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Reducibility for a class of weakly dispersive linear operators
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Abstract. We prove reducibility of a class of quasi-periodically forced linear
equations of the form

∂tu− ∂x ◦ (1 + a(ωt, x))u +Q(ωt)u = 0 x ∈ T := R/2πZ,

where u = u(t, x), a is a small, C∞ function, Q is a pseudo differential op-

erator of order −1, provided that ω ∈ R
ν satisfies appropriate non-resonance

conditions. Such PDEs arise by linearizing the Degasperis-Procesi (DP) equa-

tion at a small amplitude quasi-periodic function. Our work provides a first
fundamental step in developing a KAM theory for perturbations of the DP

equation on the circle. Following [3], our approach is based on two main
points: first a reduction in orders based on an Egorov type theorem then a

KAM diagonalization scheme. In both steps the key difficulties arise from the
asymptotically linear dispersion law. In view of the application to the nonlinear

context we prove sharp tame bounds on the diagonalizing change of variables.
We remark that the strategy and the techniques proposed are applicable for

proving reducibility of more general classes of linear pseudo differential first
order operators.
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1. Introduction

The problem of reducibility and stability of Sobolev norms for quasi-periodically
forced linear operators on the circle is a classical one, and it has received new
attention in the past few years. Informally speaking, given a linear operator, say
Xω : Hs(T, R) → Hs−μ(T, R) (where μ ∈ R, T := R/2πZ) depending on time in
a quasi-periodic way, we say that it is reducible if there exists a bounded change
of variables depending quasi-periodically on time (say mapping Hs → Hs for all
times), which conjugates the linear PDE ∂tu = Xωu to the constant coefficient one

∂tv = Dωv, Dω := diagj∈Z{dj}, dj ∈ C.

The notion of reducibility has been first introduced for ODEs (see for instance [34],
[22], [32], [1] and reference therein). In the PDEs context this problem has been
studied in a perturbative regime, both on compact and non-compact domains. The
reducibility of linear operators entails relevant dynamical consequences such as the
control on the growth of Sobolev norms for the solutions of the associated Cauchy
problem.
The subject has been studied by many authors: we mention, among others, [13],
[6], [21], [31], [8], [40], [43]. For more details we refer for instance to [5] (and
reference therein).
A strong motivation for the development of reducibility theory comes from KAM
theory for nonlinear PDEs. Actually, reducibility is a key ingredient in the con-
struction of quasi-periodic solutions via quadratic schemes, such as Nash-Moser al-
gorithms. Indeed, the main issue is to invert the linearized PDE at a quasi-periodic
approximate solution, see [17]. This reduces the problem to the study of a quasi-
periodically forced linear PDE such as the ones described above. We point out that
in this context a sharp quantitative control on the reducing changes of variables is
fundamental. Regarding KAM theory for PDEs, we mention [35],[50],[37],[12] for
equations on the circle, [28],[24],[29],[48],[23] for PDEs on Tn. These works all
deal with equations possessing bounded nonlinearities. Regarding unbounded cases
we mention [36], [38], [10] for semilinear PDEs and for the quasilinear case [3],
[4],[27], [30], [11], [42], [2].
The main issues in all these problems are related to the geometry/dimension of the
domain, the dispersion of the PDE and the number of derivatives appearing in the
nonlinearities. In particular the dispersionless case, i.e. the case of (asymptotically)
equally spaced spectral gaps, often exhibits unstable behaviors and explosion of
Sobolev norms (see [39]). In this paper we discuss operators of this type, proving
reducibility and stability for a class of quasi-periodically forced first order linear
operators on the circle. In view of possible applications to KAM theory we chose
to consider a class of linear operators related to the Degasperis-Procesi equation.
However, both the strategy and the techniques are general and, we believe, can be
applied to wider classes of first order operators.

The Degasperis-Procesi (DP) equation

(1.1) ut − uxxt + uxxx − 4ux − uuxxx − 3uxuxx + 4uux = 0

was singled out in [20] by applying a test of asymptotic integrability to a family of
third order dispersive PDEs. Later Degasperis-Holm-Hone [19] proved its complete
integrability by providing a Lax pair and a bi-Hamiltonian structure for this system.
Recently, the first and the second authors, together with Pasquali, [26] investigated
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the structure of the infinitely many constants of motion given by the Lax pair
and deduced some dynamical properties such as the stability of the origin of every
Sobolev spaces Hs, s ≥ 2, and the integrability of the Birkhoff normal form at any
step.
Constantin and Lannes showed in [16] that the Degasperis-Procesi equation, as
well as the Camassa-Holm equation, can be regarded as a model for nonlinear
shallow water dynamics and it captures stronger nonlinear effects than the classical
Korteweg de Vries equation: for example, it exhibits wave-breaking phenomena and
it shows peakon-like solutions. Unlike the Camassa-Holm equation, the DP system
exhibits also shock waves.
Since its discovery, lots of works have been written on this equation, mostly on
the construction of very special exact solutions such as traveling waves and peaked
solitons. We wish to stress that in general the existence of a Lax pair, in the infinite
dimensional context, does not directly imply the possibility to construct Birkhoff (or
action-angle) variables or even simpler structure, such as finite dimensional invariant
tori (the so-called finite gap solutions for KdV and NLS on the circle). For results
on the spectral theory of the DP equation we refer to [14, 15],[33]. In conclusion
the problem of KAM theory for the DP equation is, at the best of our knowledge,
still open. This is one of the main motivations for proving this reducibility result.
Before introducing our classes of operators let us briefly describe the structure of
the DP equation and in particular its linearized at a quasi-periodic function.

The equation (1.1) can be formulated as a Hamiltonian PDE ut = J ∇L2H(u),
where ∇L2H is the L2-gradient of the Hamiltonian

(1.2) H(u) =

∫
u2

2
− u3

6
dx

on the real phase space

(1.3) H1
0(T) :=

{
u ∈ H1(T, R) :

∫
T

u dx = 0
}

endowed with the non-degenerate symplectic form

(1.4) Ω(u, v) :=

∫
T

(J−1u) v dx, ∀u, v ∈ H1
0 (T), J := (1− ∂xx)−1(4− ∂xx)∂x.

The Poisson bracket induced by Ω between two functions F, G : H1
0 (T)→ R is

(1.5) {F (u), G(u)} := Ω(XF , XG) =

∫
T

∇F (u)J∇G(u) dx,

where XF and XG are the vector fields associated to the Hamiltonians F and G,
respectively.

Let ν ∈ N∗ := N \ {0}, L > 0, γ ∈ (0, 1). Consider ω ∈ O0 where

(1.6) O0 :=

{
ω ∈ [L, 2L]ν : |ω · �| ≥ 2γ

〈�〉ν , � ∈ Z
ν

}
, 〈�〉 := max{|�|, 1}

and a quasi-periodic function u(t, x) with zero average in x, small-amplitude and
frequency ω,

(1.7) u(t, x) = εI(ωt, x), ε 	 1,
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where ϕ 
→ I(ϕ, x) belongs to C∞(Tν+1, R). Linearizing equation (1.1) at u one
obtains

(1.8)
vt = Xω(ωt)v, Xω(ωt) = Xω(ωt, I) := J ◦ (1 + a(ωt, x)),

a(ϕ, x) = a(I; ϕ, x)

with a(ϕ, x) ∈ C∞(Tν+1, R) Lipschitz in ω and I. In particular one has

‖a‖Hs(Tν+1,R) ≤ ε‖I‖Hs(Tν+1,R) , ∀s.
Note that that J in (1.4) can be written as

(1.9) J := ∂x + 3Λ∂x, Λ := (1− ∂xx)−1,

hence the operator Xω(ωt) in (1.8) has the form

(1.10) Xω(ωt) = (1 + a(ωt, x))∂x + ax(ωt, x) + 3(1− ∂xx)−1∂x ◦ (1 + a(ωt, x))

and it is a pseudo-differential operator of order one, moreover Xω(ωt) is a Hamil-
tonian vector field w.r.t. the DP symplectic form (1.4).
In the paper [25], together with Montalto, we proved that transport operators of
the form (1+a(ωt, x))∂x, with (ω, 1) ∈ Rν+1 diophantine, are reducible by a change
of variables which has very sharp tame estimates in terms of the Sobolev norm of
the function a. Here we prove the same result for the more general class (1.10). We
have to deal with two main issues:

• the operator (1.10) is not purely transport;
• we wish to diagonalize with a change of variables which is symplectic w.r.t.

(1.4).

As in [25], the main difficulties, which turn out to be particularly delicate in our
context, consist in giving sharp estimates of the change of variables; in order to do
this, we need to introduce a number of technical tools, for instance a quantitative

version of Egorov’s theorem.
We prove the following reducibility result.

Theorem 1. Fix γ ∈ (0, 1), consider Xω(ωt) in (1.10) with ω ∈ O0 (see (1.6)),
assume that ‖I‖Hs(Tν+1,R) ≤ 1 for some s > 1 large enough and |ε| ≤ ε0(γ) for some
ε0(γ) > 0 (recall (1.7), (1.6)). Then there exists a Cantor set O∞ ⊆ O0 such that
for all ω ∈ O∞ there exists a quasi-periodic in time family of bounded symplectic
maps Ψ(ωt) : Hs(T, R)→ Hs(T, R), which reduces (1.8) to a diagonal constant co-
efficients operator with purely imaginary spectrum. Moreover the Lebesgue measure
of O0 \ O∞ goes to 0 as γ → 0.

From Theorem 1 we deduce the following dynamical consequence.

Corollary 2. Consider the Cauchy problem

(1.11)

{
∂tu = Xω(ωt)u,

u(0, x) = u0(x) ∈ Hs(T, R),

with s � 1. If the Hypotheses of Theorem 1 are fulfilled then the solution of (1.11)
exists, is unique, and satisfies

(1.12) sup
t∈R

‖u(t, ·)‖Hs(T,R) ≤ c(s)‖u0‖Hs(T,R),

for some c(s) > 0.
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We remark that (1.12) means that the Sobolev norms of the solutions of (1.11)
do not increase in time. This is due to the quasi-periodic dependence on time of the
perturbation. One could consider also problems with more general time dependence.
However one expects to give at best an upper bound on the growth of the norms
(see [7]).

We shall deduce Theorem 1 from Theorem 1.4 below. We first need to introduce
some notations.

Functional space. Passing to the Fourier representation

(1.13)
u(ϕ, x) =

∑
j∈Z

uj(ϕ) eijx =
∑

�∈Zν ,j∈Z

u�j ei(�·ϕ+jx),

uj(ϕ) = u−j(ϕ), u�j = u−�,−j ,

we define the Sobolev space

(1.14) Hs :=
{

u(ϕ, x) ∈ L2(Tν+1, R) : ‖u‖2s :=
∑

�∈Zν ,j∈Z\{0}

|u�j|2〈�, j〉2s < ∞
}

where 〈�, j〉 := max{1, |�|, |j|}, |�| :=
∑ν

i=1|�i|. We denote by Bs(r) the ball of
radius r centered at the origin of Hs.

Pseudo differential operators. Following [11] and [41] we give the following
Definitions.

Definition 1.1. A linear operator A is called pseudo differential of order ≤ m
if its action on any Hs(T) with s ≥ m is given by

A
∑
j∈Z

uje
ijx =

∑
j∈Z

a(x, j)uje
ijx ,

where a(x, j), called the symbol of A, is the restriction to T×Z of a complex valued
function a(x, ξ) which is C∞ smooth on T× R, 2π-periodic in x and satisfies

(1.15) |∂α
x ∂β

ξ a(x, ξ)| ≤ Cα,β〈ξ〉m−β , ∀ α, β ∈ N.

We denote by A[·] = Op(a)[·] the pseudo operator with symbol a := a(x, j). We call
OPSm the class of the pseudo differential operator of order less or equal to m and
OPS−∞ :=

⋂
m OPSm. We define the class Sm as the set of symbols which satisfy

(1.15).

We will consider mainly operator acting on Hs(T) with a quasi-periodic time
dependence. In the case of pseudo differential operators this corresponds1 to con-
sider symbols a(ϕ, x, ξ) with ϕ ∈ Tν . Clearly these operators can be thought as
acting on Hs(Tν+1).

Definition 1.2. Let a(ϕ, x, ξ) ∈ Sm and set A = Op(a) ∈ OPSm,

(1.16) |A|m,s,α := max
0≤β≤α

sup
ξ∈R

‖∂β
ξ a(·, ·, ξ)‖s〈ξ〉−m+β .

We will use also the notation |a|m,s,α := |A|m,s,α.

1since ω is diophantine we can replace the time variable with angles ϕ ∈ Tν . The time

dependence is recovered by setting ϕ = ωt.
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Note that the norm | · |m,s,α is non-decreasing in s and α. Moreover given a
symbol a(ϕ, x) independent of ξ, the norm of the associated multiplication operator
Op(a) is just the Hs norm of the function a. If on the contrary the symbol a(ξ)
depends only on ξ, then the norm of the corresponding Fourier multipliers Op(a(ξ))
is just controlled by a constant.

Linear operators. Let A : Tν → L(L2(T)), ϕ 
→ A(ϕ), be a ϕ-dependent
family of linear operators acting on L2(T). We consider A as an operator acting on
Hs(Tν+1) by setting

(Au)(ϕ, x) = (A(ϕ)u(ϕ, ·))(x).

This action is represented in Fourier coordinates as

(1.17)

Au(ϕ, x) =
∑

j,j′∈Z

Aj′

j (ϕ)uj′(ϕ) eijx

=
∑

�∈Zν ,j∈Z

∑
�′∈Zν ,j′∈Z

Aj′

j (�− �′)u�′j′ ei(�·ϕ+jx).

Note that for the pseudo differential operators defined above the norm (1.16) pro-
vides a quantitative control of the action on Hs(Tν+1). Conversely, given a Töpliz
in time operator A, namely such that its matrix coefficients (with respect to the
Fourier basis) satisfy

(1.18) Aj′,l′

j,l = Aj′

j (l− l′) ∀j, j′ ∈ Z, l, l′ ∈ Z
ν ,

we can associate it a time dependent family of operators acting on Hs(T) by setting

A(ϕ)h =
∑

j,j′∈Z,�∈Zν

Aj′

j (�)hj′ eijxei�·ϕ, ∀h ∈ Hs(T).

For m = 1, . . . , ν we define the operators ∂ϕmA(ϕ) as

(1.19)
(∂ϕmA(ϕ))u(ϕ, x) =

∑
�∈Z

ν ,
j∈Z

∑
�′∈Z

ν ,
j′∈Z

i(�− �′)Aj′

j (�− �′)u�′j′ ei(�·ϕ+jx),

We say that A is a real operator if it maps real valued functions in real valued
functions. For the matrix coefficients this means that

Aj′

j (�) = A−j′

−j (−�).

Lipschitz norm. Fix ν ∈ N∗ and let O be a compact subset of Rν . For a function
u : O → E, where (E, ‖·‖E) is a Banach space, we define the sup-norm and the
lip-seminorm of u as

(1.20)

‖u‖sup
E := ‖u‖sup,O

E := sup
ω∈O

‖u(ω)‖E ,

‖u‖lip
E := ‖u‖lip,O

E := sup
ω1,ω2∈O,

ω1 �=ω2

‖u(ω1)− u(ω2)‖E

|ω1 − ω2|
.

If E is finite dimensional, for any γ > 0 we introduce the weighted Lipschitz norm:

(1.21) ‖u‖γ,O
E := ‖u‖sup,O

E + γ‖u‖lip,O
E .

If E is a scale of Banach spaces, say E = Hs, for γ > 0 we introduce the weighted
Lipschitz norms

(1.22) ‖u‖γ,O
s := ‖u‖sup,O

s + γ‖u‖lip,O
s−1 , ∀s ≥ [ν/2] + 3
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where we denoted by [r] the integer part of r ∈ R. Similarly if A = Op(a(ω, ϕ, x, ξ))
belonging to OPSm is a family of pseudo differential operators with symbols de-
pending in a Lipschitz way on some parameter ω ∈ O ⊂ Rν , we set

(1.23)

|A|γ,O
m,s,α := sup

ω∈O
|A|m,s,α+

+ γ sup
ω1,ω2∈O

|Op
(
a(ω1, ϕ, x, ξ)− a(ω2, ϕ, x, ξ)

)
|m,s−1,α

|ω1 − ω2|
.

Hamiltonian linear operators. In the paper we shall deal with operators which
are Hamiltonian according to the following Definition.

Definition 1.3. We say that a linear map is symplectic if it preserves the 2-
form Ω in (1.4); similarly we say that a linear operator M is Hamiltonian if Mu
is a linear Hamiltonian vector field w.r.t. Ω in (1.4). This means that each J−1M
is real symmetric. Similarly, we call a family of maps ϕ → A(ϕ) symplectic if for
each fixed ϕ A(ϕ) is symplectic, same for the Hamiltonians. We shall say that an
operator of the form ω · ∂ϕ + M(ϕ) is Hamiltonian if M(ϕ) is Hamiltonian.

Notation. We use the notation A ≤s B to denote A ≤ C(s)B where C(s) is a
constant depending on some real number s.

For ω ∈ O0 (see (1.6)) we consider (in order to keep the parallel with (1.10)) a
quasi-periodic function εI ∈ C∞(Tν+1, R) such that, by possibly rescaling ε,

(1.24) ‖I‖γ,O0

s0+μ ≤ 1 , s0 := [ν/2] + 3

for some μ > 0 sufficiently large. We consider classes of linear Hamiltonian operators
of the form

(1.25) Lω = Lω(I) = ω · ∂ϕ − J ◦ (1 + a(ϕ, x)) +Q(ϕ),

where a = a(ϕ, x) = a(I; ϕ, x) ∈ C∞(Tν+1, R) and

(1.26) Q := Op(q)[·], q = q(I; ϕ, x, ξ) = q(ϕ, x, ξ) ∈ S−1

is Hamiltonian. We assume that a, q depend on the small quasi-periodic function
εI ∈ C∞(Tν+1, R) (with I as in (1.24)), as well as on ω ∈ O0 in a Lipschitz way
and, for all s ≥ s0 we require that (recall (1.23))

(1.27) ‖a‖γ,O0
s + |q|γ,O0

−1,s,α ≤s ε‖I‖γ,O0

s+σ0
,

for some σ0 > 0. If I1, I2 ∈ C∞(Tν+1, R) satisfy (1.24) we assume

(1.28) ‖Δ12a‖p + |Δ12q|−1,s,α ≤p ε‖I1 − I2‖p+σ0 ,

for any p ≤ s0 +μ−σ0 (μ > σ0), where we set Δ12a := a(I1; ϕ, x)− a(I2; ϕ, x) and
similarly for Δ12q.

With this formulation our purpose is to diagonalize (in both space and time)
the linear operator (1.25) with changes of variables Hs(Tν+1) → Hs(Tν+1). Since
Lω is Töpliz in time (see (1.18)), it turns out that these transformations can be
seen as a family of quasi-periodically time dependent maps acting on Hs(T).

Theorem 1 is a consequence of the following result.
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Theorem 1.4 (Reducibility). Let γ ∈ (0, 1) and consider Lω in (1.25) with
ω ∈ O0 satisfying (1.26)-(1.27) with εγ−5/2 	 1. Then there exists a sequence

(1.29) dj = dj(I) := mj
4 + j2

1 + j2
+ rj , j ∈ Z \ {0} , rj ∈ R , rj = −r−j

with m = m(ω, I) ∈ R, rj = rj(ω, I) well defined and Lipschitz for ω ∈ O0 with

|m− 1|γ,O0 , supj〈j〉 |rj |γ
3/2,O0 ≤ Cε ,

such that the following holds:
(i) for ω in the set O∞ = O∞(I) := Ω1 ∩ Ω2, where (τ ≥ 2ν + 6 )

(1.30) Ω1 = Ω1(I) := {ω ∈ O0 : |ω · �−mj| ≥ 2γ〈�〉−τ , ∀j ∈ Z \ {0}, � ∈ Z
ν}

(1.31)
Ω2 = Ω2(I) :={ω ∈ O0 : |ω · � + dj − dk| ≥ 2γ3/2〈�〉−τ ,

∀j, k ∈ Z \ {0}, � ∈ Z
ν, (j, k, �) �= (j, j, 0)},

there exists a linear, symplectic, bounded transformation

Φ: O∞ ×Hs → Hs

with bounded inverse Φ−1 such that for all ω ∈ O∞
(1.32) ΦLωΦ−1 = ω · ∂ϕ −Dω, Dω := diagj �=0(idj) ;

(ii) the following tame estimates hold

‖Φ±1h‖γ3/2,O∞

s ≤s ‖h‖s + εγ−5/2‖I‖γ,O0

s+σ ‖h‖s0 ∀s ≥ s0(1.33)

|O0 \ O∞| ≤ C γ Lν−1 ,(1.34)

for some constants σ, C > 0 depending on τ, ν;

(iii) the map Φ is Töpliz in time and via (1.18) induces a bounded transforma-
tion of the phase space Hs(T, R) depending quasi-periodically on time.

Let us briefly discuss how to deduce Theorem 1 from Theorem 1.4. Consider the
equation

(1.35) ∂tu = Xω(ωt)u

with Xω(ωt) in (1.10). The operator associated to (1.35) acting on quasi-periodic
function is Lω = ω · ∂ϕ −Xω(ϕ) which has the form (1.25) with Q(ϕ) = 0.

Under the action of the transformation v = Φ(ωt)u of the phase space Hs(T, R)
depending quasi-periodically on time the equation (1.35) is transformed into the
linear equation

(1.36) ∂tv = Dωv, Dω = Φ(ωt)Xω(ωt)Φ−1(ωt) + Φ(ωt)∂tΦ
−1(ωt).

The operator associated to (1.36) is ΦLωΦ−1 given in (1.32).

Let us makes some comments on the statement of our main result.

• If we consider a C∞ Hamiltonian perturbation of the DP equation, say
adding to the Hamiltonian (1.2) a term like

∫
T

f(u) dx, where the den-
sity f ∈ C∞(R, R), then the operator obtained by linearizing at a quasi-
periodic function has the same form of the operator Lω in (1.25).
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• Along the reducibility procedure in order to deal with small divisor prob-
lems, we use that ω belongs to the intersection of the sets (1.30), (1.31).
We point out that the diophantine constants appearing in the first order
Melnikov conditions (1.30) and the second order ones (1.31) consist of dif-
ferent powers of a small constant γ. This fact is crucial in view of the
measure estimates of the sets (1.30) and (1.31), in particular for the proof
of Lemma 5.3.
Different scalings in γ for non-resonance conditions are typical in problems
with (asymptotically) linear dispersion such as the Klein-Gordon equation,
see [47], [9].

As said above, the linear operator Lω depends on a smooth function I in a
Lipschitz way. This dependence is preserved by the reducibility procedure. We
start by stating approximate reducibility result, which in turns implies a control of
Sobolev norms for long but finite times for all the operators Lω(I) with I in a small
ball.

Theorem 1.5 (Almost reducibility). Under the hypotheses of Theorem 1.4,
consider I1, I2 in C∞(Tν+1, R) and assume that Lω(I1), Lω(I2) as in (1.25) satisfy
(1.27)-(1.28). Assume moreover that (1.24) holds for I1, I2 and

(1.37) sup
ω∈O0

‖I1 − I2‖s0+μ ≤ CρN−(τ+1)

for N sufficiently large, 0 ≤ ρ < γ3/2/2. Then the following holds. For any ω ∈
O∞(I1) there exists a linear, symplectic, bounded transformation ΦN with bounded

inverse Φ−1
N (satisfying (1.33)) such that

(1.38)
ΦNLω(I2)Φ

−1
N = ω · ∂ϕ −D(N)

ω +R(N),

D(N)
ω := D(N)

ω (I2) := diagj �=0(i d
(N)
j (I2)) .

Here d
(N)
j (I2) has the form (1.29) for some m(N) = m(N)(I2) and r

(N)
j = r

(N)
j (I2)

satisfying the bounds

(1.39) |m(N)(I2)−m(I1)|+ 〈j〉|r(N)
j (I2)− rj(I1)| � εγ−1(‖I1 − I2‖s0+μ + N−κ)

for some κ > τ and C > 0.
The remainder R(N) = J ◦ a(N) +Q(N) with a(N) ∈ C∞(Tν+1, R), Q(N) Töpliz

in time, bounded on Hs, Q(N)(ϕ) : Hs(T) → Hs+1(T), satisfying

(1.40)
‖a(N)‖γ,O∞(I1)

s ≤ εCN−κ‖I2‖γ,O0

s+μ ,

‖Q(N)v‖s ≤ εCN−κ(‖v‖s + ‖I2‖s+μ‖v‖s0), ∀ v ∈ Hs.

The maps ΦN , Φ−1
N satisfy bounds like (1.33).

Remark 1.1. In order to prove the above theorem the main point is to show

the inclusion O∞(I1) ⊂ Ω
(N)
1 ∩ Ω

(N)
2 , where

Ω
(N)
1 = Ω

(N)
1 (I2) :={ω ∈ O0 : |ω · �−m(N) j| ≥ 2(γ − ρ)

〈�〉τ ,

∀j ∈ Z \ {0}, |�| ≤ N},(1.41)

Ω
(N)
2 = Ω

(N)
2 (I2) :={ω ∈ O0 : |ω · � + d

(N)
j − d

(N)
k | ≥ 2(γ3/2 − ρ)

〈�〉τ ,

∀j, k ∈ Z \ {0}, |�| ≤ N, (�, j, k) �= (0, j, j)}.(1.42)
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One can deduce the following dynamical consequence.

Corollary 1.6. Under the Hypotheses of Theorem 1.5 consider the Cauchy
problem

(1.43)

{
∂tu = J ◦ (1 + a(I; ϕ, x))u−Q(I; ϕ)u,

u(0, x) = u0(x) ∈ Hs(T, R), s� 1.

Consider I1 as in Theorem 1.5 and ω ∈ O∞(I1) (which is given in Theorem 1.4).
Then for any I in the ball (1.37), (1.43) admits a unique solution which satisfies

(1.44) sup
t∈[−TN ,TN ]

‖u(t, ·)‖Hs(T,R) ≤ c(s)‖u0‖Hs(T,R),

for some c(s) > 0 and some TN ≥ ε−1Nκ. Finally, if I = I1 the bound (1.44) holds
for all times.

Another interesting consequence is the following quantitative lemma, important
in view of application to KAM for nonlinear PDEs.

Corollary 1.7 (Parameter dependence). Consider I1, I2 ∈ C∞(Tν+1, R)
satisfying (1.24) and (1.37). Fix γ1 = γ and γ2 := (γ3/2 − ρ)2/3, so that we can
apply Theorem 1.4 to Lω(Ik) with γ � γk. Now for any ω ∈ O∞(I1) one has

|m(ω, I1)−m(ω, I2)| ≤ ε(‖I1 − I2‖s0+σ + N−κ),(1.45)

sup
j
〈j〉|rj(ω, I1)− rj(ω, I2)| ≤ εγ−1(‖I1 − I2‖s0+σ + N−κ)

1.1. Strategy of the proof. In [3] Baldi-Berti-Montalto developed a strategy
for the reducibility of a quasi-periodically forced linear operators, as a fundamental
step in constructing quasi-periodic solutions for nonlinear PDEs, via a Nash-Moser/
KAM scheme. Indeed, the main point in the Nash-Moser scheme is to obtain
tame estimates on high Sobolev norms of the inverse of the linearized operator
at a sequence of quasi-periodic approximate solutions. Given a diagonal operator,
its inverse can be bounded in any Sobolev norm by giving lower bounds on the
eigenvalues. Therefore, if an operator is reducible, the estimates on the inverse
follow from corresponding tame bounds on the diagonalizing changes of variables,
see for instance (1.33). Note that in order to use (1.33) in a Nash-Moser scheme,
the crucial point is that the s-Sobolev norm of Φ is controlled by the (s+σ)-Sobolev
norm I where σ is fixed or at least σ = σ(s) with σ < s.

The main idea in the reducibility procedure of [3] is to perform two steps.
The first step consists in applying a quasi-periodically depending on time change of
coordinates which conjugates Lω to an operator L+

ω which is the sum of a diagonal
unbounded part and a bounded, possibly smoothing, remainder. This is called
the regularization procedure and, in fact, reduces the reducibility issue to a
semilinear case. Such argument has been applied also in different contexts (see
[44], [45]).
The second step consists in performing a KAM-like scheme which completes the
diagonalization of L+

ω .

