
Dynamics of PDE, Vol.15, No.3, 183-199, 2018

Invariant tori for a fifth order nonlinear partial differential
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Abstract. In this paper, we are concerned with small perturbation of the
nonlinear partial differential equation

ut = u5x − 5

16
(8u2

xx + 8uxuxxx)

under periodic boundary conditions. Using an abstract infinite dimensional
KAM theorem, we obtain the existence of many two-dimensional invariant
tori and thus many time quasi-periodic solutions for the above equation under
sufficiently small Hamiltonian perturbation.
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1. Introduction and main results

With regard to the Hamiltonian partial differential equation (HPDE)

ẇ = Aw + F (w),

where Aw is linear Hamiltonian vector-field with d := ordA > 0, F (w) is nonlinear
Hamiltonian vector-field with δ := ordF , and it is analytic in the neighborhood of
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the origin w = 0. When δ ≤ 0, the vector-field F is called bounded perturbation.
When δ > 0, the vector-field F is called unbounded perturbation.

After Kuksin and Wayne [9, 20] established the earliest KAM theorem for
PDEs with bounded perturbation, many authors paid attention to the existence of
KAM tori for HPDEs with bounded perturbation, and plenty of achievements were
obtained. We can’t list all the papers in this field, here we list only two survey
papers [6, 10].

However, fewer results of KAM theory for HPDEs with unbounded perturbation
are obtained. The first KAM theorem for unbounded perturbation was established
by Kuksin [7, 8]. In [8], Kuksin proved the persistence of the finite-gap solutions
alongside the hierarchy of KdV equation with periodic boundary conditions under
the condition 0 < δ < d − 1. Recently, KAM theory for unbounded perturbation
has been extended to the limiting case 0 < δ = d−1. A new estimate for the small-
denominators equation with critical unbounded variable coefficient is obtained by
Liu and Yuan [13]. Using the new estimate, they established a KAM theorem for
infinite dimensional Hamiltonian systems with 0 < δ ≤ d − 1 in [14]. The readers
can refer to [2, 15, 1, 17, 18, 21] for more results about unbounded perturbation.

For a long time the fifth order partial differential equations have been paid
close attention in physics. For example, in 1987, Fuchssteiner etc. [4] discussed
the hereditariness of recursion operators for some fifth order nonlinear partial dif-
ferential equations. In 2001, Verhoeven and Muserre [19] extended the N-soliton
solutions of the Kaup-Kupershmidt equation on a nonzero background decreasing
as (x + 1

a )−2. In 2005, Das & Popowicz [3] studied the properties of a nonlinearly
dispersive integrable system of fifth order and its associated hierarchy in which the
systems are related to the Kaup-Kupershmidt and the Sawada-Kotera equations
under appropriate Miura transformation.

The problem that we address in this paper is the existence of a family of quasi-
periodic solutions for small perturbation of another fifth order equation

(1.1) ut = u5x − 5
16

(8u2
xx + 8uxuxxx)

subject to periodic boundary conditions

(1.2) u(t, x + 2π) = u(t, x),−∞ < t < ∞,

which is a approximation of the FG equation [12] 1

ut = u5x − 5
16

(8u2
xx + 8uxuxxx + 16uuxuxx + 4u3uxxx + 4u3ux − u4ux).

Many researchers focused on the existence of the quasi-periodic solutions of
the HPDEs with higher order frequency. For example, Kappeler and Pöschel [11]
considered the second KdV equation

∂tu = ∂5
xu− 10u∂3

xu− 20∂xu∂2
xu + 30u2∂xu

under small perturbations and proved the existence of a Cantorian branch of KAM
tori and many time quasi-periodic solutions. A natural question is that whether
the system (1.1) possesses quasi-periodic solutions under small Hamiltonian per-
turbation. In this paper, we will answer this question.

1Here in order to find the proper Hamiltonian function we have to omit some higher order
term.
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To set the stage we introduce for any integer N > 7
2 the phase space

H N
0 = {u ∈ L2(T, R) : û(0) = 0, ‖u‖2N =

∑
j∈Z\{0}

|j|2N |û(j)|2 < ∞}

of real valued functions on T = R/2πZ, where

û(j) =
∫ 2π

0

u(x)e−j(x)dx, ej(x) =
1√
2π

eijx.

We endow H N
0 with the Poisson structure proposed by Gardner

{F, G} =
∫

T

∂F

∂u(x)
d
dx

∂G

∂u(x)
dx,

where F and G are differentiable functions on H N
0 with L2-gradients in H 1

0 .
Then the equation (1.1) can be written in the form

(1.3) ut =
d
dx

(
∂H

∂u

)
with Hamiltonian

(1.4) H(u) =
∫

T

(
1
2
u2

xx +
5
12

u3
x

)
dx.

