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Abstract. Given a smooth potential function V : R
m → R, one can consider

the ODE ∂2
t u = −(∇V )(u) describing the trajectory of a particle t �→ u(t) in

the potential well V . We consider the question of whether the dynamics of
this family of ODE are universal in the sense that they contain (as embedded
copies) any first-order ODE ∂tu = X(u) arising from a smooth vector field X
on a manifold M . Assuming that X is nonsingular and M is compact, we show
(using the Nash embedding theorem) that this is possible precisely when the
flow (M, X) supports a geometric structure which we call a strongly adapted
1-form; many smooth flows do have such a 1-form, but we give an example
(due to Bryant) of a flow which does not, and hence cannot be modeled by
the dynamics of a potential well. As one consequence of this embeddability
criterion, we construct an example of a (coercive) potential well system which
is Turing complete in the sense that the halting of any Turing machine with
a given input is equivalent to a certain bounded trajectory in this system
entering a certain open set. In particular, this system contains trajectories for
which it is undecidable whether that trajectory enters such a set.

Remarkably, the above results also hold if one works instead with the
nonlinear wave equation ∂2

t u−Δu = −(∇V )(u) on a torus instead of a particle
in a potential well, or if one replaces the target domain R

m by a more general
Riemannian manifold.
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1. Introduction

Define a smooth flow to be a pair (M,X) consisting of a smooth manifold M
and a vector field1 X on M . Define a trajectory of a smooth flow to be a solution
u : I → M to the first-order ordinary differential equation (ODE)

(1.1) ∂tu = X(u)

for some interval I ⊂ R. The Picard existence and uniqueness theorem asserts that
for any initial datum u0 ∈ M , there is a unique trajectory u : I → M to (1.1) with
initial data u(0) = u0 and with a maximal open interval of existence 0 ∈ I ⊂ R;
furthermore, under reasonable growth conditions on X (e.g. if X is bounded) the
solution is global in the sense that I = R. In particular, when M is compact all
trajectories can be extended to be global in time, and we can define flow maps
etX : M → M for any time t; in this case the dynamics are almost periodic since
all trajectories are clearly precompact. We say that a smooth flow is nonsingular if
there are no fixed points, or equivalently if the vector field X is nowhere vanishing.

Define a morphism of one smooth flow (M,X) to another (M ′, X ′) to be
a smooth map φ : M → M ′ that takes trajectories of (M,X) to trajectories of
(M ′, X ′), or equivalently that

dφ(X(y)) = X ′(φ(y))

for all y ∈ M . Define an embedding of (M,X) into (M ′, X ′) is a morphism φ : M →
M ′ which is also an injective immersion.

Informally, the presence of an embedding of (M,X) into (M ′, X ′) indicates
that the dynamics of the former system are contained in that of the latter. For
instance:

• A stationary solution in (M,X) is the same thing as an embedding into
(M,X) of the trivial flow (pt, 0);

• A periodic solution in (M,X) is the same thing as an embedding into
(M,X) of the circle shift (R/Z, 1);

• An invariant torus in (M,X) (in the sense of KAM theory) is the same
thing as an embedding of (M,X) of a torus shift ((R/Z)d, α) for some
constant velocity field α ∈ R

d.

Let us say that a class C of smooth flows is universal if any other smooth flow
(M,X) may be embedded in at least one system in this class C. Here is a simple
example of such a universal class:

Proposition 1.1 (Hamiltonian dynamics are universal). Let H be the class
of Hamiltonian flows (M,X), that is to say smooth flows in which M = (M,ω) is
a symplectic manifold, and there is a Hamiltonian H : M → R with the property
that ω(X, Y ) = LY H for all vector fields Y , where we use LY to denote the Lie
derivative (which in this case is the same as the ordinary derivative since H is
scalar). Then H is universal.

Proof. Let (M,X) be a smooth flow. As is well known, the cotangent bundle
T ∗M of M can be equipped with a symplectic form ω, which in local coordinates

1In this paper, all vector fields, differential forms, Riemannian metrics, Hamiltonians, poten-
tial functions, etc. are understood to be smooth.
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is given by

(1.2) ω =
∑

i

dqi ∧ dpi

where q1, . . . , qn are local coordinates of M , and p1, . . . , pn are the dual momentum
coordinates. The ODE associated to a Hamiltonian H : T ∗M → R is given in
coordinates by Hamilton’s equation of motion

(1.3) ∂tqi =
∂H

∂pi
; ∂tpi = −∂H

∂qi
.

If one chooses the specific Hamiltonian H : T ∗M → R defined by the formula

H(q, p) := p(X)

for any point q in M and any covector p ∈ T ∗
q M , or in coordinates

(1.4) H(q1, . . . , qn, p1, . . . , pn) =
∑

i

piXi(q1, . . . , qn),

then one easily checks that the map φ : M → T ∗M given by φ(q) := (q, 0) is an
embedding; in coordinates, this asserts that any solution q : I → M to the ODE
∂tq = X(q) can also be viewed as solutions to Hamilton’s equations of motion (1.3)
for the Hamiltonian (1.4) by setting p(t) = 0 for all times t ∈ I. �

Informally, the above proposition asserts that Hamiltonian dynamics can be as
complicated as an arbitrary smooth dynamics.

A familiar subclass of Hamiltonian systems arise from the equations

(1.5) ∂2
t u = −(∇RmV )(u)

of a particle in a smooth potential well V : R
m → R, where ∇RmV : R

m → R
m

denotes the gradient of V . Indeed, by setting q(t) := u(t) and p(t) := ∂tu(t), this
ODE may be expressed as a system

(1.6) ∂tq = p; ∂tp = −(∇RmV )(q),

which is the Hamiltonian flow on the cotangent bundle

T ∗
R

m := {(q, p) : q, p ∈ R
m}

(with the usual symplectic form (1.2)) with Hamiltonian

H(q, p) :=
1
2
|p|2

Rm + V (q)

where |p|Rm denotes the Euclidean magnitude of p. We will denote this flow as
Well(Rm, V ). If we assume that V is coercive in the sense that V (q) → +∞
as q → +∞, then conservation of the Hamiltonian ensures that trajectories in
Well(Rm, V ) stay bounded, and hence global in time.