Step one. The operator Lω differs from the transport operator considered in [25]
by a regularizing pseudo differential operator. Then, in order to make the coefficient
of the leading order constant one can apply a map

(1.46) Tβu(ϕ, x) = u(ϕ, x + β(ϕ, x)).
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If we choose β correctly, this map conjugates Lω to constant coefficients plus a
bounded remainder. Such a map however is clearly not symplectic. In order to find
the symplectic equivalent of this transformation we study the flow of the hyperbolic
PDE

(1.47)

⎧⎨⎩ ∂τΨτ (u) = (J ◦ b)Ψτ (u), b :=
β

1 + τβx

Ψ0u = u,

which is generated by the Hamiltonian

S(τ, ϕ, u) =

∫
b(τ, ϕ, x)u2dx.

By construction if the flow of (1.47) is well defined then it is symplectic.
First, in Proposition 3.1 we show that Ψτ is the composition of

Aτu := (1 + τβx)u(ϕ, x + τβ(ϕ, x))

with a pseudo differential operator Θτ plus a remainder. Θτ is one smoothing in
the x-variable, while the remainder is ρ-smoothing in the x variable for some very
large ρ.

Remark 1.2. We point out that the strategy used in Proposition 3.1 for con-
structing the symplectic version of the torus diffeomorphism is applicable for more
general symplectic structure, provided that J is pseudo differential.

Next, we study how the map Ψτ conjugates Lω; this is the content of Proposition
3.5. Egorov’s theorem ensures that the main order of the conjugated operator
ΨτLω(Ψτ )−1 is

a+(ϕ, x) := −(ω · ∂ϕβ̃)(ϕ, x + β(ϕ, x))+

+ (1 + a(ϕ, x + β(ϕ, x)))(1 + β̃x(ϕ, x + β(ϕ, x)))− 1

where x + β̃(ϕ, x) is the inverse of the diffeomorphism of the torus x 
→ x +β(ϕ, x).
The function β is chosen as the solution of a quasi-periodic transport equation
a+(ϕ, x) = const. This equation has been treated in [25] and the Corollary 3.6 in
[25] gives the right β with estimates.
The map Ψτ is the flow of a hyperbolic PDE, hence the Egorov theorem guarantees
that the operator ΨτLω(Ψτ )−1 is again pseudo differential and that its leading order
is constant. The fact that Ψτ is symplectic also ensures that the zero order terms
vanish and the non-constant coefficients terms are one smoothing in the x-variables.
In order to have sufficiently good bounds on the symbol of the transformed operator,
we provide a quantitative version of the Egorov theorem (see Theorem 3.4 in Section
3). As before, the idea is to express such operator as a pseudo-differential term
(whose symbol we can be bounded in a very precise way) plus a remainder which
is ρ-smoothing in the x-variable for some very large ρ.
The Egorov theorem regards the conjugation of a pseudo differential operator P0 =
Op(p0) ∈ OPSm by the flow of a linear pseudo differential vector field Xu = Op(χ)u
of order d with d ∈ (0, 1]. It is well known that the transformed operator P (τ ) =
Op(p(τ )) ∈ OPSm satisfies the Heisenberg equation

(1.48) ∂τP = [X, P ], P (0) = P0,

(see (3.49)) and that the symbol p(τ ) satisfies ∂τp = {χ, p}M , where {·, ·}M are the
Moyal brackets. The proof consists in making the ansatz that the new symbol p
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can be written as sum of decreasing symbols p =
∑

i≤m pi (see (3.50)) and solving
the Heisenberg equation order by order. This gives a set of triangular ODEs for the
symbols pi (see (3.51)). The r.h.s of (1.48) is of order m + d− 1, hence if d < 1 the
leading order symbol pm(τ ) = p0. The remaining terms are easily computable by
iteration. A detailed discussion of the case d = 1/2 can be found in [11] and [2].
If d = 1 then the equation for pm is a Hamilton equation with Hamiltonian χ, hence
pm(τ ) is given by p0 transported by the flow of the Hamiltonian χ (see (3.55)).
Consequently the symbols pi, i < m, are given by ODE of the same kind but with
forcing terms. We need to control the norms |pi|i,s,α with the norm |p0|m,s+σ1,α+σ2

with σ1 + σ2 < s. This requires some careful analysis (see Lemma 3.3).

Before stating the main regularization theorem let us briefly describe our class
of remainders i.e. operators which are sufficiently smoothing in the x-variable that
they can be ignored in the pseudo-differential reduction, and are diagonalized in
the KAM scheme. We call such remainders Lρ,p (for some ρ ≥ 3, p ≥ s0). Roughly
speaking we require that an operator R in Lρ,p is tame as a bounded operator on
Hs and ρ-regularizing in space; moreover its derivatives in ϕ of order b ≤ ρ − 2
are tame and (ρ− b)-regularizing in space. This definition is made quantitative by
introducing constants M

γ
R(s, b), see Definition 2.8 in Section 2.

The most important features of this class are that it is closed for conjugation by
maps Tβ as in (1.46) and that any R in Lρ,p is modulo-tame and hence can be
diagonalized by a KAM procedure.

Theorem 1.8 (Regularization). Let ρ ≥ 3 and consider Lω in (1.25). There
exist μ1 ≥ μ2 > 0 such that, if condition (1.24) is satisfied with μ = μ1 then the
following holds for all p ≤ s0 + μ1 − μ2.
There exists a constant m(ω) which depend in a Lipschitz way w.r.t. ω ∈ O0,
satisfying

(1.49) |m− 1|γ,O0 ≤ Cε,

such that for all ω in the set Ω1(I) (see (1.30)) there exists a real bounded linear
operator Φ1 = Φ1(ω) : Ω1 ×Hs → Hs such that

(1.50) L+
ω := Φ1LωΦ−1

1 = ω · ∂ϕ −mJ +R.

The constant m depends on I and for ω ∈ Ω1(I1) ∩Ω1(I2) one has

(1.51) |Δ12m| ≤ ε‖I1 − I2‖s0+μ1 ,

where Δ12m := m(I1)−m(I2). The remainder in (1.50) has the form R = Op(r)+

R̂ where r ∈ S−1, R̂ belongs to Lρ,p (see Def. 2.8) and

(1.52)
|r|γ,Ω1

−1,s,α + M
γ
bR(s, b) ≤s,α εγ−1‖I‖γ,O0

s+μ1
, 0 ≤ b ≤ ρ− 2,

|Δ12r|−1,p,α + MΔ12R(p, b) ≤p,α εγ−1‖I1 − I2‖s0+μ1 0 ≤ b ≤ ρ− 3.

Moreover if u = u(ω) depends on ω ∈ Ω1 in a Lipschitz way then

(1.53) ‖Φ±1
1 u‖γ,Ω1

s ≤s ‖u‖γ,Ω1
s + εγ−1‖I‖γ,O0

s+μ1
‖u‖γ,Ω1

s0
.

Finally Φ1, Φ−1
1 are symplectic (according to Def. 1.3).

Step two. We apply a KAM algorithm which diagonalizes L+
ω in (1.50). As in

the first step, an important point is to implement such algorithm by requiring
only a smallness condition on a low norm of the remainder of the regularization
procedure. Hence in order to achieve estimates on high Sobolev norms for the
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changes of variables it is not sufficient that the non- diagonal terms are bounded. To
this purpose, following [2], we work in the class of modulo tame operators (see Def.
(2.6)), more precisely we need that R in (1.50) is modulo tame and one smoothing
in the x-variable together with its derivatives in times up to some sufficiently large
order, this follows from our definition of Lρ,p and properties of pseudo-differential
operators, see Lemma A.4. Our strategy is mostly parallel to [2], hence we give
only a sketch of the proof for completeness.

Theorem 1.9 (Diagonalization). Fix S > s0. Assume that ω 
→ I(ω) is a
Lipschitz function defined on O0, satisfying (1.24) with μ ≥ μ1 where μ1 := μ1(ν)
is given in Theorem 1.8. Then there exists δ0 ∈ (0, 1), N0 > 0, C0 > 0, such that,
if

(1.54) NC0
0 εγ−

5
2 ≤ δ0,

then the following holds.

(i) (Eigenvalues). For all ω ∈ O0 there exists a sequence

dj(ω) := dj(ω, I(ω)) := m(ω) j
4 + j2

1 + j2
+ rj(ω), j �= 0,(1.55)

with m in (1.49). Furthermore, for all j �= 0

(1.56) sup
j
〈j〉|rj|γ

3
2 ,O0 < Cε, rj = −r−j

for some C > 0. All the eigenvalues idj are purely imaginary.

(ii) (Conjugacy). For all ω in the set O∞ := Ω1(I) ∩ Ω2(I) (see (1.30), (1.31))
there is a real, bounded, invertible, linear operator Φ2(ω) : Hs → Hs, with bounded
inverse Φ−1

2 (ω), that conjugates L+
ω in (1.50) to constant coefficients, namely

(1.57)
L∞(ω) := Φ2(ω) ◦ L+

ω ◦ Φ−1
2 (ω) = ω · ∂ϕ + D(ω),

D(ω) := diagj �=0{idj(ω)}.
The transformations Φ2, Φ

−1
2 are symplectic, tame and they satisfy for s0 ≤ s ≤ S

(1.58)
‖(Φ±1

2 − I)h‖γ3/2,O∞

s ≤s

(
εγ−3/2 + εγ−5/2‖I‖γ,O0

s+μ

)
‖h‖γ3/2,O∞

s0

+ εγ−3/2‖h‖γ3/2,O∞

s .

with h = h(ω). Moreover, for ω ∈ O∞(I1) ∩ O∞(I2) we have the following bound
for some σ > 0:

(1.59) sup
j
〈j〉|Δ12rj | ≤ εγ−1‖I1 − I2‖s0+σ.

It remains to prove measure estimates for the Cantor set O∞ = Ω1 ∩ Ω2. In
Section 5 we prove the following.

Theorem 1.10 (Measure estimates). Let O∞ be the set of parameters in
(1.30)-(1.31). For some constant C > 0 one has that

(1.60) |O0 \ O∞| ≤ CγLν−1.

We discuss the key ideas to prove the above result. Recalling (1.30)-(1.31) we may
write

(1.61) O0 \ O∞ =
⋃

�∈Zν ,j,k∈Z\{0}

(
R�jk ∪Q�j

)
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where

(1.62)
R�jk := {ω ∈ O0 : |ω · � + dj − dk| < 2 γ3/2 〈�〉−τ},
Q�j := {ω ∈ O0 : |ω · � + mj| < 2γ〈�〉−τ }

where dj are given in (1.55). Since, by (1.6) and γ > γ3/2, R�jk = ∅ for j = k, in
the sequel we assume that j �= k.
The strategy of the proof of Theorem 1.10 is the following.

(i) Since the union in (1.61) runs over infinite numbers of indices �, j, k, we first
need some relation between them which is given in Lemma 5.1. Note that, since the
dispersion law j 
→ j(1 + j2)−1(4 + j2) is asymptotically linear, for fixed � there are
infinitely many non-empty bad sets R�jk to be considered. It is well known that if
the dispersion law grows as jd, d > 1 as j → ∞ then, thanks to good separation
properties of the linear frequencies, there are only a finite number of sets to be
considered for any fixed � ∈ Z

ν. This is the key difficulty to deal with.

(ii) We provide the estimates of each “bad” set in (1.62) when � ∈ Zν, j, k ∈ Z\{0}.
This is done in Lemma 5.2.

(iii) We deal with the problem of the summability in j, k. We show (in Lemma 5.3)
that, if |k|, |j| � |�|, then the sets R�jk are included in sets of type Q�,j−k, which
depends only on the difference j − k and so are finite for fixed �.

2. Functional Setting

In this Section we introduce some notations, definitions and technical tools
which will be used along the paper. In particular we introduce rigorously the spaces
and the classes of operators on which we work.

We refer to the Appendix A in [25] for technical lemmata on the tameness
properties of the Lipschitz and Sobolev norms in (1.14),(1.22).

Linear Tame operators. We recall some definitions, see for instance [2].

Definition 2.1 (σ-Tame operators). Given σ ≥ 0 we say that a linear op-
erator A is σ-tame w.r.t. a non-decreasing sequence {MA(σ, s)}Ss=s0

(with possibly
S = +∞) if:

(2.1) ‖Au‖s ≤ MA(σ, s)‖u‖s0+σ + MA(σ, s0)‖u‖s+σ u ∈ Hs,

for any s0 ≤ s ≤ S. We call MA(σ, s) a tame constant for the operator A. When
the index σ is not relevant we write MA(σ, s) = MA(s).

Definition 2.2 (Lip-σ-Tame operators). Let σ ≥ 0 and A = A(ω) be a
linear operator defined for ω ∈ O ⊂ Rν. Let us define

(2.2) Δω,ω′A :=
A(ω) −A(ω′)

|ω − ω′| , ω, ω′ ∈ O.

Then A is Lip-σ-tame w.r.t. a non-decreasing sequence {MA(σ, s)}Ss=s0
if the fol-

lowing estimate holds

(2.3)
sup
ω∈O

‖Au‖s,γ sup
ω �=ω′

‖(Δω,ω′A)‖s−1

≤s M
γ
A(σ, s)‖u‖s0+σ + M

γ
A(σ, s)‖u‖s+σ, u ∈ Hs,

We call M
γ
A(σ, s) a Lip-tame constant of the operator A. When the index σ is

not relevant we write M
γ
A(σ, s) = M

γ
A(s).
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Modulo-tame operators and majorant norms. The modulo-tame operators
are introduced in Section 2.2 of [11]. Note that we are interested only in the Lip-
schitz variation of the operators respect to the parameters of the problem whereas
in [11] the authors need to control also higher order derivatives.

Definition 2.3. Let u ∈ Hs, s ≥ 0, we define the majorant function

u(ϕ, x) :=
∑

�∈Zν ,j∈Z

|u�j|ei(�·ϕ+jx).

Note that ‖u‖s = ‖u‖s.

Definition 2.4 (Majorant operator). Let A ∈ L(Hs) and recall its matrix
representation (1.17). We define the majorant matrix A as the matrix with entries

(A)j′

j (�) := |(A)j′

j (�)| j, j′ ∈ Z, � ∈ Z
ν.

We consider the majorant operator norms

(2.4) ‖M‖L(Hs) := sup
‖u‖s≤1

‖Mu‖s.

We have a partial ordering relation in the set of the infinite dimensional matrices,
i.e. if

(2.5)
M � N ⇔ |M j′

j (�)| ≤ |N j′

j (�)| ∀j, j′, � ⇒ ‖M‖L(Hs) ≤ ‖N‖L(Hs) ,

‖Mu‖s ≤ ‖M u‖s ≤ ‖N u‖s.

Since we are working on a majorant norm we have the continuity of the pro-
jections on monomial subspace, in particular we define the following functor acting
on the matrices

ΠKM :=

{
M j′

j (�) if |�| ≤ K,

0 otherwise
Π⊥K := I−ΠK .

Finally we define for b0 ∈ N

(2.6) (〈∂ϕ〉b0M)j′

j (�) = 〈�〉b0M j′

j (�).

If A = A(ω) is an operator depending on a parameter ω, we control the Lipschitz

variation, see formula 2.2. In the sequel let 1 > γ > γ3/2 > 0 be fixed constants.

Definition 2.5 (Lip-σ-modulo tame). Let σ ≥ 0. A linear operator A :=
A(ω), ω ∈ O ⊂ Rν , is Lip-σ-modulo-tame with respect to an increasing sequence

{M�,γ3/2

A (s)}Ss=s0
if the majorant operators A, Δω,ω′A are Lip-σ-tame w.r.t. these

constants, i.e. they satisfy the following weighted tame estimates: for all s ≥ s0

and for any u ∈ Hs,

(2.7)

sup
ω∈O

‖Au‖s, sup
ω �=ω′∈O

γ3/2‖Δω,ω′Au‖s

≤ M
�,γ3/2

A (σ, s0)‖u‖s+σ + M
�,γ3/2

A (σ, s)‖u‖s0+σ

where the functions s 
→ M
�,γ3/2

A (σ, s) ≥ 0 are non-decreasing in s. The constant

M
�,γ3/2

A (σ, s) is called the modulo-tame constant of the operator A. When the

index σ is not relevant we write M
�,γ3/2

A (σ, s) = M
�,γ3/2

A (s).
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Definition 2.6. We say that A is Lip-−1-modulo tame if 〈Dx〉1/2A〈Dx〉1/2 is
Lip-0-modulo tame. We denote

(2.8)
M

�,γ3/2

A (s) := M
�,γ3/2

〈Dx〉1/2A〈Dx〉1/2 (0, s),

M
�,γ3/2

A (s, a) := M
�,γ3/2

〈∂ϕ〉a〈Dx〉1/2A〈Dx〉1/2 (0, s), a ≥ 0.

In the following we shall systematically use −1 modulo-tame operators. We
refer the reader to Appendix A.1 for the properties of Tame and Modulo-tame
operators.

Pseudo differential operators properties. We now collect some classical results
about pseudo differential operators introduced in Def. 1.1 adapted to our setting.

Composition of pseudo differential operators. One of the fundamental proper-
ties of pseudo differential operators is the following: given two pseudo differential

operators Op(a) ∈ OPSm and Op(b) ∈ OPSm′

, for some m, m′ ∈ R, the composi-
tion Op(a) ◦Op(b) is a pseudo differential operator of order m + m′. In particular

(2.9) Op(a) ◦Op(b) = Op(a#b),

where the symbol of the composition is given by

(2.10) (a#b)(x, ξ) =
∑
j∈Z

a(x, ξ + j)b̂j(ξ)e
ijx =

∑
k,j∈Z

âk−j(ξ + j)b̂j(ξ)e
ikx.

Here the ·̂ denotes the Fourier transform of the symbols a(x, ξ) and b(x, ξ) in the
variable x. The symbol a#b has the following asymptotic expansion: for any N ≥ 1
one can write

(2.11)

(a#b)(x, ξ) =
N−1∑
n=0

1

n!in
∂n

ξ a(x, ξ)∂n
xb(x, ξ) + rN (x, ξ), rN ∈ Sm+m′−N ,

rN(x, ξ) =
1

(N − 1)!iN

∫ 1

0

(1− τ )N
∑
j∈Z

(∂N
ξ a)(x, ξ + τj)∂̂N

x b(j, ξ)eijxdτ.

Definition 2.7. Let N ∈ N, 0 ≤ k ≤ N , a ∈ Sm and b ∈ Sm′

, we define (see
(2.11))

(2.12) a#kb :=
1

k!ik
(∂k

ξ a)(∂k
xb), a#<Nb :=

N−1∑
k=0

a#kb, a#≥Nb := rN .

Adjoint operator. Let A := Op(a) ∈ OPSm. Then its L2-adjoint A∗ is a pseudo
differential operator such that

(2.13) A∗ = Op(a∗), a∗(x, ξ) =
∑
j∈Z

âj(ξ − j)eijx.

Parameter family of pseudo differential operators. We shall deal also with
pseudo differential operators depending on parameters ϕ ∈ Tν:

(Au)(ϕ, x) =
∑
j∈Z

a(ϕ, x, j)uje
ijx, a(ϕ, x, j) ∈ Sm.

The symbol a(ϕ, x, ξ) is C∞ smooth also in the variable ϕ. We still denote A :=
A(ϕ) = Op(a(ϕ, ·)) = Op(a). For the symbols of the composition operator with
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Op(b(ϕ, x, ξ)) and the L2-adjoint we have the following formulas

(2.14)

(a#b)(ϕ, x, ξ) =
∑
j∈Z

a(ϕ, x, ξ + j)b̂(ϕ, j, ξ) eijx

=
∑

j,j′∈Z,
�,�′∈Z

ν

â(�− �′, j′ − j, ξ + j)b̂(�′, j, ξ) ei(�·ϕ+jx),

a∗(ϕ, x, ξ) =
∑
j∈Z

â(ϕ, j, ξ − j) eijx =
∑

�∈Zν ,j∈Z

â(�, j, ξ − j) ei(�·ϕ+jx).

Classes of Smoothing Remainders. The KAM scheme performed in Section 4
is based on an abstract reducibility algorithm which works in the space of modulo-
tame operators. In order to control the majorant norm (2.4) of the remainder of the
regularization procedure it is useful to introduce a class of linear “tame” smoothing
operators.

Definition 2.8. Fix s0 ≥ (ν +1)/2 and p, S ∈ N with s0 ≤ p < S with possibly
S = +∞. Fix ρ ∈ N, with ρ ≥ 3 and consider any subset O of R

ν . We denote by
Lρ,p = Lρ,p(O) = Lρ,p(O) the set of the linear operators A = A(ω) : Hs(Tν+1) →
Hs(Tν+1), ω ∈ O with the following properties:

• the operator A is Lipschitz in ω,

• the operators ∂�b
ϕA, [∂�b

ϕA, ∂x], for all �b = (b1, . . . , bν) ∈ Nν with 0 ≤ |�b| ≤ ρ − 2
have the following properties, for any s0 ≤ s ≤ S, with possibly S = +∞:

(i) for any m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ− |�b| one has that the

operator 〈Dx〉m1∂�b
ϕA〈Dx〉m2 is Lip-0-tame according to Def. 2.2 and we

set

(2.15) M
γ

∂�b
ϕA

(−ρ + |�b|, s) := sup
m1+m2=ρ−|�b|

m1,m2≥0

M
γ

〈Dx〉m1 ∂�b
ϕA〈Dx〉m2

(0, s);

(ii) for any m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ− |�b| − 1 one has that

the operator 〈Dx〉m1 [∂�b
ϕA, ∂x]〈Dx〉m2 is Lip-0-tame according to Def. 2.2

and we set

(2.16) M
γ

[∂�b
ϕA,∂x]

(−ρ + |�b|+ 1, s) := sup
m1+m2=ρ−|�b|−1

m1,m2≥0

M
γ

〈Dx〉m1 [∂�b
ϕA,∂x]〈Dx〉m2

(0, s).

We define for 0 ≤ b ≤ ρ− 2

(2.17)

M
γ
A(s, b) := max

0≤|�b|≤b

max
(
M

γ

∂�b
ϕA

(−ρ + |�b|, s),

M
γ

∂�b
ϕ[A,∂x]

(−ρ + |�b|+ 1, s)
)
.

Assume now that the set O and the operator A depend on i = i(ω), and are well
defined for ω ∈ O0 ⊆ Ωε for all i satisfying (1.24). We consider i1 = i1(ω),
i2 = i2(ω) and for ω ∈ O(i1) ∩ O(i2) we define

(2.18) Δ12A := A(i1)−A(i2).

We require the following:
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• The operators ∂
�b
ϕΔ12A, [∂

�b
ϕΔ12A, ∂x], for 0 ≤ |�b| ≤ ρ − 3, have the following

properties, for any s0 ≤ s ≤ S, with possibly S = +∞:

(iii) for any m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ− |�b| − 1 one has that

the operator 〈Dx〉m1∂�b
ϕΔ12A〈Dx〉m2 is bounded on Hp into itself. More

precisely there is a positive constant N∂�b
ϕΔ12A(−ρ + |�b| + 1, p) such that,

for any h ∈ Hp, we have

(2.19) sup
m1+m2=ρ−|�b|−1

m1,m2≥0

‖〈Dx〉m1∂
�b
ϕΔ12A〈Dx〉m2h‖p ≤ N∂�b

ϕΔ12A(−ρ+|�b|+1, p)‖h‖p;

(iv) for any m1, m2 ∈ R, m1, m2 ≥ 0 and m1+m2 = ρ−|�b|−2 one has that the

operator 〈Dx〉m1 [∂�b
ϕΔ12A, ∂x]〈Dx〉m2 is bounded on Hp into itself. More

precisely there is a positive constant N[∂�b
ϕΔ12A,∂x](−ρ+ |�b|+2, p) such that

for any h ∈ Hp one has

(2.20)

sup
m1+m2=ρ−|�b|−2

m1,m2≥0

‖〈Dx〉m1 [∂
�b
ϕΔ12A, ∂x]〈Dx〉m2h‖p ≤

N[∂�b
ϕΔ12A,∂x](−ρ + |�b|+ 2, p)‖h‖p.

We define for 0 ≤ b ≤ ρ− 3

(2.21)

MΔ12A(p, b) := max
0≤|�b|≤b

max
(
N∂�b

ϕΔ12A(−ρ + |�b|+ 1, p),

N∂�b
ϕ[Δ12A,∂x](−ρ + |�b|+ 2, p)

)
.

By construction one has that M
γ
A(s, b1) ≤ M

γ
A(s, b2) if b1 ≤ b2 ≤ ρ − 2 and

MΔ12A(p, b1) ≤ MΔ12A(p, b2) if b1 ≤ b2 ≤ ρ− 3.

For the properties of the classes of operators we introduced above, we refer to
Appendix B.1.

3. Regularization procedure

The aim of this section is to prove Theorem 1.8.

3.1. Flow of hyperbolic pseudo differential PDEs. First we analyze the
structure of the flow map that we use to conjugate the operator (1.25) to a diagonal
operator plus a smoothing term.

We study the flow Ψτ of the vector field generated by the Hamiltonian

(3.1) S(τ, ϕ, u) =
1

2

∫
b(τ, ϕ, x)u2dx b(τ, ϕ, x) :=

β(ϕ, x)

1 + τβx(ϕ, x)

and β is some smooth function. We first need to show that Ψτ is well defined as
map on Hs (see Proposition 3.1). Then we study the structure of ΨτLω(Ψτ )−1, see
Proposition 3.5.
The flow associated to the Hamiltonian (3.1) is given by

(3.2) ∂τΨτ (u) = (J ◦ b)Ψτ (u), Ψ0u = u,
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where b(τ, ϕ, x) is defined in (3.1) with β ∈ C∞(Tν+1) to be determined.
In the following proposition we prove that the flow of (3.2) Ψτ = Cτ ◦ Aτ , where
Aτ is the operator

(3.3)
Aτh(ϕ, x) := (1 + τβx(ϕ, x))h(ϕ, x + τβ(ϕ, x)), ϕ ∈ T

ν, x ∈ T,

(Aτ )−1h(ϕ, y) := (1 + β̃y(τ, ϕ, y))h(ϕ, y + β̃(τ, ϕ, y)), ϕ ∈ T
ν, y ∈ T,

where β̃(τ ; x, ξ) is such that

x 
→ y = x + τβ(ϕ, x) ⇔ y 
→ x = y + β̃(τ, ϕ, x), τ ∈ [0, 1],

and Cτ is the sum of a pseudo differential operator of order −1 with a smoothing
remainder belonging to the class Lρ,p for any ρ ∈ N, ρ ≥ 3, s0 ≤ p ≤ p0(ρ) provided
that β satisfies an appropriate ρ-smallness condition (see (3.6)).

First we define

(3.4) Λ := (1− ∂xx)−1, X := ∂x ◦ b b :=
β

1 + τβx
.

We remark that the torus diffeomorphism Aτ satisfies

(3.5) ∂τAτ = XAτ , A0 = I.

We refer to the Appendix B.2 for some properties of the operator Aτ in (3.3).

Proposition 3.1. Let O ⊆ Rν be a compact set. Fix ρ ≥ 3, S > s0 large
enough and consider a function β := β(ω, I(ω)) ∈ C∞(Tν+1), Lipschitz in ω ∈ O
and in the variable I. There exist σ1 = σ1(ρ) > 0, σ̃ = σ̃(ρ) > 0, σ1 ≥ σ̃ and
1 > δ = δ(ρ,S) > 0 such that if

(3.6) ‖β‖γ,O
s0+σ1

≤ δ,

then, for any ϕ ∈ Tν , the equation (3.2) has a unique solution Ψτ (ϕ)[u] in the space

C0([0, 1], Hs
x) ∩ C1([0, 1], Hs−1

x ), ∀s0 ≤ s ≤ S.

Moreover, for any s0 ≤ p ≤ s0 + σ1− σ̃, one has Ψτ = Aτ ◦ Cτ where Aτ is defined
in (3.3) and

(3.7) Cτ = Θτ + Rτ (ϕ), Θτ := Op(1 + ϑ(τ, ϕ, x, ξ))

with (recall (1.16)), for any s ≥ s0,

(3.8) |ϑ|γ,O
−1,s,α ≤s,α,ρ ‖β‖γ,O

s+σ1
, |Δ12ϑ|−1,p,α≤p,α,ρ ‖Δ12β‖p+σ1

and Rτ(ϕ) ∈ Lρ,p(O) (see Def. 2.8) with, for s0 ≤ s ≤ S,

(3.9)
M

γ
Rτ (s, b) ≤s,α,ρ ‖β‖γ,O

s+σ1
, 0 ≤ b ≤ ρ− 2,

MΔ12Rτ (p, b) ≤p,ρ ‖Δ12β‖p+σ1 , 0 ≤ b ≤ ρ− 3.

