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Multiple nontrivial solutions for a class of nonlinear
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ABSTRACT. In this paper, we are concerned with the existence and multiplicity
of nontrivial solutions of a class of nonlinear Schrédinger equations which arise
from nonlinear optics. We prove that there are two families of semiclassical
positive solutions, which concentrate on the minimal and maximum points of
the associated potentials, respectively. We also investigate the relationship
between the number of solutions and the topology of the set of the global
minima of the potentials by the minimax theorem. The novelty is that it
might be the first attempt to explore multiplicity and concentration of positive
solutions for such kind of coupled Schrodinger equations.

CONTENTS
1. Introduction and Main Results
2. Variational Setting and Nehari Manifolds
3. Ground State Solutions for Autonomous Equations
4. Some Useful Results
5. Positive Solutions for System (Z2.)
6. Multiplicity of Positive Solutions of System ()
Acknowledgments
References

160
165
169
178
182
192
198
199

1991 Mathematics Subject Classification. Primary 35B09, 35J60; Secondary 35J20, 35M10.
Key words and phrases. variational methods, Schrodinger equations, positive solutions,

ground state solutions, Nehari manifolds, category theory.

(©2017 International Press



160 JUN WANG AND ZHAOSHENG FENG

1. Introduction and Main Results
Consider the nonlinear Schrédinger equations

—&2Au+V(z)u=g(u) + v, z€ RY,
() —e2Av+ M(z)v = f(v) + I, € RV,
u(z),v(x) — 0, as |z| — oo,
where ¢ is a small positive parameter, A\ > 0, V, M € C(R™,R) are positive func-
tions, and f and g are superlinear and subcritical nonlinearity.

The system (.#Z) is initially generated from the following time-dependent non-
linear vector Schrédinger equations

magbtl = 7%A¢71 +V(2)p1 + g(¢1) + A2, (t,7) € RT x RV,
(L1) k%2 = —JZ Agy + M(x)gs + () + A1, (t,7) € RT x RV,
d)j :¢j(t’x) € (C’ ¢j(t7m) - 07 as |£L’| — 00, ]: 1727

where i is the imaginary unit, A is the Laplacian operator, and h > 0 is the
Planck constant. System (1.1) arises in nonlinear optics (cf. [3, 5]). As we know,
nonlinear Schrodinger equations (NLS) have been broadly investigated in many
aspects, especially in standing wave solutions [2, 3, 35, 36]. A standing wave
solution of system (1.1) takes the form

t 1Bt

(6n(t,2), 62(t, ) = (u(@)e™ T, v@)e ), (L) eRY xRV,

If we assume that f(e?u) = ¢ f(u) and g(e’u) = ¢“g(u) for all u € R. Then,
(¢1, ¢2) solves system (1.1) if and only if (u,v) solves the system
2
—QH—@Au + (V(2) — B)u = g(u) + Av, © € RV,
(1.2) — I Av+ (M(z) — E)v = f(v) + Au, z € RV,

u(z),v(z) — 0, as |z| — oo.

In this study, we are concerned with positive solutions of system (.#z) for small
h > 0. In this case, the standing waves are referred to as semiclassical states.
Let €2 = 5. For our convenience, by replacing (V(z) — E) and (M (z) — E) by
V(z) and M (x) respectively, it turns out to be system (#z). In this framework, our
interests focus on the existence of solutions and their asymptotic behaviors as e — 0.
Typically, solutions tend to concentrate around critical points of V' or M (which
are called spikes). In order to study the concentration phenomena of solutions of
system (J#2), we start with the constant coefficient problem (cf. [1, 2, 4, 6, 9] and
the references therein):

—Au+ pu = g(u) + M, v € RY,
(1.3) —~Av+ov=f(v) + M\, v € RN,

u(z),v(z) — 0, as |z| — oo,

where p and o > 0 are constants. System (1.3) can be regarded as a limit problem
after a suitable re-scaling of system (1.1). Before stating our results, let us briefly
recall some definitions of solutions of system (1.3). It is well-known that a solution
(u,v) of system (1.3) is called a bound state. If a bound state (u,v) # (0,0),
we call it a nontrivial bound state. A solution is called a ground state solution
if (u,v) # (0,0) and its energy is minimal among the energy of all the nontrivial
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bound states of system (1.3). A ground state solution which satisfies v > 0 and
v > 0 is called a positive ground state solution. Ambrosetti et al considered the
case where f(s) = g(s) = 5%, 0 = p=1,small A > 0 and N < 3, and proved the
existence of multi-bump solutions for system (1.3). When g = (1 + a(z))|u[P~%u
and f = (1+b(z))|v[P~0 (2 < p < 2* and 2* = 25 is the Sobolev critical
exponent), system (1.3) was investigated in [1] with the dimension N = 1 and in
[2] with the dimension N > 2, respectively. The existence of nontrivial bound
state was proved. Recently, Chen and Zou [6] dealt with the existence of positive
ground state solution for system (1.3) with the critical growth. They also studied
positive ground state solutions of system (1.3) with a more general nonlinearity in
[9]. Based on these existing results, we will establish some properties of the least
energy solutions for the limit problem (1.3) in Section 3.