One can generalise the ODE (1.5) to the nonlinear wave equation (NLW)

(1.7) ∂2
t u − Δ(R/Z)du = −(∇RmV )u

where u : R × (R/Z)d → R
m is now a smooth function of one time variable t and

d (periodic) spatial variables x1, . . . , xd for some d ≥ 0 (or equivalently (by “curry-
ing”), a smooth map from R to C∞((R/Z)d → R

m)), and Δ(R/Z)d =
∑d

k=1 ∂2
xk

is
the spatial Laplacian on (R/Z)d. We restrict attention here to the periodic spatial
domain (R/Z)d to avoid technical issues relating to decay at spatial infinity. Solu-
tions to the potential well ODE (1.5) can be identified with the solutions to the NLW
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(1.7) which are constant in the spatial variables. Writing q(t) := u(t) ∈ C∞((R/Z)d)
and p(t) := ∂tu(t) ∈ C∞((R/Z)d) as before, we can rewrite the NLW (1.7) as a
first-order system

(1.8) ∂tq = p; ∂tp = Δ(R/Z)dq − (∇RmV )(q)

which is formally a Hamiltonian flow on the infinite-dimensional phase space

C∞((R/Z)d → R
m) × C∞((R/Z)d → R

m)

with Hamiltonian

H(q, p) :=
∫

(R/Z)d

1
2
|p|2

Rm +
1
2

d∑
k=1

|∂xk
q|2

Rm + V (q) dVol(x)

where ∂xk
denotes the partial derivative in the xk coordinate of (R/Z)d. We

will denote this (infinite-dimensional) system as NLW((R/Z)d, Rm, V ); the poten-
tial well flow Well(Rm, V ) then corresponds to the special case d = 0. While
NLW((R/Z)d, Rm, V ) is no longer finite-dimensional for d > 0, one can still define
the notion of an embedding of a smooth flow (M,X) into NLW((R/Z)d, Rm, V ),
namely a smooth (in the Gâteaux sense) injective immersion φ from the manifold M
to the vector space C∞((R/Z)d → R

m)×C∞((R/Z)d → R
m), which maps trajecto-

ries of (M,X) to solutions to (1.8). For instance, as in the finite-dimensional case,
stationary solutions, periodic solutions or invariant tori for NLW are the same thing
as smooth embeddings of a point, circle flow, and torus flow respectively. Also, we
may trivially embed Well(Rm, V ) into NLW((R/Z)d, Rm, V ) by mapping any point
(q, p) in R

m ×R
m to the pair (q, p) ∈ C∞((R/Z)d → R

m)×C∞((R/Z)d → R
m) of

constant functions from (R/Z)d to q and p respectively.
One can generalise the systems Well(Rm, V ) and NLW((R/Z)d, Rm, V ) further,

by replacing the Euclidean space R
m with a more general Riemannian manifold

(M, g). In this setting, V : M → R is now a smooth potential on M , and Well(M,V )
is the flow on the cotangent bundle

T ∗M := {(q, p) : q ∈ M,p ∈ T ∗
q M}

associated to the Hamiltonian

H(q, p) :=
1
2
|p|2g(q)−1 + V (q)

where ||g(q)−1 denotes the metric on T ∗
q M induced by the metric g(q) (or more

precisely, the inverse of this metric). The equations of motion are then given by

(1.9) ∂tq = g(q)−1 · p; ∇tp = −(dV )(q),

where g(q)−1 ·p is the tangent vector in TqM dual to the cotangent vector p ∈ T ∗
q M

with respect to the metric g(q), dV is the exterior derivative of V , and ∇t is the
covariant derivative (using the pullback of the Levi-Civita connection by q); one
can also write q = u and p = g(q) · ∂tu, where g(q) · ∂tu denotes the covector in
T ∗

q M dual to the vector ∂tu ∈ TqM with respect to the metric g(q), and u : I → M
solves the second-order ODE

∇t∂tu = −(∇gV )(u)

where ∇g is the gradient with respect to the metric g. Note that in the case
V = 0, this is just the dynamics of geodesic flow on M . One can similarly
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define NLW((R/Z)d,M, V ) to be the formal system on C∞((R/Z)d → M) ×
C∞((R/Z)d → M) associated to the formal Hamiltonian

H(q, p) :=
∫

(R/Z)d

1
2
|p|2g(q)−1 +

1
2

d∑
k=1

|∂xk
q|2g(q) + V (q) dVol(x),

where ||g(q) denotes the metric on TqM induced by g(q); the equations of motion
are

(1.10) ∂tq = g(q)−1 · p; ∂tp =
d∑

k=1

g(q) · ∇xk
∂xk

q − (dV )(q)

where ∇xi is the covariant derivative using the pullback of the Levi-Civita connec-
tion by q. Writing q = u and p = g(q) · ∂tu, we can also write (1.10) as a single
second-order PDE

∇t∂tu −
d∑

k=1

∇xk
∂xk

u = −(∇gV )(u)

which is the equation of a wave map with potential. One can also express this
equation in coordinates using Christoffel symbols, but we will not do so here.

In this paper we study the universality properties of the class of potential well
systems Well(Rm, V ), where we allow the number m of degrees of freedom, as well
as the smooth potential V : R

m → R to be arbitrary; we also consider the analogous
problem for NLW((R/Z)d, Rm, V ), Well(M,V ), and NLW((R/Z)d,M, V ). It turns
out that the following concept (bearing some faint resemblance2 to Gromov’s notion
[3] of a symplectic form that tames an almost complex structure) plays a central
role:

Definition 1.2 (Adapted 1-forms). Let (M,X) be a smooth non-singular flow.
We say that a 1-form θ on M is weakly adapted to this system if the scalar function
θ(X) is everywhere non-negative and the Lie derivative LX(θ) of θ along X is an
exact 1-form, thus LX(θ) = dL for some L. If furthermore θ(X) is strictly positive
everywhere (as opposed to merely being non-negative), we say that θ is strongly
adapted to (M,X).

For instance, the zero 1-form 0 is weakly adapted to (M,X) but not strongly
adapted. The question of whether a given flow (M,X) supports a strongly adapted
1-form will end up being a key focus of this paper.

The relevance of these concepts can be seen by the following calculation. Re-
call that every cotangent bundle T ∗M supports a canonical 1-form θ, defined in
canonical coordinates q1, . . . , qm, p1, . . . , pm as θ :=

∑m
i=1 pidqi.

Proposition 1.3 (Canonical form is weakly adapted). In the flow Well(M,V )
(and hence also in Well(Rm, V )), the canonical 1-form θ is weakly adapted to the
flow.

