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Abstract. The degenerate non-Newtonian fluid equation

∂u

∂t
− div

`
a(x)|∇u|p−2∇u

´−
NX

i=1

fi(x)Diu = g(u, x, t), (x, t) ∈ R
N
+ × (0, T )

arises in several scientific fields. When a(x) and p satisfy certain conditions,

the existence of solution of this equation is established. When a
− 1

p (x)fi(x) ≤ c
for i ∈ {1, 2, · · · , N}, by choosing a suitable test function, the local stability
of the solutions is discussed without any boundary value condition.
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1. Introduction

Consider the degenerate non-Newtonian fluid equation [2]:
(1.1)
∂u

∂t
− div(a(x)|∇u|p−2∇u)−

N∑
i=1

fi(x)Diu + c(x, t)u = g(x, t), (x, t) ∈ Ω× (0, T )
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with the initial condition

(1.2) u(x, 0) = u0(x), x ∈ Ω,

where Di = ∂
∂xi

, a(x) ≥ 0 ∈ C(Ω), and Ω is a bounded domain in R
N . By means

of a reasonable integral description, the boundary can be classified into three parts:
the nondegenerate boundary, the weakly degenerate boundary and the strongly
degenerate boundary. Instead of the usual boundary condition

(1.3) u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

the new boundary value condition was reasonably formulated to establish the exis-
tence and uniqueness results [2]. Benedikt et al [3, 4] studied the equation

(1.4) ut = div(|∇u|p−2∇u) + q(x)|u|α−1u, (x, t) ∈ QT

with 0 < α < 1, and found that the uniqueness of the solution of equation (1.4) is
not true. Zhan [5] considered the equation

(1.5)
∂u

∂t
= div(dα|∇u|p−2∇u) + g(u, x, t), (x, t) ∈ Ω× (0, T ),

and discussed the stability of solutions dependent on the initial condition (1.2), but
independent of the boundary value condition (1.3), where d(x) = dist(x, ∂Ω) and
α > 0 is a constant. By comparing (1.4) with (1.5), the degeneracy of dα might
not only counteract the effect from the source term g(u, x, t), but also take place of
the boundary value condition (1.3).

In this study, we consider the spatial variable in the half space

R
N
+ = {x ∈ R

N : xN > 0}
and generalize equation (1.1) to
(1.6)
∂u

∂t
− div(a(x)|∇u|p−2∇u)−

N∑
i=1

fi(x)Diu = g(u, x, t), (x, t) ∈ QT = R
N
+ × (0, T ).

The basic assumption is that a(x) ∈ C(RN
+ ) satisfies

(1.7) a(x) > 0, x ∈ R
N
+ , a(x) = 0, x ∈ ∂R

N
+ .

In addition to the nonlinear source term g(u, x, t), equation (1.6) contains a
linear convection term Diu. We follow with interest in whether the degeneracy of
a(x) on the boundary can also counteract the effect from the convection term.

Let us recall the definitions of weak solutions and summarize our main results.

Definition 1.1. A function u(x, t) is said to be a weak solution of equation
(1.6) with the initial condition (1.2), if

(1.8) u ∈ L∞(QT )
⋂

L2(QT ), ut ∈ L2(QT ), a(x) |∇u|p ∈ L1(QT ),

and for any function ϕ ∈ C∞0 (QT ) there holds∫∫
QT

{
− uϕt + a(x) |∇u|p−2∇u · ∇ϕ + u

N∑
i=1

[fixi
(x)ϕ + fi(x)ϕxi

]

−g(u, x, t)ϕ
}

dxdt = 0,(1.9)

where fixi
= ∂fi(x)

∂xi
.
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Definition 1.2. A function u(x, t) is said to be a weak solution of equation
(1.6) with the initial condition (1.2) and the boundary value condition (1.3) (where
the boundary ∂Ω is replaced by ∂R

N ), if it satisfies (1.8)-(1.9) and (1.3) is satisfied
in the sense of the trace.

For simplicity, we assume that a(x), fi(x) and g(s, x, t) are C1 functions and
first restrict our attention to the existence of weak solutions.

Theorem 1.3. Suppose that a(x), fi(x) and fixi
(x) are bounded functions

when p > 2 and g(s, x, t) ∈ L2(QT ) for |s| ≤ c. If

(1.10) u0(x) ∈ L∞(RN
+ )

⋂
L2(RN

+ ), a(x)|∇u0(x)|p ∈ L1(RN
+ ),

(1.11)
∫

R
N
+

a(x)−
2

p−2 (x)dx <∞ and
∫

R
N
+

a(x)−
1

p−1 (x)dx <∞,

then there exists a weak solution u of equation (1.6) with initial boundary value
conditions (1.2) and (1.3). If g(u, x, t) ≥ 0 with u0(x) ≥ 0, then the solution u is
nonnegative.

