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An exact solution for geophysical trapped waves in the
presence of an underlying current
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ABSTRACT. In this paper we propose an exact and explicit nonlinear solution
to the governing equations which retains all the Coriolis terms. In the presence
of an underlying current, we seek the trapped waves induced by these solutions
in Northern and Southern hemisphere respectively, showing that the retention
of the Coriolis force in the governing equations affects significantly the range

of the admissible following and adverse currents.
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1. Introduction

This paper aims at finding an exact solution for geophysical trapped waves with
an underlying current. The trapped waves we consider in this paper are waves for
whose amplitude decays rapidly in the meridional direction and geophysical ocean
waves are those which take the Coriolis effects on the fluid body induced by the
earth’s rotation into account, and accordingly the additional terms are brought
by the Coriolis force to the governing equations. These governing equations are
applicable for a wide range of oceanic and atmospheric flows [16, 34]. Due to the
complexity and intractability of these equations, some simpler approximate models
for Equatorial water waves are instigated in recent years to mitigate the Coriolis
terms, among which are the so-called §-plane and f-plane approximations.

The (-plane approximation introduces a linear variation with latitude of the
Coriolis parameter to allow for the variation of the Coriolis force from point to point.
This approximation applies in regions within 5° latitude of the meridional extent
[16, 17]. On account of the lost of an appreciable level of mathematical detail
and structure from the (-plane approximation as a result of the ’'flattening out’
of the earth’s surface, a number of interesting mathematical models have recently
been proposed to retain some of this structure [10, 12, 21, 22]. Whereas the
f-plane approximation takes a constant Coriolis parameter into account, for which
the latitudinal variations are ignored and this approximation has been applied to
oceanic flows within a restricted meridional range of approximately 2° latitude
4, 16].

In this paper, we consider surface water waves propagating zonally in a rela-
tively narrow ocean strip less than a few degrees of latitude wide, where we put
no restriction on the latitude, and so the f-plane approximation with the Cori-
olis parameters f = 2{)sin ¢, f = 2Qcos ¢ being constant is appropriate [14].
In consideration of the significant features and complexifications of the under-
lying currents, both mathematically and physically, in the geophysical dynamics
2, 8,9, 11, 13, 14, 16, 20, 21, 22, 24, 29], we allow for the underlying back-
ground currents in the flow. It is hoped that the additional physical complexity
brought by the constant Coriolis parameters and underlying currents may be ben-
eficial with respect to potential generalisations in this direction.

To describe the nonlinear dynamic of the given complex fluid flows in detail, it is
remarkable to find an exact solution to the water wave problem. The explicit exact
solution of the governing equations for periodic two-dimensional travelling gravity
water waves was first discovered by Gerstner [18], with significant modifications to
incorporate geophysical effects along the lines of [5]. It is interesting the Gerstner’s
solution can also be modified to describe edge-waves propagating over a sloping
bed [3]. Subsequent to [3, 5, 18], a vast and wide-ranging variety of Gerstner-

type exact and explicit solutions were derived and analysed to model a number of
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different physical and geophysical scenarios cf. [5, 6, 7, 19, 20, 25, 28, 32, 33|
ect. Considering the f-plane approximation, Pollard modified the Gerstner’s wave
solution to describe free surface waves without any restriction on the latitude in a
rotating fluid [31]. Recently, the Pollard’s approach has been applied to equatorial
waves [26] and to wave-current interactions in the Southern Ocean surrounding
Antarctica [14], and the instability of the solution has also been investigated in
[27].

