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Abstract. The blow-up of solutions for the Cauchy problem of fractional

Ginzburg-Landau equation with non-positive nonlinearity is shown by an ODE
argument. Moreover, in one dimensional case, the optimal lifespan estimate
for size of initial data is obtained.
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1. Introduction

The classical complex Ginzburg-Landau (CGL) equation takes the form

(1.1) ∂tψ = −(α+ iβ)Δψ + F (ψ,ψ),
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where α, β are real parameters. The standard CGL equation has a self-interaction
term F of the form

F (ψ,ψ) = −
K∑

j=1

(αj + iγj)ψ|ψ|pj−1,

where αj , βj are real parameters. We refer to [5] for a review on this subject.
Using the representation ψ(t, x) = u1(t, x) + iu2(t, x), where u1, u2 are real-valued
functions, we see that the equation (1.1) can be rewritten in the form of a system
of reaction diffusion equations

∂tU = AΔU = F (U),

where

U(t, x) =
(
u1(t, x)
u2(t, x)

)
, A =

( −α β
−β −α

)
.

The limiting case α→ 0, αj → 0 leads to the nonlinear Schrödinger equation (NLS)

(1.2) ∂tψ = −iβΔψ −
N∑

j=1

iγjψ|ψ|pj−1.

The oscillation synchronization of phenomena modeled by Kuramoto equations (see
[4]) lead to a system of ODE having a similar qualitative behavior

(1.3) ∂tψk = −iHkψk + Fk(Ψ,Ψ), k = 1, · · · , N.
The nonlinear terms Fk in the system obey the property

Im
(
Fk(Ψ,Ψ) ψk

)
= 0, k = 1, · · · , N.

This system simulates the behavior of N oscillators, so that Ψ = (ψ1, · · · , ψN ), with
ψj being complex-valued functions. The nonlinearities in (1.3) are chosen so that
the evolution flow associated to the Kuramoto system leaves the manifold

M = S
1 × · · · × S

1︸ ︷︷ ︸
N times

,

invariant.
The derivation of the Kuramoto system in [4] is based on complex Landau-

Ginzburg equation (see equation (2.4.15) in [4])

∂tΨ = iHΨ− (α+ iβ)ΔΨ− (α1 + iβ1)Ψ|Ψ|2,
where Ψ = (ψ1, · · · , ψN )t, H is a diagonal matrix with real entries. If β and
β1 become very large, then we have an equation very close to Schrödinger self-
interacting system (1.2). As it was pointed out (p. 20, [4]), a chemical turbulence
of a diffusion-induced type are possible only for regions intermediate between the
two extreme cases, where β and β1 are very small or very large.

Turning back to CGL equation and comparing (1.1) with Kuramoto system, we
see that it is natural to take α→ 0, βj → 0 so that we have the following simplified
CGL equation

∂tψ = −iβΔψ − α1ψ|ψ|p−1.

A similar system was discussed in [1] with nonlinearity typical for the Kuramoto
system.
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The fractional dynamics seems more adapted to synchronization models due
to the considerations in [6], therefore we can consider the following fractional
Ginzburg-Landau equations

∂tψ = −i
√−Δψ ± ψ|ψ|p−1.

The study of the attractive case

∂tψ = −i|D|ψ − ψ|ψ|p−1, |D| = √−Δ,

is initiated in [2], where the well-posedness is established for the cases 1 ≤ n ≤ 3.
In this article, we study the repulsive case{

∂tu = −i|D|u+ |u|p−1u, t ∈ [0, T ), x ∈ R
n,

u(0, x) = u0(x), x ∈ R
n,

(1.4)

where n ≥ 1, and p > 1. Our main goal is to obtain a blow-up result under the
assumption that initial data are in Hs(Rn) with s > n/2, where Hs(Rn) is the
usual Sobolev space defined by (1−Δ)−s/2L2(Rn).

We denote 〈x〉 = (1 + |x|2)1/2. We abbreviate Lq(Rn) to Lq and ‖ · ‖Lq(Rn) to
‖ · ‖q for any q. We also denote by ‖T‖ the operator norm of bounded operator
T : L2 → L2.

The following statements are the main results of this article.