In (1.1), the order of nonlinearity δ = 3 and the linear operator order d = 5
satisfy 0 < δ < d−1. So the perturbation belongs to the noncritical unbounded case.
We will apply the KAM theory in [11] to prove the existence of KAM tori. The main
work is to transform the Hamiltonian into its normal form up to order four to extract
parameters. In this process, the first plague we meet is the difficulty of establishing
the regularity of the vector field resulting from the higher order frequency after
transformation. Fortunately, we conquer it by careful computation and analysis
using some inequations. The second plague is to check the condition (3.6). Because
of the complexity of higher order frequency, the matrixes of transformation A, B
in (3.8) become very complex. To obtain the conclusion of (3.6), we find a proper
matrix T to reduce A into a simple form. Even so, we only obtain the 2-dimensional
invariant tori. In the past, there are many researchers to prove the existence of 2-
dimensional tori. For example, Liang [16] discussed 1D Schrödinger equations with
the nonlinearity |u|2pu under the periodic boundary conditions, and obtained the
persistence of many 2-dimensional invariant tori for the index set J = {j1, j2} with
j2 >

√
pj1 > 0. Gao and Liu [5] considered the nonlinear wave equation

utt − uxx + mu + u5 = 0

under Dirichlet boundary conditions, and gave the existence of many 2-dimensional
invariant tori for the index set J = {n1, n2} with n1 = 1, n2 ≥ 10. It needs to notice
that the results above are about systems with bounded perturbation. Similar to
above papers, we obtain the following theorem.

Theorem 1.1. Consider the nonlinear equation

(1.5) ut = u5x − 5
16

(8u2
xx + 8uxuxxx) + ε

∂K

∂u

subject to the periodic boundary condition (1.2), where K is real analytic in a
complex neighbourhood U of the origin in H N

0,C which is the complexification of
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H N
0 and satisfies the regularity condition

∂K

∂u
: U → H N

0,C,

∥∥∥∥∂K

∂u

∥∥∥∥
N,U

= sup
u∈U

∥∥∥∥∂K

∂u

∥∥∥∥
N

≤ 1.

Then, for any given index set J = {j1 < j2} ⊂ Z \ {0}, there exists an ε0 > 0
depending only on J , N and U , such that for 0 < ε < ε0, there exist

(1) a nonempty Cantor set Πε ⊂ Π with meas(Π \Πε) → 0 as ε → 0 , where Π
is a compact subset of R

2 with positive Lebesgue measure,
(2) a Lipschitz family of real analytic torus embeddings

Φ : T
2 ×Πε → S 2

N+ 1
2
∩H N

0 ,

where S 2
N+ 1

2
= T

2 ×R
2 × �2

N+ 1
2
× �2

N+ 1
2
, �2

N+ 1
2

is the Hilbert space of all complex-
valued sequences with norm (2.2),

(3) a Lipschitz map φ : Πε → R
2,

such that for each (θ, ξ) ∈ T
2 × Πε, the curve u(t) = Φ(θ + φ(ξ)t, ξ) is a quasi-

periodic solution of equation (1.5) winding around the invariant Φ(T2 × {ξ}).
Moreover, each embedding is real analytic on D(s/2) = {|�ϕ| < s/2}, and

‖Φ− Φ0‖sup

r,N+ 1
2 ,D(s/2)×Πε

+
α

M
‖Φ− Φ0‖lipr,N+ 1

2 ,D(s/2)×Πε
≤ cε

α
,

|φ− ω|sup
Πε

+
α

M
|φ− ω|lipΠε

≤ cε,

where
Φ0 : T

2 ×Π → T
2 × {0} × {0} × {0}, (ϕ, ξ) �→ (ϕ, 0, 0, 0)

is the trivial embedding for each ξ. α is a parameter which depends on ε. c is
positive constant which depends on the same parameters as γ, where γ comes from
the KAM theorem 4.1.

2. The normal form

In this section, we will normalize the Hamiltonian up to order four. To this
end, we need some preparations.

Writting

(2.1) u(t, x) =
∑
j �=0

γjqj(t)ej(x),

where γj =
√|j|. The coordinates are taken from the Hilbert space �2

N+ 1
2

of all
complex-valued sequences (qj)j �=0 with

(2.2) ‖q‖2N+ 1
2

=
∑
j �=0

|j|2N+1|qj |2 < ∞, q−j = q̄j .

Now (1.3) can be written as

(2.3) q̇j = iσj
∂H

∂q−j
, σj =

{
1, j ≥ 1,
−1, j ≤ −1

with the Hamiltonian

(2.4) H(q) =
∑
j≥1

j5|qj |2 − 5
12
√

2π

∑
j+k+l=0

jklγjγkγlqjqkql = Λ + G,
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and the corresponding symplectic structure is

(2.5) −i
∑
j≥1

dqj ∧ dq−j .

The associated Hamilton vector field with Hamiltonian H(q) is given by

XH = iσj

∑
j �=0

∂H

∂q−j

∂

∂qj
.

Lemma 2.1. The Hamiltonian vector field XG is real analytic as a map from
�2
N+ 1

2
into �2

N− 5
2

for each N > 7
2 . Moreover, ‖XG‖N− 5

2
= O(‖q||2

N+ 1
2
).