In spirit of [5], we provide an inherently three-dimensional explicit Gerstner’s
type solution which incorporates an underlying current to the f-plane governing
equations, whereas Constantin and Monismith showed the existence of two modes of
wave motion by a analysis to the Pollard’s type solution to the water wave problem
recently in [14]. The solution we obtained describes in the Lagrangian framework
geophysical trapped waves at arbitrary latitude that propagate westwards or east-
wards in the presence of a constant underlying background current, which is an
extension of the exact solution for equatorial waves in the f-plane approximation
near the Equator [23]. The dispersion relation (3.11) of this Gerstner’s type so-
lution, characterised by the reciprocal Coriolis parameter f and the underlying
current, has a difference of O(Q?) compared with the dispersion relation of the
corresponding Pollard’s type solution [14]. Another characteristic of the solution
is the direct impact induced by the underlying current ¢y, the Coriolis parameter
f and the reciprocal Coriolis parameter f on the vorticity. Moreover, we conclude
from the investigation of the free-surface interface that the wave motions in such
flow admit both the admissible following and adverse currents, for which the range
is influenced by the Coriolis parameter f and the dispersion relation. In particu-
lar, for water waves propagating zonally near the Equator and covering both the
northern and southern hemispheres, this admission allows for both flows with wave
speed ¢ = ¢y > 0 or ¢ = c_ < 0, which is an extension of [20].

We note that while the consideration of trapped waves throughout a range of
latitudes is interesting in itself from a purely mathematically viewpoint, it is hoped
that the existence of such an exact explicit solution to the above given water wave
problem can potentially be employed as cornerstones in building and generating
more general and useful solutions, representing more complex flows.

The remainder of this paper is organized as follows. In Section 2, we present the
governing equations for the geophysical trapped waves with an underlying current.
In Section 3, we propose the exact solution to the governing equations with all the
Coriolis force retained together with an investigation on the vorticity, the dispersion
relation, the free-surface interface and the stratification.
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2. The governing equations

Concerning surface water waves propagating zonally in a relatively narrow

ocean strip less than a few degrees of latitude wide, we take the Coriolis parameters

(2.1) f=2Qsing, [ =20cos¢

as constant. Here ¢ represents the latitude and Q = 7.29 x 107° rad/s is the
rotational speed of the Earth. In a reference frame with the origin located at a
point fixed on Earth’s surface and rotating with the Earth, we consider the zonal
coordinate x pointing east, the meridional coordinate y pointing north and the
vertical coordinate z pointing up. Then the governing equations in the f-plane

approximation we solve are given by [14, 16, 30|

Ut+uuz+vuy+wuz+fw—fv :—%Pgﬁ,
(2.2a) v 4 uvy + vvy + wu, + fu =-1p,
thruwervaerwz—fu zfipzfg7

together with the equation of incompressibility
(2.2b) V-U=0,

and with the equation of mass conservation

Dy _

(2.2¢) Dt =

0.
Here t is the time, U = (u, v, w) is the fluid velocity, g = 9.81 m/s is the gravitational
acceleration at the Farth’s surface, p is the constant density of fluid (a discussion

on stratified flows can be seen in Section 3.4), P is the pressure distribution and

% is the material derivative.

The boundary conditions for the fluid on the free-surface n are given by
(2.2d) w =1 + ung + vy,
(226) P = PO7

where Py is the constant atmosphere pressure. The kinematic boundary condition
express the fact that the same particles always form the free surface. Finally, we
assume the water to be infinitely deep, with the flow converging rapidly with depth

to a uniform zonal current, that is,

(2.2f) (u,v,w) = (—¢p,0,0) as z — —o0.
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3. Exact solution

In this section we define an exact solution of the governing equations (2.2). Let

us re-express the Euler equation (2.2a) in the following form

%""fw_fv :_%Pm
Do

(3.1) Dvt fu =Py,
%_fu :_%Pz_g-

The Lagrangian framework is adequate for the exact solution. In this framework,
the Eulerian coordinates of fluid particles (z,y, z) at time ¢ are expressed as func-
tions of Lagrangian labelling variables (g, s,7), which specify the fluid particle. It
is worth pointing out here that labellings by harmonic maps, like (3.2), in the sense
that « + iz has the form F(t,() + G(t,{) with ¢ — F(¢,¢) and ¢ — G(t,() analytic
functions of the complex variable ¢ = ¢ + ir (for every fixed time t) are known to