Proposition 1.1. Let h be a function satisfying 1
h ∈ L∞ ∩ L2 and∥∥∥∥ 1

h
[(−Δ)1/2, h]

∥∥∥∥(1.5)

Let u0 ∈ hL2 satisfy

‖ 1
h
u0‖2 ≥ ‖ 1

h
[D,h]‖ 1

p−1 ‖ 1
h
‖2.(1.6)

If there is a solution u ∈ C([0, T );hL2) for (1.4), then

‖ 1
h
u(t)‖2

(1.7)

≥ e−2‖ 1
h [D,h]‖t

(
‖ 1
h
u0‖−p+1

2 + ‖ 1
h

[D,h]‖−1‖ 1
h
‖−p+1
2

{
e−‖

1
h [D,h]‖(p−1)t − 1

})− 1
p−1

.

Therefore, the lifespan is estimated by

T ≤ − 2
p− 1

‖ 1
h

[D,h]‖−1 log
(

1− ‖ 1
h

[D,h]‖‖ 1
h
‖p−1
2 ‖ 1

h
u0‖−p+1

2

)
.(1.8)

We remark that for n = 1, we can take h = 〈·〉 for Proposition 1.1. Proposition
1.1 is a blow-up result for a kind of large data of hL2. However, in a subcritical
case where p < pF = 3, solutions blow up even for small L2 initial data.

Corollary 1.2. Let u0 ∈ L2(R)\{0} and 1 < p < pF . Then the corresponding
solution in C([0, T );L2(R)) blows up at a finite positive time.

Remark 1.3. If we choose h(x) = 〈x〉, the statement of our main result guar-
antees the blow-up of the momentum

Q−1(t) =
∫

R

〈x〉−1|u(t, x)|2dx.
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for the solution to the fractional CGL equation

∂tu = −i|D|u+ |u|p−1u

in (1.4). The blow-up mechanism is based on the differential inequality

(1.9) Q′−1(t) ≥ C0 (Q−1(t))
(p+1)/2 − C1Q−1(t), C0, C1 > 0.

Comparing the fractional CGL equation with the classical NLS

∂tu = iΔu+ i|u|p−1u,

we see that introducing the momentum

Q2(t) =
∫

Rn

|x|2|u(t, x)|2dx,

and using a Virial identity one can show that

Q′′2(t) ∼ E(u)(t),

where E(u)(t) = ‖Du(t)‖2L2 − c‖u(t)‖p+1
Lp+1 and c > 0 is an appropriate constant.

Therefore, the blow-up mechanism for NLS is based on the estimate

E(u)(t) ≤ −δ, δ > 0,

that implies differential inequality

Q′′2(t) ≤ −δ
and the last inequality can not be satisfied for the whole interval t ∈ (0,∞) since
Q2(t) is a positive quantity.

Moreover, for large R, if u0 is given by Rf with f ∈ hL2(R) and h satisfying
(1.5), then (1.8) means T ≤ CR−p+1. In one dimensional case, this upper bound is
shown to be sharp for f ∈ (hL2 ∩H1)(R).

Proposition 1.4. Let u0 = Rf with R > 0 sufficiently large and f ∈ H1(R).
Then there exists an H1(R) solution for u0 for which its lifespan is estimated by
T ≥ CR−p+1 with some positive constant C.

2. Preliminary

In this section, we recall the blow-up solutions for an ODE which gives the
mechanism of blow-up for weighted L2 norm of solutions. We also study the condi-
tion for weight functions of Corollary 1.2.

2.1. Blow-up solutions for an ODE.

Lemma 2.1. Let C1, C2 > 0 and q > 1. If f ∈ C1([0, T ); R) satisfies f(0) > 0
and

f ′ + C1f = C2f
q on [0, T ) for some T > 0,

then

f(t) = e−C1t

(
f(0)−(q−1) + C−1

1 C2e
−C1(q−1)t − C−1

1 C2

)− 1
q−1

.

Moreover, if f(0) > C
1

q−1
1 C

− 1
q−1

2 , then T < − 1
C1(q−1) log(1− C1C

−1
2 f(0)−q+1).
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Proof. Let f = e−C1tg. Then

g′ = C2e
−C1(q−1)tgq.

Therefore,

1
1− q

(
g1−q(t)− g1−q(0)

)
=

C2

C1(1− q) (e−C1(q−1)t − 1).

�

2.2. Condition for weight function.

Lemma 2.2 (Coiffman - Meyer). Let p ∈ C∞(R2n) satisfy the estimates

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cα,β〈ξ〉1−|α|

for all multi-indices α and β. Then for any Lipschitz function h,

‖[p(x,D), h]f‖2 ≤ C‖h‖Lip‖f‖2.
Lemma 2.3. Let φ ∈ C∞0 ([0,∞); R) satisfy

φ(ρ) =

{
1 if 0 ≤ ρ ≤ 1,
0 if ρ ≥ 2.

