Blow-up for self-interacting fractional Ginzburg-Landau equation

Kazumasa Fujiwara, Vladimir Georgiev, and Tohru Ozawa

Communicated by Joachim Krieger, received October 2, 2017.

Abstract. The blow-up of solutions for the Cauchy problem of fractional Ginzburg-Landau equation with non-positive nonlinearity is shown by an ODE argument. Moreover, in one dimensional case, the optimal lifespan estimate for size of initial data is obtained.

CONTENTS

1. Introduction

The classical complex Ginzburg-Landau (CGL) equation takes the form

(1.1)
$$
\partial_t \psi = -(\alpha + i\beta) \Delta \psi + F(\psi, \overline{\psi}),
$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 35Q40; Secondary 35Q55.

Key words and phrases. fractional Ginzburg-Landau equation, blow-up.

The first author was partly supported by the Japan Society for the Promotion of Science, Grant-in-Aid for JSPS Fellows no 16J30008 and Top Global University Project of Waseda University.

The second author was supported in part by INDAM, GNAMPA - Gruppo Nazionale per l'Analisi Matematica, la Probabilita e le loro Applicazioni, by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences and Top Global University Project, Waseda University.

The third author was supported by Grant-in-Aid for Scientific Research (A) Number 26247014.

where α , β are real parameters. The standard CGL equation has a self-interaction term F of the form

$$
F(\psi, \overline{\psi}) = -\sum_{j=1}^{K} (\alpha_j + i\gamma_j) \psi |\psi|^{p_j - 1},
$$

where α_j , β_j are real parameters. We refer to [5] for a review on this subject. Using the representation $\psi(t, x) = u_1(t, x) + i u_2(t, x)$, where u_1, u_2 are real-valued functions, we see that the equation (1.1) can be rewritten in the form of a system of reaction diffusion equations

$$
\partial_t U = A \Delta U = F(U),
$$

where

$$
U(t,x) = \begin{pmatrix} u_1(t,x) \\ u_2(t,x) \end{pmatrix}, \quad A = \begin{pmatrix} -\alpha & \beta \\ -\beta & -\alpha \end{pmatrix}.
$$

The limiting case $\alpha \to 0, \alpha_i \to 0$ leads to the nonlinear Schrödinger equation (NLS)

(1.2)
$$
\partial_t \psi = -i\beta \Delta \psi - \sum_{j=1}^N i\gamma_j \psi |\psi|^{p_j - 1}.
$$

The oscillation synchronization of phenomena modeled by Kuramoto equations (see [**4**]) lead to a system of ODE having a similar qualitative behavior

(1.3)
$$
\partial_t \psi_k = -iH_k \psi_k + F_k(\Psi, \overline{\Psi}), \quad k = 1, \cdots, N.
$$

The nonlinear terms F_k in the system obey the property

Im
$$
(F_k(\Psi, \overline{\Psi}) \overline{\psi_k}) = 0, k = 1, \cdots, N.
$$

This system simulates the behavior of N oscillators, so that $\Psi = (\psi_1, \dots, \psi_N)$, with ψ_i being complex-valued functions. The nonlinearities in (1.3) are chosen so that the evolution flow associated to the Kuramoto system leaves the manifold

$$
\mathcal{M} = \underbrace{\mathbb{S}^1 \times \cdots \times \mathbb{S}^1}_{N \text{ times}},
$$

invariant.

The derivation of the Kuramoto system in [**4**] is based on complex Landau-Ginzburg equation (see equation (2.4.15) in [**4**])

$$
\partial_t \Psi = i\mathcal{H}\Psi - (\alpha + i\beta)\Delta\Psi - (\alpha_1 + i\beta_1)\Psi|\Psi|^2,
$$

where $\Psi = (\psi_1, \dots, \psi_N)^t$, H is a diagonal matrix with real entries. If β and β_1 become very large, then we have an equation very close to Schrödinger selfinteracting system (1.2). As it was pointed out (p. 20, [**4**]), a chemical turbulence of a diffusion-induced type are possible only for regions intermediate between the two extreme cases, where β and β_1 are very small or very large.