Proof. Since

G(q) = − 5
12
√

2π

∑
j+k+l=0

jklγjγkγlqjqkql,

hence, ∣∣∣∣ ∂G

∂q−j

∣∣∣∣ ≤ 5
12
√

2π
|j|γj

∑
k+l=j

|kl|γkγl|qkql| = 5
12
√

2π
|j|γjgj .

Defining w = (wj)j = (|j|γj |qj |)j , g = (gj), then gj = (w ∗ w)j , consequently
g = w ∗ w. For q ∈ �2

N+ 1
2
, we have w ∈ �2N−1. Hence we have

‖g‖N−1 = ‖w ∗ w‖N−1 ≤ C‖w‖2N−1 ≤ C‖q||2N+ 1
2
,

and therefore
‖∂qG‖N− 5

2
≤ C‖g‖N−1 ≤ C‖q||2N+ 1

2
.

The proof is completed. �

Lemma 2.2. Suppose a1, a2, b1, b2 are nonzero integers, and b1
a1

, b2
a2

are fractions
in lowest terms. Then if b1

a1
± b2

a2
is a integer, we have a1 = a2.

Proof. If b1
a1
± b2

a2
equals the integer m, we obtain

a2b1 + a1b2 = ma1a2.

Obviously, a1|a1b2, then a1|a2b1. Meanwhile, b1
a1

is a fraction in lowest terms, then
a1|a2. Similarly, we have a2|a1. Consequently, a1 = a2. �

Lemma 2.3. Suppose j, l, k are nonzero integers with j + k + l = 0. Then

(2.6) j5 + l5 + k5 = 5jkl(j2 + l2 + jl) �= 0,

and

(2.7) j2 + l2 + jl ≥ 1
2

max{j2, k2, l2}.
Proof. If j + k + l = 0, then k = −j − l, and

j5 + k5 + l5 = j5 + l5 − (j + l)5 = −5j4l − 10j3l2 − 10j2l3 − 5jl4

= 5jkl(j2 + l2 + jl) �= 0.

Meanwhile, we know

j2 + l2 + jl ≥ 1
2
(j2 + l2) +

1
2
(j + l)2 ≥ 1

2
max{j2, l2},
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j2 + l2 + jl = k2 + l2 + kl ≥ 1
2
(l2 + k2) +

1
2
(l + k)2 ≥ 1

2
k2,

namely,

j2 + l2 + jl ≥ 1
2

max{j2, k2, l2}.
�

Lemma 2.4. Suppose j, l, m, n ∈ Z \ {0}, and define

Δ = {(j, l, m, n) ∈ Z
4 \ {0}|j + l + m + n = 0},

Δ1 = {(j, l, m, n) ∈ Δ|j + l, j + m, j + n �= 0}.
Then if (j, l, m, n) ∈ Δ1, we have∣∣∣∣ (m2 + n2 + mn)(j5 + l5 + m5 + n5)

(j + l)2jl

∣∣∣∣ ≥ 5
2

max{|j|, |l|, |m|, |n|}.

Proof. If (j, l, m, n) ∈ Δ1, then n = −j − l −m, and

j5 + l5 + m5 + n5 = j5 + l5 + m5 − (j + l + m)5

= −5(j + l)(j + m)(j + n)(j2 + l2 + m2 + jm + jl + lm)

=
5
2
(j + l)(j + m)(j + n)(j2 + l2 + m2 + n2) �= 0.

Furthermore, it is easy to see that

(2.8)
1
2
(j2 + l2 + m2 + n2) ≥ |jl|,

and

(2.9) m2 + n2 + mn ≥ 1
2
m2 +

1
2
n2 + mn =

1
2
(m + n)2 =

1
2
(j + l)2.

In what follows, we wil1 prove that

(2.10) |(j + l)(j + m)(j + n)| > 1
2

max{|j|, |l|, |m|, |n|}.
Without loss of generality, we assume that |j| = max{|j|, |l|, |m|, |n|}. (2.10) can
be divided into two cases to prove.

Case1. There are three components have the same sign, then

|j| = |l|+ |m|+ |n|,
so we have

|(j + l)(j + m)(j + n)| = |(j + l)(l + n)(l + m)| ≥ |(l + m)(l + n)|

≥ 2|l|+ |n|+ |m|
2

>
|j|
2

.

Case2. There are two components have the same sign, suppose l and j have
the same sign, then we have

|(j + l)(j + m)(j + n)| ≥ |j + l| ≥ |j| > |j|
2

.

In view of (2.8) (2.9) and (2.10), we can get∣∣∣∣ (m2 + n2 + mn)(j5 + l5 + m5 + n5)
(j + l)2jl

∣∣∣∣ ≥ 5
2

max{|j|, |l|, |m|, |n|}.

�



INV. TORI FOR A FIFTH ORDER NONLINEAR PDE. WITH UNBOUNDED PER. 189

Lemma 2.5. There exists a real analytic symplectic coordinate transformation Φ
defined in a neighborhood of the origin of �2

N+ 1
2
, which transforms the Hamiltonian

(2.4) into its normal form up to order four. That is

(2.11) H ◦ Φ = Λ−B + P̄

with

B =
5

32π

∑
j �=l

σjlj
3l3

j2 + l2 + jl
|qj |2|ql|2 +

5
48π

∑
j �=0

j4|qj |4,

(2.12) ‖∂qP̄‖N− 1
2

= O(‖q‖4N+ 1
2
).