exhibit special structural properties- see the discussion in the papers [1, 15]. On

the lines of [5], we suppose that the position of a particle at time ¢ is given by

x=q—cot — 2P sin[k(q — et)],
(3:2) y=s,

z =1+ etr=m)] cosk(q — ct)],
where k is the wavenumber and the ¢y term represents a constant underlying current
such that for ccy > 0 the current is adverse, while for ccy < 0 the current is following.
The expressions of the travelling speed ¢ and the function m depending on s are de-
termined below such that (3.2) defines an exact solution of the governing equations

(2.2). The label domain is given by real values of (¢, s,r) € (R, [—s0, so], (—00, r0])
such that

(3.3) r—m(s) <rg<0

to ensure the flow has the appropriate decay properties.

For notational convenience, let us choose
(3.4) §=k[r—m(s)], 0=k(q—ct),

and accordingly the Jacobian matrix of the transformation (3.2) is given by

‘g—z g—'[yl g—; 1—efcosh 0 —efsind
(3.5) %f % % = | mgefsing 1 —mgescosb
Oz Oy 0z —efsinfd 0 1+ efcosf

or or or
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The velocity and acceleration of a particle can also be calculated directly from (3.2)
as

(3.6) v = & = 0,

and

Du 1.2 .8 ¢
D = kc“etsind,

(3.7 Duv =,

Dw

A
5 = —kc et cos 0,

respectively. We can therefore write (3.1) as
P, = —p(kc2et sinf + feef sin6),

(3.8) P, = —p(—fco + fceb cosh),
P, = —p(—kc2ef cosO + feog — feeb cosl + g).

The change of variables

oz Oy 9z

Pq dq dq dq PJ’
— | oz 9y 09z

(39) Pl = s gs s RJ
Oz 9y 0z

b, or Or  Or P,

transforms (3.8) into

P, = —p(kc* + fc — fco — g)ef sin ),
(3.10) P, = —plms(kc + fc)e2 + (fe— feoms — gmy)es cos — feol,
P, = —p|—(ke® + fe)eX — (ke® + fe— feo — g)ef cos O + feo + gl.

We prescribe now a suitable pressure function such that (3.10) holds, prov-
ing thus that (3.2) is indeed an exact solution of the governing equations (2.2a).
The pressure must be time independent on the surface due to the dynamic bound-
ary condition (2.2e), we thus need to eliminate terms containing 6 in (3.10) and
accordingly we set

(3.11) k02+fc—fco—g:O,

and choose

(3.12) m(s) = —15 50
feotyg

with

(3.13) co > —%,
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since otherwise we would have

g g 4
3.14 o< —=< —— = —6.7x10"m/s,

(3.14) 0<% /

a scenario we can exclude on physical grounds. The consideration of the nonnega-

tivity of m(s) is to ensure a decay in fluid particle motion in the meridional direction

(see discussion in Sec 3.3). With (3.11) and (3.12), we thus solve (3.10) by

P(T‘,S):
(3.15)
feo + P feo + r ;
%6254'10008—06004—9)7“ +Py—p f(;k g 2kro — (feo + g)ro| -

The constant terms from the above expression have been chosen to ensure the
conditions (2.2d) and (2.2e) hold on the free surface. (3.15) in conjunction with
the flow determined by (3.2) satisfies the governing equations (2.2a).