Proof. Let us reformulate the problem (3.2) as Ψτ = Aτ ◦ Cτ where Cτ :=
(Aτ )−1 ◦Ψτ satisfies the following system

(3.10) ∂τCτu = LτCτu, C0u = u,

where Lτ = Op(l(τ, ϕ, x, ξ)) is a pseudo differential operator of order −1 of the form

(3.11) Lτ := Aτ
(
3Λ∂x ◦ b(τ )

)
(Aτ )−1 = −

(
I−ΛR

)−1

◦Λ ◦ g(τ, ϕ, x) ◦ ∂x◦ β̃(ϕ, x)
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where (recall (3.4))

(3.12)

g(τ, ϕ, x) := 3(1 + β̃2
x(ϕ, x)), R := Op(f0(ϕ, x) + f1(ϕ)iξ),

f0(ϕ, x) := β̃2
x + 2β̃x −

(1 + β̃2
x)

2
∂xx

(
1

(1 + β̃x)2

)
,

f1(ϕ, x) := −3

2
(1 + β̃x)2 ∂x

(
1

(1 + β̃x)2

)
.

Analysis of Lτ . The following estimates hold

(3.13)

‖g‖γ,O
s ≤s (1 + ‖β‖γ,O

s+1‖β‖γ,O
s0+1),

‖f0‖γ,O
s + ‖f1‖γ,O

s + |f0 + f1 iξ|γ,O
1,s,α ≤s ‖β‖γ,O

s+3,

‖Δ12g‖p + ‖Δ12f0‖p + ‖Δ12f1‖p ≤p ‖Δ12β‖p+3 .

By the fact that Lτ in (3.11) is one smoothing in space, the problem (3.10) is locally
well-posed in Hs(Tx). By the composition Lemma B.4 we have that I − ΛR =
I− (Op(r) + R) with (see (3.13))

(3.14) |r|γ,O
−1,s,α ≤s,α,ρ ‖β‖γ,O

s+σ0
, M

γ
R(s, b) ≤s,ρ ‖β‖γ,O

s+σ0
, 0 ≤ b ≤ ρ− 2,

(3.15) |Δ12r|−1,p,α ≤p,α,ρ ‖β‖p+σ0 MΔ12R(p, b) ≤p,ρ ‖β‖p+σ0 , 0 ≤ b ≤ ρ− 3

for some σ0 > 0. By Lemma B.6, Lemma B.4 and (3.14) we have that (I−ΛR)−1 =

I + Op(r̃) + R̃, Λ ◦ g ◦ ∂x ◦ β̃ = Op(d) + Qρ with bounds on the symbols and the
tame constants similar to (3.14), (3.15) with possibly larger σ0. Then

Lτ =(I + Op(r̃) + R̃) ◦ (Op(d) + Qρ)
Lemma B.4

= Op(l) + Rρ

where

(3.16) |l|γ,O
−1,s,α ≤s,α,ρ ‖β‖γ,O

s+σ̃1
, |Δ12l|−1,p,α ≤p,ρ ‖Δ12β‖p+σ̃1 ,

(3.17)
M

γ
Rρ

(s, b) ≤s,ρ ‖β‖γ,O
s+σ̃1

, 0 ≤ b ≤ ρ− 2,

MΔ12Rρ(p, b) ≤p,ρ ‖Δ12β‖p+σ̃1 , 0 ≤ b ≤ ρ− 3,

for some constant σ̃1 = σ̃1(ρ). Note that in principle we get a slightly different
constant in each inequality, we are just taking the biggest of them for simplicity.

Approximate solution of (3.10). Now we look for an approximate solution
Θτ = Op(1 + ϑ(τ, ϕ, x, ξ)) for the system (3.10). In order to do that we look for a

symbol ϑ =
∑ρ−1

k=1 ϑ−k(τ, ϕ, x, ξ) such that

∂τϑ = l + l#ϑ + S−ρ, ϑ(0, ϕ, x, ξ) = 0.

We solve it recursively as follows:

(3.18)

{
∂τϑ−1 = l,

ϑ−1(0, ϕ, x, ξ) = 0,

{
∂τϑ−k = r−k, 1 < k ≤ ρ− 1

ϑ−k(0, ϕ, x, ξ) = 0,

where

(3.19) r−k :=

k−1∑
j=1

l#k−1−jϑ−j ∈ S−k.
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Hence we have

(3.20) ϑ−1(τ ) =

∫ τ

0

l(s) ds, ϑ−k(τ ) =

∫ τ

0

r−k(s) ds.

By recursion we have that

(3.21) |ϑ−k|γ,O
−k,s,α ≤s,α,k ‖β‖γ,O

s+k+σ̃1
(‖β‖γ,O

s0+k+σ̃1
)k−1, 1 ≤ k ≤ ρ− 1,

(3.22) |Δ12ϑ−k|−k,p,α ≤p,α,k ‖β‖k−1
p+k+σ̃1

‖Δ12β‖p+k+σ̃1 ,

and so we get (3.8). We write Cτ = Θτ + Rτ , where Rτ is an operator which
satisfies the equation

(3.23) ∂τRτ = LτRτ + Qτ , with R0 = 0,

where

(3.24) Qτ := Op(q(τ )) + RρΘ
τ , q(τ ) :=

ρ−1∑
k=1

l#≥ρ−1−kθ−k ∈ S−ρ

and by Lemma B.2

(3.25) M
γ
Op(q)(s, b) ≤s,ρ ‖β‖γ,O

s+σ̃2
‖β‖γ,O

s0+σ̃2

with σ̃2 := σ̃2(ρ) > σ̃1. By Lemma B.3, the operator Qτ belongs to Lρ,p(O) and we
have the following bounds

(3.26) M
γ
Qτ (s, b) ≤ ‖β‖γ,O

s+σ̃2
, MΔ12Qτ (p, b) ≤ ‖Δ12β‖p+σ̃2 .

Note that these bounds hold uniformly for τ ∈ [0, 1]. Now we have to prove that
Rτ is belongs to the class Lρ,p (see Def. 2.8). By this fact we will deduce that Cτ

and its derivatives are tame on Hs(Tν+1).

Estimates for the remainder Rτ . We prove the bounds (3.9), i.e. we show that
Rτ belongs to Lρ,p(O) in Def. 2.8 for τ ∈ [0, 1]. We use the integral formulation for
the problem (3.23), namely

(3.27) Rτ =

∫ τ

0

(LtRt + Qt) dt.

We start by showing that Rτ satisfies item (i) of Definition 2.8 with �b = 0.
Let m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ. We check that the operator
〈Dx〉m1Rτ 〈Dx〉m2 is Lip-0-tame according to Definition 2.2. We have

(3.28)

〈Dx〉m1Rτ〈Dx〉m2 =

∫ τ

0

〈Dx〉m1Lt〈Dx〉−m1 〈Dx〉m1Rt〈Dx〉m2dt

+

∫ τ

0

〈Dx〉m1Qt〈Dx〉m2dt.

By (3.26) we have, for s0 ≤ s ≤ S, that

(3.29) ‖
∫ τ

0

〈Dx〉m1Qt〈Dx〉m2u dt‖γ,O
s ≤s ‖β‖γ,O

s+σ̃2
‖u‖s0 + ‖β‖γ,O

s0+σ̃2
‖u‖s,

for τ ∈ [0, 1], u ∈ Hs. Moreover, by recalling the definition of Lt in (3.16), by using
the fact that Rρ in (3.17) is in the class Lρ,p and using the estimates (3.16) on the
symbol l we claim that

(3.30) ‖
∫ τ

0

〈Dx〉m1Lt〈Dx〉−m1 u dt‖γ,O
s ≤s,ρ ‖β‖γ,O

s+σ̃1
‖u‖s0 + ‖β‖γ,O

s0+σ̃1
‖u‖s.
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Indeed the bound for Op(l) are trivial. In order to treat the remainder Rρ we note
that

〈Dx〉m1Rρ〈Dx〉−m1 = 〈Dx〉m1Rρ〈Dx〉ρ−m1 〈Dx〉−ρ

and 〈Dx〉m1Rρ〈Dx〉ρ−m1 is Lip-0-tame, since Rρ ∈ Lρ,p, moreover 〈Dx〉−ρ ∈ Lρ,p.
Then by Lemma A.1 our claim follows. By using bounds (3.29) and (3.30) with
s = s0 one obtains

(3.31)

sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,O
s0

≤ρ ‖β‖γ,O
s0+σ̃1

sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,O
s0

+ ‖β‖s0+σ̃2‖u‖s0,

hence, by (3.26) and for δ in (3.6) small enough, one gets

(3.32) sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,O
s0

≤s,ρ ‖β‖γ,O
s0+σ̃2

‖u‖s0 ,

for any u ∈ Hs. Now for any s0 ≤ s ≤ S, by (3.29), (3.30), the smallness of β in
(3.6) and estimate (3.32), we have

sup
τ∈[0,1]

‖〈Dx〉m1Rτ 〈Dx〉m2u‖γ,O
s ≤s,ρ ‖β‖γ,O

s0+σ̃2
‖u‖s + ‖β‖γ,O

s+σ̃2
‖u‖s0.

This means that

(3.33) sup
τ∈[0,1]

M
γ
Rτ (−ρ, s) ≤s,ρ ‖β‖γ,O

s+σ̃2
.

For �b ∈ Nν with |�b| = b ≤ ρ− 2, we consider ∂�b
ϕRτ and we show that the operator

〈Dx〉m1∂b
ϕm

Rτ〈Dx〉m2 is Lip-0-tame for any m1, m2 ∈ R, m1, m2 ≥ 0 and m1+m2 =
ρ− b. We prove that

(3.34) M
γ

〈Dx〉m1 ∂�b
ϕRτ 〈Dx〉m2

(0, s) ≤s,ρ ‖β‖γ,O
s+σ̃3

, m1 + m2 = ρ− b,

for some σ̃3 := σ̃3(ρ) ≥ σ̃2 > 0, by induction on 0 ≤ b ≤ ρ − 1. For b = 0
the bound follows by (3.33). Assume now that (3.34) holds for any b̃ such that
0 ≤ b̃ < b ≤ ρ− 2. We show (3.34) for b = b̃ + 1. By (3.27) we have

〈Dx〉m1∂
�b
ϕRτ 〈Dx〉m2 =

∑
�b1+�b2=�b

C(| �b1|, | �b2|)
∫ τ

0

〈Dx〉m1 (∂
�b1
ϕ Lt)∂

�b2
ϕ (Rt)〈Dx〉m2dt

+

∫ τ

0

〈Dx〉m1 (∂
�b
ϕQt)〈Dx〉m2dt.

By (3.26) we know that, for any t ∈ [0, 1], the operator 〈Dx〉m1 (∂�b
ϕQt)〈Dx〉m2 is

Lip-0-tame. We write

(3.35)
〈Dx〉m1 (∂

�b1
ϕ Lt)∂

�b2
ϕ (Rt)〈Dx〉m2 =

= 〈Dx〉m1 (∂
�b1
ϕ Lt)〈Dx〉−m1−| �b1|〈Dx〉m1+| �b1|∂

�b2
ϕ (Rt)〈Dx〉m2 .

We study the case | �b2| ≤ b − 1. By the inductive hypothesis we have that the

operator 〈Dx〉m1+| �b1|∂
�b2
ϕ (Rt)〈Dx〉m2 is Lip-0-tame since m1 + | �b1|+ m2 = ρ− | �b2|,

hence the bound (3.34) holds for b = | �b2|. By reasoning as for the proof of the
bound (3.30) we have

(3.36) ‖〈Dx〉m1(∂
�b1
ϕ Lt)〈Dx〉−m1−| �b1|u‖γ,O

s ≤s,ρ ‖β‖γ,O
s+σ̃3

‖u‖s0 + ‖β‖γ,O
s0+σ̃3

‖u‖s,
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for u ∈ Hs, s0 ≤ s ≤ S. By (3.36), the inductive hypothesis on ∂
�b2
ϕ Rτ and (3.26)

we get

(3.37) M
γ

〈Dx〉m1 (∂
�b1
ϕ Lt)∂

�b2
ϕ (Rt)〈Dx〉m2

(0, s) ≤s,ρ ‖β‖γ,O
s+σ̃3

.

Note also that By Lemma A.6, bounds (3.17) and (3.16) we have that (3.36) holds
for b1 = 0. Hence

sup
τ∈[0,1]

‖〈Dx〉m1∂
�b
ϕRτ〈Dx〉m2u‖γ,O

s

(3.36)

≤s,ρ ‖β‖γ,O
s+σ̃3

sup
τ∈[0,1]

‖〈Dx〉m1∂
�b
ϕRτ 〈Dx〉m2u‖γ,O

s0

+ ‖β‖γ,O
s0+σ̃3

sup
τ∈[0,1]

‖〈Dx〉m1∂
�b
ϕRτ〈Dx〉m2u‖γ,O

s(3.38)

+ ‖β‖γ,O
s+σ̃3

‖u‖s0 + ‖β‖γ,O
s0+σ̃3

‖u‖s.

Hence using (3.38) for s = s0 and the smallness of β in (3.6) we get

(3.39) sup
τ∈[0,1]

‖〈Dx〉m1∂
�b
ϕRτ 〈Dx〉m2u‖γ,O

s0
≤s,ρ ‖β‖γ,O

s0+σ̃3
‖u‖s0 .

Then using again (3.39) one obtains the bound for any s0 ≤ s ≤ S

(3.40)

sup
τ∈[0,1]

M
γ
Rτ (−ρ + b, s) :=

:= sup
τ∈[0,1]

sup
m1+m2=ρ−b

m1,m2≥0
|�b|≤b

M
γ

〈Dx〉m1 ∂�b
ϕRτ 〈Dx〉m2

(0, s) ≤s,ρ ‖β‖γ,O
s+σ̃3

.

The estimates for M[Rτ ,∂x](s) and M[∂�b
ϕRτ ,∂x](s) follow by the same arguments. We

have obtained the estimate for M
γ
Rτ (s, b) in (3.9). The estimate on the Lipschitz

variation with respect to the variable i (3.9) follows by by Leibnitz rule and by (3.9)
for Rτ , (3.16), (3.26) as in the previous cases. We proved (3.9) with σ1 = σ̃3. �

Corollary 3.2. Fix n ∈ N. There exists σ = σ(ρ) such that, if ‖β‖γ,O
s0+σ ≤ 1,

then the flow Ψτ (ϕ) of (3.2) satisfies for s ∈ [s0,S],

(3.41) sup
τ∈[0,1]

‖Ψτu‖γ,O
s + sup

τ∈[0,1]

‖(Ψτ )∗u‖γ,O
s ≤s

(
‖u‖s + ‖b‖γ,O

s+σ‖u‖s0

)
,

sup
τ∈[0,1]

‖(Ψτ − I)u‖γ,O
s + sup

τ∈[0,1]

‖((Ψτ )∗ − I)u‖γ,O
s ≤s

≤s ‖β‖γ,O
s0+σ‖u‖s+1 + ‖β‖γ,O

s+σ‖u‖s0+1.

For any |α| ≤ n, m1 , m2 ∈ R such that m1 + m2 = |α|, for any s ≥ s0 there
exist μ∗ = μ∗(|α|, m1, m2), σ∗ = σ∗(|α|, m1, m2) and δ = δ(m1, s) such that if

‖β‖γ,O
s0+μ∗

≤ δ, and ‖β‖γ,O
p+σ∗

≤ 1 for p + σ∗ ≤ s0 + μ∗, then one has

sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕΨτ (ϕ)〈Dx〉−m2u‖γ,O

s ≤s,b,m1,m2 ‖u‖γ,O
s + ‖β‖γ,O

s+μ∗
‖u‖γ,O

s0

sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕΔ12Ψ

τ (ϕ)〈Dx〉−m2u‖p ≤p,b,m1,m2 ‖u‖p‖Δ12β‖p+μ∗
,

for m1 + m2 = |α|+ 1.

Proof. The estimates on Ψτ follow by using Lemmata B.7, B.8 and the result
of Proposition 3.1. In order to prove the bounds (3.41) for the adjoint (Ψτ )∗ it is
sufficient to reformulate Proposition 3.1 in terms of (Ψτ )∗. �
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3.2. Quantitative Egorov analysis. The system (3.2) is an hyperbolic PDE,
thus we shall use a version of Egorov Theorem to study how pseudo differential
operators change under the flow Ψτ . This is the content of Theorem 3.4 which
provides precise estimates for the transformed operators.

Notation. Consider an integer n ∈ N. To simplify the notation for now on we shall
write, Σ∗n the sum over indexes k1, k2, k3 ∈ N such that k1 < n, k1 + k2 + k3 = n
and k1 + k2 ≥ 1.

We need the following lemma.

Lemma 3.3. Let O be a compact subset of Rν. Let A be the operator defined
for w ∈ Sm as

(3.42) Aw = w(f(x), g(x)ξ), f(x) := x + β(x), g(x) := (1 + βx(x))−1

for some smooth function β such that ‖β‖γ,O
2s0+2 < 1. Then A is bounded, namely

Aw ∈ Sm and

(3.43) |Aw|γ,O
m,s,α ≤ |w|γ,O

m,s,α +
∗∑
s

|w|γ,O
m,k1,α+k2

‖β‖γ,O
k3+s0+2.

for s ≥ 0. For s = s0 it is convenient to consider the rougher estimate |Aw|γ,O
m,s0,α ≤

|w|γ,O
m,s0,α+s0

.

Proof. It follows directly by Lemma A.7 in Appendix A. �

Theorem 3.4 (Egorov). Fix ρ ≥ 3, p ≥ s0, m ∈ R with ρ + m > 0. Let
w(x, ξ) ∈ Sm with w = w(ω, I(ω)), Lipschitz in ω ∈ O ⊆ Rν , O compact, and in
the variable I. Let Aτ be the flow of the system (3.5). There exist σ1 := σ1(m, ρ)
and δ := δ(m, ρ) such that, if

(3.44) ‖β‖γ,O
s0+σ1

< δ,

then AτOp(w)(Aτ )−1 = Op(q(x, ξ))+R where q ∈ Sm and R ∈ Lρ,p(O). Moreover,
one has that the following estimates hold:

|q|γ,O
m,s,α ≤m,s,α,ρ |w|γ,O

m,s,α+σ1
+

∗∑
s

|w|γ,O
m,k1,α+k2+σ1

‖β‖γ,O
k3+σ1

,(3.45)

|Δ12q|m,p,α ≤m,p,α,ρ |w|m,p+1,α+σ1‖Δ12β‖p+1 + |Δ12w|m,p,α+σ1(3.46)

+

∗∑
p+1

|w|m,k1,α+k2+σ1‖β‖k3+σ1‖Δ12β‖s0+1

+

∗∑
p

|Δ12w|m,k1,k2+α+σ1‖β‖k3+σ1 .

Furthermore for any 0 ≤ b ≤ ρ− 2 and s0 ≤ s ≤ S

(3.47) M
γ
R(s, b) ≤s,m,ρ |w|γ,O

m,s+ρ,σ1
+

∗∑
s+ρ

|w|γ,O
m,k1,k2+σ1

‖β‖γ,O
k3+σ1

,
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and for any 0 ≤ b ≤ ρ− 3,

(3.48)

MΔ12R(p, b) ≤m,p,ρ |w|m,p+ρ,σ1‖Δ12β‖p+σ1 + |Δ12w|m,s+ρ,σ1

+

∗∑
p+ρ

|w|m,k1,k2+σ1‖β‖k3+σ1‖Δ12β‖s0+σ1

+

∗∑
p+ρ

|Δ12w|m,k1,k2+σ1‖β‖k3+σ1 .

Proof. The operator P (τ ) := AτOp(w)(Aτ )−1 satisfies the Heisenberg equa-
tion

(3.49)

{
∂τP (τ ) = [X, P (τ )], X = ∂x ◦ b =: Op(χ),

P (0) = Op(w).

We construct an approximate solution of (3.49) by considering a pseudo differential
operator Op(q) with

(3.50) q =

m+ρ−1∑
k=0

qm−k(x, ξ)

such that (see (3.49) and note that χ := b iξ + bx)

(3.51)

{
∂τ qm = {bξ, qm},
qm(0) = w

{
∂τ qm−k = {bξ, qm−k}+ rm−k

qm−k(0) = 0
k ≥ 1

where for k ≥ 1 (recall (A.27)), denoting by w = w(h, k) := k − h + 1,

rm−k : =
1

i
{bx, qm−k+1} −

k−1∑
h=0

qm−h#wχ

= −1

i
∂ξqm−k+1 bxx −

k−1∑
h=0

1

iw(w)!
(∂w

ξqm−h)(∂w
xχ) ∈ Sm−k .

By Lemma B.4, or directly by interpolation, one has

(3.52) |rm−k|γ,O
m−k,s,α ≤

k−1∑
h=0

|qm−h|γ,O
m−h,s,α+w +

k−1∑
h=0

|qm−h|γ,O
m−h,s0,α+w‖β‖

γ,O
s+w+2 ,

|Δ12rm−k|m−k,p,α ≤
k−1∑
h=0

|Δ12qm−h|m−h,p,α+w +

k−1∑
h=0

|Δ12qm−h|m−h,s0,α+w‖β‖p+w+2

+
k−1∑
h=0

|qm−h|m−h,p,α+w‖Δ12β‖p+w+2 .(3.53)

Hence we can solve (3.51) iteratively. Let us denote by γτ0 ,τ(x, ξ) the solution of
the characteristic system

(3.54)

⎧⎪⎨⎪⎩
d

ds
x(s) = −b(s, x(s))

d

ds
ξ(s) = bx(s, x(s))ξ(s)
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with initial condition γτ0,τ0 = (x, ξ). Then the first equation in (3.51) has the
solution

(3.55) qm(τ, x, ξ) = w(γτ,0(x, ξ))

where

γτ,0(x, ξ) =
(
f(τ, x), ξg(τ, x)

)
, f(τ, x) := x + τβ(x), g(τ, x) :=

1

1 + τβx(x)
.

Hence by Lemma 3.3 we have

(3.56) |qm|γ,O
m,s,α ≤s,α |w|γ,O

m,s,α +

∗∑
s

|w|γ,O
m,k1,α+k2

‖β‖γ,O
k3+s0+2.

For any k ≥ 1, the solution of (3.51) is

(3.57) qm−k(τ, x, ξ) =

∫ τ

0

rm−k(γ0,tγτ,0(x, ξ)) dt.

We observe that

(3.58) γ0,tγτ,0(x, ξ) = (f̃ , g̃ ξ)

with

(3.59) f̃(t, τ, x) := x + τβ(x) + β̃(t, x + τβ(x)), g̃(t, τ, x) :=
1 + tβx(f̃(t, τ, x))

1 + τβx(x)
.

Thus if Ãr := r(f̃ , g̃ ξ) we have (recall that τ ∈ [0, 1])

|qm−k|γ,O
m−k,s,α ≤s,α |Ãrm−k|γ,O

m−k,s,α,

|qm−k|γ,O
m−k,s0,α ≤α |Ãrm−k|γ,O

m−k,s0,α ≤ |rm−k|γ,O
m−k,s0,α+s0

and by Lemma 3.3 with A � Ã

(3.60) |qm−k|γ,O
m−k,s,α ≤s,α |rm−k|γ,O

m−k,s,α +

∗∑
s

|rm−k|γ,O
m−k,k1,α+k2

‖β‖γ,O
k3+s0+2.

We want to prove inductively, for k = 0, . . . , m + ρ,

(3.61)
|qm−k|γ,O

m−k,s,α ≤s,α,ρ|w|γ,O
m,s,α+2k +

∗∑
s

|w|γ,O
m,k1,α+k2+k(s0+2)‖β‖

γ,O
k3+s0+2+k,

|qm−k|γ,O
m−k,s0,α ≤α,ρ|w|γ,O

m,s0,α+s0+k(s0+2).

For k = 0 this is proved in (3.56). Now assume that (3.61) holds, up to some
k − 1 ≥ 0. We use (3.52) to bound qm−k. First we give a bound for rm−k in terms
of the norm of the symbol w. To shorten the formulas let us denote t := s0 + 2.
By (3.52) and the inductive hypothesis (3.61) we get

(3.62) |rm−k|γ,O
m−k,s,α ≤s,α,ρ |w|γ,O

m,s,α+2k +
∗∑
s

|w|γ,O
m,k1,α+k2+kt‖β‖

γ,O
k3+t+k .
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Then by (3.60) and (3.62)

|qm−k|γ,O
m−k,s,α ≤s,α,k

∗∑
s

( ∑
n1+n2+n3=k1+k

|w|γ,O
m,n1,α+n2+kt+k2

‖β‖γ,O
n3+t+k

)
‖β‖γ,O

k3+t

+ |w|γ,O
m,s,α+2k +

∗∑
s

|w|γ,O
m,k1,α+k2+kt‖β‖

γ,O
k3+t+k

+

∗∑
s

|w|γ,O
m,k1,α+k2+2k‖β‖

γ,O
k3+t

≤s,α,k |w|γ,O
m,s,α+2k +

∗∑
s

|w|γ,O
m,k1,α+k2+kt‖β‖

γ,O
k3+t+k ,

that is the estimate (3.61). By (3.57) we have

(3.63) Δ12qm−k(τ, x, ξ) =

∫ τ

0

Δ12

(
rm−k(γ0,sγτ,0(x, ξ))

)
ds

and recalling (3.59)

(3.64)

|Δ12qm−k|m−k,s,α ≤s,α|Ã(∂xrm−k) (Δ12f̃)|m−k,s,α

+ |Ã(∂ξrm−k) (Δ12g̃ ξ)|m−k,s,α

+ |Ã(Δ12rm−k)|m−k,s,α.

The first two terms of the right hand side in (3.64) are bounded by (3.62) and
Lemma A.1 in Appendix A of [25]. For the last summand we proceed by induction
as above using (3.53). We obtain

(3.65)

|Δ12qm−k|m−k,p,α ≤ |w|m,p+1,α+2k+1‖Δ12β‖p+1

+

∗∑
p+1

|w|m,k1,α+k2+s0+1+kt‖β‖k3+s0+t+k‖Δ12β‖s0+1

+ |w|m,s0+1,α+s0+1+kt‖Δ12β‖s0+1 + |Δ12w|m,p,α+2k

+

∗∑
p

|Δ12w|m,k1,k2+α+kt‖β‖k3+s0+t+k .

Then we have (3.45) and (3.46). Now we have (recall (3.50))

(3.66) P (τ ) = Q + R, Q = Op(q) ∈ OPSm

and by the construction of Q we get that

(3.67)

{
∂τR(τ ) = [X, R] +M,

R(0) = 0

where

(3.68) M = −Op
(
i{bx, q−ρ+1}+

m+ρ−1∑
k=0

qm−k#≥m−k+1+ρχ
)
∈ OPS−ρ.
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By Lemma B.2 we deduce thatM ∈ Lρ,p and using (A.21) (recall also the Definition
(2.7)) we have for all s0 ≤ s ≤ S

(3.69) M
γ
M(s, b) ≤s,ρ,m |w|γ,O

m,s+ρ,σ1
+

∗∑
s+ρ

|w|γ,O
m,k1,k2+σ1

‖β‖γ,O
k3+σ1

,

for b ≤ ρ− 2, and

(3.70)

MΔ12M(p, b) ≤p |w|m,p+σ1,σ1‖Δ12β‖p+σ1

+ ‖Δ12β‖s0+σ1

∗∑
p+ρ

|w|m,k1,k2+σ1‖β‖k3+σ1

+ |Δ12w|m,p+σ1,σ1 +

∗∑
p+ρ

|Δ12w|m,k1,k2+σ1‖β‖p+σ1 ,

for b ≤ ρ−3 and some σ1 > 0. If V (τ ) := R(τ )Aτ then it solves ∂τV = XV +MAτ

and so

(3.71) V τ =

∫ τ

0

Aτ (As)−1MAs ds ⇒ R(τ ) =

∫ τ

0

Aτ (As)−1MAs(Aτ )−1 ds.

By Lemma B.10 Rτ ∈ Lρ,p for any τ ∈ [0, 1]. By (B.42) we have that, for any
τ ∈ [0, 1], taking σ1 possibly larger than before in order to fit the assumptions of
Lemma B.10,

(3.72) M
γ
Rτ (s, b) ≤s M

γ
M(s) + ‖β‖γ,O

s+σ1
M

γ
M(s0).

Then by Leibniz rule and Lemma B.9 we have by (3.70)

MΔ12R(s, b) ≤s M
γ
M(p, b)‖Δ12β‖p + M

γ
M(p, b)‖Δ12β‖p‖β‖p+σ1

+ MΔ12M(p, b) + MΔ12M(p, b)‖β‖p+σ1 .