If Ω ⊂ R
N is a bounded domain and

∫
Ω

a−
1

p−1 (x)dx < ∞, the well-posedness
of equation (1.1) had been presented by Yin-Wang [2]. Roughly speaking, the
condition

∫
R

N
+

a(x)−
1

p−1 (x)dx < ∞ can induce the weak solution u ∈ W 1,γ
loc (RN )

for γ > 1, so that one can define the trace of u on the boundary. Although∫
Ω

a(x)−
2

p−2 (x)dx < ∞ implies
∫
Ω

a(x)−
1

p−1 (x)dx < ∞ in a bounded domain Ω,
but the domain R

N
+ considered in our study is unbounded, so the two assumptions

in (1.11) have their independent senses.
The main purpose of this paper is to study the stability of weak solutions, so

we do not pay much attention on the optimal conditions to ensure the existence
of weak solutions. There is one more point, which we should touch on that, if∫
Ω

a(x)−
1

p−1 (x)dx <∞, the uniqueness of weak solution to equation (1.6) with the
usual initial-boundary value conditions (1.2)-(1.3) can be proved in a similar way as
those in [2], but we do not plan to demonstrate our discussions on the uniqueness
at this stage and will be presenting them in a subsequent work together with the
variational methods [17] and mountain pass theorem [18]. Instead, here we focus
on the stability of weak solutions of equation (1.6) without any boundary value
condition.

Theorem 1.4. Let u(x, t) and v(x, t) be two weak solutions of equation (1.6)
with the initial values u0(x) and v0(x) respectively. If

(1.12) a−
1
p (x)fi(x) ≤ c, 1 ≤ i ≤ N,

then there exists a constant β ≥ max
{

p
p−1 , 2

}
such that∫

R
N
+

e−xN (
xN

)β |u(x, t)− v(x, t)|2 dx

≤
∫

R
N
+

e−xN (
xN

)β |u0(x)− v0(x)|2 dx, a.e. t ∈ [0, T ),(1.13)

where x =
{
x1, x2, · · · , xN−1, xN

}
.
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Inequality (1.13) is regarded as the local stability of weak solutions. According
to (1.13), we know that the weak solution of equation (1.6) with the initial con-
dition (1.2) is unique. Certainly, condition (1.12) implies that fi(x) = 0 on the
boundary ∂R

N
+ . From the physical point of view, fi(x)Diu represents the convec-

tion phenomena. Theorem 1.4 tells us that the degeneracy of convection might take
place of the usual boundary value condition (1.3). Actually, we have the following
theorem to supplement our conclusion.

Theorem 1.5. Let u(x, t) be the unique nonnegative bounded solution of equa-
tion (1.6) with the initial condition (1.2). If fi(x) is bounded, |g(u, x, t)| ≤ c for a
given s ∈ (0, T ), and M is a constant such that

u(x, t) ≤M, (x, t) ∈ R
N
+ × (s, T ),

then there holds

(1.14) u(x, t) ≤ Cd(x), (x, t) ∈ R
N
+ × (s, T ),

where the constant C depending upon M, N, p and s, and d(x) = dist(x, ∂R
N
+ ) =

xN .

Inequality (1.14) indicates that the unique solution of equation (1.6) with the
initial condition (1.2) has the homogeneous boundary value, and so the usual bound-
ary value condition (1.3) becomes redundant. Compared with the existing results
in the literature, for example, see [2], from a technical perspective, the obstacle not
only comes from the degeneracy of a(x) on the boundary, but also comes from the
unboundedness of the half space.

We would like to mention here that if the domain Ω ⊂ R
N is a bounded domain,

one can obtain the analogous results by a similar but simpler way, see [6, 7, 8].
In the past years we have been interested in and working on the problem that the
solution is free from the limitation of boundary value conditions, see [9, 10].

The rest of the paper is organized as follows. Proof of Theorem 1.3 is presented
in Section 2 and proof of Theorem 1.4 is shown in Section 3. Section 4 is dedicated
to estimates near the boundary, and Section 5 is an appendix on the Fichera-Oleinik
theory.

2. Proof of Theorem 1.3

In this section, we considers the initial value problem for equation (1.6). For
any positive integer n, we denote by

xn = (0, 0, · · · , 0, n) and Bn(xn) = {x ∈ R
N
+ : |x− xn| < n}.

To prove the existence of the solution of equation (1.6), we first consider the
following regularized problem

unt − div

{[
a(x) +

1
n

](
|∇un|2 +

1
n

) p−2
2

∇un

}
−

N∑
i=1

fi(x)Diu

= g(un, x, t), (x, t) ∈ QTn,(2.1)
un(x, t) = 0, (x, t) ∈ ∂Bn × (0, T ),
un(x, 0) = u0n(x), x ∈ Bn,

where Bn = Bn(xn), QTn = Bn × (0, T ), u0n ∈ C∞0 (RN
+ ) and suppuon ⊂ Bn.

In addition,
(
a(x) + 1

n

) |∇u0n|p ∈ L1(RN
+ ) is uniformly bounded, u0n converges
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to u0 in L2(RN
+ ), and u0n converges to u0 in W 1,p

0 (RN
+ ). As we know [11], the

above problem has a unique classical solution un and there exists a constant c only
dependent on ‖u0‖L∞(RN

+ ) and ‖u0‖L2(RN
+ ) such that

(2.2) ‖un‖L∞(QT n) � cT and ‖un‖L2(QT n) � cT.

Lemma 2.1. If
∫

R
N
+

a(x)−
2

p−2 (x)dx <∞ and fixi
(x) is bounded, then there is a

subsequence of un (here we still denote it by un), which converges to a weak solution
u of equation (1.6) with the initial condition (1.2).