Proof. (1) The first step is to eliminate the three order term G of q.
Let the transformation Φ1 = X1

F 3 be the time-1 map of the flow of the Hamil-
tonian vector field XF 3 , and then

H1 = H ◦ Φ1 = H ◦X1
F 3

=Λ + {Λ, F 3}+ G +
∫ 1

0

(1− t){{Λ, F 3}, F 3} ◦Xt
F 3dt +

∫ 1

0

{G, F 3} ◦Xt
F 3dt.

To solve {Λ, F 3}+ G = 0, we make the ansatz

F 3 =
∑

j,k,l �=0

F 3
jklqjqkql,

then from (2.6) and (2.7), it is justified to define F 3 by setting

F 3
jkl =

{ −5
12
√

2π

γjγkγl

j2+l2+jl , j + k + l = 0, j, k, l �= 0,

0, otherwise.

Hence

H1 = Λ +
∫ 1

0

t{G, F 3} ◦Xt
F 3dt

= Λ +
1
2
{G, F 3}+

1
2

∫ 1

0

(1− t2){{G, F 3}, F 3} ◦Xt
F 3dt

= Λ +
1
2
{G, F 3}+ P1,

where

P1 =
1
2

∫ 1

0

(1− t2){{G, F 3}, F 3} ◦Xt
F 3dt = O(q5),

1
2
{G, F 3} =

−5
64π

∑
j+l+m+n=0,

j+l �=0

(j + l)2kl

m2 + n2 + mn
γjγlγmγnqjqlqmqn.

Moreover the j−th element of gradient ∂qF
3 explicitly reads

∂F 3

∂q−j
=

∑
k+l=j

(
F 3

(−j)kl + F 3
k(−j)l + F 3

kl(−j)

)
qkql.

Then from (2.7), we get the estimate∣∣∣∣ ∂F 3

∂q−j

∣∣∣∣ ≤ 5
2
√

2πγ3
j

∑
k+l=j

γkγl|qk||ql|,
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therefore we obtain
‖∂qF

3‖N+ 3
2

= O(‖q‖2N+ 1
2
).

(2) The second step is to normalize the four order term 1
2{G, F 3}.

1
2{G, F 3} can be written as

1
2
{G, F 3} = −B −Q,

where

B =
5

32π

∑
j �=l

(j + l)2jl
j2 + l2 + jl

|jl||qj |2|ql|2 +
5

48π

∑
j �=0

j4|qj |4,

Q =
5

64π

∑
(j,l,m,n)∈Δ1

(j + l)2jl
m2 + n2 + mn

γjγlγmγnqjqlqmqn.

Then
H1 = Λ−B −Q + P1.

Notice that∑
j �=l

(j + l)2jl
j2 + l2 + jl

|jl||qj |2|ql|2 =
∑
j �=l

[
σjlj

2l2|qj |2|ql|2 +
σjlj

3l3

j2 + l2 + jl
|qj |2|ql|2

]
,

and ∑
j �=l

σjlj
2l2|qj |2|ql|2 = 0,

where σjl = σjσl, then we have

B =
5

32π

∑
j �=l

σjlj
3l3

j2 + l2 + jl
|qj |2|ql|2 +

5
48π

∑
j �=0

j4|qj |4.

It remains to eliminate Q by another coordinate transformation Φ2 = X1
F 4 .

Then

H2 =H1 ◦ Φ2 = H1 ◦X1
F 4

=Λ + {Λ, F 4} −B −Q +
∫ 1

0

(1− t){{Λ, F 4}, F 4} ◦Xt
F 4dt

+
∫ 1

0

{−B −Q, F 4} ◦Xt
F 4dt + P1 ◦X1

F 4 .

Defining

F 4 =
∑

j,l,m,n �=0

F 4
jlmnqjqlqmqn

with coefficients

iF 4
jlmn =

{
5

64π
(j+l)2jlγjγlγmγn

(m2+n2+mn)(j5+l5+m5+n5) , (j, l, m, n) ∈ Δ1,

0, otherwise,

we see that
{Λ, F 4} = Q.
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Then we have

H2 =Λ−B +
∫ 1

0

(1− t){{Λ, F 4}, F 4} ◦Xt
F 4dt

+
∫ 1

0

{−B −Q, F 4} ◦Xt
F 4dt + P1 ◦X1

F 4 = Λ−B + P̄

with

P̄ =
∫ 1

0

(1− t){{Λ, F 4}, F 4} ◦Xt
F 4dt +

∫ 1

0

{−B −Q, F 4} ◦Xt
F 4dt + P1 ◦X1

F 4 .

In the following we need to establish the regularity of the vector field XF 4 .
From Lemma 2.4, we know∣∣∣∣ (m2 + n2 + mn)(j5 + l5 + m5 + n5)

(j + l)2jl

∣∣∣∣ ≥ 5
2

max{|j|, |l|, |m|, |n|}.