3.1. The vorticity. The inverse of the Jacobian matrix (3.5) can be computed

as
% % % 1 1+efcosf 0 €& sin 6

(816) |G & & | = 7o | Tmectsing 1 my(efcosf—e) |,
% % % et sin 6 0 1 —efcos

and thus we can get the velocity gradient tension

u  Ou  Ou u  Ou  Ou 9q¢ 9q 9q
ox oy 0z dq Os or ox Jdy 0z
VU=|8 9% 9uv| _ |9 Jv v 9s  90s  Os
- ox oy 0z - dq Os or or Oy Oz
ow  dw  dw ow  dw  dw or  9r  Or
(3 17) ox oy 0z dq Os or ox dy 0Oz
¢ —sin®  mg(e® —cosf) —ef + cosb

cke 0 0

1 —e% ’
cosf + et —mgsin 0 sin 0

from which the vorticity w = (w, — v.,u, — Wy, vy — uy) is obtained as
kfc? efsinf  2kce®  kfc® efcosh — e
w=|—= ,— ) =
fco+glfe2£ 1*62E ch+g 1*625

Now, we give some notations on the vorticity (3.18).

(3.18)

REMARK 3.1. 1. Though the velocity field (3.6) for the solution (3.2) is two-
dimensional, the vorticity (3.18) is (weakly) three-dimensional away from the equa-
tor (for which f = 0), with the first and third components depending on the latitude
¢. The impact of the latitude ¢ on the second component appears implicitly in the
dispersion relation (3.20).

2. The underlying current ¢ features directly in the expression for w, whereas

it plays an implicit role in [21, 22].
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3.2. The dispersion relations. The relation (3.11) has implications in de-
termining the dispersion relation for the flow by regarding (3.11) as a quadratic in

c. To solve it, we enforce
(3.19) A = f?+4k(feo + 9) > 0,

which holds automatically by a glance at (3.13). The dispersion relation can then
be computed as

 —f+VA

2k

featuring contributions from the reciprocal Coriolis parameter f and the underlying

(3.20) st

current c¢g. If ¢ = ¢4 > 0, the wave travels from the west to east and if ¢ = c_ < 0,

it travels from east to west. We now give some remarks on the relations (3.20).

REMARK 3.2. 1. If ¢y = 0, then the dispersion relation reduces to

—f /2 +dkg
3.21 =
(321) s —
which corresponds to Gerstner waves that are very slightly modified by rotation.

Recalling the dispersion relation of Pollard’s waves as [14, 31]

(3.22) (k2 — )¢ = (g — fo?,
we obtain the equivalent forms as

(3.23) Kt — f2 = (g — fe)’
and

(3.24) E2c* —49% + 2gfc — g> = 0.

The relation (3.24) tells us that the Coriolis parameter f does no feature in the
expression of the dispersion, which is in accordance with the result (3.11) in this

paper. On the other hand, we get from (3.11) that in the case ¢o =0
(3.25) Kt = (g fop,

and accordingly the difference of the two dispersion (3.25) and (3.23) is f2c? (~
0(92)), which is relatively much smaller than the terms fe (~ O(Q2)).

2. For equatorial waves we have f = 0 and f = 2(), so that the constraint
(3.13) reduces to

g
3.26 _ 7
(3.26) Co > 20
which agrees with the restriction in [20, 22]. Besides, the relation (3.20) reduces
to
—Q+./Q+k 2Q)
(3.27) cy = VO + k(g +20c)

k

with a further assumption c¢g = 0, which leads to the result of Hsu [23].
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3. In the case ¢o = ¢, we get from (3.11) that ¢ = +,/¢, which resembles
that of both Gerstner’s wave and gravity waves in deep-water [2]. This dispersion
relation is also obtained by ignoring the Earth’s rotation (€2 = 0), in which case
the solution (3.2) effectively reduces to Gerstner’s two-dimensional gravity water

waves.