Proof. Since a(x), bi(x) and g(s, x, t) are bounded when |s| ≤ c, multiplying
both sides of (2.1) by un and integrating it over QTn, by (2.2) we have

1
2

∫
Bn

u2
ndx +

∫∫
QT n

[
a(x) +

1
n

](
|∇un|2 +

1
n

) p−2
2

|∇un|2dxdt

≤ 1
2

∫
Bn

u2
0ndx +

∫∫
QT n

(
N∑

i=1

|fi(x)Diun||un|+ |ung(un, x, t)|
)

dxdt

� c,(2.3)

which is due to∫∫
QT n

|fi(x)Diun||un|dxdt

=
∫∫

QT n

∣∣∣fi(x)a−
1
p (x)a−

1
p (x)Diun

∣∣∣ |un|dxdt

≤
∫∫

QT n

[
c(ε)

∣∣∣fi(x)a−
1
p (x)

∣∣∣ p
p−1

+ εa(x)|∇un|p
]

dxdt

≤ c(ε)
∫∫

QT n

∣∣∣fi(x)a−
1
p (x)

∣∣∣ p
p−1

dxdt + ε

∫∫
QT n

a(x)|∇un|pdxdt

≤ c(ε)
∫∫

QT n

a−
1

p−1 (x)dxdt + ε

∫∫
QT n

a(x)|∇un|pdxdt

≤ c.

For any bounded domain Ω ⊂ R
N
+ , since p > 2, by (1.8) and (2.3) we have

(2.4)
∫ T

0

∫
Ω

|∇un|2dxdt ≤ c(Ω)

(∫ T

0

∫
Ω

|∇un|pdxdt

) 1
p

≤ c(Ω).

Multiplying both sides of (2.1) by unt and integrating it over QTn gives∫∫
QT n

(unt)2dxdt

=
∫∫

QT n

div

[(
a(x) +

1
n

) (
|∇un|2 +

1
n

) p−2
2

]
· untdxdt

+
N∑

i=1

∫∫
QT n

untfi(x)Di(un)dxdt +
∫∫

QT n

g(un, x, t)untdxdt.(2.5)
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In view of |fi(x)| ≤ c and
∫

R
N
+

a−
2

p−2 (x)dx <∞ for p > 2, we find∫∫
QT n

a
−2

p−2 (x)|fi(x)| 2p
p−2 dxdt ≤ c

∫∫
QT n

a
−2

p−2 (x)dxdt

≤ c.(2.6)

Using the Hölder’s inequality and (2.6) leads to∫∫
QT n

untfi(x)Diundxdt

� 1
4

∫∫
QT n

(unt)2dxdt + c

N∑
i=1

∫∫
QT n

f2
i (x)|∇un|2dxdt

+
1
4

∫∫
QT n

(unt)2dxdt

≤
N∑

i=1

(∫∫
QT n

a
−2

p−2 (x)|fi(x)| 2p
p−2 dxdt

) p−2
p

(∫∫
QT n

a(x)|∇un|pdxdt

) 2
p

≤ 1
4

∫∫
QT n

(unt)2dxdt + c.(2.7)

Since g(s, x, t) ∈ L2(QT ) when |s| ≤ c, by (2.5) it is clear to see that

(2.8)
∣∣∣∣
∫∫

QT n

g(un, x, t)untdxdt

∣∣∣∣ ≤ 1
4

∫∫
QT n

(unt)2dxdt + c.

Combining (2.7)-(2.8), we have

(2.9)
∫∫

QT n

(unt)2dxdt +
∫∫

QT n

[
a(x) +

1
n

]
d

dt

∫ |∇un(x,t)|2+ 1
n

0

s
p−2
2 dsdxdt ≤ c,

and thus

(2.10)
∫∫

QT n

(unt)2dxdt ≤ c.

Let

ūn =
{

un, if x ∈ Bn,
0, if x ∈ R

N
+ \Bn.

According to (2.9)-(2.10), we have

(2.11)
∫ T

0

∫
R

N
+

[
a(x) +

1
n

]
| ∇ūn |p dxdt ≤ c

and

(2.12)
∫ T

0

∫
R

N
+

(ūnt)2dxdt ≤ c.

From (2.2), (2.4), (2.11) and (2.12), there exists a function u and an n−dimensional
vector function

−→
ζ = (ζ1, · · · , ζn) satisfying that

u ∈ L∞(QT ), ut ∈ L2(QT ),
∣∣∣−→ζ ∣∣∣ ∈ L

p
p−1 (QT ),

and
ūn ⇀ ∗u, in L∞(QT ),
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ūn → u in L2
loc(QT ),[

a(x) +
1
n

]
|∇ūn|p−2∇ūn ⇀

−→
ζ in L

p
p−1 (QT ).

To prove that u satisfies equation (1.6), we notice that for any function ϕ ∈
C∞0 (QT ), there holds∫∫

QT

{
− ūnϕt +

[
a(x) +

1
n

] [
|∇ūn|2 +

1
n

] p−2
2

∇ūn · ∇ϕ

+ūn

N∑
i=1

[fixi
(x)ϕ + fi(x)ϕxi

] + g(ūn, x, t)ϕ
}

dxdt = 0.(2.13)

Since
ūn → u in L2

loc(QT ),
we know ūn → u a.e. in QT . Let n →∞. It follows from (2.13) that
(2.14)∫∫

QT

{
∂u

∂t
ϕ + 
ς · ∇ϕ + u

N∑
i=1

[fixi
(x)ϕ + fi(x)ϕxi

] + g(u, x, t)ϕ

}
dxdt = 0.