Hence

|F 4
jlmn| ≤

1
16π

· γjγlγmγn

max{|j|, |l|, |m|, |n|} .

Moreover, the j−th element of gradient ∂qF
4 explicitly reads

∂F 4

∂q−j
=

∑
l+m+n=j

(
F 4

(−j)lmn + F 4
l(−j)mn + F 4

lm(−j)n + F 4
lmn(−j)

)
qlqmqn.

Thus, we get the estimate∣∣∣∣ ∂F 4

∂q−j

∣∣∣∣ ≤ 1
16πγj

∑
l+m+n=j

γlγmγn|ql||qm||qn| := 1
16πγj

rj ,

where rj stands for the sum ∑
l+m+n=j

γlγmγn|ql||qm||qn|.

Defining w = (wj)j = (γj |qj |)j , r = (rj)j , then rj = (w ∗ w ∗ w)j , consequently
r = w ∗ w ∗ w. For q ∈ �2

N+ 1
2
, we have w ∈ �2N . Hence we have

‖r‖N = ‖w ∗ w ∗ w‖N ≤ C‖w‖3N ≤ C‖q||3N+ 1
2
,

and therefore

‖∂qF
4‖N+ 1

2
≤ C‖r‖N ≤ C‖q||3N+ 1

2
.

Namely,

‖∂qF
4‖N+ 1

2
= O(‖q‖3N+ 1

2
).

Let Φ = Φ1 ◦Φ2, then Φ transforms the Hamiltonian function (2.4) into (2.11).
The proof of Lemma 2.5 is completed. �
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3. The proof of Theorem 1.1

From the transformation Φ in Lemma 2.5, we get the new Hamiltonian

H∗ = H2 + εK ◦ Φ = Λ−B + P̄ + εK ◦ Φ

of equation (1.5), where Λ is real analytic in the neighbourhood V of the origin in
�2
N+ 1

2
, K ◦ Φ satisfies

‖XK◦Φ‖N+ 1
2 ,V = ‖DΦ−1XK ◦ Φ‖N+ 1

2 ,V ≤ C.

We introduce symplectic polar and real coordinates (ϕ, y, z, z̄) by setting

(3.1) Ψ :
{

qjb
=
√

ξb + ybe
−iϕb , q−jb

=
√

ξb + ybe
iϕb , b = 1, 2,

qj = zj , q−j = z̄j , j ∈ Z∗ = Z \ J ,

where

(3.2) ξ = (ξ1, ξ2) ∈ Π ⊂ R
2,

and here Π is a compact subset of R
2 with positive Lebesgue measure. Then

Λ =
1
2

∑
1≤b≤2

σjb
j5
b (ξb + yb) +

1
2

∑
j∈Z∗

σjj
5zj z̄j ,

B =
5

32π

(
2σj1σj2j

3
1j3

2

j2
1 + j2

2 + j1j2
(ξ1 + y1)(ξ2 + y2) + 2

∑
1≤b≤2,

j∈Z∗

σjb
σjj

3
b j3

j2 + j2
b + jjb

(ξb + yb)zj z̄j

+
∑

j,j′∈Z∗

σjσj′j3j′3

j2 + j′2 + jj′
zj z̄jzj′ z̄j′

)
+

5
96π

( ∑
1≤b≤2

j4
b (ξb + yb)2 +

∑
j∈Z∗

j4(zj z̄j)2
)

.

Thus the new Hamiltonian, still denoted by H, up to a constant depending on ξ,
is given by

H = N + P =
∑

1≤b≤2

σjb
ωbyb +

∑
j∈Z∗

σjΩjzj z̄j + Q̄ + P̄ + εK ◦ Φ

with symplectic structure∑
1≤b≤2

σjb
dyb ∧ dϕb − i

∑
j∈Z∗

σjdzj ∧ dz̄j ,

where

(3.3) ωb =
1
2
j5
b −

5
48π

σjb
j4
b ξb − 5

16π

∑
1≤k �=b≤2

σjk
j3
kj3

b

j2
k + j2

b + jkjb
ξk,

(3.4) Ωj =
1
2
j5 − 5

16π

∑
1≤b≤2,j∈Z∗

σjb
j3
b j3

j2 + j2
b + jjb

ξb,

Q̄ =
5

32π

(
2σj1σj2j

3
1j3

2

j2
1 + j2

2 + j1j2
y1y2 + 2

∑
1≤b≤2,

j∈Z∗

σjb
σjj

3
b j3

j2 + j2
b + jjb

ybzj z̄j

+
∑

j,j′∈Z∗

σjσj′j3j′3

j2 + j′2 + jj′
zj z̄jzj′ z̄j′

)
+

5
96π

( ∑
1≤b≤2

j4
b y2

b +
∑
j∈Z∗

j4(zj z̄j)2
)

.
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Now consider the phase space domain

(3.5) D(s, r) : |�ϕ| < s, |y| < r2, ‖z‖N+ 1
2

+ ‖z̄‖N+ 1
2

< r.