We obtain (3.47) and (3.48) by using respectively (3.69) and (3.70). �

3.3. Conjugation of a class of first order operators. In this Section we
prove an important abstract conjugation Lemma which is needed to prove Theorem
1.8. We shall also recall a Moser-like theorem for first order linear operators (see
Proposition 3.6) which has been proved in [25].

A conjugation Lemma for a class of pseudo differential operators.
The following proposition describes the structure of an operator like Lω conjugated
by the flow of a system like (3.2).

Proposition 3.5 (Conjugation). Let O be a compact subset of Rν. Fix ρ ≥ 3,
α ∈ N, p ≥ s0 and consider a linear operator

(3.73) L := ω · ∂ϕ − J ◦ (m + a(ϕ, x)) +Q
where m = m(ω) is a real constant, a = a(ω, I(ω)) ∈ C∞(Tν+1) is real valued,
both are Lipschitz in ω ∈ O and a is Lipschitz in the variable I. Moreover Q =

Op(q(ϕ, x, ξ)) + Q̂ with Q̂ ∈ Lρ,p(O) and q = q(ω, I(ω)) ∈ S−1 satisfying

(3.74) |q|γ,O
−1,s,α ≤s,α k1 + k2‖p‖γ,O

s+σ2
,

(3.75) |Δ12q|−1,p,α ≤p,α k3 ‖Δ12p‖p+σ2(1 + ‖p‖p+σ2).

Here k1, k2, k3, σ2 > 0 are constants depending on q and p = p(ω, I(ω))∈C∞(Tν+1),
is Lipschitz in ω and in the variable I .
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There are σ3 = σ3(ρ) ≥ σ̃2 = σ̃2(ρ) > 0 and δ∗ := δ∗(ρ) ∈ (0, 1) such that, if

(3.76) ‖β‖γ,O
s0+σ3

+ ‖a‖γ,O
s0+σ3

+ k2‖p‖γ,O
s0+σ3

+ k1 + M
γ
bQ(s0 , b) ≤ δ∗ ,

the following holds for p ≤ s0 + σ3 − σ̃2. Consider Ψ := Ψ1 the flow at time one of
the system (3.2), where b is defined in (3.4). Then we have

(3.77) L+ := ΨLΨ−1 = ω · ∂ϕ − J ◦ (m + a+(ϕ, x)) +Q+

(3.78)
m + a+(ϕ, x) := −(ω · ∂ϕβ̃)(ϕ, x + β(ϕ, x))

+ (m + a(ϕ, x + β(ϕ, x)))(1 + β̃x(ϕ, x + β(ϕ, x)))

with β̃ the function such that x+ β̃(ϕ, x) is the inverse of the diffeomorphism of the

torus x 
→ x + β(ϕ, x). The operator Q+ := Op(q+(ϕ, x, ξ)) + Q̂+, with

(3.79)

|q+|γ,O
−1,s,α ≤s,α,ρ k1 + k2‖p‖γ,O

s+σ3
+ ‖β‖γ,O

s+σ3
+ ‖a‖γ,O

s+σ3
,

|Δ12q+|−1,p,α ≤p,α,ρ k3(‖Δ12p‖p+σ3 + ‖Δ12p‖p+σ3‖p‖p+σ3)

+ ‖Δ12β‖p+σ3 + ‖Δ12a‖p+σ3

and Q̂+ ∈ Lρ,p(O) with, for s0 ≤ s ≤ S,

(3.80)
M

γ
bQ+

(s, b) ≤s,ρ M
γ
bQ(s, b) + ‖β‖γ,O

s+σ3

+ k1 + k2‖p‖γ,O
s+σ3

+ ‖a‖γ,O
s+σ3

, 0 ≤ b ≤ ρ− 2,

(3.81)
MΔ12

bQ+
(p, b) ≤p,ρMΔ12

bQ(p, b) + k3‖Δ12p‖p+σ3 (1 + ‖p‖p+σ3 )

+ ‖Δ12β‖p+σ3 + ‖Δ12a‖p+σ3 0 ≤ b ≤ ρ− 3.

Proof. Let Ψτ be the flow in (3.2). We can write Ψτ := Aτ ◦(Θτ +Rτ ), where
Aτ is defined in (3.3), and Θτ , Rτ given by Prop. 3.1 in (3.7). We define the map

W τ := Aτ ◦Θτ . We claim that setting R̂τ = (Θτ )−1Rτ we have

Sτ := W τL0(W τ )−1 −ΨτL0(Ψτ )−1

= AτΘτ [L0, R̂τ ](I + R̂τ )−1(Θτ )−1(Aτ )−1 ∈ Lρ,p ,

and supτ∈[0,1] M
γ
Sτ (s, b), supτ∈[0,1] MΔ12Sτ (s, b) satisfy bounds (3.80) and (3.81).

We first study the conjugation of L0 by W τ . In order to prove our claim we just

have to note that R̂τ ∈ Lρ+1,p by Lemma B.3, moreover, by formula (B.11) ,

[ω ·∂ϕ, R̂τ ] = ω ·∂ϕR̂τ and [∂x, R̂τ ] ∈ Lρ,p. This means that [L0, R̂τ ] ∈ Lρ,p, so that
our claim follows by Lemmata B.1, B.3, B.6 and B.10 .

Conjugation by Θτ . By Lemma B.6 we have (Θτ )−1 := I−Op(ϑ̃) + Rρ, with

|ϑ̃|γ,O
−1,s,α ≤s,α,ρ ‖β‖γ,O

s+d0
, M

γ
Rρ

(s, b) ≤s,ρ ‖β‖γ,O
s+d0

, 0 ≤ b ≤ ρ− 2,

|Δ12ϑ̃|−1,p,α ≤p,α ‖Δ12β‖p+d0 , MΔ12Rρ (p, b) ≤p,ρ ‖Δ12β‖p+d0 0 ≤ b ≤ ρ− 3,

for s0 ≤ s ≤ S and for some d0 = d0(ρ). Throughout the proof we shall denote by
di an increasing sequence of constants, depending on ρ, which keeps track of the
loss of derivatives in our procedure. Moreover we shall omit writing the constraints
s0 ≤ s ≤ S, 0 ≤ b ≤ ρ − 2, 0 ≤ b ≤ ρ − 3 when we write the bounds for the
operators belonging to Lρ,p. We wish to compute

ΘτB(Θτ )−1 = B + [Op(ϑ), B]Op(1− ϑ̃) + [Op(ϑ), B]Rρ
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for B = ω · ∂ϕ, J ◦ (m + a), Op(q), Q̂.
Let us start by studying the commutator [Op(ϑ), B], our purpose is to write it as a
pseudo differential term plus a remainder in Lρ,p. We have (recalling the Definition
2.7 and formula (A.29))

[Op(ϑ), ω · ∂ϕ] = −Op(ω · ∂ϕϑ)(3.82)

[Op(ϑ), J ◦ (m + a)] = Op
(
ϑ �<ρ+1 (ω(ξ)#<ρ+1(m + a))

)
(3.83)

+ Op
(
ϑ �≥ρ+1 (ω(ξ)#(m + a))

+ ϑ �<ρ+1 (ω(ξ)#≥ρ+1(m + a))
)

[Op(ϑ), Op(q)] = Op
(
ϑ �<ρ−1 q

)
+ Op

(
ϑ �≥ρ−1 q)

)
.(3.84)

Here ω(ξ) is the symbol of the Fourier multiplier J = ∂x + 3Λ∂x , i.e. ω(ξ) :=

iξ + 3 iξ
1+ξ2 . One can directly verify that all the symbols above are in S−1, indeed

the commutator of two pseudo differential operators has as order the sum of the

orders minus one. By Lemma B.3 we verify that [Op(ϑ), Q̂], [Op(ϑ), B]Rρ ∈ Lρ,p for
all choices of B. By Lemma B.2 and (2.11) we have that the second summands in
(3.83) and (3.84) belong to Lρ,p. We have proved that

[Op(ϑ), B] = Op(rB) + RB , rB ∈ S−1 , RB ∈ Lρ,p .

Using (3.8), (3.74) and (3.76), we have by (B.12)

(3.85) |rB|γ,O
−1,s,α ≤s,α,ρ ‖β‖γ,O

s+d1
+ ‖β‖γ,O

s0+d1
(k1 + k2‖p‖γ,O

s+d1
+ ‖a‖γ,O

s+d1
).

Similarly, by (B.13) we have

(3.86) M
γ
RB

(s, b) ≤s,ρ ‖β‖γ,O
s+d1

+ ‖β‖γ,O
s0+d1

(k1 + k2‖p‖γ,O
s+d1

+ ‖a‖γ,O
s+d1

+ M
γ
bQ(s, b)).

Analogously by (B.14) and (B.15) we have

|Δ12rB|−1,p,α ≤p,α,ρ ‖β‖p+d1 (k3(‖Δ12p‖p+d1 + ‖Δ12p‖s0+d1‖p‖p+d1 )

+ ‖Δ12β‖p+d1 + ‖Δ12a‖p+d1 .

Similarly, by (B.13) we have

(3.87)

MΔ12RB(p, b) ≤p,ρ ‖Δ12β‖p+d1

+ ‖β‖p+d1 (k3(‖Δ12p‖p+d1 + ‖Δ12p‖p+d1‖p‖p+d1 )

+ ‖Δ12a‖p+d1 + MΔ12
bQ(p, b)).

By Lemmata B.4, B.3 and B.1 we have that

[Op(ϑ), B]Op(1− θ̃) = Op(r̃B) + R̃B , r̃B ∈ S−1 , R̃B ∈ Lρ,p ,

and r̃B, R̃B satisfy bounds like (3.85)-(3.87), with possibly a larger d1. Analogously,
by Lemmata B.3 and B.1, we have that [Op(θ), B]Rρ ∈ Lρ,p satisfies estimates like
(3.86), (3.87). We conclude that

ΘτL0(Θτ )−1 = L0 + Op(r0) +R0

where r0 ∈ S−1, R0 ∈ Lρ,p and satisfy the bounds (3.85)-(3.87) with possibly larger
d1.

Conjugation by Aτ . We proved that

(3.88) W τL0(W τ )−1 = AτL0(Aτ )−1 +AτOp(r0)(Aτ )−1 +AτR0(Aτ )−1.
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By an explicit computation one has that

AτDω(Aτ )−1 = Dω + J ◦ (TτβDωβ̃) + Op(r1) +R1

where r1 ∈ S−1 , R1 ∈ Lρ,p are defined by

r1 := −3(iξ/(1 + ξ2))#<ρ−1Tτβ(Dωβ̃),

R1 := −3Op((iξ/(1 + ξ2))#≥ρ−1Tτβ(Dωβ̃)),

and, by (B.12),(B.14), (B.13), (B.15), satisfy the following bounds

|r1|γ,O
−1,s,α + M

γ
R1

(s, b) ≤s,α,ρ ‖β‖γ,O
s+d2

,

|Δ12r1|−1,p,α + MΔ12R1(p, b) ≤p,α,ρ ‖Δ12β‖p+d2 .

Moreover

(3.89) Aτ (J ◦ (m + a))(Aτ )−1 = J ◦ Tτβ

(
(1 + β̃x)(m + a)

)
+ R

(2)

where

(3.90)

R
(2) :=

(
(1− ΛR)−1 − 1

)
◦ Λ ◦ g ◦ ∂x ◦ Tτβ

(
(1 + β̃x)(m + a)

)
+
(
(1− ΛR)−1 − 1

)
◦ Λ ◦ (g − 3) ◦ ∂x ◦ Tτβ

(
(1 + β̃x)(m + a)

)
+
(
(1− ΛR)−1

)
◦ Λ ◦ (g − 3) ◦ ∂x ◦ Tτβ

(
(1 + β̃x)(m + a)

)
with g and R defined in (3.12). In particular R

(2) = Op(r2) + R2, r2 ∈ S−1,
R2 ∈ Lρ,p and satisfy the following bounds

|r2|γ,O
−1,s,α + M

γ
R2

(s, b) ≤s,α,ρ ‖β‖γ,O
s+d3

+ ‖β‖γ,O
s0+d3

‖a‖γ,O
s+d3

,

|Δ12r2|−1,p,α + MΔ12R2(p, b) ≤p,α,ρ ‖Δ12β‖p+d3 .

Then, by (3.88), we conclude

W τL0(W τ )−1 = Dω − J ◦ (m + a+) +Q∗,(3.91)

Q∗ := AτOp(q + r0)(Aτ )−1 +Aτ (Q̂+R0)(Aτ )−1(3.92)

+ Op(r1 + r2) +R1 +R2.

By Theorem 3.4 and Lemma B.10 we have

(3.93) AτOp(q + r0)(Aτ )−1 = Op(r3) +R3, Aτ (Q̂+R0)(Aτ )−1 = R4

where r3 ∈ S−1 and R3, R4 ∈ Lρ,p. In order to bound r3 we use (3.45) with
w = q + r0 so that

(3.94) |w|γ,O
−1,s,α ≤s,α,ρ k1 + k2‖p‖γ,O

s+d4
+ ‖β‖γ,O

s+d4
+ ‖a‖γ,O

s+d4
.

Note that in the formula (3.45) (recall the notations used in formula (3.45) and the
fact that k1, k2, k3 ≥ 0 and k1 + k2 + k3 = s) we have by interpolation

|w|γ,O
−1,k1,α+k2+σ1

‖β‖γ,O
k3+σ1

≤s (k2‖p‖γ,O
s+d5

+ ‖β‖γ,O
s+d5

+ ‖a‖γ,O
s+d5

)‖β‖γ,O
s0+d5

+ ‖β‖s+d5 (k1 + k2‖p‖γ,O
s0+d5

+ ‖β‖γ,O
s0+d5

+ ‖a‖γ,O
s0+d5

).

Thus we get by (3.76)

|r3|γ,O
−1,s,α + M

γ
R3

(s, b) ≤s,α,ρ k1 + k2‖p‖γ,O
s+d5

+ ‖β‖γ,O
s+d5

+ ‖a‖γ,O
s+d5

,

|Δ12r3|−1,p,α + MΔ12R3(p, b) ≤p,α,ρ k3(‖Δ12p‖p+d5 + ‖Δ12p‖s0+d5‖p‖p+d5 )

+ ‖Δ12β‖p+d5 + ‖Δ12a‖p+d5 .
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Moreover by (3.76)

M
γ
R4

(s, b) ≤s,ρ M
γ
bQ(s, b) + ‖β‖γ,O

s+d6
+ ‖β‖γ,O

s0+d6
(k1 + k2‖p‖γ,O

s+d6
+ ‖a‖γ,O

s+d6
),

MΔ12R4(p, b) ≤p,ρ MΔ12
bQ(s, b) + ‖Δ12β‖s+d6

+ ‖β‖p+d6 (k3(‖Δ12p‖p+d6 + ‖Δ12p‖p+d6‖p‖p+d6 ) + ‖Δ12a‖p+d6 .

By (3.92) and (3.93) Q∗ in (3.91) is

Q∗ = Op(q+) + Q̂∗, q+ := r1 + r2 + r3, Q̂∗ := R1 +R2 +R3 +R4.

In particular, by the discussion above we have that the bounds (3.79) hold with
σ3 ≥ d5 while bounds (3.80) and (3.81) hold with σ3 ≥ d6. This concludes the
proof. �

Straightening theorem. By Proposition 3.5 the coefficient a+ of the transformed
operator L+ = ΨLΨ−1 (see (3.77)) is given by (3.78). The aim of this section is
to find a function β (see (3.1)), or equivalently a flow Ψ of (3.2), such that a+ is a
constant, namely such that the following equation is solved (recall (3.3))

(3.95) ω · ∂ϕβ̃ − (m + a)(1 + β̃x) = constant.

This issue is tantamount to finding a change of coordinates that straightens the
1-order vector field

ω · ∂

∂ϕ
− (m + a(ϕ, x))

∂

∂x
.

This is the content of the following proposition. Actually this is a classical result
on vector fields on a torus ([46]), but for our purposes we need a version which
provides quantitative tame estimates on the Sobolev norms.

Proposition 3.6. Let O0 ⊆ Rν be a compact set. Consider for ω ∈ O0 a
Lipschitz family of vector fields on Tν+1

(3.96)
X0 := ω · ∂

∂ϕ
− (m0 + a0(x, ϕ; ω))

∂

∂x
,

2

3
< m0 <

3

2
, |m0|lip ≤ M0 < 1/2

a0 ∈ Hs(Tν+1, R) ∀s ≥ s0.

Moreover a0(x, ϕ; ω) = a0(x, ϕ, I(ω); ω) and it is Lipschitz in the variable I. There
exists δ� = δ�(s1) > 0 and s1 ≥ s0 + 2τ + 4 such that, for any γ > 0 if

(3.97) C(s1)γ
−1‖a0‖γ,O0

s1
:= δ ≤ δ�

then there exists a Lipschitz function m∞(ω) = m∞(ω, I(ω)) with 1/2 < m∞ < 2
and |m∞ −m0|γ ≤ γδ with ∀ω ∈ Ωε such that in the set

P2γ
∞ = P2γ

∞ (I) :=
{

ω ∈ O0 : |ω · �−m∞(ω)j| > 2γ

〈�〉τ ,(3.98)

∀� ∈ Z
ν, ∀j ∈ Z \ {0}

}
the following holds. For all ω ∈ P2γ

∞ one has |Δ12m∞| ≤ 2|Δ12〈a0〉| and there exists
a smooth map

(3.99) β(∞) : P2γ
∞ × T

ν+1 → R , ‖β(∞)‖γ,O0
s ≤s γ−1‖a0‖γ,O0

s+2τ+4, ∀s ≥ s0
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so that Ψ(∞) : (ϕ, x) 
→ (ϕ, x + β(∞)(ϕ, x)) is a diffeomorphism of T
ν+1 and for all

ω ∈ P2γ
∞

(3.100)

Ψ
(∞)
∗ X0 := ω · ∂

∂ϕ
+ (Ψ(∞))−1

(
ω · ∂ϕβ(∞) − (m0 + a0)(1 + β(∞)

x )
) ∂

∂x

= ω · ∂

∂ϕ
−m∞(ω)

∂

∂x
.

Proof. We refer to Corollary 3.6 of [25] which is a generalization of Proposi-
tion 3.6 in the case x ∈ Td with d ≥ 1. �

Lemma 3.7. Under the assumption of Proposition 3.6, the function β(∞) defined
in the Proposition 3.6 satisfies the following estimate on the variation of the variable
i(ω): ‖Δ12β

(∞)‖p ≤ Cγ−1‖Δ12a0‖p+σ for some σ > 0 such that p + σ < s1.

Proof. We refer to Corollary 3.3 of [25]. �

3.4. Proof of Theorem 1.8. Consider the vector field

(3.101) ω · ∂

∂ϕ
− (1 + a(x, ϕ; ω))

∂

∂x

for ω ∈ O0 given in (1.6). By taking μ in (1.24) large enough and ε in (1.27) small
enough we have that the condition (3.97) is satisfied. Thus we apply Proposition 3.6
with a0 � a in (3.101) and m0 � 1. Then there exist a constant m(ω) = m∞(ω)

and a function β̃(ω) defined on the set P2γ
∞ = Ω1 (see (3.98) and (1.30)) such that

(recall (3.100))

(3.102) T −1

β̃

(
ω · ∂ϕβ̃ − (1 + a)(1 + β̃x)

)
= −m.

Let β be the function such that (ϕ, x) 
→ (ϕ, x + β(ϕ, x)) is the inverse diffeo-

morphism of (ϕ, x) 
→ (ϕ, x + β̃(ϕ, x)) and let Ψτ be the flow of the Hamiltonian
PDE

uτ =
(
J ◦ b(τ )

)
u, b(τ ) := b(τ, ϕ, x) =

β

1 + τβx
.

Let us call Φ1 := Ψ1 and recall that Φ1 = Φ1(ω) is defined for ω ∈ Ω1. We apply
Proposition 3.5 to Lω in (1.25) and we get

(3.103) Φ1Lω Φ−1
1 = Dω − J ◦ (1 + a+) +R,

where, by (3.78) and (3.102),

a+(ϕ, x) = m− 1

and R = Op(r) + R̂, r = r(ω) ∈ S−1 , R̂ ∈ Lρ,p(Ω1). Hence we have

(3.104) Φ1Lω Φ−1
1 = Dω −mJ +R.

By (1.27) one has that Proposition 3.6 implies (1.49), (1.51). By (1.27), (3.99) the
bound (3.79) reads as

|r|γ,Ω1

−1,s,α ≤ εγ−1‖I‖γ,O0

s+σ̂ , |Δ12r|−1,p,α ≤p εγ−1(1 + ‖I‖p+σ̂)‖I1 − I2‖p+σ̂ ,

for some σ̂ > 0, since k1 = 0, k2 = ε,p = I. Moreover by (3.80), since k3 = ε, for
0 ≤ b ≤ ρ− 2 and s0 ≤ s ≤ S
(3.105) M

γ
bR(s, b) ≤s εγ−1‖I‖γ,O0

s+σ̂
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and by (3.81), and Lemma 3.7, for 0 ≤ b ≤ ρ− 3 and s0 ≤ s ≤ S, we get

(3.106) MΔ12
bR(p, b) ≤p εγ−1(1 + ‖I‖p+σ̂)‖I1 − I2‖p+σ̂.

The bound (1.53) follows by Corollary 3.2, in particular by (3.41), and (3.99).

4. Diagonalization

The aim of this section is to prove Theorem 1.9. We first provide an abstract
result for −1-modulo tame operators.

4.1. A KAM reducibility result for modulo-tame vector fields. We say
that a bounded linear operator B = B(ϕ) is Hamiltonian if B(ϕ)u is a linear Hamil-
tonian vector field w.r.t. the symplectic form J . This means that the corresponding
Hamiltonian 1

2(u, J−1B(ϕ)u) is a real quadratic function provided that uj = ū−j

and ϕ ∈ Tν. In matrix elements this means that

(J−1B(ϕ))j′

j = (J−1B(ϕ))j
j′ , (J−1B)j′

j (�) = (J−1B)−j′

−j (−�)

or more explicitely:

(4.1) Bj′

j (ϕ) = − ω(j)

ω(j′)
B−j
−j′(ϕ) , Bj′

j (�) = B−j′

−j (−�).

This representation is convenient in the present setting because it keeps track of
the Hamiltonian structure and

B =
1

2
(u, J−1B(ϕ)u) , G =

1

2
(u, J−1G(ϕ)u) ⇒ {B, G} =

1

2
(u, J−1[B, G]u).

We introduce the following parameters

(4.2) τ = 2ν + 6, b0 := 6τ + 6.

In order to prove the Theorem 1.9 we need to work in the class of Lip-−1-majorant
tame operators (see Definition 2.2) and the proof is based on an abstract reducibility
scheme for a class of tame operators.

We investigate the reducibility of a Hamiltonian operator of the form

(4.3) M0 = D0 + P0 , D0 = diag(i d
(0)
j ) , d

(0)
j = m

(
j(4 + j2)

1 + j2

)
.

Here the functions d
(0)
j are well defined and Lipschitz in the set O0, |m−1|γ,O0 ≤ Cε,

while P0 is defined and Lipschitz in ω belonging to the set Ω1. We fix

(4.4) a := 6τ + 4, τ1 := 2τ + 2,

we require that P0, 〈∂ϕ〉b0P0 are Lip-−1- modulo tame, with modulo-tame constants

denoted by M
�,γ3/2

P0
(s) and M

�,γ3/2

P0
(s, b0) respectively (recall Definitions 2.5, 2.6),

in the set Ω1. Moreover m and P0 and the set Ω1 depend on I = I(ω) and satisfy
the bounds

|Δ12m| ≤K1‖I1 − I2‖s0+σ ,(4.5)

‖〈Dx〉1/2
Δ12P0〈Dx〉1/2‖L(Hs0), ‖〈Dx〉1/2

Δ12〈∂ϕ〉b0P0〈Dx〉1/2‖L(Hs0) ≤
≤ K2‖I1 − I2‖s0+σ ,

for some σ, K1, K2 > 0, for all ω ∈ Ω1(I1) ∩Ω1(I2) with

(4.6) K1, M
�,γ3/2

P0
(s0), M

�,γ3/2

P0
(s0 , b0) ≤ K2.
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We recall that ‖·‖L(Hs0) is the operatorial norm. We associate to the operator (4.3)
the Hamiltonian

H0(η, u) := ω · η +
1

2
(u, J−1M0u)L2(Tx).

Proposition 4.1 (Iterative reduction). Let σ > 0 be the loss of derivatives
in (4.5) and consider an operator of the form (4.3). For all s ∈ [s0,S], there is
N0 := N0(S, b0) > 0 such that, if

(4.7) N τ1
0 M

�,γ3/2

P0
(s0, b0)γ

−3/2 ≤ 1 ,

(recall (4.4)) then, for all k ≥ 0:

(S1)k there exists a sequence of Hamiltonian operators

(4.8) Mk = Dk + Pk , Dk := diagj∈Z\{0}(i d
(k)
j ) ,

with d
(k)
j defined for ω ∈ O0 and

(4.9) d
(k)
j (ω) := d

(0)
j + r

(k)
j (ω) , r

(0)
j := 0 , r

(k)
j ∈ R , r

(k)
j = −r

(k)
−j .

The operators Pk are defined for k ≥ 1 in a set Ωγ3/2

k := Ωγ3/2

k (I) defined as

(4.10)
Ωγ3/2

k :=
{

ω ∈ Ωγ3/2

k−1 : |ω · � + d
(k−1)
j − d

(k−1)
j′ | ≥ γ3/2

〈�〉τ ,

∀|�| ≤ Nk−1, ∀j, j′ ∈ Z \ {0}, (j, j′, �) �= (j, j, 0)
}

where Ωγ3/2

0 := Ω1 and Nk := N
(3/2)k

0 . Moreover Pk and 〈∂ϕ〉b0Pk are −1-modulo-
tame with modulo-tame constants respectively

(4.11) M
�,γ3/2

k (s) := M
�,γ3/2

Pk
(s) , M

�,γ3/2

k (s, b0) := M
�,γ3/2

Pk
(s, b0), k ≥ 0

for all s ∈ [s0,S]. Setting N−1 = 1, we have

(4.12) M
�,γ3/2

k (s) ≤ M
�,γ3/2

0 (s, b0)N
−a
k−1 , M

�,γ3/2

k (s, b0) ≤ M
�,γ3/2

0 (s, b0)Nk−1 ,

while for all k ≥ 1

(4.13) 〈j〉|d(k)
j − d

(k−1)
j | ≤ M

�,γ3/2

0 (s0, b0)N
−a
k−2.

(S2)k For k ≥ 1, there exists a linear symplectic change of variables Qk−1, defined

in Ωγ3/2

k and such that

(4.14) Mk := Qk−1ω · ∂ϕQ−1
k−1 +Qk−1Mk−1Q−1

k−1.

The operators Ψk−1 := Qk−1−I and 〈∂ϕ〉b0Ψk−1, are −1-modulo-tame with modulo-
tame constants satisfying, for all s ∈ [s0,S],

(4.15)
M

�,γ3/2

Ψk−1
(s) ≤ γ−3/2N τ1

k−1N
−a
k−2M

�,γ3/2

0 (s, b0) ,

M
�,γ3/2

Ψk−1
(s, b0) ≤ γ−3/2N τ1

k−1Nk−2M
�,γ3/2

0 (s, b0) .

(S3)k Let I1(ω), I2(ω) such that P0(I1), P0(I2) satisfy (4.5). Then for all ω ∈
Ωγ1

k (I1) ∩ Ωγ2

k (I2) with γ1, γ2 ∈ [γ3/2/2, 2γ3/2] we have

‖〈Dx〉1/2
Δ12Pk〈Dx〉1/2‖L(Hs0) ≤ K2N

−a
k−1‖I1 − I2‖s0+σ ,(4.16)

‖〈Dx〉1/2〈∂ϕ〉b0Δ12Pk〈Dx〉1/2‖L(Hs0 ) ≤ K2Nk−1‖I1 − I2‖s0+σ .(4.17)
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Moreover for all k = 1, . . . , n, for all j ∈ Sc,

〈j〉
∣∣Δ12r

(k)
j −Δ12r

(k−1)
j

∣∣ ≤ ‖〈Dx〉1/2
Δ12Pk〈Dx〉1/2‖L(Hs0) ,(4.18)

〈j〉 |Δ12r
(k)
j | ≤ K2‖I1 − I2‖s0+σ .(4.19)

(S4)k Let I1, I2 be like in (S3)k and 0 < ρ < γ3/2/2. Then

(4.20) K2N
τ+1
k−1 ‖I1 − I2‖s0+σ ≤ ρ =⇒ Ωγ3/2

k (I1) ⊆ Ωγ3/2−ρ
k (I2) .

