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ABSTRACT. In this paper, we show that after a suitable randomization of the
initial data in the negative order Sobolev spaces H ™% with 0 < a < 1/2, there
exist almost sure global weak solutions to the Boussinesq equations in R% and
T4, when d = 2,3. Furthermore, we prove that the global weak solutions are
unique in dimension two.
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1. Introduction

In this paper, we address the almost sure existence of global weak solutions to

the Boussinesq equations in the whole space R? and the tori T? for d = 2, 3,

(1.1) ug — Au+u - Vu+ V1 = pes,
(1.2) pr—Ap+u-Vp=0,
(1.3) Vou=0.

Here, u is the velocity and p represents the density or temperature of the fluid
which depends on the physical context. 7 denotes the pressure and ez = (0,0,1)7.
The Boussinesq system is an important physical model arising particularly in two
situations. It is a model for the inhomogeneous Navier—Stokes system [3, 4], which
is derived from the full compressible Navier—Stokes system under the low Mach
assumption. Under this scenario, u represents the velocity while p represents the
variation of the density. In the second context, the Boussinesq system is also related
to the Rayleigh-Bénard problem, in which case p represents the temperature. Let

us recall the scaling symmetry for the Boussinesq system
u(z,t) — ux(z,t) == Mz, \%t),
plx,t) — pxa(x,t) := N3p(Ax, A1),

where A > 0. If (u, p) satisfies the Boussinesq system (1.1)—(1.3), then (ux, px) is
also a solution of the Boussinesq system (1.1)—(1.3). Under such scaling for the
Boussinesq system, we have [|ux(z,0)| .. = |[u(z,0)|z.. for sc =4 —1, so H* is
a scaling critical space for u. We recall that the exponents s are called critical if
s = 8. , sub-critical if s > s, and super-critical if s < s.

Data in H® with s < s, (super-critical regime) is rougher than the data of crit-
ical regularity with respect to the scaling symmetry. Intuitively, scaling is ’against
well-posedness’ in this case. Ill-posedness in some cases can be circumvented by
an appropriate probabilistic method in some probability space of initial data, i.e.,
one may hope to establish almost sure local well-posedness with respect to certain
probability random data space. This random data approach to well-posedness first
appeared in the paper [6] of Bourgain when he studied the invariance of Gibbs
measures associated to NLS on tori (T and T?). Later, Burq and Tzvetkov [7, 8]
obtained well-posedness results with random data in the context of the cubic non-
linear wave equation (NLW) on a 3D compact Riemannian manifold. The random
data approach to well-posedness has also been pursued by many authors and ap-
plied to various dispersive equations and fluid models in different contexts. In
the context of the incompressible Navier—Stokes equations, almost sure local well-
posedness and in some instances almost sure global existence results in the context
of the Navier—Stokes equations include: [9, 17, 22, 21].
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Recently, Nahmod, Pavlovié¢, and Staffilani [17] gave the first construction of
almost sure global weak solutions for the Navier—Stokes equations with initial data
in H=%(T%), where 0 < o < 1/2 ford = 2 and 0 < o < 1/4 for d = 3 in the
probabilistic point of view. By suitably randomizing the initial data, doing the
energy estimates with the random data perturbations, they proved both existence
and uniquness for dimension two and the existence results for dimension three on
the torus. Their constructions can be understood as a probabilitical analogue of the
global existence construction of the classic Leray weak solutions. In the context of
the Navier—Stokes equations, the local in time well posedness for randomized initial
data in L?(T?) was proven by Zhang and Fang [23] and by Deng and Cui [9] using
similar approach under the mild formulations. In [17], by suitably randomizing the

initial data uo, the authors singled out the linear evolution e

uf and the difference
equation for w was identified, where they showed that the energy of w is conserved.
Later, J. Wang and K. Wang in [21] extended the global existence results from the
periodic domain to R?, for d = 2,3, and improved the range of the parameter of the
negative order Sobolev spaces from 0 < o < 1/4to 0 < a < 1/2 for d = 3. By using
the approach in [17], Du and Zhang in [10] proved the almost sure global existence
of weak solutions for the MHD equations in T¢ and R, for d = 2, 3, where a uniform
bound for the energy of the nonlinear part of the solutions was also obtained.