Proof. Let X be the vector field on T ∗M associated to Well(M,V ), thus from
(1.9) one has in coordinates that

X(q, p) = (g(q)−1 · p,−(dV )(q))

and hence
θ(X)(q, p) = g(q)−1(p, p) = |p|2g(q)−1 ≥ 0.

2We thank Robert Bryant for this remark.
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On the other hand, from Cartan’s formula one has

LXθ = d(ιXθ) + ιX(dθ)

where ιX denotes contraction by X. We have ιXθ = θ(X) and dθ = ω, and by
Hamilton’s equations of motion we have ιXω = −dH, hence we have LXθ = dL
where L is the Lagrangian

(1.11) L := θ(X) − H =
1
2
|p|2g(q)−1 − V (q),

and the claim follows. �
Remark 1.4. The identity LXθ = dL is closely related to Noether’s theorem.

Indeed, if Y is a vector field that is a symmetry of the Lagrangian (in that LY L = 0)
and commutes with the flow, then this identity implies that LX(θ(Y )) = 0, so that
θ(Y ) is a conserved quantity.

Another key fact is that the property of being weakly or strongly adapted is
preserved by pullback:

Proposition 1.5. If φ : N → M is a morphism from one smooth flow (N,Y )
to another (M,X), and θ is a 1-form strongly adapted to (M,X), then the pullback
φ∗θ′ is a 1-form strongly adapted to (N,Y ). Similarly with “strongly” replaced by
“weakly” throughout.

Proof. We have (φ∗θ)(Y ) = φ∗(θ(X)), so (φ∗θ)(Y ) is positive (resp. non-
negative) if θ(X) is. Also, for any time t, (etY )∗φ∗θ = φ∗(etX)∗θ; differentiating at
t = 0, we conclude that LY (φ∗θ) = φ∗(LXθ). Since LXθ is exact, LY φ∗θ is also.
The claim follows. �

These two facts suggest that the property of supporting an adapted 1-form
could serve as an obstruction to embedding into a potential well system. Our main
theorem confirms this for compact non-singular systems, and in fact shows that
this is the only obstruction in that case:

Theorem 1.6 (Criterion for embeddability). Let (N,Y ) be a compact smooth
non-singular flow, and let d ≥ 0 be an integer. Then the following are equivalent.

(i) There exists m ≥ 1 and a smooth potential V : R
m → R such that (N,Y )

is embedded in Well(Rm, V ).
(ii) There exists m ≥ 1 and a smooth potential V : R

m → R such that (N,Y )
is embedded in NLW((R/Z)d, Rm, V ).

(iii) There exists a Riemannian manifold M and a smooth potential V : M → R

such that (N,Y ) is embedded in Well(M,V ).
(iv) There exists a Riemannian manifold M and a smooth potential V : M → R

such that (N,Y ) is embedded in NLW((R/Z)d,M, V ).
(v) There exists a 1-form θ strongly adapted to (N,Y ).

We prove this theorem in Section 2. The implication of (ii), (iii), or (iv) from
(i) is trivial, and the implication from (v) from any of (i)-(iv) will follow from
Proposition 1.3, Proposition 1.5 and an averaging argument to upgrade the weakly
adapted 1-form to an adapted 1-form. To recover (i) from (v) we will use the Nash
embedding theorem [7], in a similar fashion to that in our previous paper [10].
Informally, the equivalence of (i)-(iv) asserts that the almost periodic dynamics
of nonlinear wave equations (or wave maps with potential) are no richer than the
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almost periodic dynamics of potential wells (either in Euclidean space or arbitrary
manifolds), at least if one restricts to those dynamics generated by smooth non-
singular vector fields.

Remark 1.7. If (N,Y ) is embedded in Well(V ), then one can modify V ar-
bitrarily outside of a neighbourhood of the image of N without affecting the em-
bedding. In particular, in the assertion (i) above one could assume without loss
of generality that V is coercive. By shifting V by a constant (which does not af-
fect the dynamics) we may thus also assume without loss of generality that V is
non-negative. Similarly for conclusions (ii), (iii), (iv).

In view of Theorem 1.6, it is of interest to determine which compact smooth
non-singular flows support adapted 1-forms. It turns out that there are many
examples of flows with this property:

Proposition 1.8 (Examples of strongly adapted 1-forms). Let (N,Y ) be a
smooth non-singular flow.

(i) If the system (N,Y ) is isometric, thus there is a Riemannian metric g
on N which is preserved by Y (that is to say, LY g = 0, then the 1-form
θ = g · Y that is dual to Y with respect to g is strongly adapted to (N,Y ).

(ii) More generally, if the system (N,Y ) is geodesible, thus there is a Rie-
mannian metric g on N such that the trajectories of (M,X) are geodesics
parameterised by arclength, then the 1-form θ = g · Y is strongly adapted
to (N,Y ).

(iii) If (N,Y ) is an Anosov flow, thus at every point y ∈ N , the tangent space
TyN splits smoothly into the line RY (y), the stable bundle E+

y , and the
unstable bundle E−

y , then the canonical 1-form θ (defined by setting θ(y)
to take the value 1 at Y (y) and vanish at E+

y and E−
y ) is strongly adapted

to (N,Y ).
(iv) If (N,Y ) is the suspension of some diffeomorphism Φ: M → M on a

compact manifold M , thus N is the manifold formed from M × [0, 1] by
identifying (y, 1) with (Φ(y), 0), with vector field Y = (1, 0) in the coordi-
nate patch M × [0, 1), then the 1-form θ defined on the coordinate patch
M×[0, 1) by θ = dt (where t denotes the second coordinate of M×[0, 1)) is
strongly adapted to (N,Y ). (Note that such suspensions will automatically
be non-singular, even if the map Φ contains fixed points.)

(v) The product system (M×(R/Z), (X, 1)) of an arbitrary smooth flow (M,X)
with the circle shift (R/Z, 1) will be non-singular and has dt as a strongly
adapted 1-form, where t is the second coordinate on the coordinate patch
M × [0, 1).