Turning back to CGL equation and comparing (1.1) with Kuramoto system, we see that it is natural to take $\alpha \to 0$, $\beta_j \to 0$ so that we have the following simplified CGL equation

$$
\partial_t \psi = -i\beta \Delta \psi - \alpha_1 \psi |\psi|^{p-1}.
$$

A similar system was discussed in [**1**] with nonlinearity typical for the Kuramoto system.

The fractional dynamics seems more adapted to synchronization models due to the considerations in [**6**], therefore we can consider the following fractional Ginzburg-Landau equations

$$
\partial_t \psi = -\mathrm{i} \sqrt{-\Delta} \psi \pm \psi |\psi|^{p-1}.
$$

The study of the attractive case

$$
\partial_t \psi = -\mathrm{i} |D| \psi - \psi |\psi|^{p-1}, \quad |D| = \sqrt{-\Delta},
$$

is initiated in [**2**], where the well-posedness is established for the cases $1 \leq n \leq 3$. In this article, we study the repulsive case

(1.4)
$$
\begin{cases} \partial_t u = -i|D|u + |u|^{p-1}u, & t \in [0, T), \quad x \in \mathbb{R}^n, \\ u(0, x) = u_0(x), & x \in \mathbb{R}^n, \end{cases}
$$

where $n \geq 1$, and $p > 1$. Our main goal is to obtain a blow-up result under the assumption that initial data are in $H^s(\mathbb{R}^n)$ with $s > n/2$, where $H^s(\mathbb{R}^n)$ is the usual Sobolev space defined by $(1 - \Delta)^{-s/2}L^2(\mathbb{R}^n)$.

We denote $\langle x \rangle = (1+|x|^2)^{1/2}$. We abbreviate $L^q(\mathbb{R}^n)$ to L^q and $\|\cdot\|_{L^q(\mathbb{R}^n)}$ to $\|\cdot\|_q$ for any q. We also denote by $\|T\|$ the operator norm of bounded operator $T:L^2\to L^2$.

The following statements are the main results of this article.

PROPOSITION 1.1. Let h be a function satisfying $\frac{1}{h} \in L^{\infty} \cap L^{2}$ and

$$
(1.5) \qquad \qquad \left\| \frac{1}{h} [(-\Delta)^{1/2}, h] \right\|
$$

Let $u_0 \in hL^2$ satisfy

(1.6)
$$
\|\frac{1}{h}u_0\|_2 \ge \|\frac{1}{h}[D,h]\|^{\frac{1}{p-1}}\|\frac{1}{h}\|_2.
$$

If there is a solution $u \in C([0,T); hL^2)$ for (1.4), then

$$
(1.7)
$$

 \parallel $\frac{1}{h}u(t)\|_2$

$$
\geq e^{-2\|\frac{1}{h}[D,h]\|t}\Big(\|\frac{1}{h}u_0\|_2^{-p+1}+\|\frac{1}{h}[D,h]\|^{-1}\|\frac{1}{h}\|_2^{-p+1}\big\{e^{-\|\frac{1}{h}[D,h]\|(p-1)t}-1\big\}\Big)^{-\frac{1}{p-1}}.
$$

Therefore, the lifespan is estimated by

$$
(1.8) \tT \leq -\frac{2}{p-1} \|\frac{1}{h}[D,h]\|^{-1} \log \left(1 - \|\frac{1}{h}[D,h]\| \|\frac{1}{h}\|_2^{p-1} \|\frac{1}{h}u_0\|_2^{-p+1}\right).
$$

We remark that for $n = 1$, we can take $h = \langle \cdot \rangle$ for Proposition 1.1. Proposition 1.1 is a blow-up result for a kind of large data of hL^2 . However, in a subcritical case where $p < p_F = 3$, solutions blow up even for small L^2 initial data.

COROLLARY 1.2. Let $u_0 \in L^2(\mathbb{R}) \setminus \{0\}$ and $1 < p < p_F$. Then the corresponding solution in $C([0,T);L^2(\mathbb{R}))$ blows up at a finite positive time.