Following [11, 12], we obtain

(2.15)
∫∫

QT

a(x) |∇u|p−2∇u · ∇ϕdxdt =
∫∫

QT

−→
ζ · ∇ϕdxdt

for any function ϕ ∈ C∞0 (QT ). By combining (2.14) and (2.15), we arrive at
(1.9). �

Lemma 2.2. If
∫

R
N
+

a(x)−
1

p−1 (x)dx < ∞, and u is a weak solution of equation

(1.6) with the initial condition (1.2). Then the trace of u on the boundary ∂R
N
+ can

be defined in the traditional way.

Proof. If we denote QΩT = Ω× (0, T ), then∫∫
QΩT

|∇u| dxdt =
∫∫

j
(x,t)∈QΩT ;a

1
p−1 |∇u|�1

ff |∇u| dxdt

+
∫∫

j
(x,t)∈QΩT ;a

1
p−1 |∇u|>1

ff |∇u| dxdt

�
∫∫

QΩT

a−
1

p−1 dxdt +
∫∫

QΩT

a |∇u|p dxdt

� c.

This is due to the assumption that
∫

R
N
+

a(x)−
1

p−1 (x)dx ≤ c, i.e.∫∫
QΩT

|∇u|dxdt � c + c(Ω).

Hence, ∇u is uniformly bounded in L1(QΩT ) and u has the trace on the boundary
∂Ω. In particular, for the arbitrary Ω, we can define the trace of u on ∂R

N
+ . �

Proof of Theorem 1.3 follows from Lemmas 2.1 and 2.2 immediately.
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3. Proof of Theorem 1.4

Proof of Theorem 1.4. Let u and v be the two weak solutions of equation
(1.6) with the different initial values u0(x) and v0(x) respectively, and

u0(x) ∈ L∞(QT )
⋂

L2(QT ), v0(x) ∈ L∞(QT )
⋂

L2(QT ),

a(x)|∇u0|p ∈ L1(QT ), a(x)|∇v0|p ∈ L1(QT ).

For a small positive constant λ > 0, let

Aλ = {x ∈ R
N
+ : xN < λ}, dλ = dist(x,Aλ).

Then

dλ =
{

0, if x ∈ Aλ,
xN − λ, if x ∈ R

N
+ \Aλ.

Choose the constant β ≥ p
p−1 , and let χ[τ,s] be the characteristic function on

[τ, s], and uε and vε be the mollified functions of the solutions u and v respectively.
Take 0 ≤ φn ∈ C∞0 (RN

+ ) and φn ≤ e−xN

such that

(3.1) lim
n→∞φn(x) = e−xN

.

Denote that Ωn = suppφn is the support set of φn.
For any fixed τ, s ∈ [0, T ], we may choose χ[τ,s](uε − vε)φn(x)dβ

λ as a test
function in the weak solution formula (1.9). Denote by Qτs = R

N
+ × [τ, s], and we

then have∫∫
Qτs

(uε − vε)φn(x)dβ
λ

∂(u− v)
∂t

dxdt

= −
∫∫

Qτs

a(x)(|∇u|p−2∇u− |∇v|p−2∇v) · ∇
[
(uε − vε)φn(x)dβ

λ

]
dxdt

−
∫∫

Qτs

{[
(u− v)

N∑
i=1

fixi
(x) + (g(u, x, t)− g(v, x, t))

]

·(uε − vε)φn(x)dβ
λ

}
dxdt−

∫∫
Qτs

(u− v)
N∑

i=1

fi(x)
[
(uε − vε)φn(x)dβ

λ

]
xi

dxdt.(3.2)

For any given bounded domain Ω ⊂ R
N
+ , we know that ∇u ∈ Lp(QΩT ) and

∇v ∈ Lp(QΩT ), where QΩT = Ω× (0, T ). In view of the definitions of the mollified
functions uε and vε, we have

(3.3) uε ∈ L∞(QT ), vε ∈ L∞(QT ),

(3.4) ‖∇uε‖p,Ω ≤ ‖∇u‖p,Ω, ‖∇vε‖p,Ω ≤ ‖∇v‖p,Ω,

and

(3.5) lim
ε→0

‖∇uε −∇u‖p,Ω = 0.
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By (3.3)-(3.5) we have

lim
ε→0

∫ s

τ

∫
Ωn

a(x)
(|∇u|p−2∇u− |∇v|p−2∇v

) · ∇ [
(uε − vε)φn(x)dβ

λ

]
dxdt

=
∫ s

τ

∫
Ωn

a(x)(|∇u|p−2∇u− |∇v|p−2∇v) · ∇
[
φn(x)(u− v)dβ

λ

]
dxdt

=
∫ s

τ

∫
Ωn

a(x)φn(x)dβ
λ(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v)dxdt

+
∫ s

τ

∫
Ωn

a(x)(u− v)(|∇u|p−2∇u− |∇v|p−2∇v) · ∇
[
φn(x)dβ

λ

]
dxdt.(3.6)

Thus, it gives∫ s

τ

∫
Ωn

a(x)φn(x)dβ
λ(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v)dxdt ≥ 0.