Proof. We first prove (i). Clearly θ(Y ) = g(Y, Y ) is positive. Since LY

annihilates both g and Y , it annihilates θ = g · X, so LY θ = 0 is certainly exact.
Part (ii) is due3 to Sullivan [8] and may be proven as follows. As in part (i),

θ(Y ) = g(Y, Y ) is positive; in fact, because of the arclength parametersiation, we
have θ(Y ) = g(Y, Y ) = 1. As the trajectories are geodesics, we have ∇Y Y = 0,
where ∇ denotes the Levi-Civita connection. Hence, for any vector field Z on N ,

3We are indebted to Ali Taghavi [11] for this statement and reference.
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we have

0 = g(∇Y Y, Z)

= ∇Y g(Y, Z) − g(Y,∇Y Z)

= LY (g(Y, Z)) − g(Y,∇ZY ) − g(Y, [Y, Z])

= LY (θ(Z)) − 1
2
∇Zg(Y, Y ) − θ([Y, Z])

= LY (θ(Z)) − 1
2
∇Z1 − θ(LY Z)

= (LY θ)(Z)

and hence LY θ = 0. In [8] it was also noted that this calculation is reversible, thus
if there exists a 1-form θ with θ(Y ) = 1 and LY θ = 0 then (N,Y ) is geodesible.

For part (iii), we have θ(Y ) = 1 positive by construction. The flow maps
etY preserves Y , E+, and E−, and thus preserves the canonical 1-form θ, hence
LY θ = 0.

Part (v) is a corollary of Proposition 1.5, since we have the morphism from
N to the circle shift (R/Z, 1) defined by mapping (y, t) to t mod 1 for t ∈ [0, 1).
Similarly for part (vi). �

By Theorem 1.6, any of the smooth flows listed above can be embedded in a
(coercive) potential well system (and hence also in a nonlinear wave equation).

In the other direction, we have the following counterexample on the 2-torus,
due to Robert Bryant:

Proposition 1.9 (Bryant example). The compact non-singular smooth flow(
(R/Z)2, sin(2πx)

d

dx
+ cos(2πx)

d

dy

)
,

where x, y are the standard coordinates on (R/Z)2 (see Figure 1), does not support
any strongly adapted 1-flows. In particular (by Theorem 1.6), one cannot embed
(N,Y ) into Well(Rm, V ), Well(M,V ), NLW((R/Z)d, Rm, V ), or NLW((R/Z)d,M, V )
for any d ≥ 0,m ≥ 1, Riemannian manifold M , and potential V .

We reproduce Bryant’s proof of this proposition in Section 3. Thus we see that
there are at least some almost periodic dynamics that cannot occur in a potential
well or in a nonlinear wave map, and so these classes of flows are not universal.

One can also use Theorem 1.6 (and Proposition 1.8(iv)) to produce a potential
well system Well(V ) that is a universal Turing machine. Recall that4 a Turing
machine consists of the following data:

• A finite set Q of states, including an initial state START ∈ Q and a halting
state HALT ∈ Q;

• An alphabet Σ, which is a finite set of cardinality at least two;
• An transition function δ : (Q\F )×Σ → Q×Σ×{−1, 0, +1}. respectively.)

Given a Turing machine (Q, START, HALT, Σ, δ) and an input tape s = (sn)n∈Z ∈
ΣZ, we can run the Turing machine by performing the following algorithm:

4We will use here a Turing machine with a single tape that is infinite in both directions and

a single halting state, with the machine shifting the tape rather than a tape head, but the results
here of course would apply to other variants of a Turing machine. It is common to isolate some
special characters in the alphabet Σ, such as a blank symbol, but we will not need to do so here.
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Figure 1. The vector field in Proposition 1.9. One should of
course identify the x = 0, 1 edges together, as well as the y = 0, 1
edges, to obtain a vector field on the 2-torus (R/Z)2.

Step 0. Initialise the current state q to be START, and the current tape t = (tn)n∈Z

to be s.
Step 1. If q = HALT then halt the algorithm (and return t as output). Otherwise,

compute δ(q, t0) = (q′, t′0, ε).
Step 2. Replace q with q′ and the nth component tn of the tape t with t′n.
Step 3. Replace the tape t with the shifted tape (tn−ε)n∈Z (that is to say, perform

a right shift if ε = +1, a left shift if ε = −1, and do nothing if ε = 0), then
return to Step 1.

Clearly, given any input s ∈ ΣZ, this Turing machine will either halt with some
output t ∈ ΣZ, or run indefinitely.

One can construct a diffeomorphism on a compact smooth manifold that is a
universal Turing machine:

Proposition 1.10 (Diffeomorphisms can be universal Turing machines). There
exists an explicitly constructible compact smooth manifold M equipped with a dif-
feomorphism Φ: M → M , such that for any Turing machine (Q, START, HALT, Σ, δ)
there exists an explicitly constructible open set Ut−n,...,tn

⊂ M attached to each fi-
nite string t−n, . . . , tn ∈ Σ, and an explicitly constructible point ys ∈ M attached
to each s ∈ ΣZ, such that the Turing machine (Q, START, HALT, Σ, δ) with input
tape s halts with output tape having coefficients t−n, . . . , tn in positions −n, . . . , n
respectively if and only if the orbit ys, Φ(ys), Φ2(ys), . . . enters Ut−n,...,tn (that is,
Φm(ys) ∈ Ut−n,...,tn

for some m).

This claim is standard (and not surprising, given the close relationship between
smooth dynamics and symbolic dynamics); we establish it in Section 4. Combining
this with Theorem 1.6 and Proposition 1.8(iv), we conclude
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Corollary 1.11 (Potential wells can be universal Turing machines). There
exists a coercive potential V : R

m → R such that for any Turing machine

(Q, START, HALT, Σ, δ)

there exists an explicitly constructible open set Ut−n,...,tn ⊂ R
m × R

m attached to
each finite string t−n, . . . , tn ∈ Σ, and an explicitly constructible (and bounded)
point ys ∈ R

m × R
m attached to each s ∈ ΣZ, such that the Turing machine

(Q,F, q0, Σ, δ) with input s halts with output tape having coefficients t−n, . . . , tn
in positions −n, . . . , n respectively if and only if the trajectory in Well(Rm, V ) with
initial data (qs, ps) enters Ũt−n,...,tn

at some non-negative time.

