = AL + A, = 0} is a discrete subset of D(0). As R is
a finite set

U.:={ueD:V(jknm)e R| Ay = Al = A4 A | > e}
has positive measure for € > 0 small enough. Moreover, for any § > 0 small, there
exists €y > 0 such that dist(0, (_760) < 0.
2) Let ((4,k), (n,m)) € (IV)?\ R be different numbers. We know that

XY = AD = A+ A =77 — k% — n® 4+ m? > 7
First, thanks to (B.2), we have ¥ < |a;|*); + |[u|Cy and XY > |a;|*X; — |u|Cy for
suitable constants C7,Cy > 0 non depending on the index j. Thus
NS = A = A AL > Mgy = lakPAk = lan*An + am[*An| = |ul(2C1 +2C3).

Now, limg_,oo |ax|? = 1. For any u in D(0) and € small enough, there exists M, € N*
such that, for every ((4,k), (n,m)) € R® := (IN)2\ R and j, k,n,m > M.,

||aj|2)‘j - |ak|2/\k - |an|2)‘n + ‘am‘Q)‘M‘ >’ —e

However limy,|_¢ |ax|* = 1 uniformly in % thanks to (B.3) and then there exists a
neighborhood W, C D(0) such that, for each u € W, it follows

Haj‘Q)‘j - |ak|2)‘k - ‘anlz)‘n + |am|2/\m| > 7% —¢

for every ((j,k), (n,m)) € R and 1 < j,k,n,m < M,. Thus, for each u € W, and
((4, k), (n,m)) € RC such that (j, k) # (n,m), we have Y = A=A+ A | > 7 —e

3) The proof is achieved since, for ¢; > 0 small enough, (761 N W, is a non-zero
measure subset of D(0). For any u € U, N W, and for any ((j, k), (n,m)) € (IV)?
such that (j, k) # (n,m), we have [AY — A\ — AL + A | > min{m? — €, €1 }. O

REMARK B.9. Let B satisfy Assumptions I. By using the techniques of the
proofs of Lemma B.5 and Lemma B.8, one can ensure the existence of a neigh-
borhood D; of up in R and D5, a countable subset of R such that, for any
ug € D(0) := (D1 \ D2) \ {0}, we have:

(1) For every N € N*, (j, k), (n,m) € IN (see (1.4)) such that (j,k) > (n,m),
there holds AJ® — A — Ao + AL £ 0.

(2) Bjj = (0;°(T), B¢y (T))r2 # 0 for every j, k € N*.

(3) Let T > 0 and €y > 0. For |ug| small enough, the neighborhood OZ’
(defined in (3.6)) contains O (defined in (3.1)) for € > 0 sufficiently
small.
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