In recent years, there has been extensive research on the Boussinesq equations.
People have been studying the persistence of regularity and global existence since
the seminal work of Chae [2] and of Hou and Li [12], who proved the global ex-
istence of a unique solution. In [15], Larios et al established global existence and
uniqueness in the low regularity space H' x L?. Kukavica and the first author of
this paper addressed the persistence of regularity in W97 x W= for the 2D frac-
tional Boussinesq equations in [13] and the long time behavior of solutions in [14].
For other global results of solutions, see [1, 5, 11, 15, 16, 18, 19, 20]; however,
the analogous almost sure existence of global weak solutions is less studied. In fact,
to the best knowledge of the authors, these are the first results addressing global
existence in the random data setting.

In this paper, we first introduce basic notation together with definitions of
randomization. Then, we prove the global existence and uniqueness for the almost-
sure weak solutions in 2D and the existence for 3D. The paper is organized as
follows. In Section 2, we state our key lemmas and the main results. Section 3
contains a lemma on the estimates in terms of random data. Section 4 contains the
energy estimates. In section 5, we construct the weak solutions and we prove that

the solutions are unique in 2D in section 6. We finish the proof in section 7.
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2. Notation and the main results

In this section, we introduce basic notations and state our main results. We

first define the Leray projector P
P=1+V(-A)'V.

to be a bounded operator into divergence-free vector fields. The Leray projector P

may also be defined via the Fourier transform

), (€) = (m fgf;f) n(©), =123

We apply the Leray projector to the equation (1.1) and the pressure m vanishes.

Then we have
—Au+PV - (u®u) =P(pe3).

We now define

H = the closure of {u € C*°:V -u =0} in L?
and

V = the closure of {u € C*:V -u =0} in H'.
We next introduce the construction of random initial data in the whole space R?
for d > 1, which was first introduced by Burq and Tzvetkov [7]. In R?, we divide

the frequency space by using the Wiener decomposition. For n € Z¢, let Q,, be the
unit cube @, =n + (—1,1]%. Then we have

272
R = Q.

Note that Q, N Qn, = 0 if m # n and Y, xg,(§) = 1. Hence, we have the

decomposition
Z F ' xao.f

nezd
Define a nonnegative and even smooth function ¢ such that ¢(§) = 1 for £ €
(=1, 1) and ¢(&) = 0 for & € ([—1,1]%), and let
9(§)

e(§) =

Note that >~ (£ —n) = 1. Define

D-mf= [ FOuc-mede,

D€ —n)

where
D =+v-A.
Then f has a smooth version for the Wiener decomposition:

fl@)="Y" @D -n)f.

nezd
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For any real-valued function f, we obtain

oD +n)f =¢@(D—n)f

and Y. (D —n)f is also a real-valued function. In the T¢ case, the frequencies
of functions are in Z%, so we can divide the frequency space into the integer points.
To keep the consistence of the notations, we denote the decomposition operator
o(D —n)f = f(n)eimem.

For simplicity, we will skip the T or R? in the spacial function spaces in the
following context (e.g. L? means L?(T?) or L2(R%)). We will specify them when
it is necessary. We now introduce the randomization of elements in negative order

Sobolev spaces H~.

DEFINITION 2.1. Let (I,(w)), ez« be a sequence of real, O-mean, independent
random variables on a probability space (€2, A, p) with associated sequence of dis-
tributions (ji,)peze so that there exists ¢ > 0, for all v € R and for all n € Z¢ we
have that

(2.1) ‘ [ O:O 7 dpun (z)

For f € H=*(R%) or f € H=*(T%), we define the map from (Q, 4) to H~ by

< e’

w— f¢
where
(2.2) 7= 57 @)D —n)f,
nezd

where ¢(D — n)f is defined as before. We call such a map randomization.

To state the main theorems (Theorem 2.1 and Theorem 2.2), we introduce the

following definition:

DEFINITION 2.2. For T > 0 and d = 2,3, let ug, po € H~*(R?%) or H=*(T%) and
V - ug = 0. We say (u, p) is a weak solution of the initial value problem (1.1)-(1.3)

with initial datum (ug, po), if

o u,p€ L ([0,T]; H)NLGS ([0, T}; L)NCy ([0, T); H~*) satisfying 4, 2 ¢
L2([0,T); Hy, );

e the map t € (0,7) — wu(t,-) and p(t,-) are continuous from (0,7) to
Hﬁa(Rd) or Hia(’]rd) and lim; o+ (u(t, ), p(t, ")) = (w0, po);

e for all (,n in Schwartz space with V - { = 0, we have
(ug — Au+PV - (u®u) — pes, () =0,

and

(pt = Ap+u-Vp,n) =0.