The Proposition 4.1 is proved by applying repeatedly the following KAM reduc-
tion procedure:

Fix any N � 1 and consider any operator of the form

M = D(ω) + P(ϕ, ω) , D(ω) = diag(i dj(ω))j∈Z ,

dj = d
(0)
j + rj, d

(0)
j := m(ω)

j(4 + j2)

(1 + j2)
.

Here the m, rj ∈ R are well defined and Lipschitz for ω ∈ O0 with

(4.21) |1−m|γ,O0 ≤ Cε , rj = −r−j , sup
j
〈j〉|rj |γ

3/2,O0 < 2 M
�,γ3/2

P0
(s0 , b0).

Assume that (recall (1.6), (1.30)) in a set O ≡ O(I) ⊆ Ω1(I) ⊆ O0 the operators
P, 〈∂ϕ〉b0P are Hamiltonian, real and −1-modulo tame with

(4.22) γ−3/2N2τ+2
M

�,γ3/2

P (s0, b0) < 1 .

Assume finally that dj = dj(I), P(I), 〈∂ϕ〉b0P(I) are Lipschitz w.r.t. I namely for
all ω ∈ O(I1) ∩ O(I2)

(4.23)

|Δ12m| ≤ K1 ‖I1 − I2‖s0+σ , sup
j
〈j〉|Δ12rj| < 2 K0‖I1 − I2‖s0+σ

‖〈Dx〉1/2
Δ12〈∂ϕ〉aP〈Dx〉1/2‖L(Hs0) ≤ K2‖I1 − I2‖s0+σ , a = 0, b0

for some constants K1 ≤ K0 (recall K2 in (4.5)). Let us define C ≡ C(γ3/2,τ,N,O)
D as

(4.24)
C :={ω ∈ O : |ω · � + dj − dj′| > γ3/2

〈�〉τ ,

∀(�, j, j′) �= (0, j, j), |�| ≤ N, j, j′ ∈ Z \ {0}}.

In this way Ωγ3/2

k+1 ≡ C
(γ3/2,τ,Nk,Ωγ3/2

k )

Dk
. For ω ∈ C let A(ϕ) be defined as follows

(4.25)
Aj′

j (�) =
Pj′

j (�)

i(ω · � + dj − dj′)
, for |�| ≤ N,

Aj′

j (�) = 0 otherwise.

Lemma 4.2 (KAM step). The following holds:

(i) The operator A in (4.25) is a Hamiltonian, −1-modulo tame matrix with the
bounds

(4.26) M
�,γ3/2

A (s, a) ≤ γ−3/2N2τ+1
M

�,γ3/2

P (s, a) ,

(4.27)
‖〈Dx〉1/2

Δ12〈∂ϕ〉aA〈Dx〉1/2‖L(Hs0) ≤

C γ−3/2N2τ+1
(
K2 + K0 γ−3/2

M
�,γ3/2

P (s0 , a)
)
‖I1 − I2‖s0+σ ,
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for a = 0, b0, for all ω ∈ C(I1) ∩ C(I2) and for some σ > 0.

(ii) The operator Q = eA :=
∑

k≥0
Ak

k!
is well defined and invertible, moreover

Ψ = Q− I is a −1-modulo tame operator with the bounds

M
�,γ3/2

Q−I (s, a) ≤ 2M
�,γ3/2

A (s, a) ≤ 2γ−3/2N2τ+1
M

�,γ3/2

P (s, a) ,

‖〈Dx〉1/2
Δ12〈∂ϕ〉aQ〈Dx〉1/2‖L(Hs0 ) ≤

≤ 2γ−3/2N2τ+1
(
K2 + K0γ

−3/2
M

�,γ3/2

P (s0 , a)
)
‖I1 − I2‖s0+σ) ,

for a = 0, b0 and for some σ > 0. Finally z → Qz is a symplectic change of
variables generated by the time one flow of the Hamiltonian S0 = 1

2 (z, J−1Az).

(iii) Set, for ω ∈ C (see (4.24)),

(4.28) Q(ω · ∂ϕQ−1) +Q (D(ω) + P(ϕ, ω))Q−1 := M+ = D+(ω) + P+(ϕ, ω)

where D+(ω) = diag(i d+
j ) is Hamiltonian, diagonal, independent of ϕ and defined

for all ω ∈ O0 with

(4.29)

d+
j = d

(0)
j + r+

j , r+
j = −r+

−j , sup
j
〈j〉|rj − r+

j |γ
3/2,O0 ≤ M

�,γ3/2

P (s0) ,

sup
j
〈j〉|Δ12(rj − r+

j )| ≤ K2‖I1 − I2‖s0+σ , ∀ω ∈ C(I1) ∩ C(I2).

For ω ∈ C we have the bounds

M
�,γ3/2

P+ (s) ≤ N−b0M
�,γ3/2

P (s, b0)+(4.30)

+ C(s)N2τ+1γ−3/2
M

�,γ3/2

P (s)M�,γ3/2

P (s0) .

M
�,γ3/2

P+ (s, b0) ≤ M
�,γ3/2

P (s, b0)(4.31)

+ N2τ+1γ−3/2C(s, b0)
(
M

�,γ3/2

P (s, b0)M
�,γ3/2

P (s0)+

+M
�,γ3/2

P (s0, b0)M
�,γ3/2

P (s)
)

.

Moreover for all ω ∈ C(I1) ∩ C(I2)

(4.32)

‖Δ12P+‖L(Hs0 ) ≤ N−b0K2‖I1 − I2‖s+σ

+C(s0)N
2τ+1γ−3/2

M
�,γ3/2

P (s0)×

×
(
K2 + γ−3/2

M
�,γ3/2

P (s0)K0

)
‖I1 − I2‖s+σ ,

(4.33)

‖Δ12〈∂ϕ〉b0P+‖L(Hs0) ≤ K2‖I1 − I2‖s+σ

+ N2τ+1γ−3/2C(s0, b0)
(
M

�,γ3/2

P (s0, b0)K2

+ M
�,γ3/2

P (s0)
(
K2 + γ−3/2

M
�,γ3/2

P (s0, b0)K0

)
+ γ−3/2N2τ+1

M
�,γ3/2

P (s0)M
�,γ3/2

P (s0, b0)×

×
(
K2 + γ−3/2

M
�,γ3/2

P (s0)K0

))
‖I1 − I2‖s+σ

for some σ > 0. The action of Q on the Hamiltonian H is given by (see (4.28))

H+ := e{S0,·}H = ω · η +
1

2
(w, J−1M+w).
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Proof. Proof of (i): First we prove that A is a −1-modulo tame operator. By
(4.24), (4.25) (recall (2.5), (2.6))

〈∂ϕ〉aA � γ−3/2N τ 〈∂ϕ〉aP , for a = 0, b0,

while

〈∂ϕ〉aΔω,ω′A � γ−3/2N τ〈∂ϕ〉aΔω,ω′P + γ−3N2τ+1〈∂ϕ〉aP , for a = 0, b0

since

Δω,ω′Aj′

j (�) =
Δω,ω′Pj′

j (�)

i
(
ω · � + dj − dj′

)
− i
Pj′

j (�)
(
[(ω − ω′) · �/(|ω − ω′|)] + Δω,ω′(dj − dj′)

)(
ω · � + dj − dj′

)2 .

By Lemma A.5-(i) and (4.21), (4.22) we deduce (4.26). The bounds (4.27) come
from applying the Leibniz rule and by (4.23)

(4.34) |Δ12Aj′

j (�)| ≤
|Δ12Pj′

j (�)|
|ω · � + dj − dj′| +

|Pj′

j (�)||Δ12dj −Δ12dj′|
(ω · � + dj − dj′)2

.

We remark that in the second summand (recall that K1 ≤ K0)

|Δ12dj −Δ12dj′|
|ω · � + dj − dj′| ≤ |Δ12m|

|ω(j) − ω(j′)|
|ω · � + dj − dj′| +

|Δ12rj|+ |Δ12rj′|
|ω · � + dj − dj′|

(4.23),(4.5)

≤ C γ−3/2(K1N
τ+1 + N τK0)‖I1 − I2‖s0+σ

≤ Cγ−3/2N τ+1K0‖I1 − I2‖s0+σ.

The estimate on the first summand follows from the estimates on Δ12m and the
fact that if |ω(j)−ω(j′)| > C|�| with C > 1 then |ω · �+ dj − dj′| > C̃|ω(j)−ω(j′)|
with C̃ > 0; the estimate on the second summand comes from (4.21), (4.22). In
conclusion we get (recall (4.23) for the definition of K2)

‖〈Dx〉1/2
Δ12〈∂ϕ〉aA〈Dx〉1/2‖L(Hs0 ) ≤

≤ C
(
γ−3/2N τK2 + γ−3N2τ+1K0 M

�,γ3/2

P (s0, a)
)
‖I1 − I2‖s0+σ

for all ω ∈ C(I1) ∩ C(I2). The fact that A is Hamiltonian follows from (4.1) and
from the fact that dj is odd in j (recall (4.3)) and P is Hamiltonian.

Proof of (ii): By the boundedness of A, the bound on its modulo-tame constant
and the smallness condition (4.22) we have that Q is well defined and invertible.
The bounds are a consequence of Lemma A.5 (iv)-(v), the smallness condition (4.22)
and the estimates proved in statement (i).

Proof of (iii): We start by observing that

(4.35)

D+ + P+ = D + P − ω · ∂ϕA+ [A,D+ P]

+
∑
k≥2

ad(A)k

k!
(D + P)−

∑
k≥2

ad(A)k−1

k!
(ω · ∂ϕA).

Again by definition, A solves the equation

ω · ∂ϕA+ [D,A] = ΠNP − [P]
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where [P] is the diagonal matrix with j-th eigenvalue Pj
j (0). Substituting in (4.35)

we get

(4.36) D+ +P+ = D+[P]+Π⊥NP +
∑
k≥1

ad(A)k

k!
(P)−

∑
k≥2

ad(A)k−1

k!
(ΠNP− [P] ).

By the reality condition (4.1) we get Pj
j (0) = P−j

−j (0) = −Pj
j (0), which shows that

Pj
j (0) is real and odd in j. By Kirszbraun Theorem we extend Pj

j (0) to the whole

O0 preserving the | · |γ3/2

norm. We set

d+
j = dj + (Pj

j (0))Ext = d
(0)
j + rj + (Pj

j (0))Ext , r+
j := rj + (Pj

j (0))Ext

where (·)Ext denotes the extension of the eigenvalue at O0, so that the bound (4.29)
follows, by Lemma A.5 - (i) and the bounds (4.23) on P and Δ12P. Now for ω ∈ C

(4.37) P+ = Π⊥NP +
∑
k≥1

ad(A)k

k!
(P) −

∑
k≥2

ad(A)k−1

k!
(ΠNP − [P] ).

By Lemma A.5-(iv) we have

(4.38)
M

�,γ3/2

(adA)kP
(s) ≤ C(s)k

(
(M�,γ3/2

A (s0))
k
M

�,γ3/2

P (s)

+ k(M�,γ3/2

A (s0))
k−1

M
�,γ3/2

A (s)M�,γ3/2

P (s0)
)

which implies (4.30), by using also A.5(iii). Finally

M
�,γ3/2

(adA)kP
(s, b0) ≤ C(s, b0)

k
(
(M�,γ3/2

A (s0))
k
M

�,γ3/2

P (s, b0)

+ k(M�,γ3/2

A (s0))
k−1

(
M

�,γ3/2

A (s, b0)M
�,γ3/2

P (s0) + M
�,γ3/2

A (s0, b0)M
�,γ3/2

P (s)
)

+ k(k − 1)(M�,γ3/2

A (s0))
k−2

M
�,γ3/2

A (s)M�,γ3/2

A (s0, b0)M
�,γ3/2

P (s0)
)

which implies (4.31). In order to obtain the bounds (4.32) and (4.33) on Δ12, we just
apply Leibniz rule repeatedly in (4.37) and then procede as before. More precisely
we have2 for all ω ∈ C(I1) ∩ C(I2)

Δ12(ad(A)kP) = ad(A)kΔ12P +
∑

k1+k2=k−1

ad(A)k1ad(Δ12A)ad(A)k2P.

Now we note that ‖〈Dx〉1/2A〈Dx〉1/2‖L(Hs0) ≤M
�,γ3/2

A (s0) and that for any matri-
ces A, B we have

‖〈Dx〉1/2
ad(A)B〈Dx〉1/2‖L(Hs0) ≤

≤ C(s0)‖〈Dx〉1/2
A〈Dx〉1/2‖L(Hs0)‖〈Dx〉1/2

B〈Dx〉1/2‖L(Hs0).

This implies that for all ω ∈ C(I1) ∩ C(I2) (recall (4.23) for the definition of K2)

‖〈Dx〉1/2
Δ12(ad(A)kP)〈Dx〉1/2‖L(Hs0) ≤ (C(s0)M

�,γ3/2

A (s0))
kK2(4.39)

+ kC(s0)
k(M�,γ3/2

A (s0))
k−1γ−3/2

M
�,γ3/2

P (s0)
(
N τK2+(4.40)

+ γ−3/2N2τ+1K0M
�,γ3/2

P (s0)
)
‖I1 − I2‖s0+σ .

2Recall the usual convention that a(Δ12b)c ≡ a(I1)(Δ12b)c(I2).
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Now by definition

Δ12P+ = Π⊥NΔ12P +
∑
k≥1

Δ12(
ad(A)k

k!
P)−

∑
k≥2

Δ12

(ad(A)k−1

k!
(ΠNP − [P])

)
,

so we use Lemma A.5- (iii) in oder to bound the first summand and (4.39) in order
to bound the remaining ones. In the same way

Δ12〈∂ϕ〉b0 (ad(A)kP) = ad(A)kΔ12〈∂ϕ〉b0P
+

∑
k1+k2=k−1

ad(A)k1ad(Δ12A)ad(A)k2〈∂ϕ〉b0P

+
∑

k1+k2=k−1

ad(A)k1ad(〈∂ϕ〉b0A)ad(A)k2Δ12P

+
∑

k1+k2=k−1

ad(A)k1ad(Δ12〈∂ϕ〉b0A)ad(A)k2P

+
∑

k1+k2+k3=k−2

ad(A)k1ad(〈∂ϕ〉b0A)ad(A)k2ad(Δ12A)ad(A)k3P

+
∑

k1+k2+k3=k−2

ad(A)k1ad(Δ12A)ad(A)k2ad(〈∂ϕ〉b0A)ad(A)k3 ,

where the last two terms appear only if k ≥ 2. We proceed as for (4.39) and obtain
the bound

‖〈Dx〉1/2
Δ12〈∂ϕ〉b0 (ad(A)kP)〈Dx〉1/2‖L(Hs0) ≤

(C(s0)M
�,γ3/2

A (s0))
kK2

+ kC(s0)
k(M�,γ3/2

A (s0))
k−1γ−3/2

M
�,γ3/2

P (s0 , b0)
(
N τK2+

+ γ−3/2N2τ+1K0M
�,γ3/2

P (s0)
)

+ kC(s0)
k(M�,γ3/2

A (s0))
k−1

M
�,γ3/2

A (s0 , b0)K2

+ kC(s0)
k(M�,γ3/2

A (s0))
k−1γ−3/2

M
�,γ3/2

P (s0)
(
N τK2+

+ γ−3/2N2τ+1K0M
�,γ3/2

P (s0, b0)
)

+ 2k(k − 1)C(s0)
k(M�,γ3/2

A (s0))
k−2

M
�,γ3/2

A (s0, b0)γ
−3/2

M
�,γ3/2

P (s0)

(N τK2 + γ−3/2N2τ+1K0M
�,γ3/2

P (s0))‖I1 − I2‖s0+σ

from which one deduces the (4.33). �

4.2. Proof of Theorem 1.9. In this section we conclude the proof of Theorem
1.9. We first provide a preliminary result.

Lemma 4.3. Consider ρ := s0 +b0 +3, p = s0 and the operator L+
ω (see (1.50))

in Theorem 1.8 . We have that P0 := R (with R in (1.50)) is −1-modulo-tame with
modulo-tame constants satisfying the (4.6) with

(4.41) σ := μ1, K1 := ε, K2 := εγ−1,

where μ1 is given by Theorem 1.8.
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Moreover the constant m and the operator P0 satisfy, for all ω ∈ Ω1(I1) ∩ Ω1(I2),
the bounds (4.5).

Proof. Recalling the form of R in Theorem 1.8 we have that Lemma A.4
implies that P0 is−1-modulo tame with modulo tame constants satisfying (recalling
the Definition A.4 and the fact that γ3/2 < γ)

(4.42) M
�,γ3/2

P0
(−1, s), M�,γ3/2

P0
(−1, s, b0) ≤s B

γ
R(s, s0 + b0)

(A.9)

≤ M
γ
R(s, ρ− 2)

which implies

(4.43) M
�,γ3/2

P0
(s, b0) ≤M

γ
R(s, b), M

�,γ3/2

P0
(s0 , b0) ≤ εγ−1 .

Using (1.24), (1.52) one gets the (4.6) with the parameters fixed in (4.41). In the
same way, by Lemma A.4, (1.51), (1.52), (1.24) we get the (4.5). �

Proof of Theorem 1.9. We want to apply Proposition 4.1 to the operator
L+

ω in (1.50) (see also Theorem 1.8). It is convenient to remark that L+
ω gives

the dynamics of a quadratic time-dependent Hamiltonian. Passing to the extended
phase space, L+

ω corresponds to the Hamiltonian

H := H(η, u) = ω · η +
1

2
(u, J−1M0u)L2(Tx) , M0 = D0 + P0

where

(4.44) D0 = diag(i d
(0)
j )j∈Z\{0} , d

(0)
j = m

(
j(4 + j2)

1 + j2

)
, P0 := R.

By Lemma 4.3 we have that m and P0 satisfy (4.5), (4.6) with the choice of pa-
rameters in (4.41). Then the smallness assumption (4.7) follows by the smallness
condition on ε in (1.54) provided that N0 in formula (1.54) is chosen as in Propo-
sition 4.1. We can conclude that Proposition 4.1 applies to L+

ω in (1.50).
By (4.13) we have that the sequence (dk

j )k∈N in (4.9) is Cauchy, hence the limit

d∞j = d
(0)
j + r∞j exists and, also by (4.9), r∞j satisfies (1.56).

Now we claim that (recall (1.30)-(1.31) and (4.10))

(4.45) O∞ ⊆
⋂
k≥0

Ωγ3/2

k .

Indeed we have for |�| ≤ Nk

|ω · � + dk
j − dk

j′ | ≥ |ω · � + d∞j − d∞j′ | − |rk
j − r∞j | − |rk

j′ − r∞j′ |
(4.13)

≥ 2γ3/2

〈�〉τ − M
�,γ3/2

0 (s0, b0)

N a
k−2

≥ γ3/2

〈�〉τ

since M
�,γ3/2

0 (s0, b0) ≤ γ3/2N−τ1

0 and 〈�〉τ ≤ N τ
k ≤ N a

k−2 due to (4.4). We conclude

that O∞ ⊆ Ωγ3/2

k+1 . Thus the sequence (Ψk)k∈N (recall item (S2)k in Prop. 4.1) is
well defined on O∞.
We define

Φk = Q0 ◦ · · · ◦ Qk.

We claim that there exists Φ∞ := limk→∞Φk in the topology induced by the
operatorial norm. First we note that, by using (4.15) and (4.7), for any k we
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have

(4.46)

M
�,γ3/2

Φk
(s) ≤

k∑
j=0

⎛⎝M
�,γ3/2

Qj
(s)

∏
i �=j

M
�,γ3/2

Qi
(s0)

⎞⎠
≤ 2

k∑
j=0

M
�,γ3/2

Qj
(s) ≤ C

(
1 + max

j=0,...,k
M

�,γ3/2

Ψj
(s)

)
.

By Lemmata A.5 and A.4 we have

M
γ3/2

Φk−Φk−1
(s, b0) ≤s M

�,γ3/2

Φk−Φk−1
(s, b0) ≤s M

�,γ3/2

Ψk
(s, b0)

+ M
�,γ3/2

Ψk
(s0, b0) max

j=0,...,k
M

�,γ3/2

Ψj
(s, b0)

+ M
�,γ3/2

Ψk
(s, b0) max

j=0,...,k
M

γ3/2,�
Ψj

(s0, b0)

(4.15)

≤s N τ1

k N−a
k−1M

�,γ3/2

0 (s, b0)γ
−3/2.

Thus by

‖(Φk+m −Φk)h‖γ3/2,O∞

s ≤
k+m∑
j=k

‖(Φj − Φj−1)h‖γ3/2,O∞

s

and by (4.42) we have that (recall (4.7) and (4.4))

M
γ3/2

Φk+m−Φk
(s, b0) ≤ C(s0, b0)M

γ
R(s, ρ− 2)N τ1

k N−a
k−1γ

−3/2

(1.52),(4.43)

≤ C(s0, b0)εγ
−1‖I‖γ,O0

s+μ1
N
−2(τ+(1/3))
k ,

hence (Φk)k∈N is a Cauchy sequence in L(Hs) and for Φ∞ the estimate (1.58) holds.
The operators Φk are close to the identity, hence the same is true for Φ∞ and by
Neumann series it is invertible. One can prove that for Φ−1

∞ the estimate (1.58)
holds.

Let us prove the (1.59). We first show that, for any n ∈ N one has

(4.47) 〈j〉|rj(I1)− rj(I2)| ≤ εγ−1‖I1 − I2‖s0+σ + εγ−1CN−a
n−1,

with Nn defined in Prop. 4.1. This would implies the thesis. For k = n +1 one can
estimates

|rj(I1) − rj(I2)| ≤ |rj(I1)− r
(k)
j (I1)|+ |r(k)

j (I1)− r
(k)
j (I2)|+ |r(k)

j (I2)− rj(I2)|
by using (4.13), (4.19), with K2 ∼ εγ−1 to get the (4.47). �

5. Measure estimates and conclusions

Here we conclude the proof of Theorem 1.4 by showing that Theorem 1.10 holds.
We first need some preliminary results. Let us define

(5.1) ω(j) :=
4 + j2

1 + j2
j ,

and remark that if j �= k (both non-zero)

(5.2) |ω(j)− ω(k)| = |j − k|
∣∣∣1 + 3

1− jk

(1 + j2)(1 + k2)

∣∣∣ ≥ 1

2
|j − k| .

Recall that τ > 2ν + 1 is fixed in (1.6).
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Lemma 5.1. If R�jk �= ∅, then |�| ≥ C1|ω(j)−ω(k)| for some constant C1 > 0.
If Q�j �= ∅ then |�| ≥ C2|j| for some constant C2 > 0.

Proof. Since |ω||�| ≥ |ω · �|, our first claim follows, setting C1 := (8|ω|)−1,
provided that we prove

8|ω · �| ≥ |ω(j) − ω(k)|
If R�jk �= ∅, then there exist ω such that

(5.3) |dj(ω) − dk(ω)| < 2γ3/2〈�〉−τ + 2|ω · �|.
Moreover, recall (1.49) and (1.56), we get

(5.4) |dj(ω) − dk(ω)| ≥ |m||ω(j)− ω(k)| − |rj(ω)| − |rk(ω)| ≥ 1

3
|ω(j) − ω(k)|.

Thus, for ε small enough

2|ω||�| ≥ 2|ω · �| ≥
(

1

3
− 2γ3/2

〈�〉τ |ω(j)− ω(k)|

)
|ω(j) − ω(k)| ≥ 1

4
|ω(j) − ω(k)|

and this proves the first claim on R�jk. If |mj| ≥ 2|ω · �| then by (1.6)

|ω · � + mj| ≥ |m||j| − |ω · �| ≥ 2|ω · �| − |ω · �| = |ω · �| ≥ γ〈�〉−τ .

Hence if Q�j �= ∅ we have |j| ≤ 2|ω · �||m|−1 ≤ C−1
2 |�|, where C2 := |m|(4|ω|)−1.

This concludes the proof. �

By (1.62), we have to bound the measure of the sublevels of the function ω 
→
φ(ω) defined by

(5.5)

φR(ω) := ω · � + dj(ω) − dk(ω)

= ω · � + im(ω)(ω(j) − ω(k)) + (rj − rk)(ω),

φQ(ω) := ω · � + m(ω)j.

Note that φ also depends on �, j, k, I.
By Lemma 5.1 it is sufficient to study the measure of the resonant sets R�jk

defined in (1.62) for (�, j, k) �= (0, j, j). In particular we will prove the following
Lemma.

Lemma 5.2. Let us define for η ∈ (0, 1) and σ ∈ N > 0

R�jk(η, σ) :=
{
ω ∈ O0 : |ω · � + dj − dk| ≤ 2η〈�〉−σ

}
,

Q�j(η, σ) :=
{
ω ∈ O0 : |ω · � + mj| ≤ 2η〈�〉−σ

}
.

Recalling that O0 ∈ [−L, L], we have that |R�jk(η, σ)| ≤ CL(ν−1)η〈�〉−σ. The same
holds for Q�j(η, σ).

Proof. We give the proof of Lemma 5.2 for the set R�jk (with � �= 0) which is
the most difficult case.
Split ω = s�̂ + v where �̂ := �/|�| and v · � = 0. Let ΨR(s) := φR(s�̂ + v), defined in
(5.5). By using (1.49),(1.56) and Lemma 5.1 we have

|ΨR(s1)− ΨR(s2)| ≥ |s1 − s2|
(
|�| − |j − k||m|lip,O0 − (|rj|lip,O0 + |rk|lip,O0)

)
≥|�|

2
|s1 − s2|(5.6)
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for ε small enough (see (1.54)). As a consequence, the set Δ�jk := {s : s�̂+v ∈ Rljk}
has Lebesgue measure

|Δ�jk| ≤ 2 |�|−1 4 η 〈�〉−σ = 8 η〈�〉−σ−1.

The Lemma follows by Fubini’s theorem. �

Lemma 5.3. There exists C > 0 such that setting τ1 = ν + 2 then, for all j, k
such that |j|, |k| ≥ C〈�〉τ1γ−(1/2), one has R�jk(γ

3/2, τ) ⊆ Q�,j−k(γ, τ1).

Proof. By (1.56), (1.49) we have (recall also (5.2)) that

(5.7)

|ω · � + dj − dk| ≥
2γ

〈�〉τ1
− 2|j − k| C

|j||k| −
C̃ε

min{|j|, |k|}

≥ 2γ

〈�〉τ1
− Cγ

C〈�〉2τ1−1
− C̃ε

√
γ

C〈�〉τ1
≥ γ3/2

〈�〉τ
for C big enough and since ε(

√
γ)−1 	 1. �

Proof of Theorem 1.10. Let τ > 2ν + 4. We have∣∣∣∣∣∣
⋃

�∈Zν ,j,k∈Z\{0}

R�jk

∣∣∣∣∣∣ ≤
∑

�∈Zν ,|j|,|k|≥C〈�〉τ1γ−(1/2)

|R�jk|+
∑

�∈Zν ,|j|,|k|≤C〈�〉τ1γ−(1/2)

|R�jk|.

On one hand we have that, using Lemmata 5.3 and 5.2,∑
�∈Z

ν ,

|j|,|k|≥C〈�〉τ1γ−(1/2)

|R�jk| ≤ C
∑

j−k=h,|h|≤C|�|

Lν−1γ〈�〉−τ1

≤ CLν−1γ
∑
�∈Zν

〈�〉−(τ1−1) ≤ C̃Lν−1γ,

for some C̃ ≥ C > 0. On the other hand∑
�∈Z

ν ,

|j|,|k|≤C〈�〉τ1γ−(1/2) ,
|j−k|≤C|�|

|R�jk| ≤ Cγ(3/2)Lν−1
∑
�∈Zν

|�|〈�〉τ1

√
γ〈�〉τ

≤ CγLν−1
∑
�∈Zν

〈�〉−(τ−τ1−1) ≤ CγLν−1.

The discussion above implies estimates (1.60). �

Proof of Theorem 1.4 (Reducibility). It is sufficient to set Φ := Φ2 ◦ Φ1

where Φ1(ω) is the map given in Theorem 1.8 while Φ2 in Theorem 1.9. The bound
(1.33) follows by (1.53) and (1.58). Theorem 1.10 provides the measure estimate
on the set O∞ in (1.34). �

Proof of Theorem 1.5 (Almost Reducibility). Consider Lω(I1), Lω(I2)
under the hypotheses of Theorem 1.5. Theorems 1.8 and 1.9 applies to the op-
erator Lω(I1) hence the results of Theorem 1.4 holds for ω in the set Ω1(I1) (see
(1.30)). Recalling Remark 1.1 let us assume that (recall (1.41), (1.42))

(5.8) O∞(I1) ⊂ Ω
(N)
1 ∩ Ω

(N)
2 .