Since x ∈ Ωn, φn(x)dβ
λ > 0, |∇xN | = 1, and

|∇dλ| =
{

0, if x ∈ Aλ,
1, if x ∈ R

N
+ \Aλ,

we have

lim
n→∞

∣∣∣∣
∫ s

τ

∫
Ωn

(u− v)a(x)(|∇u|p−2∇u− |∇v|p−2∇v) · ∇[φn(x)dβ
λ]dxdt

∣∣∣∣
≤ lim

n→∞

∫ s

τ

∫
Ωn

|u− v|a(x)(|∇u|p−1 + |∇v|p−1)
∣∣∣∇ [

φn(x)dβ
λ

]∣∣∣ dxdt

≤ c lim
n→∞

(∫ s

τ

∫
Ωn

a(x) (|∇u|p + |∇v|p) dxdt

) p−1
p

·
(∫ s

τ

∫
Ωn

a(x)|∇ [
φn(x)(xN − λ)β

] |p|u− v|pdxdt

) 1
p

≤ c

(∫ s

τ

∫
R

N
+

a(x) (|∇u|p + |∇v|p) dxdt

) p−1
p

·
(∫ s

τ

∫
R

N
+

a(x)(e−xN

)p(xN − λ)p(β−1)[(xN − λ)p + 1]|u− v|pdxdt

) 1
p

≤ c

(∫ s

τ

∫
R

N
+

(e−xN

)p(xN − λ)p(β−1)
[
(xN − λ)p + 1

]
a(x)|u− v|pdxdt

) 1
p

,(3.7)

and further obtain

lim
λ→0

lim
n→∞

∣∣∣∣
∫ s

τ

∫
Ωn

(u− v)a(x)(|∇u|p−2∇u− |∇v|p−2∇v)

·∇[φn(x)dβ
λ]dxdt

∣∣∣∣
≤ c

(∫ s

τ

∫
R

N
+

(e−xN

)p(xN )p(β−1)
[
(xN )p + 1

] |u− v|pdxdt

) 1
p

.(3.8)
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If p ≥ 2, since u, v ∈ L∞(QT ), then

(∫ s

τ

∫
R

N
+

(e−xN

)p(xN )p(β−1)
[
(xN )p + 1

] |u− v|pdxdt

) 1
p

(3.9) ≤ c

(∫ s

τ

∫
R

N
+

(e−xN

)p(xN )p(β−1)
[
(xN )p + 1

] |u− v|2dxdt

) 1
p

.

In view of β > p
p−1 , when 0 < xN < 1, it has

(e−xN

)p(xN )p(β−1)
[
(xN )p + 1

]
≤ e−xN

(xN )β(e−xN

)p−1
[
(xN )p + 1

]
≤ ce−xN (

xN
)β

,(3.10)

because of the fact that (3.1) implies (e−xN

)p−1
[
(xN )p + 1

] ≤ c.
When xN ≥ 1, we find

(e−xN

)p(xN )p(β−1)
[
(xN )p + 1

]
= e−xN

(xN )β(e−xN

)p−1(x)(xN )p(β−1)−β
[
(xN )p + 1

]
≤ ce−xN (

xN
)β

,(3.11)

due to the fact that (3.1) also implies (e−xN

)p−1(xN )p(β−1)−β
[
(xN )p + 1

] ≤ c.
Thus, in the case of p ≥ 2, based on (3.8)-(3.11) we have

(∫ s

τ

∫
R

N
+

(e−xN

)p(xN )p(β−1)
[
(xN )p + 1

] |u− v|pdxdt

) 1
p

≤ c

(∫ s

τ

∫
R

N
+

(e−xN

)p
(
xN

)p(β−1)
[(xN )p + 1]|u− v|2dxdt

) 1
p

≤
(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
p

.(3.12)

In case of 1 < p < 2, by (3.1) we find

(3.13)
∫ s

τ

∫
R

N
+

(e−xN

)p[(xN )p(β−1)− β
2 [(xN )p + 1]]

2
2−p dxdt ≤ c.
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Using the generalized Hölder inequality [19], we further get(∫ s

τ

∫
R

N
+

(e−xN

)p(xN )p(β−1)[(xN )p + 1]|u− v|p|u− v|pdxdt

) 1
p

≤ c

(∫ s

τ

∫
R

N
+

(e−xN

)p(xN )β |u− v|2dxdt

) 1
2

·
(∫ s

τ

∫
R

N
+

(e−xN

)p[(xN )p(β−1)− β
2 [(xN )p + 1]]

2
2−p dxdt

) 2−p
2

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

.(3.14)

We then deduce that

lim
ε→0

∫ s

τ

∫
Ωn

fi(x)(u− v)[(uε − vε)φn(x)dβ
λ]xi

dxdt

=
∫ s

τ

∫
Ωn

fi(x)(u− v)[(u− v)φn(x)dβ
λ]xidxdt

=
∫ s

τ

∫
Ωn

fi(x)(u− v)2φn(x)(dβ
λ)xi

dxdt

−
∫ s

τ

∫
Ωn

fi(x)(u− v)2φnxi(x)dβ
λδN

i dxdt

+
∫ s

τ

∫
Ωn

fi(x)(u− v)φn(x)(u− v)xi
dβ

λdxdt.(3.15)