We will adopt a lot of notations and definitions from [11], which including the
phase space, weighted norm for the Hamilton vector field, etc.. More definitions
are presented in Appendix.

In the following we check the assumption A, B, and C of the KAM Theorem
4.1 in Appendix.

Regarding Ω as an infinite dimensional column vector with its index j ∈ Z∗,
from (3.4), we know

Ωj(ξ) = Ω̄j + Ω̃j(ξ),

where Ω̄j = 1
2j5 is independent of ξ. Furthermore, from (3.4), we get

|Ωj |lipΠ ≤ 5
16π

∑
1≤b≤2,

j∈Z∗

|j3
b j3|

j2 + j2
b + jjb

≤ 5
12π

max{|j1|3|j|, |j2|3|j|}.

Thus,

|Ω|lip−3,Π = sup
j∈Z∗

j−3|Ωj |lipΠ ≤ 5
12π

max{|j1|3, |j2|3} := M1.

It means that assumption A is fulfilled with d = 5, δ = 3 and

M1 =
5

12π
max{|j1|3, |j2|3}.

In view of (3.3), we know that ξ �→ ω is an affine transformation from Π to R
2.

Noting that

ω = ω̆ − 5
16π

Aξ,

where

ω̆ =
(

j5
1

j5
2

)
, A =

⎛
⎝ σj1

j4
1
3 σj2

j3
1j3

2
j2
1+j2

2+j1j2

σj1
j3
1j3

2
j2
1+j2

2+j1j2
σj2

j4
2
3

⎞
⎠ , ξ =

(
ξ1

ξ2

)
,

then we get that

det A = σj1j2

j2
1j2

2(j1 − j2)2(j2
1 + j2

2 + 4j1j2)
(j2

1 + j2
2 + j1j2)2

�= 0.

Therefore, the real map ξ �→ ω is a lipeomorphism between Π and its image. This
implies that the first part of assumption B is fulfilled with positive M2 and L only
depend on the set J .

In what follows, we will check the second part of assumption B. Writting

Ω = Ω̄− 5
16π

Bξ,

where Ω̄ is an infinite dimensional column vector and its j−th element Ω̄j = 1
2j5,

B is a −∞×2 matrix with its j−row Bj =
(

σj1 j3
1j3

j2
1+j2+j1j

,
σj2 j3

2j3

j2
2+j2+j2j

)
, and regarding k

and l as two-dimensional and infinite dimensional row vector respectively, we have
to check for every k = (k1, k2) ∈ Z

2 and 1 ≤ |l| ≤ 2 with l ∈ Z
∞,

(3.6) meas{ξ ∈ Π : 〈k, ω(ξ)〉+ 〈l, Ω(ξ)〉 = 0} = 0.
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Let

g(ξ) = 〈k, ω(ξ)〉+ 〈l, Ω(ξ)〉
= 〈k, ω̆〉+ 〈l, Ω̄〉+ 〈k,− 5

16π
Aξ〉+ 〈l,− 5

16π
Bξ〉.

For the condition (3.6) we have to check that

(3.7) 〈k, ω̆〉+ 〈l, Ω̄〉 �= 0 or kA + lB �= 0.

Suppose that

(3.8) kA + lB = 0,

and multiply the matrix T = diag(σj1 · 1
j3
1
, σj2 · 1

j3
2
) from the right-hand side of (3.8)

and we can obtain

(3.9) kÃ + lB̃ = 0,

where

Ã =

⎛
⎝ j1

3
j3
1

j2
1+j2

2+j1j2
j3
2

j2
1+j2

2+j1j2

j2
3

⎞
⎠ ,

B̃ = (B̃j)j∈Z\J , B̃j = (
j3

j2
1 + j2 + j1j

,
j3

j2
2 + j2 + j2j

).

Using a series of elementary transformation, we get

Ã−1 =
9(j2

1 + j2
2 + j1j2)2

j1j2(j1 − j2)2(j2
1 + j2

2 + 4j1j2)

⎛
⎝ j2

3 − j3
1

j2
1+j2

2+j1j2

− j3
2

j2
1+j2

2+j1j2

j1
3

⎞
⎠ .

By simple calculation, we have

B̃jÃ
−1 = (bj1, bj2),

where

(3.10) bj1 =
3j3(j − j2)(j2

1 + j2
2 + j1j2)(j2

2 + 2j2j + j1j + 2j1j2)
j1(j2

1 + j2 + j1j)(j2
2 + j2 + j2j)(j1 − j2)(j2

1 + j2
2 + 4j1j2)

,

(3.11) bj2 =
3j3(j − j1)(j2

1 + j2
2 + j1j2)(j2

1 + 2j1j + j2j + 2j1j2)
j2(j2

1 + j2 + j1j)(j2
2 + j2 + j2j)(j1 − j2)(j2

1 + j2
2 + 4j1j2)

.