We show that the thesis follows. Indeed we can apply the iterative Lemma 5.2 in
Section 5 of [25] for n = 1, 2, . . . , k < ∞ where the larger is N the larger is k.
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Actually k has to be chosen in such a way Nk ≡ N where Nn = N
( 3
2 )n

0 . Hence
Lω(I2) can be conjugated to an operator of the form

L̃ω(I2) := ω · ∂ϕ −m(N)J − J ◦ a(N)(I2; ϕ, x) + R̃(N)(I2)

where the constant m(N) and the real function a(N) satisfy the bounds (1.39), (1.40)

respectively. The linear operator R̃(N) = Op(r̃) + R̂+ where r̃ ∈ S−1 , R̂+ ∈ Lρ,p

and satisfy the hypotheses of Proposition 4.1. For ω ∈ Ω
(N)
2 (I2) one can iterate the

procedure of Prop. 4.1 with 1 ≤ n ≤ k <∞. It is important to note that the maps
Qn−1 given in (S2)n are the identity plus Ψn−1 a −1-modulo-tame operator. By
(4.15) and (1.40) on a(N) one has that

Qn−1 ◦ J ◦ a(N)(ϕ, x) ◦ Q−1
n−1 = J ◦ a(N)(ϕ, x) + Pn

with Pn satisfying the second bound in (1.40) for any n ≤ k. In other words
these terms are already “small” and they are not to be taken into account in the
reducibility procedure. By the reasoning above one can prove (1.38) and (1.40). It

remains to show that (5.8) and the (1.39). First we have Ω1(I1) ⊂ Ω
(N)
1 (I2) by

Remark 5.3 in [25]. To show the inclusion Ω2(I1) ⊂ Ω
(N)
2 (I2) we reason as follows.

We first note that, by Lemma 5.1, if |ω(j) − ω(k)| > C−1
1 |�| then R�jk(I1) =

R�jk(I2) = ∅ (recall (1.62)), so that our claim is trivial. Otherwise, if |ω(j)−ω(k)| ≤
C−1

1 |�| ≤ C−1
1 N we claim that for all j, k ∈ Z we have (recall (4.4))

(5.9)
|(d(N)

j − d
(N)
k )(I2)− (dj − dk)(I1)| ≤

≤ εγ−1N
(

sup
ω∈O0

‖I1 − I2‖s0+μ + N−3
2 a
)

∀ω ∈ O∞(I1).

We now prove that (5.9) implies that Ω2(I1) ⊂ Ω
(N)
2 (I2). For all j �= k, |�| ≤ N ,

ω ∈ O∞(I1), by (5.9) we have

(5.10)

|ω · � + d
(N)
j (I2)− d

(N)
k (I2)|

≥ |ω · � + dj(I1)− dk(I1)| − |(d(N)
j − d

(N)
k )(I2)− (dj − dk)(I1)|

≥ 2γ3/2〈�〉−τ − εγ−1N− 3
2 a ≥ 2(γ3/2 − ρ)〈�〉−τ

where we used (1.37).
Proof of (5.9). By (1.55) (recalling (5.1))

(5.11)

(d
(N)
j − d

(N)
k )(I2) − (dj − dk)(I1)

= (m(N)(I2)−m(I1))(ω(j) − ω(k))

+ (r
(N)
j (I2)− rj(I1)) + (r

(N)
k (I2)− rk(I1)).

Choose n ∈ N such that Nn−1 ≡ N . In this way we have that r
(N)
j (I2) coincides

with r
(n)
j given in Proposition 4.1. We apply Proposition 4.1-(S4)n in order to

conclude that

(5.12) Ωγ3/2

n (I1) ⊆ Ωγ3/2−ρ
n (I2),

since the smallness condition in (4.20) is satisfied by (1.37). Then by (4.45)

(5.13) O∞(I1) ⊆
⋂
j≥0

Ωγ3/2

j (I1) ⊆ Ωγ3/2

n (I1)
(5.12)

⊆ Ωγ3/2−ρ
n (I2).
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For all ω ∈ O∞(I1) ⊆ Ωγ3/2

n (I1)∩Ωγ3/2−ρ
n (I2), we deduce by Proposition 4.1-(S3)n

(5.14) 〈j〉|r(n)
j (I2)− r

(n)
j (I1)|

(4.19)

≤ εγ−1‖I2 − I1‖s0+σ .

We have, by (4.13)

(5.15)

〈j〉|rj(I1)− r
(n)
j (I1)| ≤ 〈j〉

∑
h≥n

|r(h+1)
j (I1) − r

(h)
j (I1)|

≤ M
�,γ∗

0 (s0, b)
∑
h≥n

N−a
h

(4.43)

� εγ−1N−a
n .

Therefore ∀ω ∈ O∞(I1), ∀j ∈ Z we have (recall the choice of k above)

〈j〉|r(N)
j (I2) − rj(I1)| ≤ 〈j〉

(
|r(n)

j (I2) − r
(n)
j (I1)|+ |rj(I1) − r

(n)
j (I1)|

)
(5.14),(5.15)

≤ εγ−1(‖I1 − I1‖s0+σ + N−3a/2).

By Corollary 3.3 in [25] we have

(5.16) |m(N)(I2)−m(I1)|�ε(‖I2 − I1‖s0+2 + N−μ)

with μ = 4τ + 2s0 + 4. recalling that

|ω(j) − ω(k)| ≤ |j − k| ≤ C|�|
we have proved (5.9) and (1.39), with κ = min(3a/2, μ). �

Proof of Corollary 1.6. Consider the system (1.43) and set z := ΦNu with
ΦN given by Theorem 1.5. By (1.38), we have that the function z solves the problem

∂tz = D(N)
ω z −R(N)z, z(0, x) = ΦNu0(x).

Since the operator A := D(N)
ω − R(N) is symmetric hyperbolic, namely A + A∗ is

bounded on Hs(T, R), we can use energy estimates for hyperbolic systems (see [49])
and the Gronwall Lemma to show that, as long as the function z exists,

‖z(t, ·)‖2Hs(T,R) ≤ ‖u0(·)‖2Hs(T,R) + CεN−κ

∫ t

0

‖z(s, ·)‖2Hs(T,R)ds.

Here we used that I − I1 satisfies (1.37) and the estimates (1.40). Thanks to the
bound (1.33) on the maps Φ±1

N and the smallness of I we get that

(5.17) ‖u(t, ·)‖2Hs(T,R) ≤s ‖u0(·)‖2Hs(T,R) + CεN−κ

∫ t

0

‖u(s, ·)‖2Hs(T,R)ds.

By (5.17) and standard bootstrap argument one shows that the function u can be
extended on a time interval [−TN , TN ] with TN > ε−1Nκ and that (1.44) holds. In
the case that I = I1 we consider the change of coordinates z := Φu in (1.32) given
by Theorem 1.4. Then the function z solves the equation ∂tz = Dωz (see (1.32)).
Since the operator Dω is diagonal with purely imaginary spectrum, one has that
∂t‖z(t, ·)‖2Hs(T,R) = 0, thus the Hs-Sobolev norm does not increase for all time t.

Hence the thesis follows. �

Proof of Corollary 1.7. The estimate on m is proved in [25] (with κ = 4τ +
2s0 + 4). In order to prove the estimate on rj we proceed as follows: we fix n so
that N = Nn−1 as in the proof of Theorem 1.5, then by triangularity

|rj(I2) − rj(I1)| ≤ |rj(I1)− r
(n)
j (I1)|+ |r(n)

j (I2)− r
(n)
j (I1)|+ |rj(I2)− r

(n)
j (I2)| ,
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the first and third summand are bounded in (5.15) (which holds on all O0 ), while
the second one in (5.14). �

Appendix A. Technical Lemmata

A.1. Tame and Modulo-tame operators. In the following we collects some
properties of operators which are “Lip-tame” or “Lip-modulo-tame” according to
Definitions 2.2 and 2.5.

Lemma A.1 (Composition of Lip-Tame operators). Let A and B be re-
spectively Lip-σA-tame and Lip-σB-tame operators with tame constants respectively
M

γ
A(σA, s) and M

γ
B(σB , s). Then the composition A◦B is a Lip-(σA+σB)-operator

with

(A.1) M
γ
A◦B(σA+B, s) ≤ M

γ
A(σA, s)Mγ

B(σB, s0+σA)+M
γ
A(σA, s0)M

γ
B(σB, s+σA).

The same holds for σ-tame operators.

Proof. The proof follows by the definitions and by using triangle inequalities.
�

Lemma A.2. Let A be a Lip-σ-tame operator. Let u(ω), ω ∈ O ⊂ R
ν be a

ω-parameter family of Sobolev functions Hs, for s ≥ s0. Then

(A.2) ‖Au‖γ,O
s ≤s M

γ
A(σ, s)‖u‖γ,O

s0
+ M

γ
A(σ, s0)‖u‖γ,O

s .

Proof. By definition (2.3) we have MA(σ, s) ≤ M
γ
A(σ, s) and ‖u‖s ≤ ‖u‖γ,O

s .
Then the thesis follows by the triangle inequalities

|ω − ω′|−1‖A(ω)u(ω) − A(ω′)u(ω′)‖s ≤ ‖(Δω,ω′A)u(ω)‖s + ‖A(ω′)Δω,ω′u‖s.

�

Lemma A.3. Let A = Op(a(ϕ, x, D)) ∈ OPS0 be a family of pseudo differential

operators which are Lipschitz in a parameter ω ∈ O ⊂ R
ν. If |A|γ,O

0,s,0 < +∞ (recall

(1.23)) then A is a 0-tame operator with

(A.3) M
γ
A(σ, s) ≤ C(s)|A|γ,O

0,s,0.

Proof. We refer to the proof of Lemma 2.21 of [11]. �

Given an operator A ∈ Lρ,p we define

M
γ

∂
b1
ϕmA

(−1, s) := M
γ

〈Dx〉1/2∂
b1
ϕmA〈Dx〉1/2

(0, s),

M
γ

∂
b1
ϕm [A,∂x]

(−1, s) := M
γ

〈Dx〉1/2∂
b1
ϕm [A,∂x]〈Dx〉1/2

(0, s).

the Lip-0-tame constant of the operators 〈Dx〉1/2A〈Dx〉1/2, 〈Dx〉1/2∂b
ϕm

A〈Dx〉1/2,

〈Dx〉1/2[∂b
ϕm

A, ∂x]〈Dx〉1/2, for any m = 1, . . . , ν, 0 ≤ b1 ≤ b and we set

(A.4) B
γ
A(s, b) := max

0≤b1≤b
m=1,...,ν

max
(
M

γ

∂
b1
ϕmA

(−1, s), Mγ

∂
b1
ϕm[A,∂x]

(−1, s)
)
.

We have the following result.
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Lemma A.4. Let s0 ≥ [ν/2] + 3, s0 ∈ N, b0 ∈ N and recall (2.7), Def. 2.8 and
(2.8).
(i) Let A ∈ Lρ,p with ρ := s0 +b0 +3, p = s0, then A is a −1-modulo tame operator.
Moreover

(A.5) M
�,γ3/2

A (s) ≤ max
m=1,...,ν

M
γ3/2

∂
s0
ϕm [A,∂x]

(−1, s),

(A.6) M
�,γ3/2

A (s, b0) ≤ max
m=1,...,ν

M
γ3/2

∂
s0+b0
ϕm [A,∂x]

(−1, s).

(A.7)
‖〈Dx〉1/2

Δ12A〈Dx〉1/2‖L(Hs0), ‖〈Dx〉1/2
Δ12〈∂ϕ〉b0A〈Dx〉1/2‖L(Hs0) ≤

≤ BΔ12A(s0, b0)

where

(A.8) BΔ12A(s0, b) := max
0≤b1≤b

m=1,...,ν

max
(
N

∂
b1
ϕmΔ12A

(−1, s0), N∂
b1
ϕm[Δ12A,∂x]

(−1, s0)
)
.

(ii) If A := Op(a) with a = a(ω, i(ω)) in Sm with m ≤ −1 depending on ω ∈ O0 ⊂
Rν in a Lipschitz way and on i in a Lipschitz way, then A is a −1-modulo tame
operator and bounds (A.5)-(A.7) hold.

Proof. Consider b ∈ N and ρ ∈ N with ρ ≥ b + 3. We claim that if A ∈ Lρ,p

(see Def. 2.8) then one has

(A.9) B
γ
A(s, b) ≤ρ,s M

γ
A(s, ρ− 2), BΔ12A(p, b) ≤ρ,p MΔ12A(p, ρ− 3).

The fact that 〈Dx〉1/2A〈Dx〉1/2 is Lip-0-tame follows by (2.15) sinceρ ≥ 1. Indeed
〈Dx〉−ρ+1 is bounded in x and for any h ∈ Hs

‖〈Dx〉
1
2 A〈Dx〉

1
2 h‖γ,O0

s ≤ ‖〈Dx〉−ρ+1
(
〈Dx〉ρ−

1
2 A〈Dx〉

1
2

)
h‖γ,O0

s

≤s M
γ
A(−ρ, s)‖h‖γ,O0

s0
+ M

γ
A(−ρ, s0)‖h‖γ,O0

s .

By studying the tameness constant of the operators ∂�b
ϕA,[A, ∂x], [∂�b

ϕA, ∂x]Δ12A,

∂�b
ϕΔ12A, [Δ12A, ∂x] and [∂�b

ϕΔ12A, ∂x] for �b ∈ Nν , |�b| = b, following the same

reasoning above one gets the (A.9).

We have, by Cauchy-Schwarz,

‖〈Dx〉1/2A〈Dx〉1/2u‖2s ≤
∑
�∈Z

ν

j∈Z

〈�, j〉2s
( ∑

�′∈Z
ν

j′∈Z

〈j′〉1/2|(A)j′

j (�− �′)|〈j〉1/2|u�′j′ |
)2

≤
∑
�∈Z

ν

j∈Z

〈�, j〉2s
( ∑

�′∈Z
ν

j′∈Z

〈�− �′〉s0 |j − j′|
〈�− �′〉s0 |j − j′| 〈j

′〉1/2|(A)j′

j (�− �′)|〈j〉1/2|u�′j′ |
)2

≤
∑
�∈Z

ν

j∈Z

〈�, j〉2s(
∑

�′∈Z
ν

j′∈Z

C�j) (
∑

�′∈Z
ν

j′∈Z

〈j〉〈j′〉|j − j′|2〈�− �′〉2s0|(A)j′

j (�− �′)|2|u�′j′ |2)

≤ C
∑

�′∈Z
ν

j′∈Z

|u�′j′ |2(
∑
�∈Z

ν

j∈Z

〈�, j〉2s 〈j〉〈j′〉|j − j′|2〈�− �′〉2s0 |(A)j′

j (�− �′)|2)
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since

C :=
∑

�,�′∈Zν ,j,j′∈Z

C�j < ∞, C�j :=
∑

�′∈Zν ,j′∈Z

1

〈�− �′〉2s0 |j − j′|2 .

By the fact that for any 1 ≤m ≤ ν (recall (1.19))∑
�∈Zν ,j∈Z

〈�, j〉2s〈j〉〈j′〉|j − j′|2〈�m − �
′

m〉2s0 |(A)j′

j (�− �′)|2

≤ 2(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s))2〈�′, j′〉2s0 + 2(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s0))
2〈�′, j′〉2s

and 〈�− �′〉 ≤ maxm=1,...,ν〈�m − �
′

m〉 we obtain

‖〈Dx〉1/2A〈Dx〉1/2u‖2s ≤ 2 max
m=1,...,ν

(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s0))
2‖u‖2s

+ 2 max
m=1,...,ν

(Mγ3/2

∂
s0
ϕm [A,∂x]

(−1, s))2‖u‖2s0
.

Following the same reasoning above, we conclude the same bound for the operator

〈Dx〉1/2Δω,ω′A〈Dx〉1/2. It is sufficient to substitute Aj′

j (�−�′) with
(
Aj′

j (�−�′, ω)−
Aj′

j (�− �′, ω′)
)
/(ω − ω′) in the computations above. By the fact that γ3/2 < 1 we

deduce (A.5). The proofs of (A.6), (A.7) are analogous. The proof of item (ii)
follows using the above computations by noting that ∂ϕmA and the commutator
[A, ∂x] are still pseudo-differential operators of order −1. �

Lemma A.5. Recall (2.5). The following holds.

(i) If A � B and Δω,ω′A � Δω,ω′B for all ω �= ω′ ∈ O, we may choose the
modulo-tame constants of A so that

M
�,γ3/2

A (s) ≤M
�,γ3/2

B (s) .

(ii) Let A be a −1 modulo-tame operator with modulo-tame constant M
�,γ3/2

A (s).

Then the operator 〈Dx〉1/2
A〈Dx〉1/2

is majorant bounded Hs → Hs

‖〈Dx〉1/2
A〈Dx〉1/2‖L(Hs) ≤ 2M

�,γ3/2

A (s) , |Aj
j(0)|γ3/2 ≤ M

�,γ3/2

A (s0)〈j〉−1.

(iii) Suppose that 〈∂ϕ〉b0A, b0 ≥ 0, is −1 modulo-tame. Then the operator Π⊥NA is
−1 modulo-tame with modulo-tame constant

(A.10) M
�,γ3/2

Π⊥

NA
(s) ≤ min{N−b0M

�,γ3/2

〈∂ϕ〉b0A(s), M�,γ3/2

A (s)} .

(iv) Let A, B be two −1 modulo-tame operators with modulo-tame constants given by

M
�,γ3/2

A (s), M
�,γ3/2

B (s). Then A+B is −1 modulo-tame with modulo-tame constant

(A.11) M
�,γ3/2

A+B (s) ≤M
�,γ3/2

A (s) + M
�,γ3/2

B (s) .

The composed operator A ◦B is −1 modulo-tame with modulo-tame constant

(A.12) M
�,γ3/2

AB (s) ≤ C(s)
(
M

�,γ3/2

A (s)M�,γ3/2

B (s0) + M
�,γ3/2

A (s0)M
�,γ3/2

B (s)
)
.

Assume in addition that 〈∂ϕ〉b0A, 〈∂ϕ〉b0B are −1 modulo-tame operators with

modulo-tame constants M
�,γ3/2

〈∂ϕ〉b0A(s) and M
�,γ3/2

〈∂ϕ〉b0B(s) respectively, then 〈∂ϕ〉b0 (AB)
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is −1 modulo-tame with modulo-tame constant satisfying

M
�,γ3/2

〈∂ϕ〉b0 (AB)
(s) ≤ C(s, b0)

(
M

�,γ3/2

〈∂ϕ〉b0A
(s)M�,γ3/2

B (s0) + M
�,γ3/2

〈∂ϕ〉b0 A
(s0)M

�,γ3/2

B (s)

+ M
�,γ3/2

A (s)M�,γ3/2

〈∂ϕ〉b0B(s0) + M
�,γ3/2

A (s0)M
�,γ3/2

〈∂ϕ〉b0 B(s)
)

.(A.13)

Finally, for any k ≥ 1 we have, setting L = adk(A)B, ad(A)B := AB −BA:

(A.14)

M
�,γ3/2

〈∂ϕ〉b0 L
(s) ≤ C(s, b0)

k
[
(M�,γ3/2

A (s0))
k
M

�,γ3/2

〈∂ϕ〉b0B
(s)

+ k(M�,γ3/2

A (s0))
k−1

(
M

�,γ3/2

〈∂ϕ〉b0A
(s)M�,γ3/2

B (s0) + M
�,γ3/2

〈∂ϕ〉b0 A
(s0)M

�,γ3/2

B (s)
)

+ k(k − 1)(M�,γ3/2

A (s0))
k−2

M
�,γ3/2

A (s)M�,γ3/2

〈∂ϕ〉b0 A(s0)M
�,γ3/2

B (s0)
]
.

The same bound holds if we set L = AkB.

(v) Let Φ := I+A and assume, for some b0 ≥ 0, that A, 〈∂ϕ〉b0A are Lip–1-modulo
tame and the smallness condition

(A.15) 8C(S, b0)M
�,γ3/2

A (s0) < 1 , C(S, b0) = max
s0≤s≤S

C(s, b0)

holds. Then the operator Φ is invertible, Ǎ := Φ−1 − I is −1 modulo-tame together
with 〈∂ϕ〉b0A with modulo-tame constants

M
�,γ3/2

Ǎ
(s) ≤ 2M

�,γ3/2

A (s) ,(A.16)

M
�,γ3/2

〈∂ϕ〉b0 Ǎ
(s) ≤ 2M

�,γ3/2

〈∂ϕ〉b0 A(s) + 8C(S, b0)M
�,γ3/2

〈∂ϕ〉b0 A(s0)M
�,γ3/2

A (s) .(A.17)

Proof. In the following we shall systematically use the fact that if B is an
operator with matrix coefficients ≥ 1, then A � A ◦B = A ◦B = A ◦B. Note that
〈Dx〉1/2 is a diagonal operator with positive eigenvalues.

(i) Assume that A � B i.e. |Aj′

j (�)| ≤ |Bj′

j (�)| for all j, j′, �. Then, by (2.5),

‖〈Dx〉1/2
A〈Dx〉1/2

u‖s ≤ ‖〈Dx〉1/2
A〈Dx〉1/2

u‖s ≤ ‖〈Dx〉1/2
B〈Dx〉1/2

u‖s.

The same reasoning holds for 〈Dx〉1/2
Δω,ω′A〈Dx〉1/2

, so that the result follows.

(ii) The first bound is just a reformulation of the definition, indeed

sup
‖u‖s≤1

‖〈Dx〉1/2
A〈Dx〉1/2

u‖s ≤ sup
‖u‖s≤1

(M�,γ3/2

A (s0)‖u‖s + M
�,γ3/2

A (s)‖u‖s0)

≤ 2M
�,γ3/2

A (s).

In order to prove the second bound we notice that setting

Bj′

j (�) =

{
〈j〉Aj

j (0) � = 0 and j = j′,

0 otherwise,

we have B � 〈Dx〉1/2
A〈Dx〉1/2

, same for Δω,ω′B. Fix any j0 and consider the unit

vector u(j0) in Hs0(Tν+1) defined by uj,� = 0 if (j, �) �= (j0, 0) and uj0,0 = 〈j0〉−s0 .
We have by (2.5)

〈j0〉|Aj0
j0

(0)| = ‖Bu(j0)‖s0 ≤ ‖〈Dx〉1/2A〈Dx〉1/2u(j0)‖s0 ≤ M
�,γ3/2

A (s0).
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The same holds for γ3/2〈j0〉|Δω,ω′Aj0
j0

(0)|.
(iii) We remark that |Aj′

j (�)| ≤ N−b0〈�〉b0 |Aj′

j (�)| if |�| ≥ N and the same holds for

|Δω,ω′Aj′

j (�)|. Therefore we have

Π⊥NA � N−b0〈∂ϕ〉b0Π⊥NA � N−b0〈∂ϕ〉b0A
and clearly Π⊥NA � A and the result follows by (i). See also Lemma 2.27 of [11].
(iv) The computations involved in this proof are similar to the ones in Lemma 2.25
of [11]. For the first bound we just remark that

〈Dx〉1/2
(A + B)〈Dx〉1/2 � 〈Dx〉1/2

A〈Dx〉1/2
+ 〈Dx〉1/2

B〈Dx〉1/2
,

and the same for the Lipschitz variation, so that (A.11) follows. Regarding the
second we note that

〈Dx〉1/2
A ◦B〈Dx〉1/2 � 〈Dx〉1/2

A ◦B〈Dx〉1/2 �
� 〈Dx〉1/2

A〈Dx〉1/2 ◦ 〈Dx〉1/2
B〈Dx〉1/2

,

〈Dx〉1/2
Δω,ω′A ◦B〈Dx〉1/2 � 〈Dx〉1/2

Δω,ω′A〈Dx〉1/2 ◦ 〈Dx〉1/2
B〈Dx〉1/2

+ 〈Dx〉1/2
A〈Dx〉1/2 ◦ 〈Dx〉1/2

Δω,ω′B〈Dx〉1/2
,

so that (A.12) follows. For the third bound we note that

(A.18)

〈�〉b0
∑

j1,�1+�2=�

Aj1
j (�1)B

j′

j1
(�2)

≤ C(b0)
∑

j1,�1+�2=�

(〈�1〉b0 + 〈�2〉b0 )Aj1
j (�1)B

j′

j1
(�2)

and the same holds for Δω,ω′A ◦B and A ◦Δω,ω′B. Hence by (A.18)

〈Dx〉1/2〈∂ϕ〉b0 (A ◦B)〈Dx〉1/2 � C(b0)
(
〈Dx〉1/2〈∂ϕ〉b0A〈Dx〉1/2 ◦ 〈Dx〉1/2

B〈Dx〉1/2

+ 〈Dx〉1/2
A〈Dx〉1/2 ◦ 〈Dx〉1/2〈∂ϕ〉b0B〈Dx〉1/2

)
,

same for the Lipschitz variations. The result follows from the estimate on the
composition.

In order to prove (A.14) we note that

〈Dx〉1/2
adk(A)B〈Dx〉1/2 � adk

(
〈Dx〉1/2

A〈Dx〉1/2
)
)
〈Dx〉1/2

B〈Dx〉1/2
,

where ad(A)B := AB + BA, since adk(A)B � adk(A)B. Similarly

〈∂ϕ〉b0 〈Dx〉1/2
adk(A)B〈Dx〉1/2 � adk

(
〈Dx〉1/2

A〈Dx〉1/2
)
)
〈Dx〉1/2〈∂b0

ϕ 〉B〈Dx〉1/2

+
∑

k1+k2=k−1,
k1,k2≥0

adk1

(
〈Dx〉1/2

A〈Dx〉1/2
)
)

ad(〈Dx〉1/2〈∂b0
ϕ 〉A〈Dx〉1/2

)

adk2

(
〈Dx〉1/2

A〈Dx〉1/2
)
)
〈Dx〉1/2

B〈Dx〉1/2
.

Completely analogous bounds can be proved for the Lipschitz variations, by recalling
that

Δω,ω′ad(A)B = ad(Δω,ω′A)B(ω) + ad(A(ω′))Δω,ω′B.
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The result follows, by induction, from the estimate on the composition. The esti-
mate (A.14) when C = Ak ◦B follows in the same way using

〈∂ϕ〉b0 〈Dx〉1/2
(A)k ◦B〈Dx〉1/2 � (〈Dx〉1/2

A〈Dx〉1/2
)k ◦ 〈Dx〉1/2〈∂ϕ〉b0B〈Dx〉1/2

+
∑

k1+k2=k−1

(
〈Dx〉1/2

A〈Dx〉1/2
)
)k1

(
〈Dx〉1/2〈∂b0

ϕ 〉A〈Dx〉1/2
)
×

×
(
〈Dx〉1/2

A〈Dx〉1/2
)
)k2

〈Dx〉1/2
B〈Dx〉1/2

.

(v) follows by Neumann series, Ǎ =
∑

k≥1(−1)k Ak, and from (A.14) with L =

Ak ◦B, B = I. �

A.2. Pseudo differential operators. First of all we note that the norm
(1.23) satisfies

(A.19)
∀ s ≤ s′, α ≤ α′ ⇒ | · |γ,O

m,s,α ≤ | · |γ,O
m,s′,α, | · |γ,O

m,s,α ≤ | · |γ,O
m,s,α′

m ≤ m′ ⇒ | · |γ,O
m′,s,α ≤ | · |

γ,O
m′,s,α.

In the following lemma we collect properties of pseudo differential operators which
will be used in the sequel. We remark that along the Nash-Moser iteration we
shall control the Lipschitz variation respect to the torus embedding i := i(ϕ) of
the terms of the linearized operator at i. Hence we consider pseudo differential
operators which depend on this variable.

Lemma A.6. Fix m, m′, m′′ ∈ R. Let i be a torus embedding. Consider symbols

a(i, λ, ϕ, x, ξ) ∈ Sm , b(i, λ, ϕ, x, ξ) ∈ Sm′

, c(λ, ϕ, x, ξ) ∈ Sm′′

, d(λ, ϕ, x, ξ) ∈ S0

which depend on λ ∈ O and i ∈ Hs in a Lipschitz way. Set

A := Op(a(λ, ϕ, x, ξ)), B := Op(b(λ, ϕ, x, ξ)),

C := Op(c(λ, ϕ, x, ξ)), D := Op(d(λ, ϕ, x, ξ)).