As for the first term of the right hand of (3.15), it is straightforward to see that

lim
λ→0

lim
n→∞

∣∣∣∣
∫ s

τ

∫
Ωn

fi(x)(u− v)2φn(x)(dβ
λ)xi

dxdt

∣∣∣∣
≤ c lim

λ→0
lim

n→∞

∫ s

τ

∫
Ωn

|fi(x)(u− v)2|φn(x)(xN − λ)β−1|dλxi
|dx

≤ c lim
λ→0

∫ s

τ

∫
R

N
+

|u− v|e−xN

(xN − λ)β−1dx

= c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β−1|u− v|dx

)

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

(∫ s

τ

∫
R

N
+

e−xN |xN |β−2dxdt

) 1
2

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

,(3.16)

because of β ≥ 2 and ∫ s

τ

∫
R

N
+

e−xN

(xN )β−2dxdt ≤ c.
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As for the second term of the right hand of (3.15), since u, v ∈ L∞(QT ) and
|fi(x)| ≤ c, we have

lim
λ→0

lim
n→∞

∣∣∣∣
∫ s

τ

∫
Ωn

fi(x)(u− v)2φnxi(x)dβ
λδN

i dxdt

∣∣∣∣
=

∫ s

τ

∫
R

N
+

fi(x)(u− v)2(e−xN

)xi
(xN )βδN

i dxdt|

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

(∫ s

τ

∫
R

N
+

e−xN |xN |βdxdt

) 1
2

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

,(3.17)

based on the inequality: ∫ s

τ

∫
R

N
+

(e−xN

)(xN )βdxdt ≤ c.

As for the third term of the right hand of (3.15), we get

lim
λ→0

lim
n→∞

∣∣∣∣
∫ s

τ

∫
Ωn

fi(x)(u− v)(u− v)xi
φn(x)dβ

λdxdt

∣∣∣∣
≤

(∫ s

τ

∫
R

N
+

[
(u− v)a−

1
p (x)fi(x)e−xN

(xN )β
]p′

dxdt

) 1
p′

·
(∫ s

τ

∫
R

N
+

a(x)(|∇u|p + |∇v|p)dxdt

) 1
p

≤ c

(∫ s

τ

∫
R

N
+

[(u− v)a−
1
p (x)fi(x)e−xN

(xN )β ]p
′
dxdt

) 1
p′

,(3.18)

where p′ = p
p−1 .

In case of p > 2, it is easy to see that 1 < p′ < 2. According to (1.12),
a−

1
p (x)fi(x) ≤ c holds. It follows from the Hölder inequality that

(∫ s

τ

∫
R

N
+

[(u− v)a−
1
p (x)fi(x)e−xN

(xN )β ]p
′
dxdt

) 1
p′

≤ c

(∫ s

τ

∫
R

N
+

(e−xN

)p′ [a−
1
p (x)fi(x)(xN )

β
2 ]

2
2−p′ dxdt

) 2−p′
2

·
(∫ s

τ

∫
R

N
+

(e−xN

)p′(xN )β |u− v|2dxdt

) 1
2

≤
(∫ s

τ

∫
R

N
+

(e−xN

)p′(xN )β |u− v|2dxdt

) 1
2

.(3.19)
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If 1 < p ≤ 2, then p′ ≥ 2. Using the inequality a−
1
p (x)fi(x) ≤ c again yields(∫ s

τ

∫
R

N
+

[(u− v)a−
1
p (x)fi(x)e−xN

(xN )β ]p
′
dxdt

) 1
p′

≤ c

(∫ s

τ

∫
R

N
+

[a−
1
p (x)fi(x)e−xN

(xN )β ]p
′
(u− v)2dxdt

) 1
p′

≤ c

(∫ s

τ

∫
R

N
+

[e−xN

(xN )β ]p
′−1φn(x)(xN )β(u− v)2dxdt

) 1
p′

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β(u− v)2dxdt

) 1
p′

.(3.20)

Note that g(s, x, t) ∈ L2(QT ) when |s| ≤ c. It gives

− lim
ε→0

∫ s

τ

∫
Ωn

{[
(u− v)

N∑
i=1

fixi(x) + (g(u, x, t)− g(v, x, t))

]

·(uε − vε)φn(x)dβ
λ

}
dxdt

= −
∫ s

τ

∫
Ωn

{[
(u− v)

N∑
i=1

fixi(x) + (g(u, x, t)− g(v, x, t))

]

·(u− v)φn(x)dβ
λ

}
dxdt.