170 WEINAN WANG AND HAITIAN YUE
The following are the main results of this paper.

THEOREM 2.1 (Existence and uniqueness in 2D). Fix T'> 0,0 < o < 1/2. Let
ug, po € H=*(R?) or H~*(T?) and V - ug = 0. We further suppose uo and py are
mean zero in the periodic case. Then there exists a set ¥ C 2 of probability 1 such
that for any w € ¥ the initial value problem (1.1) — (1.3) with datum (uf, p§) has

a unique global weak solution in the sense of Definition 2.2 of the form
u=gy +uv,

p=9;3 +0,
and
v,0 € L=([0,T); L*) N L*([0, T]; H),
where (ug, p&) are random initial datum in the sense of Definition 2.1, g¢ = e*®u¥

and gy = e*®py.

THEOREM 2.2 (Existence in 3D). Fix T > 0, 0 < o < 1/2. Let ug,po €
H=*(R3) or H~*(T?) and V -uy = 0. We further suppose 1o and py are mean zero
in the periodic case. Then there exists a set X C ) of probability 1 such that for
any w € ¥ the initial value problem (1.1) — (1.3) with datum (u§, pf§) has a global

weak solution in the sense of Definition 2.2 of the form
u=gy +v,

p=9gs+90,
and
v,0 € L=([0,T); L*) N L*([0, T]; HY),
where (ug, p&) are random initial datum in the sense of Definition 2.1, g¢ = e*®u¥

and g§ = e!®p¥.

Note that in fact the later construction will show u,p € L° ([0, T]; L?) N
L2([60, T); H') for some small time 4.

3. A priori estimates on the random data

We now introduce the deterministic estimates for the random initial data and
probabilistic estimates for the heat kernel in terms of random data. The following
lemma is a standard large deviation property (see Lemma 3.1 in [7]) and it will be

used to analyze the heat flow on the randomized data.

LEMMA 3.1 (Lemma 3.1 in [7]). Let (I,(w)),2, be a sequence of real, 0-mean,
independent random variables on a probability space (€2, A, P) with associated se-

quence of distributions (yu,)22,. Assume that there exists ¢ > 0 such that Vy € R,
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‘/ " dpr(x)| < e

Then there exists a > 0 such that for every A > 0, every sequence (a,.)22; € ¢? of

P w'ial(w)>)\ <Cex —LAQ
|2 ot < Cexp l? )

As a consequence, for every ¢ > 2 and (a2)%2, € (2,
< CVallarlle-

Z arl(w)
r=1 La(Q)

We next recall another classical result for a sequence of real, mean-0, indepen-

Vr > 1 we have

real numbers,

dent random variables.

LEMMA 3.2. Let {l,,(w)},cza be a sequence of real, mean-0, independent ran-
dom variables satisfy Definition 2.1 on a probability space (£2, A, P). Then given
€,0 > 0, there exists a subset Qs C Q satisfying P(Q§) < e~ 3, such that for all
w € Ns

10 )] £ 5 log((m) + 1)

where (n) = +/|n|? + 1.

PROOF. For each n and a small € > 0, we have a constant C,

REell»@) < ¢,
Set M = 5%, and then we have
lin (w)]
e 1
— | < (e 3°
eM ‘ = e

Then we obtain,
ell (W) ’

1

Ce 3¢ >E

ST P > M ()Y = 3P|l (w +dlog< ))-

jEZD jEZA

Excluding € := U;{[l;(w)| > 3 + dlog(j)} from Q, for all w € 5, we have
1
@)] < 5 +dlog{n) S - log({n) + 1) for n € &,
with P(Q5) < Ce 5. 0

REMARK 3.3. For given € > 0 and arbitrary small v > 0, it is easy to check the
fact that

1

w 1 1
P Nm-e > Sclfllm-o) S €5

which implies almost surely f¥ € H~“~7 for arbitrary small v > 0.
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LEMMA 3.4. For 0 < @ < 1 and k£ € N. Given € > 0 and arbitrary small v > 0.
If f € H*(R%) or f € H*(T%) of mean zero. Suppose f* is defined as (2.2), then
there exists a subset Qs C (2 satisfying P(Q$) < e, for all w € Q5 we obtain that

w 1 _otytk
(3.1) IV*e2 ]| 2 < 5=l
and
w jSltetyra/s
(3.2) V%2 )| oo < 5 max{t : HIAl o

PROOF. Based on the deterministic properties of heat kernel (see Lemma 3.1
n [17]), we have

w athk w
(3-3) IV e flz= < ( PN fren
and
w _1  —(tata/)
(3.4) Ve 2| e < maxf{t™, HI W r-amnre
Applying Remark 3.3 into (3.3) and (3.4), we have (3.1) and (3.2) after excluding
a subset of probability < e~ 3. O

REMARK 3.5. Given f € H~*(T?) of mean zero, || f| r-a(re) is comparable to

a k= f (k)22 = o (mdy, SINCE £(0) = 0. So in the periodic case,
k€Zd k#£0 H—e(Td)
it is equivalent to use H~% and H ~“ when the functions are mean zero.