3.3. The free-surface interface. By considering the boundary conditions
(2.2d) and (2.2e), we now investigate for which values of the current ¢y this flow
is hydrodynamically possible. This will be achieved by proving that, for each fixed
latitude s and ¢, there exists a unique solution r(s) < rg < 0 such that P(r(s),s) =
Py in (3.15), which is equivalent to

(3.28) h(r(s),s) = fcgi]jge%ro - (fco +g)ro,

where

feo+ g 2klr- L]

(3.29) h(r(s),s) = — Fets! + feos — (feo + g)r.
For s = 0, we have
(3.30) h(r,0) = %e%r ~ (feo + g)r
and so r(0) = rg. For s # 0 fixed
he = (feo + 9)€2k[r_ o) — (feo + g)r
(3.31) = (feo+ 9™ Tt —1] <0

by (3.3) and (3.13). Hence, h is a decreasing function of r. Since

(3.32) lim A(r,s) = oo,

r——00

if the following inequality holds

_ feotg 2hin-

Tliﬂnr}o h(r,s) = o7 Teots! + feos — (feo + g)ro
(3.33) < fcg]:ge%“’ — (feco + g)ro,
then the equation (3.28) has a unique solution. The inequality (3.33) takes the
form
(3.34) fc;;ge%m [e—% Feots _ 1} + feos == Ax(s) + Aa(s) <0,
where

£ _ fes
(335) Al(s) == .fco27]:>962k;r0 |:e 2kfco+9 — 1:| < O,
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by (3.12) and (3.13). Differentiate (3.28) with respect to s to get that

2e[r— fes fes ]
e

(3.36) hs:(fCO‘Fg)’"/(s)[ Wg]‘l%f[%—ce%“ Foral| =0,

which by the way of (3.13) gives

k[r— fes
f co — ce [ fco+9]

(3.37) r'(s) = =
ch +g 1— e2k[7ﬂ_ fcfo+9]

Bearing in mind that we are seeking geophysical trapped waves, we set

r'(s) <0, fors>0,

(3.38)
r'(s) >0, fors <0,
ie.
. fleo — Cez:[r fio}gj] <0, fors>0,
fleo — ce™™" Feots'] > 0, fors <0,

by (3.3) and (3.13). Hence, by r(0) = ¢ and (3.3), we must necessarily have that

fe <0, fors>0,

r'(s) —m/(s) =1'(s) — =
feco+g | >0, fors<0,

and accordingly m(s) = fes >0 s required. Combining (3.39), (3.34), (3.12
feotyg
0

with (3.13), we obtain the restrictions needed for the hydrodynamical possibility of

the flow as
(3.40) fes >0,
¢ _o1._fes
(3.41) fcgi;ge%ro [e " Teots — 1]+ fegs = A1 + Ay < 0,
r——fes
(3.42) fleo — cezk[ fco+9]] <0, fors>0,
: r——fes
fleo — ce™*! fco+9]] >0, fors<0.

A detailed discussion on the above restrictions in Northern and Southern hemi-

sphere respectively leads to the following results.

PROPOSITION 3.3. The fluid motion prescribed by (3.2) represents an ezxact
solution to the governing equations (2.2) in cases that

1. In Northern hemisphere

I-1. The flows with the wave phase speed ¢ = cy > 0 admit following currents
—% < ¢y <0 for s >0 and adverse currents 0 < co < ce?* for some s > 0 close
to zero.

1-2. The flows with the wave phase speed ¢ = c_— < 0 admit following currents
co > 0 for s < 0 and adverse currents —% < ce?kro < cq < 0 for s < 0 close to

ZEero.
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1. In Southern hemisphere

1I-1. The flows with the wave phase speed ¢ = cy > 0 admit following currents
—% < cg <0 for s < 0 and adverse currents 0 < ¢y < ce2kro for s < 0 close to
zero.

1I-2. The flows with the wave phase speed ¢ = c_ < 0 admit following currents
co > 0 for s > 0 and adverse currents —% < ce?Fro < ¢g < 0 for s > 0 close to
zero.

This solution represents three-dimensional, nonlinear geophysical trapped waves.
The free surface z = n(x,y,t) is implicitly prescribed at s = 0 by setting r = rq in
(3.2), and for other fized latitude s € [—s0,0] or s € [0,s0], there exists a unique
value r(s) < ro which implicitly prescribes the free surface z = n(x,s,t) by waves
of setting r =r(s) in (3.2).