Proof. Let φ : M → M be the diffeomorphism from Proposition 1.10, and
let (M̃, X) be the suspension of φ. By Proposition 1.8(iv), (M̃, X) is compact,
non-singular, and supports an strongly adapted 1-form, and hence by Theorem 1.6
it may be embedded in Well(Rm, V ) for some m,V , and by Remark 1.7 we may
make V coercive. An inspection of Theorem 1.6 shows that the embedding can be
explicitly constructed (using for instance the Nash embedding construction5 from
[4]). The claim follows by taking (qs, ps) to be the image of (ys, 0) under this
embedding, and Ũt−n,...,tn to be (a neighbourhood of) the image of Ut−n,...,tn ×
{0}. �

Given that the halting problem is undecidable, we conclude in particular that
there exist explicitly constructable potential well systems Well(Rm, V ) and an ex-
plicitly constructible trajectory in that system, such that it is undecidable whether
that trajectory enters an explicit open set U at some non-negative time. As an-
other special case, we may construct explicit trajectories which enter such an open
set if and only if there is a counterexample to (say) the Riemann hypothesis, by
constructing a suitable Turing machine to look for such counterexamples (using
for instance Lagarias’s formulation [6]

∑
d|n d ≤ Hn + exp(Hn) log(Hn) of that hy-

pothesis, where Hn =
∑n

i=1
1
i are the harmonic numbers); similarly for many other

unsolved problems in mathematics. Informally, we conclude that the dynamics of
an arbitrary potential well system can be arbitrarily complicated. Of course, the
same also holds for the nonlinear wave equation.

Remark 1.12. In [9], the author speculated that if one could demonstrate that
the Euler equations were Turing-complete, this could be used to create a solution
to the Navier-Stokes equations that exhibited finite time blowup by creating initial
data that is “programmed” to evolve to a rescaled version of itself (up to some
hopefully negligible errors). One can view Corollary 1.11 as establishing an analo-
gous Turing-completeness for a nonlinear wave equation (although blowup for such
equations was already demonstrated in [10], at least in the case of three spatial
dimensions).

Remark 1.13. There are other results in the literature establishing that cer-
tain flows or maps can be universal Turing machines. For instance, in [2], an
analytic map on a non-compact manifold was constructed which could serve as a

5This construction involves solving some explicit elliptic (and slightly non-local) PDE, and so
for the purposes of this paper one needs to view the solution of such PDE (which can be done for
instance by performing a Picard iteration and then taking limits) as an “explicit construction”.
One may also argue that earlier proofs of the embedding theorem that rely on Nash-Moser iteration
also yield explicit constructions.
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(robust) universal Turing machine, while in [5] a piecewise linear continuous map
was constructed which also served as a universal Turing machine.

The author is supported by NSF grant DMS-1266164 and by a Simons Investi-
gator Award. We thank Sungjin Oh for helpful conversations and for a correction,
to Ali Taghavi [11] for pointing the author towards the reference [8], and to Robert
Bryant [11] for supplying the counterexample in Proposition 1.9.

2. Proof of main theorem

We now prove Theorem 1.6. As noted previously, it is immediate from the
constant embedding of Well(Rm, V ) in NLW((R/Z)d, Rm, V ) that (i) implies (ii);
similarly, (iii) implies (iv). It is also trivial that (i) implies (iii), and that (ii) implies
(iv).

Now we show that (iii) implies (v); this will be made redundant later when we
show that (iv) also implies (v), but this simpler implication serves to motivate the
argument in the latter case.

We need the following simple averaging trick to upgrade weakly adapted forms
to strongly adapted ones:

Lemma 2.1 (Averaging argument). Let (N,Y ) be a compact non-singular smooth
flow. Suppose that θ is a 1-form weakly adapted to (N,Y ), with the property that
θ(Y ) does not vanish on any arc of the form {etY y : 0 ≤ t ≤ T} with y ∈ N and
T > 0. Then there exists another 1-form θ̃ which is strongly adapted to (N,Y ).

Proof. For any time t, the flow etY preserves the vector field Y and commutes
with LY . As θ is weakly adapted to (N,Y ), we conclude that the pullbacks (etY )∗θ
are also weakly adapted to (N,Y ), and by linearity we conclude that the average∫ 1

0
(etY )∗θ dt is also weakly adapted. However, since θ(Y ) does not vanish on any

arc, the quantity (∫ 1

0

(etY )∗θ dt

)
(Y ) =

∫ 1

0

(etY )∗(θ(Y )) dt

never vanishes, and the claim follows. �
From the hypothesis (iii), we have a smooth potential V : M → R on a Rie-

mannian manifold M and an embedding φ : N → T ∗M of (N,Y ) into Well(M,V ).
By Proposition 1.3, the canonical 1-form θ on T ∗M is weakly adapted to Well(M,V ).
By Proposition 1.5, the pullback φ∗θ is then weakly adapted to (N,Y ). By Lemma
2.1, we can conclude (v) unless (φ∗θ)(Y ) vanishes on some arc {etY y : 0 ≤ t ≤ T}
with y ∈ N and T > 0. Suppose for contradiction that we have such a vanishing.
If we write (p(t), q(t)) = φ(etY y) for t ∈ R, then (by the definition of the canonical
1-form θ) (p, q) is a trajectory in Well(M,V ) with the property that p(t)(∂tq(t))
vanishes for 0 ≤ t ≤ T . From (1.9) we have

p(t)(∂tq(t)) = |p(t)|2g(q(t))−1

and hence p(t) vanishes for 0 ≤ t ≤ T , and hence ∂tq(t) = p(t) vanishes also. In
particular, ∂t(p(t), q(t)) = dφ(Y (y)) vanishes at t = 0, which contradicts the fact
that φ is an immersion and that Y is non-vanishing at y. This proves that (iii)
implies (v).

For future reference, we observe that the pullback φ∗θ used in the above argu-
ment can be expressed using local canonical coordinates q1, . . . , qm, p1, . . . , pm for
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M and local coordinates y1, . . . , yn for N (where m,n are the dimensions of M,N
respectively) as

φ∗θ(y) =
m∑

i=1

(pi ◦ φ)(y)d(qi ◦ φ)(y)

=
m∑

i=1

n∑
j=1

pi(φ(y))∂yj
(qi ◦ φ)(y)dyj

=
n∑

j=1

p(φ(y))(∂yj
(q ◦ φ)(y))dyj .

(2.1)

Now we show that (iv) implies (v). This argument is similar to the previous one,
but in order to avoid performing any differential geometry on an infinite dimensional
manifold, we will use more explicit computations in coordinates than before.

By hypothesis, we have a smooth potential V : M → R on a Riemannian man-
ifold M and an embedding φ : N → T ∗M of (N,Y ) into NLW((R/Z)d,M, V ). We
write φ = (Q,P ), where for each y ∈ N and x ∈ (R/Z)d, Q(y, x) = (q ◦ φ)(y)(x) is
a point in M , and P (y, x) = (p ◦ φ)(y)(x) is a cotangent vector in TQ(y,x)M , with
P and Q varying smoothly in both the x and y variables.