We use the deterministic properties of heat kernel but we still leave the linear
evolution e!” f(t) unbounded when ¢ is near zero. This is also the reason why we
can not construct the weak solution of negative regularity deterministically. In the
following lemma, we exploit the randomness in the data f“ and then we bound the

linear evolution e*2 f“(t) in the small interval around zero in the L? sense.

LEMMA 3.6. For p,q > 2,0 < a < 1 with ap < 2 and § > 0. Given some
1
€<, — 5, set

Espg={w € Q: |6 fl woostnn > (8)7 F | fllg-a, V&' € (0,4]}.

Then we have

=]
a-

P(Espq) Se”

~

PrOOF. By Minkowski’s inequality and large deviation property (Lemma 3.1),

for r > p, ¢ we can have the following bound (see Lemma 2.4 in [21])

1_«a
(3.5) (Elle™ N o o.5m,L0) " < CpaVT(0)7 ™ E | fllm-o.

By Chebyshev’s inequality, we have

P(le" £l o059y > A) < Co A2 (872 || £l —a
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for any 7 > p,q. When \/ ((6’)%*%\””%,&) > 2, we select
_ A
COLR V7

r .2
2 < e " when r > €2, we have

By r
)\2
(075 171-.)”

When A/ ((5/)%7% ||f|\1rq—a) < €2, we select r = max{p, ¢} (WLOG suppose r = p).

P([le"® |l no(o.6,00) > A) Spog exp | —

Is easy 1o C k hat Cp7q>\ ( ) H || « 5 ’ (( ) 3\” HH*O‘) )
t e t hec t p J s 5P 2 f
SO we ha\/e

)\2
(675 11-.)

P([le" |l oo,51,09) > A) Spig exp | —

By choosing A = (5/)%_%_€H‘f||H—a, we prove
P(Es50pq) S € 007,
where
Esprpg = {w € Q: [l | o5y > (8'/2)7 75 ||| sr-o, where &' € (0,4]}.

By choosing 8" = 4, %, g, g, <, we have P(U2 Es 2-i5p.q) < Z;’il P(Eso-ispq) S

~

e~ 3. It is easy to check Espq C U1 Es9-i5p,q yielding (3.5). |

4. Energy estimates for the Boussinesq system

In this section, we give energy estimates for the difference equations. We will

use these a priori estimates to construct global weak solutions. First, we set
u=g +v,
P =92 + 93

where g1 and g, are two functions satisfying some specific conditions (in the fol-

lowing Theorem 4.1). It is equivalent to consider the new perturbed Boussinesq

system
(4.1) v = Av+PV - ((g1 +v) ® (g1 +0v)) =P((92 + 0)es),
(4.2) 0r — A0+ V - ((g1 +v)(g2 +6)) =0,

(4.3) V-v=0.
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Now we define the energy for v and 6, respectively.

t
Bx(v,t) = olffs + [ Vol ds
0
and .
Ea(6.t) = 0]22 + / V012 ds.
0

The following theorem establishes energy bounds which will be used in constructing
global weak solutions. The proofs of the whole space and the periodic space are

similar, so we only present the proof of the whole space. Denote that f = (ug, po)

and || fll - = lluoll g—a + llpoll g«

THEOREM 4.1. For any fixed number 7' > 0 and « € (0, ) and for any § > 0
which is small enough. Given 0 < € < i — 5 and v > 0 which is an arbitrarily small
positive number. Consider functions g; and gy satisfying the following properties,
fort=1,2and k=0,1

1 _oatytk
(4.4) IV¥gillz2 < g(l +t7 2 ) fll g
and
1_a_ .
(4.5) l9ill Lo (r0,67,24) + ||giHL4([o,5]7L4+) <827 fll e when d = 2
where 4% = % — v and
(4.6) gill za o.61,00) + 1gillLaqo.o,0) < 03 F ||l y—a,  when d = 3.