REMARK 1.3. If we choose $h(x) = \langle x \rangle$, the statement of our main result guarantees the blow-up of the momentum

$$
Q_{-1}(t) = \int_{\mathbb{R}} \langle x \rangle^{-1} |u(t,x)|^2 dx.
$$

for the solution to the fractional CGL equation

$$
\partial_t u = -\mathrm{i} |D|u + |u|^{p-1}u
$$

in (1.4). The blow-up mechanism is based on the differential inequality

$$
(1.9) \tQ'_{-1}(t) \ge C_0 (Q_{-1}(t))^{(p+1)/2} - C_1 Q_{-1}(t), C_0, C_1 > 0.
$$

Comparing the fractional CGL equation with the classical NLS

$$
\partial_t u = \mathrm{i} \Delta u + \mathrm{i} |u|^{p-1} u,
$$

we see that introducing the momentum

$$
Q_2(t) = \int_{\mathbb{R}^n} |x|^2 |u(t,x)|^2 dx,
$$

and using a Virial identity one can show that

$$
Q_2''(t) \sim E(u)(t),
$$

where $E(u)(t) = ||Du(t)||_{L^2}^2 - c||u(t)||_{L^{p+1}}^{p+1}$ and $c > 0$ is an appropriate constant. Therefore, the blow-up mechanism for NLS is based on the estimate

$$
E(u)(t) \le -\delta, \ \delta > 0,
$$

that implies differential inequality

$$
Q_2''(t) \le -\delta
$$

and the last inequality can not be satisfied for the whole interval $t \in (0,\infty)$ since $Q_2(t)$ is a positive quantity.

Moreover, for large R, if u_0 is given by Rf with $f \in hL^2(\mathbb{R})$ and h satisfying (1.5), then (1.8) means $T \leq CR^{-p+1}$. In one dimensional case, this upper bound is shown to be sharp for $f \in (hL^2 \cap H^1)(\mathbb{R})$.

PROPOSITION 1.4. Let $u_0 = Rf$ with $R > 0$ sufficiently large and $f \in H^1(\mathbb{R})$. Then there exists an $H^1(\mathbb{R})$ solution for u_0 for which its lifespan is estimated by $T \geq CR^{-p+1}$ with some positive constant C.

2. Preliminary

In this section, we recall the blow-up solutions for an ODE which gives the mechanism of blow-up for weighted L^2 norm of solutions. We also study the condition for weight functions of Corollary 1.2.

2.1. Blow-up solutions for an ODE.

LEMMA 2.1. Let $C_1, C_2 > 0$ and $q > 1$. If $f \in C^1([0, T); \mathbb{R})$ satisfies $f(0) > 0$ and

$$
f' + C_1 f = C_2 f^q \quad on [0, T) \text{ for some } T > 0,
$$

then

$$
f(t) = e^{-C_1 t} \left(f(0)^{-(q-1)} + C_1^{-1} C_2 e^{-C_1 (q-1)t} - C_1^{-1} C_2 \right)^{-\frac{1}{q-1}}.
$$

Moreover, if $f(0) > C_1^{\frac{1}{q-1}} C_2^{-\frac{1}{q-1}}$, then $T < -\frac{1}{C_1(q-1)} \log(1 - C_1 C_2^{-1} f(0)^{-q+1})$.

PROOF. Let $f = e^{-C_1 t}g$. Then

$$
g' = C_2 e^{-C_1(q-1)t} g^q.
$$

Therefore,

$$
\frac{1}{1-q} \left(g^{1-q}(t) - g^{1-q}(0) \right) = \frac{C_2}{C_1(1-q)} (e^{-C_1(q-1)t} - 1).
$$

2.2. Condition for weight function.

LEMMA 2.2 (Coiffman - Meyer). Let $p \in C^{\infty}(\mathbb{R}^{2n})$ satisfy the estimates

 $|D_x^{\beta}D_{\xi}^{\alpha}p(x,\xi)| \leq C_{\alpha,\beta}\langle \xi \rangle^{1-|\alpha|}$

for all multi-indices α and β . Then for any Lipschitz function h,

 $\|[p(x,D),h]f\|_2 \leq C \|h\|_{\text{Lip}} \|f\|_2.$

LEMMA 2.3. Let $\phi \in C_0^{\infty}([0,\infty);\mathbb{R})$ satisfy

$$
\phi(\rho) = \begin{cases} 1 & \text{if } 0 \le \rho \le 1, \\ 0 & \text{if } \rho \ge 2. \end{cases}
$$