The analogue of the pullback form φ∗θ used in the previous argument will be
given in local coordinates y1, . . . , yn for N by the formula

(2.2) θ̃ :=
n∑

j=1

(∫
(R/Z)d

P (y, x)(∂yj Q(y, x)) dVol(x)

)
dyj .

where dVol is the standard volume form on (R/Z)d. It is easy to see that this
does not depend on the choice of local coordinates y1, . . . , yn, so that θ̃ is indeed a
1-form.

It is convenient to work in local coordinates y1, . . . , yn for which the vector field
Y is just d

dyn
, so that the Lie derivative LY is just ∂yn

; such a coordinate system
is always locally available as Y is non-singular. In these coordinates, we see from
(1.10) that we have the equations of motion

∂yn
Q = g(Q)−1 · P

∇ynP =
d∑

i=1

g(Q) · ∇xi∂xiQ − (dV )(Q),

where ∇ is the pullback of the Levi-Civita connection by Q, and we suppress the
variables y, x for brevity. In particular, we have

θ̃(Y ) =
∫

(R/Z)d

P (∂yn
Q) dVol(x)

=
∫

(R/Z)d

|P |2g(Q)−1 dVol(x)

and hence θ̃(Y ) is always non-negative. Furthermore, the only way that θ̃(Y ) could
vanish on an small arc {etY y : 0 ≤ t ≤ T} = {y + ten : 0 ≤ t ≤ T} in these
local coordinates is if P (y + ten, x) vanished for all 0 ≤ t ≤ T and x ∈ (R/Z)d,
which by the equations of motion show that ∂yn

Q(y + ten, x) vanished also; thus
the map t �→ φ(y + ten) from [0, T ] to C∞((R/Z)d → T ∗M) is stationary at t = 0,
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contradicting the hypothesis that φ is an embedding. Thus θ̃(Y ) does not vanish
on any such arc.

Now we compute the Lie derivative LY θ̃. In local coordinates this is ∂yn θ̃.
From the Leibniz rule, the Lie derivative in these coordinates becomes

LY θ̃ =
n∑

j=1

(∫
(R/Z)d

(∇yn
P )(∂yj

Q) + P (∇yn
∂yj

Q) dVol(x)

)
dyj .

As the Levi-Civita connection is torsion-free, ∇yn∂yj Q is equal to ∇yj ∂ynQ. Using
the equations of motion, the above expression then becomes

n∑
j=1

d∑
i=1

(∫
(R/Z)d

(g(Q) · ∇xi
∂xi

Q)(∂yj
Q) dVol(x)

)
dyj

−
n∑

j=1

(∫
(R/Z)d

(dV (Q))(∂yj Q) dVol(x)

)
dyj

+
n∑

j=1

(∫
(R/Z)d

P (∇yj (g(Q)−1 · P )) dVol(x)

)
dyj .

The first term can be rewritten as
n∑

j=1

(
d∑

i=1

∫
(R/Z)d

g(Q)(∇xi
∂xi

Q, ∂yj
Q) dVol(x)

)
dyj

which after integration by parts (recalling that the Levi-Civita connection is parallel
to the metric g) becomes

−
n∑

j=1

(
d∑

i=1

∫
(R/Z)d

g(Q)(∂xi
Q,∇xi

∂yj
Q) dVol(x)

)
dyj .

Using the torsion-free nature of the Levi-Civita connection, this is

−
n∑

j=1

(
d∑

i=1

∫
(R/Z)d

g(Q)(∂xiQ,∇yj ∂xiQ) dVol(x)

)
dyj

which since the Levi-Civita connection is parallel to g, becomes

−1
2

n∑
j=1

∂yj (
d∑

i=1

∫
(R/Z)d

g(Q)(∂xiQ, ∂xiQ) dVol(x)) dyj .

This is an exterior derivative and is thus exact. Similarly, the second term

−
n∑

j=1

(∫
(R/Z)d

(dV (Q))(∂yj
Q) dVol(x)

)
dyj

can be written using the chain rule as an exterior derivative

−
n∑

j=1

∂yj

(∫
(R/Z)d

V (Q) dVol(x)

)
dyj
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and is thus also exact. Finally, the third term
n∑

j=1

(∫
(R/Z)d

P (∇yj
(g(Q)−1 · P )) dVol(x)

)
dyj

can be written using the Leibniz rule and the fact that the Levi-Civita connection
is parallel to g as yet another exterior derivative

1
2

n∑
j=1

∂yj

(∫
(R/Z)d

|P |2g(Q)−1 dVol(x)

)
dyj

and is also exact. Thus LY θ̃ is exact. Indeed, we have shown the identity

LY θ̃ = dL

where L : N → R is the spatially integrated Lagrangian

L :=
∫

(R/Z)d

1
2
|P |2g(Q)−1 −

d∑
i=1

|∂xiQ|2g(Q) − V (Q) dVol(x);

this should be compared with the proof of Proposition 1.3.
From the above discussion we see that θ̃ is weakly adapted to (N,Y ) with θ̃(Y )

not vanishing identically on any arc, and so the claim (v) follows from Lemma 2.1
as before.

Remark 2.2. In the above calculation, one could have replaced the torus
(R/Z)d with any other compact Riemannian manifold (replacing the volume form
dVol by the Riemannian measure), albeit at the cost of having some rather con-
fusing notation to treat the three different Riemannian manifolds that are now
involved; we leave the details to the interested reader.

Finally, we show that (v) implies (i). By hypothesis, we have a smooth 1-form
θ on N and a smooth function L : N → R such that

(2.3) LY θ = dL

and such that θ(Y ) is strictly positive. By compactness, θ(Y ) is bounded away
from zero.

The first step is to find an embedding (q, p) : N → R
m × R

m, with p = LY q,
such that the pullback of the canonical 1-form

∑m
i=1 pidqi by (q, p) is equal to θ.