Suppose v,6 € L>([0,T]; L?) N L2([0,T); H') is a solution of (4.1)-(4.3), then for
all t € [0,T], we have

(4.7) Er(v,t) + Ez(0,1) < C(T, .0, || fl| g-a)-

Furthermore for any bounded domain B with smooth boundary in R? (d=2, 3), we
have

(4.8) 10wl L2 (0, 7,5-1(B)) + 1001 20,77, 5-2(B)) SB C(T' 0,6, || fll fr-a)-

PRrROOF OF THEOREM 4.1. We will prove this theorem by separating into two
cases t € [0,0] and ¢ € [4,T.
Case 1: t € [0, 4]. First, by multiplying by v and integrating the resulting equation

for ¢ € [0, ] we obtain the following equation:

t t
El(v7t):—/ /U~PV~(gl®gl)dxds—//v~PV~(gl®v)dxds
0 0

t t
f//v~PV~(v®g1)dxdsf//v~IF’V-(v®v)d:1:ds
0 0

t 5
—/ /U-P(gg+0)e3 d$dS=ZIi~
0 i=1
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By the divergence-free condition on v and ¢;, we have
I3=1,=0.
Indeed, since v is divergence-free, we have
1 2
v-PV-(v@uv)dx = 3 v - PV]v|*dx = 0.

Therefore, it remains to estimate I, Is and I5. For I;, by Holder inequality, the
definition of F4 and (4.5) (4.6), we have

a2 1
L S Vo llia o, 91l s ooy S 62> I3 -a Br(t)?.

For I, when d = 2, by Holder inequality, (4.5) and the definition of E;, we have
that

I, SHVU”LQ([O,t],L?)||91HL4([0¢],L4+)||UHL4([0¢],L4*)

(49) < 17276 1
SO f e Br (@2 0]l Lao,, 297 )

where =~ = 1 ++. For ””HL4([0¢],L4*)’ by LP interpolation theory and Sobolev

inequality, we have

N

1
1ol ooy S (Nolzqone2)® (10l pao..0m))
1
1

( sup E(s
(s

A

1
(ol z2(o,,61) 2

(4.10)

=

AN

sup Ei(s (||v||L2([o,t],L2> +1VollL2(o,4,22))

1

3 3
<t1/2 sup El(s)% +E1(t)5) ,

0<s<t

vvv

s(sup Ei(s)
0<s<t

where -1 = ~/2. Combining (4.9) and
d<1

—~

4.10), and taking ¢ = 4, we have that for

(4.11) I SO0 fll e sup Ei(s).
0<s<é
For I, when d = 3, by Holder inequality, (4.6) and the definition of E;, we have
that
I SIIVollzz(o,0,22) 1911 22 0., 29) ]|

SO fll e B ()2 0]

LS([0,¢],L°7T
(4.12) (©00.2%)

LG(Ot]L7)'

Based on the interpolation theory and Sobolev inequality, we have

(4.13) HvH 18

2 1 1
LC‘([O,t],L7) 5 ||/U||z°°([0,t],L2)‘|U||z2([0,t]7[—'jl) S sup E1(8)2.

0<s<s
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Hence when d = 3, we have the same bound of Iy as (4.11). For I, by Cauchy

inequality and (4.4) we have that

(4.14)

Is Sl o,,22) (101l (t0,1,22) + lg2ll L o,01,22))

<6 sup Ey(s)Y/? sup Eg(s)l/2—|—51*a;ﬂ*6 sup El(s)%.
0<s<é 0<s<é 0<s<é

For the estimate of Fs, first, we multiply by 6 and integrate the resulting equation

¢
Ey(6,t) = —/ /(VG) (9192 + 910 + vg2 + v0) dzds
0

:_/Ot/(vg).(9192)_/Ot/(VG)-(vgg)ddeZJl—l-Jga

where we use the fact that both v and g; are divergence-free. For .J;, we apply

Holder’s inequality obtaining

1_0_2¢ L
J1 < IVO 204,22 1921 a0, .4y 192 Lo 0,0, 29y S 0272 fII%, o Ba(t)>.