Therefore, if lj = ±1 or lj = ±2, bj1, 2bj1 is not integer; if lj = ±1, lj′ = ±1, or
lj = ±1, lj′ = ∓1, we will prove bj1 ± bj′1 is not integer too. In fact, assuming
bj1 = b1

a1
, bj′1 = b2

a2
the fractions in lowest terms. If b1

a1
± b2

a2
is a integer, from

Lemma 2.2, we obtain that a1 = a2. This is contradictory to (3.10).
To sum up, (3.7) holds for all k ∈ Z

2 and 1 ≤ |l| ≤ 2. Thus the second part of
the assumption B is satisfied.

It remains to check assumption C. It is easy to see that the Hamiltonian vector
field of the perturbation P = Q̄ + P̄ + εK ◦ Φ defines a map

XP : D(s, r)×Π → S 2
p−2,C,

where S 2
p,C is the phase space S m

p,C which defined in (4.3) with m = 2, p = N + 1
2 .

We use the notation iξXP for XP evaluated at ξ, and likewise in analogous cases.
For each ξ, the vector field iξXP , considered as a map from a subset of S 2

p,C to
S 2

p−2,C, is of the order p − (p − 2) = 2, which strictly smaller than d − 1 = 4.
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Moreover, it is easy to see that iξXP is real analytic on D(s, r) for each ξ ∈ Π, and
iwXP is uniformly Lipschitz on Π for each w ∈ D(s, r). Namely, the assumption C
is satisfied.

Now we consider sup norm and Lipschitz semi-norm of the perturbation P on
D(s, r)×Π, where the parameter domain

Π = {ξ ∈ R
2 : |ξ| ≤ r

16
11 }.

Obviously, we have

(3.12) ‖XQ̄‖r,p−2,D(s,r)×Π = O(r2).

Moreover, P̄ is at least five order of q, we get

(3.13) ‖XP̄ ‖r,p−2,D(s,r)×Π = O((r
8
11 )5 · r−2) = O(r

18
11 ).

For ε = r
18
11 , we know

(3.14) ‖XεK◦Φ‖r,p−2,D(s,r)×Π = O(r
18
11 ).

From (3.12), (3.13) and (3.14), we have

‖XP ‖r,p−2,D(s,r)×Π = O(r
18
11 ).

Since XP is real analytic in ξ, we have

‖XP ‖lipr,p−2,D(s,r)×Π = O(r
18
11 · r− 16

11 ) = O(r
2
11 ).

We choose
α = r

17
11 γ−1,

where γ is taken from the KAM Theorem 4.1. Set M := M1 + M2, which only
depends on the index set J . It’s obvious that when r is small enough,

‖XP ‖r,p−2,D(s,r)×Π +
α

M
‖XP ‖lipr,p−2,D(s,r)×Π = O(r

18
11 ) = O(ε) ≤ αγ,

which is just the smallness condition (4.5) in KAM Theorem 4.1. Therefore, the
conclusion of Theorem 1.1 follows from Theorem 4.1 in Appendix.

4. Appendix:The KAM Theorem

Consider a small perturbation H = N + P of an infinite dimensional Hamil-
tonian in the parameter dependent normal form

(4.1) N =
∑

1≤j≤m

ωj(ξ)yj +
∑
j∈N∗

Ωjzj z̄j

on a phase space
S m

p = T
m × R

m × �2p × �2p � (x, y, z, z̄)

with symplectic structure ∑
1≤j≤m

dxj ∧ dyj +
∑
j≥1

dzj ∧ dz̄j ,

where
�2p = {z ∈ �2(N, R) : ‖z‖2 =

∑
j≥1

|zj |2j2p < ∞},
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where p ≥ 0. The tangential frequencies ω = (ω1, ω2, · · · , ωm) and normal frequen-
cies Ω = (Ω1, Ω2, · · · ) are real analytic in the space coordinates and Lipschitz in
the parameters. The Hamiltonian N depends on parameters

ξ ∈ Π ⊂ R
m,

where Π is a compact Cantor set of R
m of positive Lebesgue measure. Moreover,

for each ξ ∈ Π, its Hamiltonian vector field

XP = ((σjb
Pyb

)1≤b≤m,−(σjb
Pxb

)1≤b≤m, i(σjPz̄j
)j∈Z∗ ,−i(σjPzj

)j∈Z∗)
T

defines near T0 := T
m × {y = 0} × {z = 0} × {z̄ = 0} a real analytic map

XP : S m
p → S m

q ,

where
p− d = d̃.

To give the KAM theorem we need to introduce some domains and norms. For
s, r > 0, we introduce the complex T0−neighborhoods

D(s, r) = {|�x| < s} × {|y| < r2} × {‖z‖p + ‖z̄‖p < r}(4.2)

⊂ C
m × C

m × �2p,C × �2p,C = S m
p,C,(4.3)

and weighted norm for W = (X, Y, Z, Z̄) ∈ S m
q,C,

‖W‖r,q = |X|+ |Y |
r2

+
‖Z‖q

r
+
‖Z̄‖q

r
,

where | · | denotes the sup-norm for complex vectors. Furthermore, for a map
W : U ×Π → S m

q,C, such as the Hamiltonian vector field XP , we define the norms

‖W‖sup
r,q;U×Π = sup

(w,ξ)∈U×Π

‖W (w, ξ)‖r,q,

‖W‖lipr,q;U×Π = sup
ξ,ζ∈Π,ξ �=ζ

‖ΔξζW‖sup
r,q;U

|ξ − ζ| ,

where ΔξζW = iξW − iζW, and

‖iξW‖sup
r,q;U = sup

w∈U
‖W (w, ξ)‖r,q.