Then one has
(i) for any α ∈ N, s ≥ s0,

(A.20)
|A ◦B|γ,O

m+m′ ,s,α ≤m,α C(s)|A|γ,O
m,s,α|B|γ,O

m′,s0+α+|m|,α

+ C(s0)|A|γ,O
m,s0,α|B|γ,O

m′,s+α+|m|,α.

One has also that, for any N ≥ 1, the operator RN := Op(rN ) with rN defined in
(2.11) satisfies

(A.21)
|RN |γ,O

m+m′−N,s,α ≤m,N,α
1

N !

(
C(s)|A|γ,O

m,s,α+N |B|
γ,O
m′,s0+2N+α+|m|,α+

C(s0)|A|γ,O
m,s0,α+N |B|

γ,O
m′,s+2N+α+|m|,α

)
;
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(A.22)

|Δ12RN [i1 − i2]|γ,O
m+m′−N,s,α

≤m,N,α
1

N !

(
C(s)|Δ12A[i1 − i2]|γ,O

m,s,α+N |B|
γ,O
m′,s0+2N+α+|m|,α+

C(s0)|Δ12A[i1 − i2]|γ,O
m,s0,α+N |B|

γ,O
m′,s+2N+α+|m|,α

)
+

1

N !

(
C(s)|A|γ,O

m,s,α+N |Δ12B[i1 − i2]|γ,O
m′,s0+2N+α+|m|,α

+ C(s0)|A|γ,O
m,s0,α+N |Δ12B[i1 − i2]|γ,O

m′,s+2N+α+|m|,α

)
;

(ii) the adjoint operator C∗ := Op(c∗(λ, ϕ, x, ξ)) in (2.13) satisfies

(A.23) |C∗|γ,O
m′′,s,0 ≤m |C|γ,O

m′′,s+s0+|m′′ |,0;

(iii) consider the map Φ := I + D, then there are constants C(s0, α), C(s, α) ≥ 1
such that if

(A.24) C(s0, α)|D|γ,O
0,s0+α,α ≤

1

2
,

then, for all λ, the map Φ is invertible and Φ−1 ∈ OPS0 and for any s ≥ s0 one
has

(A.25) |Φ−1 − I|γ,O
0,s,α ≤ C(s, α)|D|γ,O

0,s+α,α.

Proof. Item (i) and (iii) are proved respectively in Lemmata 2.13 and 2.17
of [11]. The estimates (A.20) and (A.21) are proved in Lemma 2.16 of [11]. The
bound (A.22) is obtained following the proof of Lemma 2.16 of [11] and exploiting
the Leibniz rule. �

Remark A.1. When the domain of parameters O depends on the variable
i then we are interested in estimating the variation Δ12A := A(i1) − A(i2) on
O(i1) ∩ O(i2) instead of the derivative ∂i. The bound (A.22) holds also for Δ12 by
replacing i1 − i2 � ı̂.

Commutators. By formula (2.11) the commutator between two pseudo differential
operators

A := Op(a(λ, ϕ, x, ξ)), B := Op(b(λ, ϕ, x, ξ)) with a ∈ Sm and b ∈ Sm′

, is a pseudo
differential operator such that

(A.26) [A, B] := Op(a � b), a � b(λ, ϕ, x, ξ) :=
(
a#b− b#a

)
(λ, ϕ, x, ξ).

The symbols a � b (called the Moyal parenthesis of a and b) admits the expansion

(A.27) a � b = −i{a, b}+ r2(a, b), {a, b} = ∂ξa∂xb− ∂xa∂ξb ∈ Sm+m′−1,

where

(A.28) r2(a, b) =
[
(a#b)− 1

i
∂ξa∂xb

]
−
[
(b#a)− 1

i
∂ξb∂xa

]
∈ Sm+m′−2.

Following Definition 2.7 we also set

(A.29)
a �k b := a#kb− b#ka, a �<N b :=

N−1∑
k=0

a �k b,

a �≥N b := a#≥Nb− b#≥Na.
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As a consequence, using bounds (A.20) and (A.21), one has

|[A, B]|γ,O
m+m′−1,s,α ≤m,m′ C(s)|A|γ,O

m,s+2+|m′|+α,α+1|B|
γ,O
m′,s0+2+α+|m|,α+1

+ C(s0)|A|γ,O
m,s0+2+|m′|+α+1,α+1|B|

γ,O
m′,s+2+α+|m|,α+1.(A.30)

The last inequality is proved in Lemma 2.15 of [11].
We now give a lemma on symbols defined on Td. Recalling Definition 1.1 and

(1.16) we define

(A.31) |Aw|m,s,α := sup
ξ∈Rd

max
0≤|�α1|≤α

‖∂�α1

ξ Aw‖s〈ξ〉−m+|�α1|,

we recall the notation

∂�α
y :=

d∏
i=1

∂α(i)

yi
, �α := (α(1), . . . , α(d)).

Lemma A.7. Let O be a compact subset of Rν . Let p = pλ as in the previous
lemma, let A be the linear operator defined for all w = wλ(x, ξ) ∈ Sm(Td), λ ∈ O,
as

Aw = w(f(x), g(x)ξ), f(x) := x + p(x), g(x) = (I + Dp)−1, x ∈ T
d, ξ ∈ R

d

such that ‖p‖γ,O
2s0+2 < 1. Then A is bounded, namely Aw ∈ Sm, with

(A.32) |Aw|γ,O
m,s,α ≤s,m,α |w|γ,O

m,s,α +
∑

k1+k2+k3=s,
k1<s,k1,k2,k3≥0,

k1+k2≥1

|w|γ,O
m,k1,α+k2

‖p‖γ,O
k3+s0+2.

Proof. We adopt the notation |·|Ws,∞ instead of |·|s,∞ (see estimate (A.1) in
[25]) in order to avoid confusion with the norm of the symbols. We also denote
with Ds

ξ the s-th Fréchet derivative with respect to ξ.
We study

Dα
ξ Dsw(f, gξ) =

s∑
k=1

k∑
r=0,P

(ji+ni)=s

Ckrjn ×

× (Dk−r+α
ξ Drw)[Dj1f, . . . , Djrf, Dn1g ξ, . . . , Dnk−rg ξ, g, . . . , g︸ ︷︷ ︸

α times

](A.33)

where j := (j1, . . . , jr), n := (n1, . . . , nk−r). In the following formulas we shall
denote g, . . . , g︸ ︷︷ ︸

α times

by gα. For k = 1 and r = 0 we get from the expression (A.33) (and

estimating |g|L∞ ≤ 2)

(A.34) ‖(D1+α
ξ w)[Dsg ξ, gα]‖L2(Td) ≤α |w|m,0,α+1|D2p|Ws−1,∞

and for r = 1

(A.35) ‖(Dα
ξ Dw)[Dsf, gα]‖L2(Td) ≤α |w|m,1,α|D2p|Ws−2,∞ .
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For k = s we have that ji = ni = 1 for all i and we get from (A.33)

(A.36)

‖
s∑

r=0

(Ds−r+α
ξ Drw)[Df, . . . , Df︸ ︷︷ ︸

r times

, Dg ξ, . . . , Dg ξ︸ ︷︷ ︸
s−r times

, gα]‖L2(Td)

≤
s∑

r=0

|w|m,r,α+(s−r)|f |rW1,∞ |D2p|s−r
L∞

≤s

∑
s1+p=s,
s1,p≥0

|w|m,s1,α+p|D2p|pL∞ ≤s |w|m,s,α

+
∑

s1+p=s,
s1,p≥0,s1<s

|w|m,s1,α+p|D2p|L∞.

It remains to estimate
s−1∑
k=2

k∑
r=0,P

(ji+ni)=s

Ckrjn (Dk−r+α
ξ Drw)[Dj1f, . . . , Djrf, Dn1g ξ, . . . , Dnk−rg ξ, gα].

We call � ≥ 1 the number of indices ji that are ≥ 2 and we rename these ones σi.
Then

∑
i(σi + ni) = s − (k − �) = s− k + �. The L2-norm of the term above can

be estimated by

s−1∑
k=2

k∑
r=0

∑
�≥1

|w|m,r,α+(k−r)|Df |k−�
L∞ |Dσ1f |L∞ . . . |Dσ�f |L∞ |Dn1g|L∞ . . . |Dnk−rg|L∞

≤s

s−1∑
k=2

k∑
r=0

∑
�≥1

|w|m,r,α+(k−r)|Dσ1−2D2p|L∞ . . . |Dσ�−2D2p|L∞×

× |Dn1−1D2p|L∞ . . . |Dnk−r−1D2p|L∞

≤s

s−1∑
k=2

k∑
r=0

∑
�≥1

|w|m,r,α+(k−r)|D2p|k+�−r−1
L∞ |D2p|Ws−2k−�+r,∞

≤s

s−1∑
k=2

k∑
r=0

|w|m,r,α+(k−r)|D2p|Ws−k−1,∞

≤
∑

s1+p+s3=s−1,
s>s1,p,s3≥0

|w|m,s1,α+p|D2p|Ws3,∞ .

Then by the last inequality, (A.34), (A.35), (A.36) we have (A.32) for |Aw|m,s,α.
For the Lipschitz variation we observe that

(A.37) Δλ,λ′(w(λ, f(λ), g(λ)ξ)) = A(Δλ,λ′w) + ADw[Δλ,λ′f ] + ADξw[Δλ,λ′g ξ].

One follows exactly the strategy above but considering s − 1 derivatives instead
of s (recall (1.23)). This is important since in formula (A.37) we have one extra
derivative either in x or ξ. �

Appendix B. Pseudo differential calculus and the classes of remainders

B.1. Properties of the smoothing remainders. In the first step of our
reduction procedure in order to prove Theorem 3.4 we need to work with operators
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which are pseudo differential up to a remainder in the class Lρ. In the following we
shall study properties of such operators under composition, inversion etc...

The following Lemma guarantees that the class of operators in Def. 2.8 is closed
under composition.

Lemma B.1. If A and B belong to Lρ,p, for ρ ≥ 3 (see Def. 2.8) , then
A ◦B ∈ Lρ,p and, for s0 ≤ s ≤ S,

(B.1) M
γ
A◦B(s, b) ≤s,ρ

∑
b1+b2=b

(Mγ
A(s0, b1)M

γ
B(s, b2) + M

γ
A(s, b1)M

γ
B(s0, b2)) ,

for 0 ≤ b ≤ ρ− 2, and

(B.2)

MΔ12(A◦B)(p, b)

≤p,ρ

∑
b1+b2=b

(
MΔ12A(p, b1)MB(p, b2) + MA(p, b1)MΔ12B(p, b2)

)
,

for 0 ≤ b ≤ ρ− 3.

Proof. We start by noting that M
γ
A◦B(−ρ, s) defined in (2.15) with A � A◦B

is controlled by the r.h.s. of (B.1). Let m1, m2 ∈ R, m1 , m2 ≥ 0 and m1 + m2 = ρ.
We can write

〈Dx〉m1A ◦B〈Dx〉m2 = 〈Dx〉m1A〈Dx〉m2 〈Dx〉−ρ〈Dx〉m1B〈Dx〉m2 .

By hypothesis we know that A belongs to the class Lρ, hence by (i) of Definition
2.8 one has that 〈Dx〉m1A〈Dx〉m2 is a 0−tame operator. For the same reason
also 〈Dx〉m1B〈Dx〉m2 is a 0−tame operator. Note also that, since ρ ≥ 0, then
〈Dx〉−ρ : Hs(Tν+1) → Hs(Tν+1) is a 0−tame operator. Hence, using Lemma A.1
for any u ∈ Hs one has

(B.3)

‖〈Dx〉m1A ◦B〈Dx〉m2u‖s ≤s (MA(−ρ, s)MB(−ρ, s0)

+ MA(−ρ, s0)MB(−ρ, s))‖u‖s0

+ MA(−ρ, s0)MB(−ρ, s0)‖u‖s,

where MA(−ρ, s), MB(−ρ, s) are defined in (2.15). Then we may set

MA◦B(−ρ, s) = C(s)
(
MA(−ρ, s)MB(−ρ, s0) + MA(−ρ, s0)MB(−ρ, s)

)
.

Reasoning as in (B.3) one can check that

M
γ
A◦B(−ρ, s) ≤ C(s)

(
M

γ
A(−ρ, s)Mγ

B(−ρ, s0) + M
γ
A(−ρ, s0)M

γ
B(−ρ, s)

)
.

Let us study the operator ∂�b
ϕ(A ◦B) for �b ∈ Nν and |�b| ≤ ρ− 2. We have

(B.4) ∂
�b
ϕ(A ◦B) =

∑
�b1+ �b2=�b

(∂
�b1
ϕ A)(∂

�b2
ϕ B).

We show that any summand in (B.4) satisfies item (i) of Def. (2.8). Let m1, m2 ∈R,

m1, m2 ≥ 0 and m1 + m2 = ρ− |�b|. We write

〈Dx〉m1 (∂
�b1
ϕ A)(∂

�b2
ϕ B)〈Dx〉m2 =

= 〈Dx〉m1 (∂
�b1
ϕ A)〈Dx〉y〈Dx〉−y−w〈Dx〉w(∂

�b2
ϕ B)〈Dx〉m2
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with y := ρ−| �b1|−m1, w = ρ−| �b2|−m2 and note that −y−w =−ρ ≤ 0. Moreover

m1 + y = ρ− | �b1|, and w +m2 = ρ− | �b2|. Hence the operators 〈Dx〉m1(∂ �b1
ϕ A)〈Dx〉y

and 〈Dx〉w(∂ �b2
ϕ b)〈Dx〉m2 are Lip-0-tame operator. Hence, using Lemma A.1 one has

‖〈Dx〉m1 (∂
�b1
ϕ A)(∂

�b2
ϕ B)〈Dx〉m2‖γ,O

s ≤
≤ M

γ

∂
�b1
ϕ A

(−ρ + | �b1|, s)Mγ

∂
�b2
ϕ B

(−ρ + | �b2|, s0)‖u‖s0(B.5)

+ M
γ
A(−ρ + | �b1|, s0)M

γ
B(−ρ + | �b2|, s)‖u‖s0

+ M
γ
A(−ρ + | �b1|, s0)M

γ
B(−ρ + | �b2|, s0)‖u‖s,

for u ∈ Hs. We can conclude that M
γ

∂�b
ϕ(A◦B)

(−ρ + |�b|, s) is controlled by the r.h.s.

of (B.1). Regarding the operator [A ◦B, ∂x] we reason as follows. We prove that

(B.6) [A ◦B, ∂x] = A[B, ∂x] + [A, ∂x]B.

satisfies item (ii) of Definition (2.8). Let m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 =
ρ− 1. Moreover

〈Dx〉m1 [A, ∂x]B〈Dx〉m2 = 〈Dx〉m1 [A, ∂x]〈Dx〉y〈Dx〉−y−z〈Dx〉zB〈Dx〉m2 ,

with y = ρ− 1−m1, z = ρ−m2. Hence by definition (see Def. (2.8)) we have that
the operators 〈Dx〉m1 [A, ∂x]〈Dx〉y and 〈Dx〉zB〈Dx〉m2 are Lip-0−tame. Thus one
can conclude, as done above, that M[A,∂x]B(−ρ + 1, s) is controlled by the r.h.s. of
(B.1). One can reason in the same way for the first summand in (B.6) and for the

operator [∂
�b
ϕ(AB), ∂x]. This proves (B.1).

Let us study the term

(B.7) Δ12(A ◦B) = (Δ12A)B(I2) + A(I1) (Δ12B).

By definition both 〈Dx〉m1Δ12A〈Dx〉m2 , 〈Dx〉m1Δ12B〈Dx〉m2 with m1 +m2 = ρ−1
are bounded operators on Hs (see (2.21) and Def. 2.1). In order to prove (B.2)
one can bound the two summand in (B.7) by following the same procedure used to
prove (B.1). �

The next Lemma shows that, if ρ ≥ 3, OPS−ρ ⊂ Lρ,p (see Section 2 for the
definition of OPSm).

Lemma B.2. Fix ρ ≥ 3 and consider a symbol a = a(ω, I(ω)) in S−ρ depending
on ω ∈ O ⊂ Rν and on I in a Lipschitz way. One has that A := op(a(ϕ, x, ξ)) ∈ Lρ,p

(see 2.8) and

(B.8) M
γ
A(s, b) ≤s,ρ |a|γ,O

−ρ,s+ρ,0, MΔ12A(p, b) ≤p,ρ |Δ12a|−ρ,p+ρ,0.

Proof. Let m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ. We need to show
that 〈Dx〉m1A〈Dx〉m2 satisfies item (i) of Definition 2.8. By definition it is the
composition of three pseudo differential operators hence, by Lemma A.3 and by
formula (A.20) of Lemma A.6 one has that

(B.9)

M
γ
〈Dx〉m1 A〈Dx〉m2 (0, s) ≤s |〈Dx〉m1A〈Dx〉m2 |γ,O

0,s,0

≤s |〈Dx〉m1 |m1,s,0|a|γ,O
−ρ,s+|m1|,0

|〈Dx〉m2 |m2,s+|m1|+ρ,0

≤s |a|γ,O
−ρ,s+|m1|,0

This means that
M

γ
A(−ρ, s) ≤s |a|γ,O

−ρ,s+ρ,0.
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Secondly we consider the operator (∂
�b
ϕop(a(ϕ, x, ξ))) = op(∂

�b
ϕa(ϕ, x, ξ)) for �b ∈ N

ν

and |�b| ≤ ρ− 2. It is pseudo differential and its symbol ∂�b
ϕa(ϕ, x, ξ) is such that

|∂�b
ϕa|γ,O

−ρ,s,α ≤ |a|γ,O

−ρ,s+|�b|,α
.

Following the same reasoning used in (B.9) (recall that m1 + m2 = ρ − |�b|) one
obtains

M
γ

∂�b
ϕA

(−ρ + |�b|, s) ≤s |a|γ,O

−ρ,s+|�b|+(ρ−|�b|),0
= C(s) |a|γ,O

−ρ,s+ρ,0.

The operator [A, ∂x] = A∂x − ∂xA can be treated in the same way, discussing
each of the two summands separately, (we are not taking advantage of the pseudo
differential structure in order to control the order of the commutator), with m1 +
m2 = ρ− 1,

M
γ
〈Dx〉m1 ∂xA〈Dx〉m2

(0, s) ≤s |〈Dx〉m1∂xA〈Dx〉m2 |γ,O
0,s,0 ≤s |a|γ,O

−ρ,s+ρ,0.

The same strategy holds for [∂�b
ϕA, ∂x] Hence one gets the first of (B.8). The sec-

ond bound in (B.8) can be obtained by noting that Δ12A = op(Δ12a)[·] and then
following almost word by word the discussion above. �

The next Lemma shows that Lρ,p is closed under left and right multiplication
by operators in S0.

Lemma B.3. Let a ∈ S0 and B ∈ Lρ,p, then Op(a) ◦ B, B ◦Op(a) ∈ Lρ,p and
satisfy the bounds

M
γ
Op(a)◦B(s, b) ≤s,ρ |a|γ,O

0,s+ρ,0M
γ
B(s0 , b) + |a|γ,O

0,s0+ρ,0M
γ
B(s, b),(B.10)

MΔ12(Op(a)◦B)(p, b) ≤p,ρ |Δ12a|1,p+ρ,0MB(p, b) + |a|0,p+ρ,0MΔ12B(p, b) ,

for all s0 ≤ s ≤ S. Moreover if B ∈ Lρ+1,p then ∂ϕmB, [∂x, B], m = 1, . . . , ν, are
in Lρ,p and satisfy the bounds

(B.11)
M

γ
∂ϕm B(s, b), M

γ
[∂x,B](s, b) ≤ M

γ
B(s, b + 1) , 0 ≤ b ≤ ρ− 2

M∂ϕmΔ12B(p, b), M[∂x,Δ12B](p, b) ≤ MΔ12B(p, b + 1) , 0 ≤ b ≤ ρ− 3

for all s0 ≤ s ≤ S. Note that in (B.11) the constants in the right hand side control
the tameness constants of B as an element of Lρ+1,p.

Proof. We start by studying the Lip-0-tame norm of

〈Dx〉m1∂
�b1
ϕ Op(a) ◦ ∂

�b2
ϕ B〈Dx〉m2 = 〈Dx〉m1∂

�b1
ϕ Op(a)〈Dx〉−m1 ◦ 〈Dx〉m1∂

�b2
ϕ B〈Dx〉m2 ,

with |�b1|+ |�b2| = |�b| and m1 + m2 = ρ− |�b|. By Lemma A.3 and formula (A.20)

M
γ

〈Dx〉m1 ∂
�b1
ϕ Op(a)〈Dx〉−m1

(0, s) ≤s |a|γ,O

0,s+|�b1|+m1,0
≤s |a|γ,O

0,s+ρ,0 ,

hence by Lemma A.1 we have

M
γ

〈Dx〉m1 ∂�b
ϕ(Op(a)B)〈Dx〉m2

(−ρ+ |�b|, s) ≤s,ρ |a|γ,O
0,s+ρ,0M

γ
B(s0 , b)+ |a|γ,O

0,s0+ρ,0M
γ
B(s, b) .

Regarding

〈Dx〉m1∂
�b
ϕ[∂x, Op(a)B]〈Dx〉m2 =〈Dx〉m1∂

�b
ϕ([∂x, Op(a)]B)〈Dx〉m2

+ 〈Dx〉m1∂
�b
ϕ(Op(a)[∂x, B])〈Dx〉m2
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we only need to consider the first summand as the second can be discussed exactly as
above. Recalling that by definition m1+m2 = ρ−|�b|−1 we write for |�b1|+|�b2| = |�b|
and m1 + m2 = ρ− |�b|

〈Dx〉m1∂
�b1
ϕ [∂x, Op(a)]∂

�b2
ϕ B〈Dx〉m2 =

= 〈Dx〉m1∂
�b1
ϕ [∂x, Op(a)]〈Dx〉−m1−1〈Dx〉m1+1∂

�b2
ϕ B〈Dx〉m2

and the result follows by recalling that

M
γ

〈Dx〉m1 ∂
�b1
ϕ [∂x,Op(a)]〈Dx〉−m1−1

(0, s) ≤s |a|γ,O

0,s+|�b1|+m1,0
≤s |a|γ,O

0,s+ρ,0 .

The bounds (B.11) follows by the fact that ∂�b
ϕ∂ϕm = ∂�b0

ϕ with |�b0| = |�b| + 1 and

M
γ
A(s, b) ≤ M

γ
A(s, b + 1) if A ∈ Lρ+1,p. �

The next Lemma gives a canonical way to write the composition of two pseudo
differential operators as a pseudo differential operator plus a remainder in Lρ,p.
Of course Lemma A.6 says that such a composition is itself a pseudo differential
operator, so in principle one could take the remainder to be zero. The purpose of
this Lemma is to get better bounds with respect to (A.20), the price to pay is that
we do not control the symbol of the composition but only an approximation up to
a smoothing remainder of order −ρ.

Lemma B.4 (Composition). Let a = a(ω) ∈ Sm, b = b(ω) ∈ Sm′

be defined
on some compact subset O ⊂ Rν with m, m′ ∈ R and consider any ρ ≥ max{−(m+
m′ + 1), 3}. Assume also that a and b depend in a Lipschitz way on the parameter
I. There exist an operator Rρ ∈ Lρ,p such that (recall Definition (2.7)) setting
N = m + m′ + ρ ≥ 1

Op(a#b) = Op(c) + Rρ, c := a#<Nb ∈ Sm+m′

where

(B.12)
|c|γ,O

m+m′,s,α ≤s,ρ,α,m,m′ |a|γ,O
m,s,N−1+α|b|

γ,O
m′,s0+N−1,α

+ |a|γ,O
m,s0,N−1+α|b|

γ,O
m′,s+N−1,α,

(B.13)
M

γ
Rρ

(s, b) ≤s,ρ,m,m′ |a|γ,O
m,s+ρ,N |b|

γ,O
m′,s0+2N+|m|,0

+ |a|γ,O
m,s0,N |b|

γ,O
m′,s+ρ+2N+|m|,0

.

for all 0 ≤ b ≤ ρ− 2 and s0 ≤ s ≤ S. Moreover one has

(B.14)
|Δ12c|m+m′,p,α ≤p,α,ρ,m,m′ |Δ12a|m,p,N−1+α|b|m′,p+N−1,α

+ |a|m,p,N−1+α|Δ12b|m′,p+N−1,α

(B.15)
MΔ12Rρ(p, b) ≤p,ρ,m,m′ |Δ12a|m+1,p+ρ,N |b|m′,p+2N+|m|,0

+ |a|m,p+ρ,N |Δ12b|m′+1,p+2N+|m|,0 .

for all 0 ≤ b ≤ ρ− 3 and where p is the constant given in Definition 2.8.

Proof. To shorten the notation we write ‖·‖s := ‖·‖γ,O
s . For β ∈ R, using

formula (2.11) and by the tameness of the product, we have

‖∂β
ξ c‖s ≤s

N−1∑
k=0

1

k!

∑
β1+β2=β

Cβ1β2

(
‖∂β1+k

ξ a‖s ‖∂β2

ξ ∂k
xb‖s0 + ‖∂β1+k

ξ a‖s0 ‖∂β2

ξ ∂k
xb‖s

)
.
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Thus, recalling (1.16), one gets

|c|m+m′ ,s,α ≤s,α

≤s,α

N−1∑
k=0

1

k!
sup
ξ∈R

(
max

0≤β1≤α
‖∂β1+k

ξ a‖s〈ξ〉−m+β1 max
0≤β2≤α

‖∂β2

ξ ∂k
xb‖s0〈ξ〉−m′+β2

+ max
0≤β1≤α

‖∂β1+k
ξ a‖s0〈ξ〉−m+β1 max

0≤β2≤α
‖∂β2

ξ ∂k
xb‖s〈ξ〉−m′+β2

)
,

which implies (B.12). In the same way we obtain the bound (B.14) by using the
following fact

Δ12(∂
k
ξ a ∂k

xb) = ∂k
ξ (Δ12a) ∂k

xb + ∂k
ξ a ∂k

x(Δ12b).

We remark that Rρ is the pseudo differential operator RN considered in Lemma
A.6 (recall N = m + m′ + ρ). By Lemma B.2

M
γ
Rρ

(B.8)

≤ s,ρ,m,m′ |Rρ|−ρ,s+ρ,0

then by formula (A.21) of Lemma A.6 we get the bounds (B.13). The bounds
(B.15), follow in the same way. �

Remark B.1. Note that if m + m′ ≤ −ρ ≤ −3 then by Lemma B.2 Op(a) ◦
Op(b) ∈ Lρ,p.

Lemma B.5. Fix ρ ≥ 3 and n ∈ N, n < ρ. Let a ∈ S−1 depending in a
Lipschitz way on a parameter i. Then there exist a symbol c(n) ∈ S−n and a

operator R
(n)
ρ ∈ Lρ,p such that

(B.16) Op(a)n = Op(c(n)) + R(n)
ρ .

Moreover the following bounds hold

(B.17)
|c(n)|γ,O

−n,s,α

≤n,s,α,ρ |a|γ,O
−1,s+(n−1)(ρ−3),α+ρ−3

(
|a|γ,O
−1,s0+(n−1)(ρ−3),α+ρ−3

)n−1
,

|Δ12c
(n)|−n,p,α,ρ ≤ |Δ12a|−1,p+(n−1)(ρ−3),α+ρ−3|a|n−1

−1,p+(n−1)(ρ−3),α+ρ−3,(B.18)

M
γ

R
(n)
ρ

(s, b) ≤s,ρ,b,n |a|γ,O
−1,s+n(ρ−3)+ρ,ρ−2

(
|a|γ,O
−1,s0+n(ρ−3)+ρ,ρ−2

)n−1
,(B.19)

M
Δ12R

(n)
ρ

(p, b) ≤p,n,b |Δ12a|0,p+n(ρ−3)+ρ,ρ−2

(
|a|−1,p+n(ρ−3)+ρ,ρ−2

)n−1
,(B.20)

for all s0 ≤ s ≤ S and where p is the constant given in Definition 2.8.

Proof. We define c(1) := a ∈ S−1 , and, for n ≥ 2,

c(n) := a#<ρ−2c
(n−1), R(n)

ρ :=

n−2∑
k=0

[Op(a)]kOp(a#≥ρ−2c
(n−k−1)).