For Jo, when d = 2, applying Holder’s inequality, (4.5) and (4.10) we have

Jo §||V9||L2([0,t],L2)||92||L4([0,f,],L4+)||UHL4([0¢],L4*)
i

o

o 1 1
>N fllg-o sup Er(s)? sup Ep(s)2.
0<s<é 0<s<é

For Jo, when d = 3, applying Holder’s inequality, (4.6) and (4.14) we have

s

J2 SIVOllz2(0,0,2) 1921l 3 ro,1,9) 101l

(0,¢],L°7)

1
2 fll g sup Ei(s)® sup Ep(s)Z.
0<s<é 0<s<é§

o= N

En

Summarizing 2?21 I; and Zle Ji, when t € [0, d] we have the following bound

(4.15)

sup (Er(5) + Ealo) 50511 (sup Ba(o)t + Bato)? )

0<s<s

Since o < % — 2¢, we could choose § is small enough such that §'~

5t

o

F O E T fll g sup Br(s) + 05 I Ba(t)?
0<s<6
+0 sup Ei(s)"/? sup Eg(s)l/Q—i—él_aTﬂ_E sup E1(s)%
0<s<5 0<s<6 0<s<5

£ 643 fllga sup Er(s)* sup Ea(s)?.
0<s<8 0<s<d

aty

z ¢« 1and
27| fllz-« < 1. Then the continuity argument with (4.15) helps us obtain

that

S (Ei(s) + Ba(s)) < Cla [1fll ).
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Next we will consider the estimate of ||0:v]|z2(jo,5),5-1(B)) + 10:0L2(j0,5), -1 (B))-
By the equation (4.1) we have

(4.16)

190l 20,61, 5-1(B)) <IVllL2(0,01, 1 (B)) + PV - (91 @ 1) || L2((0,6], -1 (B))
HIPV - (91 @ V)| 20,61, 11 (BY) + IPV - (v ® g1)llL2([0,6], -1 (B))
+IPV - (v @ v) || L2((0,5), 5r-2(B)) + IIP(g2 + 0)es]| L2((0,6), -2 (B))-

1
By the definition of the energy, we have ||v||z2((0,5, 51 (B)) < £7 (0). For the remain-
ing terms in (4.16), using the similar estimates for terms from I to I5, and hence

for d = 2 we have

(4.17)
180l L2po,5), -1 () < BF (8) + 9117 0,57,y + 2119111 11 0.67,L5% 01| L 0.67.24
HlollFago,60,29) + 10+ g2l 210,61, 1-1 ()

o

1 1_q—2 1_ 6 1
S (5)+ 55 + 65N e s BE )

1 -
+ sup Fi(s)+ sup E;(s)—i—(;l 2
0<s<6 0<s<6

S Clo [1fll o),

where L{L* norm of v is bounded by a interpolation of L{°L? and L?H' norms of

v which are in 4. Similar for d=3 we have

(4.18)

1
10¢0] L2 0,07, (By) < B () + 91174 (0.6, 04) + 2ligullza o0, 191l Lo 0.5,

HlollZago,60,20) + 10+ g2l L2((0.6).-1 ()

1 1
SBEF(8) + 0372 12 + 65 F ||| 4o sup EZ(s)
0<s<8

1 R
+ sup Eq(s)+ sup Ef(s)—i—&l e
0<5<5 0<5<5

S Clas [ £l g—e)-

By the equation (4.2) we have

19011 L2 0,51, 11 (B)) < 10]l22([0,6), 51 (B)) + 19192l L2(j0,5), 511 (B))
(4.19) +119101 20,61, -1 (B)) + g2l L2((0,5), -1 ()
+v0| L2 (0,67, -1 (B))-

1
By the definition of the energy, we have ||0| 2[5, 51 (B)) < E5 (0). For the remain-

ing terms in (4.16), using the similar estimates for terms J; and Js, and hence we
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have
(4.20)
10601l L2 (0,610,112 (B)) < B3 (8) + 64| 1% + [Vl 20,61, 10112 10,5),29)
+64 7372 )l o ( sup EF(s)+ sup B (s))
0<s<é 0<s<é
SC(as [[fll )

where L2L% norm of v and 6 are bounded by a interpolation of LX°L2 and L2H®
norms of v and 8 which are in F; and E>.

Case 2: t € [6,T]. The previous energy of (v,6) is bounded at ¢ = § which gives
[lv(d)||L2 and ||0(d)||z2 are bounded by C(«, |||l ;-«)- Back to (u,p) which is the
solution of (1.1)-(1.3), we know that

aty—e
2

lu(8) 122 < N0(8)llz2 + g1 (D)2 < E1(8)% + 6~

Flir-o < Cle b, [ fll o)

and

aty—e

lo(d)llz2 < 10) 12 + lg2(9) 22 < Ea(8)% +5~ 3

o < Cla b, (1 fll o)

By the property of classical L? weak solution of (u, p), we have that for t € [§,T]