Since fixi
(x) is bounded, g(s, x, t) is Lipschitz, and u, v ∈ L∞(QT ), we have

lim
λ→0

lim
n→∞

∫ s

τ

∫
Ωn

{[
(u− v)

N∑
i=1

fixi
(x) + (g(u, x, t)− g(v, x, t))

]

·(u− v)φn(x)dβ
λ

}
dxdt

=
∫ s

τ

∫
R

N
+

{[
(u− v)

N∑
i=1

fixi
(x) + (g(u, x, t)− g(v, x, t))

]

·(u− v)e−xN

(xN )β

}
dxdt

≤ c

∫ s

τ

∫
R

N
+

|(u− v)e−xN

(xN )β |dxdt

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

(∫ s

τ

∫
R

N
+

e−xN

(xN )βdxdt

) 1
2

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u− v|2dxdt

) 1
2

.(3.21)
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By (3.6)-(3.21), letting ε → 0, n →∞ and λ → 0 in (3.2) yields∫ s

τ

∫
R

N
+

(u− v)e−xN

(xN )β ∂(u− v)
∂t

dxdt

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u(x, t)− v(x, t)|2dxdt

)q

,(3.22)

where q < 1.
We then have ∫

R
N
+

e−xN

(xN )β [u(x, s)− v(x, s)]2dx

−
∫

R
N
+

e−xN

(xN )β [u(x, τ)− v(x, τ)]2dx

≤ c

(∫ s

τ

∫
R

N
+

e−xN

(xN )β |u(x, t)− v(x, t)|2dxdt

)q

,(3.23)

where q < 1, which implies∫
R

N
+

e−xN

(xN )β | u(x, s)− v(x, s) |2 dx

≤
∫

R
N
+

e−xN

(xN )β | u(x, τ)− v(x, τ) |2 dx.

Because of the arbitrariness of τ , we obtain∫
R

N
+

e−xN

(xN )β | u(x, s)− v(x, s) |2 dx

≤
∫

R
N
+

e−xN

(xN )β | u0 − v0 |2 dx.

Consequently, the proof is completed. �

4. Estimates near the boundary

Lemma 4.1. If p > max
{

1, 2N
N+2

}
, u is the generalized solution of equation

(1.1) in QT , and g is a suitable smooth function, then uxj
(j = 1, 2, · · · , N) is

locally Hölder continuous in QT .

If a(x) ≡ 1, the equation becomes the type of an evolutionary p−Laplacian
equation. Since a(x) is only equal to zero on the boundary, Lemma 4.1 can be
proved in a similar way as shown in [1], so we omit the details of the proof here.
We would like to mention that in the case of a(x) = [dist(x, ∂R

N
+ )]α with α > 0,

fi = 0, c(x, t) = 0 and g = 0, Lemma 4.1 had been proved in [15].

Proof of Theorem 1.5. Since u is the unique nonnegative bounded solution
of equation (1.6) with the initial condition (1.2), u can be regarded as the limit of
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un which is the solution of the following problem:

∂u

∂t
− div

[(
a(x) +

1
n

) (
|∇u|2 +

1
n

) p−2
2

∇u

]

−
N∑

i=1

fi(x)Diu− g(u, x, t) = 0, (x, t) ∈ B+
n × (0, T ),(4.1)

u(x, 0) = u0,n(x), x ∈ B+
n ,(4.2)

u(x, t) = 0, (x, t) ∈ ∂B+
n × (0, T ),(4.3)

where u0,n(x) is the smoothly mollified function of u0(x) and B+
n =

{
x ∈ R

N
+ : |x| < n

}
.

For (x0, t0) ∈ R
N
+ × (s, T ), let

x0 = (x1, x2, · · · , xN−1, xN ) and xN0 = (x1, x2, · · · , xN−1, 0).

Then, (xN0, t0) ∈ ∂R
N
+ × (s, T ). We may assume that (xN0, t0) ≡ (0, 0). Let y =

(0, . . . , 0,−1), and denote the set ℵk by

ℵk =
{

(x, t) : xN > 0, 1 < |x− y| < 1 +
1
k

, −sn ≤ t ≤ 0
}

,

where sn tends to zero when n →∞ such that

lim
n→∞nsn = 0.

Assume (x0, t0) ∈ ℵk, i.e.

1 < d(x0, y) = xN + 1 < 1 +
1
k

.

We now consider the problem

∂v

∂t
− div

[(
a(x) +

1
n

) (
|∇v|2 +

1
n

) p−2
2

∇v

]

−
N∑

i=1

fi(x)Div − g(v, x, t) = 0, (x, t) ∈ ℵk,(4.4)

v(x,−sn) = un(x,−sn), x ∈ B+
k ,(4.5)

v(x, t) = un(x, t)− 1
n

, (x, t) ∈ ∂B+
k × [−sn, 0],(4.6)

where un is the solution of the problem (4.1)-(4.3), 0 < sn < s < T , snn is small
enough, and

B+
k =

{
x : xN > 0, 1 < |x− y| < 1 +

1
k

}
.

By the comparison theorem (p119, [16]), we have

(4.7) v ≤ un.

Define

(4.8) ηk(x, t) = e−k(|x−y|−1)et,

and

(4.9) Ψk = CM(1− ηk(x, t)) + γt, (x, t) ∈ ℵk,
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where the constants γ and C are to be determined so that v ≤ Ψk on the parabolic
boundary of ℵk.