Then

$$
\left| \int_{\mathbb{R}^n} \phi(|\xi|) |\xi| e^{ix \cdot \xi} d\xi \right| \le C \langle x \rangle^{-n-1}.
$$

PROOF. It suffices to consider the case where |x| is sufficiently large. Let $\psi \in \mathcal{V}$ $C_0^{\infty}([0,\infty);\mathbb{R})$ satisfy

$$
\psi(\rho) = \begin{cases} 1 & \text{if } 0 \le \rho \le 1, \\ 0 & \text{if } \rho \ge 2. \end{cases}
$$

Let $e_1 = (1, 0, \dots, 0)$. Let $\xi_1 = \xi \cdot e_1$ and $\xi' = \xi - \xi_1 e_1$. Assume $x = |x|e_1$. Then

$$
\int_{\mathbb{R}^n} \phi(|\xi|) |\xi| e^{\mathrm{i} x \cdot \xi} d\xi = \int_{\mathbb{R}^n} \phi(|\xi|) |\xi| e^{\mathrm{i} |x| \xi_1} d\xi.
$$

By integrating by parts k times,

$$
\int_{\mathbb{R}^n} \phi(|\xi|) |\xi| e^{i|x|\xi_1} d\xi = (-i|x|)^{-k} \int_{\mathbb{R}^n} \partial_1^k(\phi(|\xi|) |\xi|) e^{i|x|\xi_1} d\xi
$$

=
$$
(-i|x|)^{-k} \int_{\mathbb{R}^n} \partial_1^k(|\xi|) \phi(|\xi|) e^{i|x|\xi_1} + R_k(\xi) d\xi,
$$

where $R_{n+1} \in L^1(\mathbb{R}^n)$. Here $\partial_1^k |\xi|$ is estimated by $C|\xi|^{1-k}$. Moreover,

$$
\left| \int_{\mathbb{R}^n} \partial_1^n(|\xi|) \phi(|\xi|) e^{i|x|\xi_1} d\xi \right|
$$

\n= $|x|^{-1} \left| \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \partial_1 \{ \partial_1^n(|\xi|) \phi(|\xi|) \} (e^{i|x|\xi_1} - 1) d\xi_1 d\xi' \right|$
\n $\leq C \left| \int_{\mathbb{R}^n} \psi(|x||\xi|) |\xi|^{1-n} |\phi(|\xi|) | + |\partial_1 \phi(|\xi|) |\} d\xi \right|$
\n+ $C |x|^{-1} \left| \int_{\mathbb{R}^n} (1 - \psi(|x||\xi|)) |\xi|^{-n} \{ |\phi(|\xi|) | + |\partial_1 \phi(|\xi|) | \} d\xi \right|$

 \Box

since $|e^{i|x|\xi_1} - 1| \leq |x||\xi|$. The first integral is estimated by

$$
C\int_0^{2|x|^{-1}} |\phi(\rho)| + |\phi'(\rho)| d\rho \le C ||\phi||_{C^1(0,2)} |x|^{-1}.
$$

By letting $\Psi(\rho) = \int_0^{\rho} |1 - \psi(\rho')| d\rho'$ and integrating by parts once again, the second integral is estimated by

$$
C|x|^{-2}\int_{|x|^{-1}}^2\rho^{-2}\|\phi\|_{C^2(0,2)}\Psi(|x|\rho)d\rho\leq C\|\phi\|_{C^2(0,2)}|x|^{-1}.
$$

This proves the lemma.

LEMMA 2.4. Let h be a Lipschitz function on \mathbb{R}^n satisfying the estimate

$$
\left\| \frac{1}{h(\cdot)} \int_{\mathbb{R}^n} \langle \cdot - y \rangle^{-n-1} h(y) f(y) dy \right\|_2 \le C \|f\|_2
$$

for any $f \in L^2$. Then $\frac{1}{h}[D, h]$ is a bounded operator from L^2 to L^2 .

PROOF. Let ϕ be a smooth function on $[0, \infty)$ satisfying that $\phi(\xi) = 1$ if $|\xi| \leq 1$ and $\phi(\xi) = 0$ if $|\xi| \geq 2$. Let $\phi(D)f = \mathfrak{F}^{-1}\phi\hat{f}$. We divide the proof into the following two estimate: $\|\frac{1}{h}\phi(D)(Dhf)\|_2 \leq \|f\|_2$ and $\|\frac{1}{h}[(1 - \phi(D))D, h]f\|_2 \leq \|f\|_2$.