(4.21) Ey(u,) + Ea(p,t) < C(T, 8, | fll 4.
and
(4.22)  l0wlrzqsmy,m-1(my) + 100 25,1118y S8 C(T, 0,6, || fll gr-a)-

Hence using (4.21), for the energy of (v, ) we have that for ¢ € [4,T]

Ey(v,t) + Ea(0,t) < E1(g1,t) + E1(u,t) + E2(g2,t) + Ea(p,t)
atvy+2e aty+1+2e

S Ei(u,t) + Ex(p,t) +67 = lfll g +t67 = |[fllg-a
SO, 0,0, || fll g-o)-

Using (4.22) and (4.4), we have

0cull L2 (5,17, (B)) + [10epll L2 (15,77, -1 (B))
< Ol L2(s,m,m-1(B)) + 100N L2577, (B)) + |91l L2 (5,77, 1) + |92l 2 (5,17, 10
SO0, | fllg-o) + (T =826~ 75 | fll -
< CO(T, 0,6, (| fll g-o)-

In the end, combining the two cases ¢ € [0,0] and ¢ € [d, T], hence for all ¢ € [0, T
we prove (4.7) and (4.8). O
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5. Construction of the weak solutions to the difference equation of the

Boussinesq system

In this section, we shall construct weak solutions to the initial value problem
(1.1)—(1.3).

v —Av+PV - ((91 +v) ® (g1 +v)) —P((g2 + 0)es) =0,
(5.1) 0 — A0+ V- ((g1 +v)(g92 +0)) =0,
V-v=0, wv(z,0)=0, 6(z,0)=0.

THEOREM 5.1. Fix T > O0and o € (0,1). Given 0 < e < $—% and v > 0 can be
arbitrarily small. Consider functions g; and g, satisfying the following properties,
fort=1,2and k=0,1

atk+ty

1 _
I9%gilze < 5o (14 = =55) £l -

and

lgill 2o 0.07,4) + 190l Lo gy oty < 0% “lf s whend =2
where 4% = % — v and

lgill 2 o,61.29) + lgillzaco.s,Ly < 05 F || fllg-,  whend=3

when § is small enough. Then there exists a weak solution (v,#) in [0,7] for the

initial value problem (5.1).

PrROOF. In the construction of weak solutions, we follow Galerkin approxima-
tions approach. We first construct the solutions (v™,6M) (where M > 1) of finite
dimensional approximation equations as follows
(5.2)
o — AoM + Py PV - ((Prgr 4+ 0™M) @ (Pargr +0M)) — PyP((Pagz + 0M)es) = 0,
0} — AOM + PV - ((Pargr + ™) (Pargs +0M)) = 0,
VoM =0, vM(z,0)=0, 6M(z,0)=0.

Our plan is to obtain the local-in-time well-posedness of the finite approximation

equations via the fixed point argument in the space
X = C([Ov T]a Li) N L2([07 T]a H;)
Define

t t
(o™, 0M) = / AvM dt / PuBY - ((Pargs +v™) © (Pargn + ™)
0 0
—PyP((Pargs + 60M)es) dt

and

t
(M, M) = / AOM dt — PV - ((Prrgr +0™)(Parge +0™)) dt.
0



180 WEINAN WANG AND HAITIAN YUE

It is easy to obtain the following estimates

@™, 0M) | L2 22 (j0,7) S MPT[[0M || Leo L2 + M1+%T||UMH%S°L§
FMUFERTI oM e + MrP@721)2 4 18 )
+ 7|0 oo 2

12 (M, 60M) oo 120,71y S MPTINOM Lo 12 + M Erl[0M]| o 216 | Lo 12
+ MR (M| e g + 0 |15 12)
+ MM 4 e

And
1™ 0™ 2 qo,rpy S MPTH M ez + M 278 [0M]F e
+ ]\/[2+g+7—w+0(d)HUMHL?:Li 4 M2 d)=27 )2

+ Tli%)\ +7'H9MHLtocL3

||‘I’(UMa 9M)||L§H;([O,T]) S MST% ||9M||L;>°Lg + M2+%T% HUMHLgCLg ||9M||L;>°L§
+ MRV D(0M | ey [[0M | 2or2)
+ M2 d)=27)\2 4 172,
where A = || f|| y—o. By taking 7 = 7(M, || f|| y-«, ) small enough, we can make
sure that W(v™,0M) and ¥(vM,6M) are contraction mappings. Hence a fixed point
argument helps us hold the local well-posedness of (v, 6M) in the [0, 7].