In a completely analogous manner, the Lipschitz semi-norm of the frequencies ω is
defined as

|ω|lipΠ = sup
ξ,ζ∈Π,ξ �=ζ

‖Δξζω‖
|ξ − ζ| ,

and the Lipschitz semi-norm of Ω̃ : Π → �∞−δ is defined as

|Ω̃|lip−δ,Π = sup
ξ,ζ∈Π,ξ �=ζ

‖ΔξζΩ̃‖−δ

|ξ − ζ|
for any real number δ. Note that |Ω̃|lip−δ,Π = |Ω|lip−δ,Π, since Ω̄ = Ω−Ω̃ is independent
of ξ.

Suppose the normal form N described above satisfies the following assumptions:
Assumption A: Frequency Asymptotics. There exist two real numbers d > 1 and
δ < d − 1 such that the following holds. First, the frequencies Ωn are real valued
functions of ξ of the form

Ωn(ξ) = Ω̄n + Ω̃n(ξ),
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where Ω̄n is independent of ξ and of the form Ω̃n = cnd + · · · , where the dots stand
for an expansion in lower order terms in n. Second, the functions

ξ �→ Ω̃n(ξ)
nδ

, n ≥ 1

are uniformly Lipschitz on Π, or equivalently, the map

Ω̃ : Π → �∞−δ, ξ �→ Ω̃(ξ) = (Ω̃n(ξ))n≥1

is Lipschitz on Π.
Assumption B: Nondegeneracy. The map ξ → ω(ξ) between Π and its image is a
homeomorphism which is Lipschitz continuous in both directions. Moreover, for
every k ∈ Z

m and l ∈ Z
∞ with 1 ≤ |l| ≤ 2 (here |l| = ∑

j≥1 |lj |), the resonance set

(4.4) �kl = {ξ ∈ Π : 〈k, ω(ξ)〉+ 〈l, Ω(ξ)〉 = 0}
has Lebesgue measure zero.
Assumption C: Regularity. There is a neighbourhood U of T0 in S m

p,C such that P
is defined on U ×Π, and its Hamiltonian vector field defines a map

XP : U ×Π → S m
q,C,

where q satisfies
p− q < d− 1.

Moreover, iξXP is real analytic on U for each ξ ∈ Π, and iwXP is uniformly
Lipschitz on Π for each w ∈ U.

We introduce one more constant. By assumption A and B,

|ω|lipΠ + |Ω|lipΠ ≤ M < ∞.

Finally observe that if XP satisfies assumption C, then it does so with the T0-
neighbourhoods D(s, r) for all s > 0, r > 0 sufficiently small.

Under the above conditions, we have the following KAM theorem.

Theorem 4.1. Suppose N is a family of Hamiltonians of the form (4.1) defined
on a phase space S m

p and depending on parameters in Π so that assumption A and
B are satisfied. Then there exists a positive constant γ depending only on m, d, δ,
the frequencies ω and Ω and the real number s > 0 such that for every perturbed
Hamiltonian H = N + P that satisfies assumption C and the smallness condition

(4.5) ε = ‖XP ‖sup
r,q,D(s,r)×Π +

α

M
‖XP ‖lipr,q,D(s,r)×Π ≤ αγ

for some r > 0 and 0 < α < 1, the following holds. There exist
(i) a Cantor set Πα ⊂ Π with meas(Π \Πα) → 0 (α → 0),
(ii) a Lipschitz family of real analytic torus embeddings Φ : T

m ×Πα → S m
p ,

(iii) a Lipschitz map φ : Πα → R
m,

such that for each ξ ∈ Πα, the map Φ restricted to T
m × {ξ} is a real analytic

embedding of a rotational frequencies φ(ξ) for the perturbed Hamiltonian H at ξ.
In other words,

t �→ Φ(θ + tφ(ξ), ξ), t ∈ R

is a real analytic, quasi-periodic solution for the Hamiltonian iξH for every θ ∈ T
m

and ξ ∈ Πα.
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Moreover, each embedding is real analytic on D(s/2) = {|�x| < s/2}, and

‖Φ− Φ0‖sup
r,p,D(s/2)×Πα

+
α

M
‖Φ− Φ0‖lipr,p,D(s/2)×Πα

≤ cε

α
,

|φ− ω|sup
Πα

+
α

M
|φ− ω|lipΠα

≤ cε,

where
Φ0 : T

m ×Π → T0, (x, ξ) �→ (x, 0, 0, 0)
is the trivial embedding for each ξ, and c is a positive constant which depends on
the same parameters as γ.

Proof. The proof can be found in [11]. �
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