At first,

$$
\|\frac{1}{h}\phi(D)(Dhf)\|_2 \le C \bigg\|\frac{1}{h(\cdot)}\int_{\mathbb{R}^n} \langle \cdot - y \rangle^{-n-1} h(y)f(y)dy \bigg\|_2 \le C \|f\|_2,
$$

since

$$
|\mathfrak{F}^{-1}(|\cdot|\phi)| \le C\langle x\rangle^{-n-1}.
$$

Secondly, $(1 - \phi(|\xi|))|\xi|$ satisfies the condition of Lemma 2.2. So the second estimate follows from Lemma 2.2. \Box

REMARK 2.5. $h(x) = \langle x \rangle$ satisfies the condition of Lemma 2.4. Actually h is Lipshitz and by using triangle inequality,

$$
\left\| \langle x \rangle^{-1} \int_{\mathbb{R}^n} \langle x - y \rangle^{-n-1} \langle y \rangle f(y) dy \right\|_2
$$

\n
$$
\leq \left\| \int_{\mathbb{R}^n} \langle x - y \rangle^{-n-1} f(y) dy \right\|_2 + \left\| \langle x \rangle^{-1} \int_{\mathbb{R}^n} \langle x - y \rangle^{-n} f(y) dy \right\|_2
$$

\n
$$
\leq (\|\langle \cdot \rangle^{-n-1}\|_1 + \|\langle \cdot \rangle^{-1}\|_q \|\langle \cdot \rangle^{-n}\|_q) \|f\|_2,
$$

where $n < q < \infty$.

COROLLARY 2.6. Let h satisfy the condition of Lemma 2.4 and let h_R be $h_R =$ $h(\cdot/R)$. Then

$$
\|\frac{1}{h_R}[D, h_R]\| \le R^{-1} \|\frac{1}{h}[D, h]\|.
$$

 \Box

PROOF.

$$
\frac{1}{h_R(x)}[D, h_R]f(x) = \frac{1}{h(\frac{x}{R})} \int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} |\xi| \{h(\frac{y}{R}) - h(\frac{x}{R})\} f(y) d\xi dy
$$

\n
$$
= R^n \frac{1}{h(\frac{x}{R})} \int_{\mathbb{R}^n} e^{i(\frac{x}{R} - y) \cdot R\xi} |\xi| \{h(y) - h(\frac{x}{R})\} f(Ry) d\xi dy
$$

\n
$$
= R^{-1} \frac{1}{h(\frac{x}{R})} \int_{\mathbb{R}^n} e^{i(\frac{x}{R} - y)\cdot\xi} |\xi| \{h(y) - h(\frac{x}{R})\} f(Ry) d\xi dy
$$

\n
$$
= R^{-1} \frac{1}{h(\frac{x}{R})} [D, h] f_{R^{-1}}(\frac{x}{R}).
$$

This implies

$$
\|\frac{1}{h_R}[D,h_R]f\|_2 = R^{-1+n/2} \|\frac{1}{h}[D,h]f_{R^{-1}}\|_2 \le R^{-1} \|\frac{1}{h}[D,h]\| \|f\|_2.
$$

3. Proof

3.1. Proof of Proposition 1.1. Let $u(t, x) = h(x)v(t, x)$. Then

(3.1)
$$
i\partial_t v + D v + \frac{1}{h}[D, h]v = i h^{p-1} |v|^{p-1} v.
$$

Multiplying both hand sides of (3.1) by \overline{v} , integrating over \mathbb{R}^n , and taking the imaginary part of the resulting integrals, we obtain

$$
\frac{1}{2} \frac{d}{dt} ||v(t)||_2^2 = \int_{\mathbb{R}^n} h(x)^{p-1} |v(t,x)|^{p+1} dx - \text{Im} \int_{\mathbb{R}^n} \overline{v(t,x)} \frac{1}{h(x)} [D, h] v(t,x) dx
$$

\n
$$
\geq \int_{\mathbb{R}^n} h(x)^{p-1} |v(t,x)|^{p+1} dx - ||\frac{1}{h}[D, h] || ||v(t)||_2^2
$$

\n
$$
\geq ||\frac{1}{h}||_2^{-p+1} ||v(t)||_2^{p+1} - ||\frac{1}{h}[D, h] || ||v(t)||_2^2,
$$

where we used the following estimate:

$$
||v(t)||_2\leq \|\frac{1}{h^{\frac{p-1}{p+1}}}\|_{\frac{2(p+1)}{p-1}} \|h^{\frac{p-1}{p+1}}v(t)\|_{p+1}.
$$

Then (1.7) follows from Lemma 2.1 with $q = (p+1)/2$.