Then ∣∣∣∣
∫

Rn

φ(|ξ|)|ξ|eix·ξdξ
∣∣∣∣ ≤ C〈x〉−n−1.

Proof. It suffices to consider the case where |x| is sufficiently large. Let ψ ∈
C∞0 ([0,∞); R) satisfy

ψ(ρ) =

{
1 if 0 ≤ ρ ≤ 1,
0 if ρ ≥ 2.

Let e1 = (1, 0, · · · , 0). Let ξ1 = ξ · e1 and ξ′ = ξ − ξ1e1. Assume x = |x|e1. Then∫
Rn

φ(|ξ|)|ξ|eix·ξdξ =
∫

Rn

φ(|ξ|)|ξ|ei|x|ξ1dξ.

By integrating by parts k times,∫
Rn

φ(|ξ|)|ξ|ei|x|ξ1dξ = (−i|x|)−k

∫
Rn

∂k
1 (φ(|ξ|)|ξ|)ei|x|ξ1dξ

= (−i|x|)−k

∫
Rn

∂k
1 (|ξ|)φ(|ξ|)ei|x|ξ1 +Rk(ξ)dξ,

where Rn+1 ∈ L1(Rn). Here ∂k
1 |ξ| is estimated by C|ξ|1−k. Moreover,∣∣∣∣

∫
Rn

∂n
1 (|ξ|)φ(|ξ|)ei|x|ξ1dξ

∣∣∣∣
= |x|−1

∣∣∣∣
∫

Rn−1

∫
R

∂1{∂n
1 (|ξ|)φ(|ξ|)}(ei|x|ξ1 − 1)dξ1dξ′

∣∣∣∣
≤ C

∣∣∣∣
∫

Rn

ψ(|x||ξ|)|ξ|1−n|φ(|ξ|)|+ |∂1φ(|ξ|)|}dξ
∣∣∣∣

+ C|x|−1

∣∣∣∣
∫

Rn

(1− ψ(|x||ξ|))|ξ|−n{|φ(|ξ|)|+ |∂1φ(|ξ|)|}dξ
∣∣∣∣



180 K. FUJIWARA, V. GEORGIEV, AND T. OZAWA

since |ei|x|ξ1 − 1| ≤ |x||ξ|. The first integral is estimated by

C

∫ 2|x|−1

0

|φ(ρ)|+ |φ′(ρ)|dρ ≤ C‖φ‖C1(0,2)|x|−1.

By letting Ψ(ρ) =
∫ ρ

0
|1−ψ(ρ′)|dρ′ and integrating by parts once again, the second

integral is estimated by

C|x|−2

∫ 2

|x|−1
ρ−2‖φ‖C2(0,2)Ψ(|x|ρ)dρ ≤ C‖φ‖C2(0,2)|x|−1.

This proves the lemma. �

Lemma 2.4. Let h be a Lipschitz function on R
n satisfying the estimate∥∥∥∥ 1

h(·)
∫

Rn

〈· − y〉−n−1h(y)f(y)dy
∥∥∥∥

2

≤ C‖f‖2

for any f ∈ L2. Then 1
h [D,h] is a bounded operator from L2 to L2.

Proof. Let φ be a smooth function on [0,∞) satisfying that φ(ξ) = 1 if |ξ| ≤ 1
and φ(ξ) = 0 if |ξ| ≥ 2. Let φ(D)f = F−1φf̂ . We divide the proof into the following
two estimate: ‖ 1

hφ(D)(Dhf)‖2 ≤ ‖f‖2 and ‖ 1
h [(1− φ(D))D,h]f‖2 ≤ ‖f‖2.

At first,

‖ 1
h
φ(D)(Dhf)‖2 ≤ C

∥∥∥∥ 1
h(·)

∫
Rn

〈· − y〉−n−1h(y)f(y)dy
∥∥∥∥

2

≤ C‖f‖2,

since

|F−1(| · |φ)| ≤ C〈x〉−n−1.