By a direct calculation, we have

Ψkt − div
[(

a(x) +
1
n

)
(|∇Ψk|2 +

1
n

)
p−2
2 ∇Ψk

]
−

N∑
i=1

fi(x)Ψkxi − g(Ψk, x, t)

=− CMe−k(|x−y|−1)et + γ

−
N∑

i=1

axi

[(
|∇Ψk|2 +

1
n

) p−2
2

Ψk,xi

]
−

(
a(x) +

1
n

) N∑
i=1

[(
|∇Ψk|2 +

1
n

) p−2
2

Ψk,xi

]
xi

−
N∑

i=1

fi(x)Ψkxi
− g(Ψk, x, t)

=− CMe−k(|x−y|−1)et + γ −
N∑

i=1

axi

[(
|kCMηk|2 +

1
n

) p−2
2

kCMηk
xi − yi

|x− y|

]

−
(

a(x) +
1
n

) {
−Gnk2CMηk +

[
(kCMηk)2 +

1
n

] p−2
2

kCMηK

(
−k +

N − 1
|x− y|

)}

− kCMηk

N∑
i=1

fi(x)
xi − yi

|x− y| − g(Ψk, x, t)

≥− CMe−k(|x−y|−1)et + γ − |∇a|
(
|kCMηk|2 +

1
n

) p
2

+
(

a(x) +
1
n

)
Gnk2CMηk + [k − (N − 1)]

(
a(x) +

1
n

) (
|kCMηk|2 +

1
n

) p−2
2

−
N∑

i=1

|fi(x)|kCMηk − g(Ψk, x, t).

(4.10)

Since fi(x) is bounded and |g(u, x, t)| ≤ M , if we choose γ to be sufficiently large,
it follows from (4.10) that
(4.11)

Ψk,t−div

[(
a(x) +

1
n

) (
|∇Ψk|2 +

1
n

) p−2
2

∇Ψk

]
−

N∑
i=1

fi(x)Ψkxi −g(Ψk, x, t) ≥ 0,

where γ is dependent on C, M, p, k and s.
By the comparison principle, one can see that the solution v of the problem

(4.4)-(4.6) satisfies v ≤ Ψk in ℵk. In particular, ∀0 < xN < 1
k , by virtue of Lemma

4.1 we have

u(0, 0, . . . , 0N−1, xN , 0) = lim
n→∞ v(0, 0, . . . , 0N−1, xN , 0)

≤ Ψk(0, 0, . . . , 0N−1, xN , 0)

= CM(1− e−kxN ) ≤ kCMxN .

Thus, it gives

(4.12) u(x, t) ≤ kMdist(x, ∂R
N
+ )
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for all x ∈ R
N
+ such that d(x) = dist

(
x, ∂R

N
+

) ≤ 1
k .

On the other hand, if dist(x, ∂R
N
+ ) > 1

k , we have

(4.13) u(x, t) ≤M ≤ kCMdist(x, ∂R
N
+ ).

Consequently, by combining (4.12) and (4.13), we arrive at (1.14) which holds in
both cases. �

5. Appendix: Fichera-Oleinik theory

Consider the linear degenerate equation

(5.1)
∂u

∂t
− div(a(x)∇u)−

N∑
i=1

fi(x)Diu + c(x, t)u = g(x, t),

which is a particular case of equation (1.1) (where p = 2). Rewrite it as

(5.2)
∂u

∂t
− a(x)Δu−

N∑
i=1

(axi(x) + fi(x))Diu + c(x, t)u = g(x, t).

According to the Fichera-Oleinik theory [13, 14], besides the initial value con-
dition (1.2), since a(x) |∂R

N
+

= 0, the partial boundary, where we should impose the
boundary value condition, is

(5.3) Σp =

{
x ∈ ∂R

N
+ :

N∑
i=1

fi(x)ni(x) < 0

}
=

{
x ∈ ∂R

N
+ : fN (x) < 0

}
,

where −→n = {ni} = {0, · · · , 0, 1} is the inner normal vector of R
N
+ . In particular, if

fN (x) ≥ 0 and x ∈ ∂R
N
+ , then

Σp = ∅.
This implies that, to obtain the well-posedness of solutions of equation (5.1), no
any boundary value condition is necessary.

Consider equation (1.1) or (1.6) and rewrite it as

(5.4)
∂u

∂t
=

N∑
i,j=1

αij(x, t)
∂2u

∂xi∂xj
+

N∑
i=1

βi(x, t)
∂u

∂xi
+ g(u.x.t),

which may be regarded as a “linear” degenerate parabolic equation, where

αij = a(x)|∇u|p−2

(
δij + (p− 2)|∇u|−2 ∂u

∂xi

∂u

∂xj

)

βi =
∂a(x)
∂xi

|∇u|p−2 + fi(x),

and for equation (1.1),

g(u, x, t) = c(x, t)u + g(x, t).

By the Fichera-Oleinik theory, besides the initial value, the part of the bound-
ary:

(5.5)
∑

p
=

{
x ∈ ∂Ω :

N∑
i=1

(βi − αij
xi

)ni(x) < 0

}
,

in which we should give the boundary value, becomes very complicated. This is a
very interesting point. One may usually think that the boundary value condition
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matching a nonlinear parabolic equation (1.1) is more complicated than the one
matching the linear degenerate parabolic equation (5.1). So, Yin-Wang [2] had
made great efforts to deal with the boundary value condition of such equations.
However, the obtained results in [3, 4] and Theorem 4 in the present paper, show
that the fact may be beyond one’s expectation, and the boundary value condition
matching a nonlinear parabolic equation (1.1) may be simpler, even that there is
not any boundary value condition is needed in some special cases. We wish to point
out that since equation (1.1) (or (5.4)) is actually a nonlinear equation, it generally
only has weak solutions. The Fichera-Oleinik theory may not be applied in this
case, so (5.5) only supplies an experience, but can not be used in a straightforward
way.
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