Our main tool for doing this will be the Nash embedding theorem.
We place an arbitrary smooth Riemannian metric g on N . We define a new

metric g̃ by the formula

g̃(aY + Z, bY + W ) := abθ(Y ) + aθ(W ) + bθ(Z) + Cg(Z,W )

whenever a, b ∈ R and Z,W are orthogonal to Y (with respect to g), where C > 0
is a large constant to be chosen later. This is clearly a symmetric 2-tensor, and

g̃(aY + Z, aY + Z) = a2θ(Y ) + 2aθ(Z) + Cg(Z,Z)

whenever a ∈ R and Z is orthogonal to Y (with respect to g). Since θ(Y ) is bounded
away from zero, we see that g̃ is positive definite if C is large enough, so that (M, g̃)
is a Riemannian manifold. Also, we see from construction that g̃(Z,X) = θ(Z) for
all vector fields Z, thus θ and X are duals of each other with respect to g̃.
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We now apply the Nash embedding theorem [7]. This produces a smooth
isometric embedding q : N → R

m from (N, g̃) to a Euclidean space, thus q is a
smooth injective immersion such that

〈∂yi
q, ∂yj

q〉Rm = g̃(ei, ej)

in local coordinates y1, . . . , yn for all i = 1, . . . , n, where 〈, 〉Rm is the Euclidean
inner product on R

m. In particular (using coordinates in which Y = d
dyn

) we have

〈∂yi
q, ∂ynq〉Rm = θ

(
d

dyi

)
for i = 1, . . . , n; if we then define p : M → R

m in coordinates to be

p := ∂yn
q

then we see that

(2.4) θ =
n∑

i=1

〈p, ∂yi
q〉Rm

d

dxi

in coordinates. In coordinate-free notation, we have p = LY q, and θ is the pullback
of the canonical 1-form by (q, p).

Since the map q : N → R
m was already a smooth injective immersion, and

p : N → R
m is smooth, the map φ : N → R

m × R
m defined by φ(y) := (q(y), p(y))

is also a smooth injective immersion. To conclude (i), it suffices to locate a smooth
potential V : R

m → R so that φ is a morphism from (N,Y ) to Well(Rm, V ). By
(1.6), this amounts to verifying the equations of motion

LY q = p(2.5)

LY p = −(∇RmV )(q).(2.6)

The first equation is already verified, so we work on the second. Again, we work in
local coordinates for which Y = d

dyn
, so that LY is just the partial derivative ∂yn .

From (2.3), (2.4) we have

∂yn〈p, ∂yiq〉Rm = ∂yiL

for all i = 1, . . . , n. We now let v : N → R be the smooth function such that

L =
1
2
|p|2

Rm − v

where ||Rm denotes the Euclidean norm on R
m; comparing with (1.11), we see that

v is “supposed” to be V ◦ q. We now compute

∂yn〈p, ∂yiq〉Rm = ∂yiL

= 〈p, ∂yip〉Rm − ∂yiv

= 〈p, ∂yn
∂yi

q〉Rm

and hence by the Leibniz rule

(2.7) 〈∂yn
p, ∂yi

q〉Rm = −∂yi
v.

Let q(N) ⊂ R
m be the image of N under the smooth injective immersion q:

this is a compact n-dimensional submanifold of R
m, with a smooth inverse map

q−1 : q(N) → N . On q(N), we define the acceleration field a : q(N) → R
m and the

restricted potential field V0 : q(N) → R
m by the formulae

a := ∂yn
p ◦ q−1
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and
V0 := v ◦ q−1.

At any point q(y) of q(N), we see from (2.7) and the chain rule that

〈a(q(y)), ∂yiq(y)〉Rm = −〈∇q(N)V0(q(y)), ∂yiq(y)〉Tq(y)q(N)

where Tq(y)q(N) is the tangent space to q(N) at q(y), viewed as a subspace of R
m

with the induced inner product (and noting that ∂yiq(y) lies in Tq(y)q(N)), and
∇q(N) is the gradient operator associated to the submanifold q(N) of the Euclidean
space R

m.
As q is am immersion, the tangent vectors ∂y1q(y), . . . , ∂ynq(y) form a basis for

Tq(y)q(N). We conclude that

a(z) = −∇q(N)V0(z) + n(z)

for all z ∈ q(N), where n(z) is a vector in R
m orthogonal to the tangent space

Tq(y)q(N) and varying smoothly in z. Using Fermi normal coordinates around the
smooth compact submanifold q(N) of R

m, we may thus find a smooth function
V : Nε(q(N)) → R on a tubular neighbourhood Nε(q(N)) of q(N) which extends
the function V0 : N → R, and is such that

a(z) = −∇RmV (z)

for all z ∈ q(N). By multiplying V by a smooth cutoff function supported on
Nε(q(N)) and equal to 1 on a smaller neighbourhood of q(N), we may assume
without loss of generality that V extends smoothly to a (compactly supported)
potential V : R

m → R. From the definition of a, we now have

∂yn
p = −(∇V )(q)

on all of N , giving the required equation of motion (2.6). This concludes the
implication of (i) from (v), and the proof of Theorem 1.6 is complete.

Remark 2.3. Using the version of the Nash embedding theorem by Gunther
[4], one can take the dimension m of the potential well to be max(n(n = 5)/2, n(n+
3)/2 + 5).

3. A flow without a strongly adapted 1-form

We now present the argument of Bryant [11] that proves Proposition 1.9. Let
Y denote the vector field

Y := sin(2πx)
d

dx
+ cos(2πx)

d

dy

on the 2-torus (R/Z)2. This is clearly a compact non-singular smooth flow. Suppose
for contradiction that we could find a 1-form θ on this torus with θ(Y ) positive and

LY θ = dL

for some smooth L : (R/Z)2 → R. By Cartan’s formula, we have

LY θ = d(θ(Y )) + ιY (dθ)

where ιY denotes contraction by Y . If we then define the “Hamiltonian” H :=
θ(Y ) − L, we thus have

(3.1) dH = −ιY (dθ).
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Contracting this against Y once more, we conclude that LY H = 0, thus H is
constant along trajectories of the flow.

A trajectory t �→ (x(t), y(t)) of the flow solves the system of ODE

∂tx(t) = sin(2πx(t))

∂ty(t) = cos(2πx(t)).

The first ODE ∂tx(t) = sin(2πx(t)) has two fixed point solutions in R/Z: the re-
pelling fixed point x(t) = 0 mod 1 and the attracting fixed point x(t) = 1/2 mod 1.
An inspection of the sign pattern of sin(2πx) reveals that all other solutions to this
ODE go to 0 mod 1 as t → −∞ and to 1/2 mod 1 as t → +∞. If we define the
invariant circles

C0 := {0 mod 1} × R/Z

C1 := {1/2 mod 1} × R/Z

we conclude that the trajectories to the flow ((R/Z)2, Y ) either stay within C0,
stay within C1, or else approach C0 (oscillating infinitely often in the y direction)
as t → −∞ and approach C1 (again oscillating infinitely often) as t → +∞ (cf.
Figure 1). In particular, as H is continuous and constant along trajectories, H
must be constant on C0, and the value of H on any other trajectory must equal its
value at C0, and hence H is constant on the entire 2-torus. From (3.1) we conclude
that ιY (dθ) = 0; since dθ is a 2-form on a two-dimensional manifold, and Y never
vanishes, we conclude that dθ must vanish identically. By Stokes theorem, this
implies that ∫

C0

θ =
∫

C1

θ

where we orient both 1-cycles C0, C1 in the forward y direction. But Y is equal to
(0, 1) on C0 and (0,−1) on C1, hence∫

R/Z

θ(Y )(0 mod 1, y) dy = −
∫

R/Z

θ(Y )(1/2 mod 1, y) dy

which is inconsistent with θ(Y ) being everywhere positive. The claim follows.