By using Lemma B.4 we have that (B.17) is satisfied for n = 2. Now given (B.17)
for n we prove it for n + 1. For simplicity we write ≤n,s,α=≤. We have

|a#<ρ−2c
(n)|γ,O

−n−1,s,α ≤ |a|γ,O
−1,s,α+ρ−3|c(n)|γ,O

−n,s0+ρ−3,α

+ |a|γ,O
−1,s0,α+ρ−3|a(n)|γ,O

−n,s+ρ−3,α

≤ |a|γ,O
−1,s+n(ρ−3),α+ρ−3

(
|a|γ,O
−n,s0+n(ρ−3),α+ρ−3

)n
,

hence (B.17) is proved. Arguing as above one can prove (B.18).
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Now fix 2 ≤ k ∈ N and define rk := a#≥ρ−2c
(k−1) ∈ S−ρ. We apply repeatedly

(B.10) in oder to get

M
γ
Rk

(s, b) ≤s,ρ,b (|a|γ,O
−1,s0+ρ,0)

k−1
(
|a|γ,O
−1,s+ρ,0M

γ
Op(rn−k)(s0 , b)

+|a|γ,O
−1,s0+ρ,0M

γ
Op(rn−k)(s, b)

)
,

with Rk := (Op(a)kOp(rn−k)). Now by Lemma B.2 we have that for all k ≥ 2

M
γ
Op(rk)(s, b) ≤s,ρ,b |rk|γ,O

−ρ,s+ρ,0

Now by (A.21) with m = −1, m′ = −k + 1, N = ρ− 2 we have

|rk|γ,O
−ρ,s,0 ≤ |rk|γ,O

−ρ−k+2,s,0

(B.17)

≤ |a|γ,O
−1,s+k(ρ−3),ρ−2(|a|

γ,O
−1,s0+k(ρ−3),ρ−2)

k−1

Then

M
γ

R
(n)
ρ

(s, b) ≤s,ρ,b |a|γ,O
−1,s+n(ρ−3)+ρ,ρ−2

(
|a|γ,O
−1,s0+n(ρ−3)+ρ,ρ−2

)n−1
.

We follow the same strategy in order to study the operator

Δ12

(
Op(a)kRρ(n−k)

)
= kOp(a)k−1Op(Δ12a)Rρ(n−k) + Op(a)kΔ12Rρ(n−k)

and we get (B.20). �

Remark B.2. Note that if n ≥ ρ ≥ 3 and a ∈ S−1 then Op(a)n ∈ Lρ,p, by
Lemma B.2.

Corollary B.6. Let a ∈ S−1 and consider I − (Op(a) + T ), where T ∈ Lρ,p

(recall Def. 2.8) with ρ ≥ 3. There exist a constant C(S, α, ρ) such that if

(B.21) C(S, α, ρ)
(
|a|γ,O
−1,p+(ρ−1)(ρ−2)+3,ρ−2 + M

γ
T (s0, b)

)
< 1,

where S is a fixed constant appearing in the Def. 2.8, then I − (Op(a) + T ) is
invertible and

(B.22) (I − (Op(a) + T ))−1 = I + Op(c) + Rρ

where

(B.23)
|c|γ,O
−1,s,α ≤s,α,ρ |a|γ,O

−1,s+(ρ−2)(ρ−3),α+ρ−3,

|Δ12c|−1,s,α ≤ |Δ12a|−1,p+(ρ−2)(ρ−3),α+ρ−3

and Rρ ∈ Lρ,p with

(B.24) M
γ
Rρ

(s, b) ≤ |a|γ,O
−1,s+(ρ−1)(ρ−2)+3,ρ−2 + M

γ
T (s, b), 0 ≤ b ≤ ρ− 2,

(B.25) MΔ12Rρ (p, b) ≤ |Δ12a|−1,p+(ρ−1)(ρ−2)+3,ρ−2+MΔ12T (p, b) , 0 ≤ b ≤ ρ−3,

for all s0 ≤ s ≤ S.
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Proof. To shorten the notation we write |·|γ,O
m,s,α = |·|m,s,α. We have by (B.21)

and Neumann series

(I− (Op(a) + T ))−1 = I +
∑
n≥1

(Op(a) + T )n

= I +

ρ−1∑
n=1

(
Op(a)n +

∞∑
n=1

R̃(n)
ρ

)
+
∑
n≥ρ

Op(a)n

= I +

ρ−1∑
n=1

(
Op(c(n)) + R(n)

ρ + R̃(n)
ρ

)
+
∑
n≥ρ

(
Op(a)n + R̃(n)

ρ

)
where R̃

(n)
ρ := (Op(a) + T )n −Op(a)n and c(n) and R

(n)
ρ are given by Lemma B.5

(and we are setting R
(1)
ρ = 0). We define the symbol c and the operator Rρ in

(B.22) as

(B.26) c :=

ρ−1∑
n=1

c(n), Rρ :=

ρ−1∑
n=1

(R(n)
ρ + R̃(n)

ρ ) +
∑
n≥ρ

R̃(n)
ρ +

∑
n≥ρ

Op(a)n.

By using (B.17) we get

|c|−1,s,α ≤s,α,ρ

ρ−1∑
n=1

|a|−1,s+(n−1)(ρ−3),α+ρ−3

(
|a|−1,s0+(n−1)(ρ−3),α+ρ−3

)n−1

which implies the first of (B.23). The second one in (B.23) is obtained as above by
using (B.18). The bounds (B.24), (B.25) on Rρ in (B.26) can be proved similarly
by using Lemmata B.2, B.3, B.4 and B.5.
In order to bound the I variation we note

Δ12(1− (Op(a) + T ))−1 =

− (1 − (Op(a) + T ))−1(Op(Δ12a) + Δ12T )(1 − (Op(a) + T ))−1 ,

and proceed as above. �

B.2. The torus diffeomorphism. In this Section we wish to study conjuga-
tion of elements of Lρ under the action of the map Aτ introduced in (3.5). We first
give some properties of Aτ defined in (3.3).

Lemma B.7. Assume that β := β(ω, I(ω)) ∈ Hs(Tν+1) for some s ≥ s0, is

Lipschitz in ω ∈ O ⊆ Ωε and Lipschitz in the variable i. If ‖β‖γ,O
s0+μ ≤ 1, for some

μ � 1, then, for any s ≥ s0 and u ∈ Hs with u = u(ω) depending in a Lipschitz
way on ω ∈ O, one has

(B.27) sup
τ∈[0,1]

‖Aτu‖γ,O
s , sup

τ∈[0,1]

‖(Aτ )∗u‖γ,O
s ≤s

(
‖u‖γ,O

s + ‖β‖γ,O
s+σ‖u‖γ,O

s0

)

(B.28)

sup
τ∈[0,1]

‖(Aτ − I)u‖γ,O
s , sup

τ∈[0,1]

‖((Aτ )∗ − I)u‖γ,O
s ≤s

≤x

(
‖β‖γ,O

s0+σ‖u‖γ,O
s+1 + ‖β‖γ,O

s+σ‖u‖γ,O
s0

)
for some σ = σ(s0) > 0. The inverse map (Aτ )−1 satisfies the same estimates but
with possibly larger σ.
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Proof. The bounds (B.27)-(B.28) in norm ‖ · ‖s follows by an explicit compu-
tation using the formula (3.3) and applying Lemma A.3 in Appendix A in [25]. If
β = β(ω) is a function of the parameters ω ∈ O, hence we need to study the term

(B.29) sup
ω1 �=ω2

‖(Aτ (ω1) −Aτ (ω2))u‖s−1

|ω1 − ω2|
in order to estimate the Lip-norm introduced in (1.22). We reason as follows. By
(3.3) we have for ω1, ω2 ∈ O

(Aτ (ω1)−Aτ (ω2))u = (1 + τβx(ω1))
[
u(ω1, x + β(ω1))− u(ω1, x + β(ω2))

]
+ (1 + τβx(ω1))

[
u(ω1, x + β(ω2)) − u(ω2, x + β(ω2))

]
(B.30)

+ τu(ω1, x + β(ω2))(βx(ω1)− βx(ω2)).

Using the estimates in Lemma A.3 in [25] and interpolation arguments we get

‖u(ω1, x + β(ω1)) − u(ω1, x + β(ω2))‖s−1 ≤s

≤s ‖β(ω1)− β(ω2)‖s0‖u‖s + ‖β(ω1)− β(ω2)‖s+1‖u‖s0

≤s

(
‖β‖γ,O

s+s0+1‖u‖γ,O
s0

+ ‖β‖γ,O
s0
‖u‖γ,O

s

)
|ω1 − ω2|.

The term we have estimated above is the most critical one among the summand
in (B.30). The other estimates follow by the fact that u(ω, ϕ, x) and β(ω, ϕ, x) are
Lipschitz functions of ω ∈ O. One can reason in the same way to get the estimates
on the inverse map (Aτ )−1 by recalling that it has the same form of Aτ (see (3.3))

and β = −Aτ β̃. �

Lemma B.8. Fix b ∈ N. For any α ∈ Nν , |α| ≤ b, m1, m2 ∈ R such that
m1 + m2 = |α|, for any s ≥ s0 there exists a constant μ = μ(|α|, m1, m2) and
δ = δ(m1 , s) such that if

(B.31) ‖β‖2s0+|m1|+2 ≤ δ, ‖β‖γ,O
s0+μ ≤ 1,

then one has

(B.32) sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕAτ (ϕ)〈Dx〉−m2u‖γ,O

s ≤s,b,m1,m2 ‖u‖s + ‖β‖γ,O
s+μ‖u‖s0.

The inverse map (Aτ )−1 satisfies the same estimate.

Proof. We prove the bound (B.32) for the ‖ · ‖s norm since one can obtain
the bound in the Lipschitz norm ‖ · ‖γ,O

s using the same arguments (recall also the
reasoning used in (B.30)). We take h ∈ C∞, so that ∂α

ϕAτ (ϕ)h ∈ C∞ for any

|α| ≤ b and we prove the bound (B.32) in this case. The thesis will follows by
density.
We argue by induction on α. Given α ∈ Nν we write α′ � α if α′n ≤ αn for any
n = 1, . . . , ν and α′ �= α.
Let us check (B.32) for α = 0. Let us define Ψτ := 〈Dx〉mAτ (ϕ)〈Dx〉−m with
m = −m1 = m2. One has that Ψ0 := I (where I is the identity operator). One can
check that Ψτ solves the problem (recall (3.5))

(B.33) ∂τΨτ = XΨτ + GτΨτ ,

where Gτ := [〈Dx〉m, X] 〈Dx〉−m. Therefore by Duhamel principle one has

Ψτ = Aτ +Aτ

∫ τ

0

(At)−1GtΨt dt.
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By Lemma A.6 and (A.30) one has that |Gτ |0,s,0 ≤s ‖β‖s+m+3 , for s ≥ s0, hence
by estimate (B.27), Lemma A.3 we have

(B.34)

sup
τ∈[0,1]

‖Ψτh‖s ≤s ‖h‖s + ‖β‖s+σ‖h‖s0 + ‖β‖s0+m+3 sup
τ∈[0,1]

‖Ψτh‖s

+ (‖β‖s+m+3 + ‖β‖s+σ) sup
τ∈[0,1]

‖Ψτh‖s0

for some σ > 0 given in Lemma B.7. For δ in (B.31) small enough, then the (B.34)
for s = s0 implies that supτ∈[0,1] ‖Ψτh‖s0 ≤s0 ‖h‖s0. Using this bound in (B.34)

one gets the (B.32).
Now assume that the bound (B.32) holds for any α′ � α with |α| ≤ b and
m1, m2 ∈ R with m1 + m2 = |α′|. We now prove the estimate (B.32) for the
operator 〈Dx〉−m1∂α

ϕAτ (ϕ)〈Dx〉−m2 for m1 + m2 = |α|. Differentiating the (3.5)
and using the Duhamel formula we get that

(B.35)

∂α
ϕAτ (ϕ) =

∫ τ

0

Aτ (ϕ)(At(ϕ))−1F t
αdt,

F t
α :=

∑
α1+α2=α,
|α2|+1≤α

C(α1, α2) ∂x [(∂α1
ϕ b)∂α2

ϕ At(ϕ)].

For any m1 + m2 = |α| and any τ, s ∈ [0, 1] we write

(B.36)
〈Dx〉−m1∂x(∂α1

ϕ b)∂α2
ϕ At(ϕ)〈Dx〉−m2

= 〈Dx〉−m1∂x(∂α1
ϕ b)〈Dx〉−m2+|α2|〈Dx〉m2−|α2|∂α2

ϕ At(ϕ)〈Dx〉−m2 .

Hence in order to estimate the operator 〈Dx〉−m1Aτ (At(ϕ))−1F t
α〈Dx〉−m2 we need

to estimate, uniformly in τ, s ∈ [0, 1] the term

(B.37)

(
〈Dx〉−m1Aτ (At)−1〈Dx〉m1

)(
〈Dx〉−m1∂x(∂α1

ϕ b)〈Dx〉−m2+|α2|
)
×

×
(
〈Dx〉m2−|α2|∂α2

ϕ At(ϕ)〈Dx〉−m2

)
.

For s ≥ s0, by the inductive hypothesis one has

(B.38) ‖〈Dx〉−m1Aτ (At)−1〈Dx〉m1h‖s ≤s,m1 ‖h‖s + ‖β‖γ,O
s+μ‖h‖s0,

(B.39) ‖〈Dx〉m2−|α2|∂α2
ϕ At(ϕ)〈Dx〉−m2h‖s ≤s,b,m2 ‖h‖s + ‖β‖γ,O

s+μ‖h‖s0 .

provided that α1 �= 0. We estimate the second factor in (B.37). We first note that

−m1 −m2 + 1 + |α2| = 1 + |α2| − |α| ≤ 0.

This implies that 〈Dx〉−m1∂x(∂α1
ϕ b)〈Dx〉−m2+|α2| belongs to OPS0, and in partic-

ular, using Lemma A.6 and (A.19), we obtain

(B.40) |〈Dx〉−m1∂x(∂α1
ϕ b)〈Dx〉−m2+|α2||0,s,0 ≤b,m1,m2 ‖a‖γ,O

s+|m1|+|α2|
.

To obtain the bound (B.32) it is enough to use bounds (B.38), (B.39),(B.40), Lemma
A.3 and recall the smallness assumption (B.31).

About the estimate for the inverse of Aτ , we note that ∂τ (Aτ )−1 =
(
∂y ◦ b̃

)
(Aτ )−1

with b̃ := ∂τ β̃

1+β̃y
and ‖b̃‖s ≤ ‖β‖s+σ̃ for some σ̃ > 0. Then one can follow the same

arguments above with ∂y ◦ b̃ instead of X and b̃ instead of b. �
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Lemma B.9. Let b ∈ N and let p > 0 be the constant given in Def. 2.8. For
any |α| ≤ b, m1, m2 ∈ R such that m1 + m2 = |α|+ 1, for any s ≥ s0 there exists
a constant μ = μ(|α|, m1, m2), σ = σ(|α|, m1, m2) and δ = δ(s, m1) > 0 such that
if ‖β‖s0+μ ≤ δ and ‖β‖p+σ ≤ 1 then one has

(B.41) sup
τ∈[0,1]

‖〈Dx〉−m1∂α
ϕΔ12Aτ(ϕ)〈Dx〉−m2u‖p ≤s,b,m1,m2 ‖u‖p‖Δ12β‖p+μ .

The operators Δ12(Aτ )∗, Δ12(Aτ )−1 satisfy the same estimate.

Proof. The Lemma can be proved arguing as in the proof of Lemma B.8 using
(Aτ )∗ = (1 + τβ)−1Aτ . �

We have the following Lemma.

Lemma B.10. Fix ρ ≥ 3, consider O ⊂ Rν compact and let R ∈ Lρ,p(O) (see
Def. 2.8). Consider a function β such that β := β(ω, i(ω)) ∈ Hs(Tν+1) for some
s ≥ s0, assume that it is Lipschitz in ω ∈ O and i. Let Aτ be the operator defined
in (3.3). There exists μ = μ(ρ) � 1, σ = σ(ρ) and δ > 0 small such that if

‖β‖γ,O
s0+μ ≤ δ and ‖β‖γ,O

p+σ ≤ 1, then the operator M τ := AτR(Aτ )−1 belongs to the
class Lρ. In particular one has, for s0 ≤ s ≤ S,

(B.42) M
γ
Mτ (s, b) ≤ M

γ
R(s, b) + ‖β‖γ,O

s+μM
γ
R(s0, b), b ≤ ρ− 2

(B.43) MΔ12Mτ (p, b) ≤ MΔ12Rτ (p, b) + ‖Δ12β‖p+μM
γ
Rτ (p, b), b ≤ ρ− 3.

Proof. We start by showing that M τ satisfies item (i) of Definition 2.8. Let
m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ. We write

〈Dx〉m1M τ〈Dx〉m2 =

= 〈Dx〉m1Aτ 〈Dx〉−m1〈Dx〉m1R〈Dx〉m2 〈Dx〉−m2 (Aτ )−1〈Dx〉m2 .

Recall that by hypothesis the operator 〈Dx〉m1R〈Dx〉m2 is Lip-0-tame with con-
stants M

γ
R(−ρ, s) see (2.15). Lemma (B.8) implies the estimates

‖〈Dx〉m1Aτ (ϕ)〈Dx〉−m1u‖γ,O
s , ‖〈Dx〉−m2 (Aτ (ϕ))−1〈Dx〉m2u‖γ,O

s ≤s,ρ

≤s,ρ ‖u‖s + ‖β‖γ,O
s+μ‖u‖s0 ,

for τ ∈ [0, 1], which implies that 〈Dx〉m1M τ 〈Dx〉m2 is Lip-0−tame with constant

(B.44) M
γ
〈Dx〉m1 Mτ 〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(−ρ, s) + ‖β‖γ,O

s+μM
γ
R(−ρ, s0).

Hence M τ is Lip-(−ρ)-tame with constant

M
γ
Mτ (−ρ, s) = sup

m1+m2=ρ
m1,m2≥0

M
γ
〈Dx〉m1 Mτ 〈Dx〉m2

(0, s).

Fix b ≤ ρ− 2 and let m1, m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ− b. We note that
for any �b ∈ Nν with |�b| = b

(B.45) ∂
�b
ϕM =

∑
�b1+�b2+�b3=�b

C(| �b1|, | �b2|, | �b3|)(∂ �b1
ϕ Aτ )∂

�b2
ϕ R(∂

�b3
ϕ (Aτ )−1),

for some constants C(| �b1|, | �b2|, | �b3|) > 0, hence we need to show that each summand
in (B.45) satisfies item (i) of Definition 2.8. We write

(B.46)
〈Dx〉m1 (∂

�b1
ϕ Aτ )∂

�b2
ϕ R(∂

�b3
ϕ (Aτ )−1)〈Dx〉m2 =

= 〈Dx〉m1 (∂
�b1
ϕ Aτ )〈Dx〉y〈Dx〉−y(∂

�b2
ϕ R)〈Dx〉z〈Dx〉−z(∂

�b3
ϕ (Aτ )−1)〈Dx〉m2 ,



90 R. FEOLA, F. GIULIANI, AND M. PROCESI

where y = −| �b1| − m1, z = ρ − | �b2| − | �b1| − m1. Since y + m1 = −| �b1| and
−z + m2 = −| �b3|, hence by Lemma B.8 the operators

〈Dx〉m1 (∂
�b1
ϕ Aτ )〈Dx〉y, 〈Dx〉−z(∂

�b3
ϕ (Aτ )−1)〈Dx〉m2 ,

satisfy bounds like (B.32). Moreover −y + z = ρ − | �b2| and −y, z ≥ 0, hence, by

the definition of the class Lρ,p, we have that the operator 〈Dx〉−y(∂ �b2
ϕ R)〈Dx〉z is

Lip-0-tame. Following the reasoning used to prove (B.44) one obtains

(B.47) M
γ

〈Dx〉m1 ∂�b
ϕMτ 〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(s, b) + ‖β‖γ,O

s+μM
γ
R(s, b).

Let us consider the operator [M τ , ∂x]. We write

(B.48) [M τ , ∂x] = Aτ [R, ∂x](Aτ)−1 +AτR[(Aτ)−1, ∂x] + [Aτ , ∂x]R(Aτ )−1,

for τ ∈ [0, 1]. We need to show that each summand in (B.48) satisfies item (ii) in
Definition (2.8). Let m1 , m2 ∈ R, m1, m2 ≥ 0 and m1 + m2 = ρ− 1. We first note
that

(B.49)
〈Dx〉m1Aτ [R, ∂x](Aτ )−1〈Dx〉m2 =

= 〈Dx〉m1Aτ 〈Dx〉−m1 〈Dx〉m1 [R, ∂x]〈Dx〉m2 〈Dx〉−m2 (Aτ )−1〈Dx〉m2 ,

hence, by applying Lemma B.8 to estimate the terms

〈Dx〉−m2 (Aτ )−1〈Dx〉m2 , 〈Dx〉m1 (Aτ )−1〈Dx〉−m1

and using the tameness of the operator 〈Dx〉m1 [R, ∂x]〈Dx〉m2 (recall that R ∈ Lρ,p)
one gets

(B.50) M
γ
〈Dx〉m1Aτ [R,∂x](Aτ)−1〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(s, b) + ‖β‖γ,O

s+μM
γ
R(s0, b).

The term [Aτ , ∂x]R(Aτ)−1 in (B.48) is more delicate. Let m1, m2 ∈ R, m1, m2 ≥ 0
and m1 + m2 = ρ− 1. We write

(B.51) 〈Dx〉m1 [Aτ , ∂x]〈Dx〉−m1−1〈Dx〉m1+1R〈Dx〉m2 〈Dx〉−m2 (Aτ )−1〈Dx〉m2 .

By Lemma B.8 we have that 〈Dx〉−m2 (Aτ )−1〈Dx〉m2 satisfies a bound like (B.32)
with α = 0. The operator 〈Dx〉m1+1R〈Dx〉m2 〈Dx〉m1+1R〈Dx〉m2 is Lip-0-tame since
R ∈ Lρ,p and m1 +m2 +1 = ρ. Moreover by an explicit computation (using formula
(3.3)) we get

(B.52) [Aτ , ∂x] = τ
βxx

1 + τβx
Aτ + τβxAτ∂x.

We claim that, for s ≥ s0 and u ∈ Hs, one has

(B.53) ‖〈Dx〉m1 [Aτ , ∂x]〈Dx〉−m1−1u‖γ,O
s ≤s,ρ ‖β‖γ,O

s0+μ‖u‖s + ‖β‖γ,O
s+μ‖u‖s0,

for some μ > 0 depending only on s, ρ. The first summand in (B.52) satis-
fies the bound (B.53) thanks to Lemma A.6 for the estimate of 〈Dx〉m1βxx(1 +
τβx)−1〈Dx〉−m1 and thanks Lemma B.8 to estimate 〈Dx〉m1Aτ〈Dx〉−m1 . For the
second summand we reason as follow: we write

〈Dx〉m1τβxAτ∂x〈Dx〉−m1−1 =

=
(
〈Dx〉m1βx〈Dx〉−m1

)(
〈Dx〉m1Aτ〈Dx〉−m1

)
∂x〈Dx〉−1

and we note that the operator ∂x〈Dx〉−1 is bounded on Hs. Hence the bound (B.53)
follows by applying Lemmata A.6 and B.8. By the discussion above one gets

(B.54) M
γ
〈Dx〉m1 [Aτ ,∂x]R(Aτ )−1〈Dx〉m2

(0, s) ≤s,ρ M
γ
R(s, b) + ‖β‖γ,O

s+μM
γ
R(s, b).
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One can study the tameness constant of the operator AτR[(Aτ)−1, ∂x] in (B.48) by
using the same arguments above.
We check now that M τ satisfies item (iii) of Def. 2.8. Let m1, m2 ∈ R, m1, m2 ≥ 0

and m1 + m2 = ρ− |�b| − 1. We write for �b ∈ Nν , |�b| = b

(B.55)

[∂
�b
ϕAτR(Aτ )−1, ∂x] =

∑
�b1+�b2+�b3=�b

C(| �b1|, | �b2|, | �b3|)×

×
[
(∂

�b1
ϕ Aτ )(∂

�b2
ϕ R)(∂

�b3
ϕ (Aτ )−1), ∂x

]
and we note that

(B.56)

[(∂
�b1
ϕ Aτ )(∂

�b2
ϕ R)(∂

�b1
ϕ (Aτ )−1), ∂x] = (∂

�b1
ϕ Aτ )

[
(∂

�b2
ϕ R), ∂x

]
(∂

�b3
ϕ Aτ )−1)

+ (∂
�b1
ϕ Aτ )(∂

�b2
ϕ R)

[
(∂

�b3
ϕ (Aτ )−1), ∂x

]
+
[
(∂

�b1
ϕ Aτ ), ∂x

]
(∂

�b2
ϕ R)(∂

�b3
ϕ (Aτ )−1).

The most difficult term to study is the last summand in (B.56). We have that

〈Dx〉m1

[
(∂

�b1
ϕ Aτ ), ∂x

]
(∂

�b2
ϕ R)(∂

�b3
ϕ (Aτ )−1)〈Dx〉m2 =

= 〈Dx〉m1

[
(∂

�b1
ϕ Aτ ), ∂x

]
〈Dx〉−y〈Dx〉y(∂

�b2
ϕ R)〈Dx〉z〈Dx〉−z(∂

�b3
ϕ (Aτ )−1)〈Dx〉m2 ,

with z = m2+| �b3| and y = ρ−| �b2|−| �b3|−m2. Note that 〈Dx〉−z(∂ �b3
ϕ (Aτ )−1)〈Dx〉m2

satisfies bound like (B.32) with α = �b3; moreover the operator 〈Dx〉y(∂ �b2
ϕ R)〈Dx〉z

is Lip-0-tame since y + z = ρ− | �b2| and R ∈ Lρ,p. Note also that, since m1 + m2 =

ρ− |�b| − 1, one has y = m1 + | �b1|+ 1. We now study the tameness constant of

〈Dx〉m1

[
(∂

�b1
ϕ Aτ ), ∂x

]
〈Dx〉−m1−| �b1|−1.

By differentiating the (B.52) we get

(B.57) ∂
�b1
ϕ [Aτ , ∂x] =

∑
�b′1+�b′′1 =�b1

τ (∂
�b′1
ϕ g)(∂

�b′′1
ϕ Aτ) + τ (∂

�b′1
ϕ βx)(∂

�b′′1
ϕ Aτ )∂x,

where g = βxx/(1 + τβx). We claim that

(B.58) ‖〈Dx〉m1 [∂
�b1
ϕ Aτ , ∂x]〈Dx〉−m1−| �b1|−1u‖γ,O

s ≤s,ρ ‖u‖s‖β‖γ,O
s0+μ+‖β‖γ,O

s+μ‖u‖s0 ,

for some μ > 0 depending on s, ρ. We study the most difficult summand in (B.57).
We have

(B.59)

〈Dx〉m1 (∂
�b′1
ϕ βx)(∂

�b′′1
ϕ Aτ )∂x〈Dx〉−m1−|�b1|−1 =

= 〈Dx〉m1 (∂
�b′1
ϕ βx)〈Dx〉−m1−| �b1|+| �b′′1 |

× 〈Dx〉m1+|�b1|−|�b
′′

1 |(∂
�b′′1
ϕ Aτ )〈Dx〉−m1−|�b1|∂x〈Dx〉−1.

The (B.58) follows for the term in (B.59) by using Lemmata A.6, B.8 and the fact
that ∂x〈Dx〉−1 is bounded on Hs. On the other summand in (B.57) one uses similar
arguments. By the discussion above one can check that

(B.60) M
γ

〈Dx〉m1 [∂�b
ϕA

τ ,∂x]R(Aτ )−1〈Dx〉m2
(0, s) ≤s,ρ M

γ
R(s, b) + ‖β‖γ,O

s+μM
γ
R(s0, b).

The fact that the operator M satisfies items (iii)-(iv) of Definition (2.8) can be
proved arguing as done above for items (i)-(ii). �



92 R. FEOLA, F. GIULIANI, AND M. PROCESI

References

[1] A. Avila, B. Fayad, and R. Krikorian. A KAM scheme for SL(2,R) cocycles with Liouvillean
frequencies. Geom. Funct. Anal., 21(5):1001–1019, 2011.

[2] P. Baldi, M. Berti, E. Haus, and R. Montalto. Time quasi-periodic gravity water waves in
finite depth. Inventiones Math, 214: 739–911, 2018

[3] P. Baldi, M. Berti, and R. Montalto. KAM for quasi-linear and fully nonlinear forced pertur-
bations of Airy equation. Math. Ann., 359(1-2):471–536, 2014.

[4] P. Baldi, M. Berti, and R. Montalto. KAM for autonomous quasi-linear perturbations of KdV.
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