3.2. Proof of Corollary 1.2. Let $h_R(x) = \langle x/R \rangle$ with $R > 0$. h_R satisfies (1.5) and $1/h_R \in (L^{\infty} \cap L^2)(\mathbb{R})$, and $\frac{1}{h_R}u_0 \to u_0$ in L^2 as $R \to \infty$. Moreover, $\|\frac{1}{h_R}[D, h_R]\| \sim R^{-1}$, and $\|\frac{1}{h_R}\|_2 \sim R^{1/2}$. Therefore

RHS
$$
(1.6) \sim R^{\frac{1}{2} - \frac{1}{p-1}} \to 0
$$

as $R \to \infty$ if $p < 3$. It means that for any $u_0 \in L^2(\mathbb{R})\backslash\{0\}$, there exists R_0 such that (1.6) is satisfied with $h(x) = \langle x/R_0 \rangle$.

3.3. Proof of Proposition 1.4. The local well-posedness in $H^1(\mathbb{R})$ is easily obtained by the Sobolev embedding and standard contraction argument. By multiplying (1.4) by \bar{u} and $(-\Delta)\bar{u}$, integrating over R, we obtain

$$
\frac{d}{dt}||u(t)||_2^2 = ||u(t)||_{p+1}^{p+1} \le C||u(t)||_{H^1(\mathbb{R})}^{p+1},
$$
\n
$$
\frac{d}{dt}||\nabla u(t)||_2^2 = \text{Re}\int_{\mathbb{R}} \nabla (|u(t,x)|^{p-1}u(t,x)) \cdot \overline{\nabla u(t,x)}dx \le C||u(t)||_{H^1(\mathbb{R})}^{p+1},
$$

where $||f||_{H^1(\mathbb{R})}^2 = ||f||_2^2 + ||\nabla f||_2^2$. By solving the following ordinary differential equality:

$$
\frac{d}{dt}U(t) = CU(t)^{\frac{p+1}{2}},
$$

we get

$$
||u(t)||_{H^1(\mathbb{R})} \leq \left(||u_0||_{H^1(\mathbb{R})}^{-(p-1)} - \frac{C(p-1)}{2}t\right)^{-\frac{1}{p-1}}
$$

.

This proves the Proposition 1.4.

Acknowledgment

The authors are grateful to professor Luigi Forcella for his critical comment.

References

- [1] P. Acquistapace, A. Candeloro, V. Georgiev, M. Manca, Mathematical phase model of neural populations interaction in modulation of REM/NREM sleep, Math. Model. Anal. **21** (2016), 794-810.
- [2] K. Fujiwara, V. Georgiev, T. Ozawa, On global well-posedness for nonlinear semirelativistic equations in some scaling subcritical and critical cases, *submitted* (2016). arXiv: 1611.09674.
- [3] K. Fujiwara, V. Georgiev, T. Ozawa, Higher order fractional Leibniz rule, J. Fourier Anal. Appl. to appear.
- [4] Y. Kuramoto, Chemical Oscillations, Waves, Turbulence., Springer-Verlag, New York, 1984.
- [5] W. van Saarloos, P. C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Physica D **56** (1992), 303-367.
- [6] V. Tarasov, G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos **16** (2016), 023110.

Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Piazza dei Cavalieri, 3, 56126 Pisa, Italy.

 E -mail address: kazumasa.fujiwara@sns.it URL: http://kfujiwara.webcrow.jp/

Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo 5 I - 56127 Pisa, Italy, and Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

E-mail address: georgiev@dm.unipi.it URL: http://people.dm.unipi.it/georgiev/

Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

 E -mail address: txozawa@waseda.jp URL: http://www.ozawa.phys.waseda.ac.jp/