4. Encoding a Turing machine

We now prove Proposition 1.10. It will suffice show Proposition 1.10 for a single
Turing machine, namely a universal Turing machine (see e.g. [1, §1.4]), since by
definition this machine can be used to model all other Turing machines.

Thus, let us now fix a universal Turing machine (Q, START, HALT, Σ, δ). The
running state of such a machine is described by a state q ∈ Q and a tape t ∈ ΣZ.
The state space Q is already a (zero-dimensional) compact smooth manifold, but
the tape space ΣZ is not. However, this is easily fixed via a suitable embedding.
Firstly, without loss of generality we may suppose that Σ = {0, 1, . . . , k} for some
natural number k ≥ 1. Let b be a base much larger than k (e.g. b = 10k will
suffice). We then create an embedding f : ΣZ → (R/Z)2 into the 2-torus (R/Z)2 by
defining

f((tn)n∈Z) :=

( ∞∑
n=1

tnb−n mod 1,

∞∑
n=1

t1−nb−n mod 1

)
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whenever tn ∈ {0, . . . , k} for n ∈ Z. The image f(ΣZ) is thus the product of two
Cantor sets. We claim that there is a diffeomorphism φ : (R/Z)2 → (R/Z)2 that
encodes the right shift in the sense that

(4.1) f((tn−1)n∈Z) = φ(f((tn)n∈Z))

whenever tn ∈ {0, . . . , k} for n ∈ Z. Indeed, for any j = 0, . . . , k, define the
rectangles Rj , Sj ⊂ (R/Z)2 by the formulae

Rj :=
[
0,

1
b − 1

]
×

[
j

b
,
j

b
+

1
b(b − 1)

]
mod Z

2

Sj :=
[
j

b
,
j

b
+

1
b(b − 1)

]
×

[
0,

1
b − 1

]
mod Z

2.

For b large enough, R0, . . . , Rk are disjoint rectangles in (R/Z)2, and similarly for
S0, . . . , Sk. One can then construct a diffeomorphism φ that maps each Rj (affine-
)linearly to Sj by the formula

φ

(
α,

j

b
+

β

b

)
:= φ

(
j

b
+

α

b
, β

)

for all α, β ∈ [0, 1
b−1 ], and maps (R/Z)2\(R0 ∪ · · · ∪Rk) smoothly to (R/Z)2\(S0 ∪

· · ·∪Sk) in some arbitrary fashion; this is possible because one can smoothly deform
the closure of (R/Z)2\(R0 ∪ · · · ∪Rk) to the closure of (R/Z)2\(S0 ∪ · · · ∪Sk) while
mapping the boundary of each Rj to the corresponding boundary of Sj without
any rotation. One can then check (4.1) by direct computation.

To each state q ∈ Q we associate a closed square Bq in (R/Z)2, such that the
Bq are all disjoint (we need two-dimensions here to prevent the union of

⋃
q∈Q Bq

from being disconnected). Our manifold M will then be the 4-torus

M := (R/Z)2 × (R/Z)2.

To each state s ∈ ΣZ, the starting point ys ∈ M is then defined by the formula

ys := (xSTART, f(s))

where xSTART is the centre of TSTART, and the open set Ut−n,...,tn
⊂ M will be defined

as
Ut−n,...,tn

:= V × W−tn,...,tn
,

where V ⊂ (R/Z)2 is any open neighbourhood of the square BHALT that does not
intersect any other square Bq, and W−tn,...,tn ⊂ (R/Z)2 is any open neighbourhood
of the two-dimensional Cantor set

{f((t′m)m∈Z) : t′m = tm for all m = −n, . . . , n}
that does not contain any other point of the Cantor set f(ΣZ). Finally, the dif-
feomorphism Φ: M → M is defined as follows. For each q ∈ Q\{HALT} and
t0 ∈ {0, . . . , k}, write

(4.2) δ(q, t0) = (q′, t′0, ε),

and let B′
q,t0 be a closed small ball contained in Bq′ , such that the B′

q,t0 are disjoint
as q, t0 vary. Let Lq,t0 : Bq → B′

q,t0 be the homothety that maps Bq diffeomorphi-
cally onto B′

q,t0 . On the four-dimensional box

Bq × Rt0 ,
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we define Φ to be the map

Φ(z, w) :=
(

Lq,t0(z), φε

(
w − t0

b
+

t′0
b

))

for z ∈ Bq and w ∈ Rt0 . Because the squares B′
q,t0 are disjoint, the images Φ(Bq ×

Rt0) are disjoint (and diffeomorphic to four-dimensional boxes) as q, t0 vary. By
smoothly deforming the complement of these images back to the original local
Bq × Rt0 (which is possible due to the connected nature of the complement and
the contractible nature of the boxes Bq × Rt0), we can then extend Φ to be a
diffeomorphism on all of M .

By construction, if a point (z, w) is such that z ∈ Bq and w = f((tn)n∈Z) for
some q ∈ Q\{HALT} and tn ∈ {0, . . . , k}, then the image (z′, w′) = Φ(z, w) of (z, w)
under Φ will be such that z′ ∈ Bq′ and w′ = f((t′n)n∈Z), where the tape (t′n)n∈Z is
obtained from (tn)n∈Z by first replacing t0 with t′0, and then shifting by ε, where
q′, t′0 and ε are defined by (4.2). Iterating this, we obtain Proposition 1.10 for the
given universal Turing machine, and hence for arbitrary Turing machines.

Remark 4.1. The above construction reveals in fact that the trajectory

ys, Φ(ys), Φ2(ys), . . .

will either enter Ut−n,...,tn
, or stay a fixed distance away from this set. Thus one

only needs to be able to measure points in M to some fixed non-zero accuracy in
order to determine whether a given Turing machine with a given input halts or not,
and to inspect a finite number of symbols of the output.
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