Secondly, (1 − φ(|ξ|))|ξ| satisfies the condition of Lemma 2.2. So the second
estimate follows from Lemma 2.2. �

Remark 2.5. h(x) = 〈x〉 satisfies the condition of Lemma 2.4. Actually h is
Lipshitz and by using triangle inequality,∥∥∥∥〈x〉−1

∫
Rn

〈x− y〉−n−1〈y〉f(y)dy
∥∥∥∥

2

≤
∥∥∥∥
∫

Rn

〈x− y〉−n−1f(y)dy
∥∥∥∥

2

+
∥∥∥∥〈x〉−1

∫
Rn

〈x− y〉−nf(y)dy
∥∥∥∥

2

≤ (‖〈·〉−n−1‖1 + ‖〈·〉−1‖q‖〈·〉−n‖q′)‖f‖2,

where n < q <∞.

Corollary 2.6. Let h satisfy the condition of Lemma 2.4 and let hR be hR =
h(·/R). Then

‖ 1
hR

[D,hR]‖ ≤ R−1‖ 1
h

[D,h]‖.
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Proof.

1
hR(x)

[D,hR]f(x) =
1

h( x
R )

∫
Rn

ei(x−y)·ξ|ξ|{h( y
R

)− h( x
R

)}f(y)dξdy

= Rn 1
h( x

R )

∫
Rn

ei(
x
R−y)·Rξ|ξ|{h(y)− h( x

R
)}f(Ry)dξdy

= R−1 1
h( x

R )

∫
Rn

ei(
x
R−y)·ξ|ξ|{h(y)− h( x

R
)}f(Ry)dξdy

= R−1 1
h( x

R )
[D,h]fR−1(

x

R
).

This implies

‖ 1
hR

[D,hR]f‖2 = R−1+n/2‖ 1
h

[D,h]fR−1‖2 ≤ R−1‖ 1
h

[D,h]‖‖f‖2.

�

3. Proof

3.1. Proof of Proposition 1.1. Let u(t, x) = h(x)v(t, x). Then

i∂tv +Dv +
1
h

[D,h]v = ihp−1|v|p−1v.(3.1)

Multiplying both hand sides of (3.1) by v, integrating over R
n, and taking the

imaginary part of the resulting integrals, we obtain

1
2
d

dt
‖v(t)‖22 =

∫
Rn

h(x)p−1|v(t, x)|p+1dx− Im
∫

Rn

v(t, x)
1

h(x)
[D,h]v(t, x)dx

≥
∫

Rn

h(x)p−1|v(t, x)|p+1dx− ‖ 1
h

[D,h]‖‖v(t)‖22

≥ ‖ 1
h
‖−p+1
2 ‖v(t)‖p+1

2 − ‖ 1
h

[D,h]‖‖v(t)‖22,

where we used the following estimate:

‖v(t)‖2 ≤ ‖ 1

h
p−1
p+1

‖ 2(p+1)
p−1

‖h p−1
p+1 v(t)‖p+1.

Then (1.7) follows from Lemma 2.1 with q = (p+ 1)/2.

3.2. Proof of Corollary 1.2. Let hR(x) = 〈x/R〉 with R > 0. hR satisfies
(1.5) and 1/hR ∈ (L∞ ∩ L2)(R), and 1

hR
u0 → u0 in L2 as R → ∞. Moreover,

‖ 1
hR

[D,hR]‖ ∼ R−1, and ‖ 1
hR
‖2 ∼ R1/2. Therefore

RHS (1.6) ∼ R
1
2− 1

p−1 → 0

as R → ∞ if p < 3. It means that for any u0 ∈ L2(R)\{0}, there exists R0 such
that (1.6) is satisfied with h(x) = 〈x/R0〉.
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3.3. Proof of Proposition 1.4. The local well-posedness in H1(R) is eas-
ily obtained by the Sobolev embedding and standard contraction argument. By
multiplying (1.4) by u and (−Δ)u, integrating over R, we obtain

d

dt
‖u(t)‖22 = ‖u(t)‖p+1

p+1 ≤ C‖u(t)‖p+1
H1(R),

d

dt
‖∇u(t)‖22 = Re

∫
R

∇(|u(t, x)|p−1u(t, x)) · ∇u(t, x)dx ≤ C‖u(t)‖p+1
H1(R),

where ‖f‖2H1(R) = ‖f‖22 + ‖∇f‖22. By solving the following ordinary differential
equality:

d

dt
U(t) = CU(t)

p+1
2 ,

we get

‖u(t)‖H1(R) ≤
(
‖u0‖−(p−1)

H1(R) − C(p− 1)
2

t

)− 1
p−1

.

This proves the Proposition 1.4.
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