Since Pypsg; satisfies the same assumptions as g; in Section 4, we can repeat
the proof of Theorem 4.1 and obtain the same energy bounds (4.7) and the bound
(4.8) for dyv and 90 given in Theorem 4.1 for finite dimensional approximation
solutions (v™, M) uniformly in M. As a consequence we can use an iteration ar-
gument to advance this solution of (v™,6M) up to time T. By applying a standard
compactness argument, together with the fact that Py;g; strongly converges to g;
for i = 1,2, we obtains a weak solution (v, 6) to (5.1) on [0, T]. Since T is arbitrary

large, we obtain a global weak solution. (|

6. Uniqueness in 2D

In this section, we give the proof of uniqueness of 2D global weak solutions.

THEOREM 6.1. Suppose ¢g; and go satisfy the decay properties in Theorem 4.1.
Then, the weak solutions in L2([0,7]; V) N L*([0,T]; H) are unique when d = 2.

PROOF OF THEOREM 6.1. Suppose (v, 61) and (vs, 2) are two solutions. Then,
set
w = V1 — Vg

2’291—92.
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Thus, we obtain the equation in terms of w and z

—Aw+4+PV (1 @w)+PV: - (w®g1) + PV (v @w) + PV - (w @ vy) = P(ze3)
and
(6.1) 22— Az4+w-Vgo+w-VO +¢g1-Vz+v,-Vz=0.

Now we do the L? energy estimates given w(0) = z(0) = 0. Take the L? inner
product on (6.1) with w and we get that

1d

5 gl + IVellie < [lwlZa]Ves|lz2 + ||91||L4Hw||L4||VwIILz + 12l 2wl 22

< Hw||2L4||sz||L2 +35 HngL4Hw”L4 +5 vaHL2

*lleLa +5 ||wHL2

Therefore, we have

1d
2.dt

Next, we consider the energy estimates for z by using Holder’s inequality and La-

—lwliz < C(IVe2lze + llga ) lwlZe + 5 HZ||2L2'

dyzhenskaya inequality

1d

th”Z”Lz + IV2||22 :/w~Vzgg dxf/w-Vt?lzdx

f/gszzdxf/vszzdx

:/w-Vzggdx—/w~V91,zdx
< ||w||L4\\vZ||L2||92||L4 + el V04 || 2|2l s
< GIVAIZs + g lolaloal3e)
<||w||”2||w|\”2||v01||Lzquwuv I132%)
= M; + M.
For My,
M, < %nwniz + Cllw]3: 92174 + énwniz.
For M,
My < C|[V61 |2 |wl 212l 2 + cnw\mnwny
< OIVOL3 w3z + Cllzl3: + ClIVwl?: + < ||VZHL2

Combining the estimates above yields the uniqueness of the solutions by Gronwall

inequality. ]
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7. Proof of main theorems
We find the solution (u, p) by
u =gy +v,
p=95+90,
where ¢g¢ = e!®ug and g§ = e

(v,0): (4.1)-(4.3).

PROOF OF THEOREM 2.1 AND 2.2. In Theorem 4.1, Theorem 5.1 and Theo-

Apw. Then we consider the corresponding system of

rem 6.1, we show that main theorems (Theorem 2.1) and (Theorem 2.2) are true

when ¢¢ and ¢4 satisfy the following conditions for ¢ = 1, 2:

_ aty+k
(7.1) IV*g 0L < *(1+t £l g
and for all §' < ¢
w w 1_o_
(7.2) g llzao,6n,24) + llg5 HL4([075/],L4+) < @i fll e when d = 2,

where %:%—'yand

(7.3) 9P llzsqo.0n,29) + 198 ooty < ()3 F |l r-as  whend =3.
Define
V= {w e Q:gy,g5 satifies (7.1)}

and

QgQ) ={w e Q:gy,g5 satifies (7.2)&(7.3)}.
It is easy to see that for any 0 < §; < da, Qgi) C Qgi) and Qg) - Qg). Suppose
w € Qgood = (U5>oﬂgl)) N (U5>OQ((;2)), for the initial data u§ and p§ we can solve
the system (1.1)-(1.3) on [0, T]. It remains to show P(Qg00q) = 1. First we have

P(ngod) =1-P <ﬁ5>0(Q<(31))c U m5>O(Q(($2))C) .

By Lemma 3.4 and Lemma 3.6, we know that P((le))c) < e o and P((fo))c) < e

so we have
P (N=0(@47)° U 5o ) < Tim PO@QSY)) + PUQY)) S lim ™3 =0

which shows P(Qg004) = 1. O
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