Proof. We just discuss the Case I as the Case II can be treated in a similar
way. In the Northern hemisphere, we have f > 0.

1. For ¢ = ¢4 > 0, we obtain from (3.40) that s > 0 and from (3.41)-(3.42)
that

ch + g€2k7‘0

(343) =%

_ fes
[e 2K Feors — 1} + feos = Ai(s) + Aa(s) <0, fors >0,

fes

(3.44) f [co — ™ fco+9]] <0, fors>0.

The above conditions are satisfied obviously for —% < ¢y < 0. In terms of ¢y > 0,
it can be seen that the condition (3.43) will break down for large enough values
of s > 0. Noting that we are interested in water waves propagating in a relatively
narrow ocean strip, it is possible for (3.43) to hold for a small value s depending on

the size of the current ¢y > 0. Since A;1(0) + A2(0) = 0, we must necessarily have

2k[r fes

(3.45) Ay(s) + Ap(s) = fleo — ™ Trorsl) < 0

for s > 0 close to zero to ensure the validity of (3.43). For a given 0 < ¢y < ce?"o,

(3.45) holds for some s € (0,s;] and accordingly (3.44) holds for s € (0, s¢] with
Sp < S7.
2. For ¢ = c_ < 0, we get from (3.40) that s < 0 and (3.41)-(3.42) reduces to

fes

|:e_2kf60+g - 1] + feos = A1(s) + Aa(s) <0, fors <0,

fco + ger’l‘o

(3.46) o

r— Afcs
(347) f |:C() — ™M f00+9]:| >0, fors<D0.

The above conditions are satisfied obviously for ¢y > 0. In terms of —% < ¢y <0,
it can be seen that the condition (3.46) will break down for negative enough values
of s < 0. The consideration about water waves propagating in a relatively narrow

ocean strip makes it possible for (3.46) to hold for a small value s depending on the
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size of the current ¢y < 0. Since A1(0) + A2(0) = 0, we must still necessarily have
ro— _fes
(3.48) Al (s) + Ay(s) = fleo — ce O Feoral) > 0

for s < 0 close to zero to ensure the validity of (3.46). For a given 0 > ¢y > ce?¥70 >
_}%’ (3.48) holds for some s € [—s1,0) and accordingly (3.47) holds for s € [—s¢,0)
with sp < s;. This completes the proof of Case L. (]

REMARK 3.4. For water waves propagating zonally near the Equator and cov-
ering both the northern and southern hemispheres, where we assume sin ¢ ~ ¢ # 0,
the conclusion of I-1 and II-1 for ¢ = ¢4 > 0 is in accordance with the result
for equatorial geophysical water waves with underlying current by Henry in [20],
whereas the solutions we constructed here admit flows with wave speed ¢ = c_ < 0.

3.4. Stratification. In the absence of an underlying current ¢y = 0, we can
accommodate a stratified fluid through assuming that the density has a steady
function dependence of the form p(x,y, z,t) = p(x — ct, y, z). The equation of mass
conservation (2.2¢) recasts to

(3.49) (u—¢)ps +wp, =c (pgc(ef cosf — 1) + p.eSsin 6) =0,

and a direct computation leads to

oz dy 0z

(3.50) Pq = pza—q + py% + pza—q = po(1 —e*cosf) — p.efsinf = 0.

Therefore the density p is independent of g. Defining the density function by
e

(3.51) p(r.s) = F(5 =),

where F' : (0,00) — (0,00) is continuously differentiable and non-decreasing and
the pressure function (3.15) is suitably adapted, for 7/ = F with F(0) = 0, the

function

026 o2k70

3.52 P=gF(=— —1)+Py—gF — ).

(3.52) g (2k )+ Po — gF( ok 7o)
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