Considerable attention is also dedicated to the semiclassical case [7, 8, 14, 22].
For example, Tkoma and Tanaka [22] considered the following system

(@) —2Au+ Vi(z)u = pu® + Bv?u  in RY,

: —&2Av + Va(z)v = pov® + Bou?  in RY,

where N = 2, 3, u1, p2, 6 > 0, and V5 and V5 are positive continuous functions.
Let P € RN and m(P) be the least energy level for nontrivial vector solutions of
the problem

(%) —Au+Vi(P)u = pud + pv?u  in RV,
c —Av + Vo(P)v = pov® + fou?  in RV,

Assume that there exists an open bounded set A C RY such that infpep m(P) <
infpepr m(P). By using the idea from [20, 21], it shows that there exists a suf-
ficiently small 9 > 0 such that for £ € (0,eq], system (%) possesses a family
of positive solutions {(u.,v:)}, which concentrates, after extracting a subsequence
en — 0, to a point Py € A with m(Py) = inf pcp m(P). Moreover, (uc, v:) converges
to a least energy nontrivial solution of system (¢7*) after a suitable re-scaling of .
The multiplicity and concentration of nontrivial solutions of system (%) was pre-
sented in [14]. The existence and concentration of ground state solution of system
(2) with the subcritical growth was discussed in [7]. Very recently, Chen and Zou
[8] considered the following equations with the critical growth

—&2Au + a(z)u = uP~1 + v, z € RY,
(1.4) —2Av +b(z)v =v2 + Au, z € RV,
u>0,v>0in RN, u(z),v(z) — 0, as |z| — oo,

where 2 < p < 2*, A > 0 and ¢ > 0 is sufficiently small. Assume that a has a local
minimum. It shows that system (). has a positive solution, which concentrate
on the local minimum of a.

To the best of our knowledge, all these elegant results mentioned above are
concerning the existence and concentration of positive solutions for system (J)..
It is quite natural to ask that: can one obtain the multiplicity and concentration of
positive solutions for system (%) in the semiclassical case? Since the semiclassical
state solutions describe a kind of transition from quantum mechanics to Newtonian
mechanics from the point of view of physics [10], such phenomenon of concentration
has been of interest to both mathematicians and physicists. It is also one of main
motivations for this study.
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Before stating assumptions for V' and M, let us introduce the following nota-
tions:

Vo= min V(z), Vipee = max V(z), and V, =liminfV(z);

z€RN zERN |z]— o0
My = min M(z), My, = max V(z), and My = liminf M (z);
zERN T€RN |z|—o00

My ={x eRY :V(z) =Vo} and Ay = {x c RN : M(z) = My}.

Assume that the bounded functions V' and M satisfy the following three con-
ditions:
(%) V,M € C(RY,R) such that 0 < Vj < Vi, < oo and 0 < My < M, < oo,
and there exists x, € .#1 such that M (z,) < M.
(71) V,M € C(RY,R) such that 0 < V5 < V., < 0o and 0 < My < M, < o0,
and there exists x,, € #5 such that V(z,,) < V.
(75) V,M € C(RM R) satisfy
0< inf V(z) <V =limsupV(z)<V(x),
zeRN || — o0
and
0< irﬂleN M(z)M® = limsup M (z) < M(x).
TE |z]— o0
Moreover, there holds |41] > 0 or |%3] > 0, where €1 = {z € RN,V (z) >
Vol and 6, = {z € RN, M(z) > M>=}.
The hypothesis (%) was first introduced by Rabinowitz [36] in the study of
a nonlinear Schrodinger equation. For f and g, the following three conditions are
imposed:
(Z1) Suppose that f,g € C(RY), f(t) = o(t) and g(t) = o(t) as t — 0, and
f(t)t > 0 and g(¢)t > 0 for all ¢ > 0. Moreover, one of the following
cases holds: (1) F(|t]) > F(t) (Vt € R) and g(t) = 0 (vt < 0); (2)
G(|t]) > G(t) (vt € R) and f(t) = 0 (V¢ < 0), where F(t) = [, f(s)ds and
G(t) = f(fg(s)ds.
(Z2) % and % are strictly increasing on interval (0,00) for f(¢) # 0 and
g(t) # 0.
(Z3) Both |f(t)| < c(1+[t[P~1) and |g(t)| < ¢(1 + |t|271) holds for some ¢ > 0,
where2<pandq<%isz3,or2<pandq<ooifN:1,2.
F(t) G
72 7
From conditions of (.#)-(%2), it is easy to see that

(1.5) F(v) >0, 2F(v) < f(v)v and G(u) >0, 2G(u) < g(w)u, Y u,v#0,
where F(u) = [, f(s)ds. Following [30, 31, 37], in order to obtain some concen-
tration phenomena for positive solutions, when condition (#4) holds, without loss
of generality, we can assume M (x,) = minge 4, M (z) and define the set

Vi={x e Mx)=Mx,)}U{z & 4 : M(zx) < M(x,)}.

Similarly, when condition (%7 ) holds, we assume V (2,,) = mingc_z V() and define
the set

Moreover, there holds — oo and

— 00, as t — 00.

Mo={x €My V(x)=V(xym)U{a & M :V(x)<V(em)}
Clearly, if .#1 N M5 # 0, one can deduce that ¥ = . # = 1 N M>.
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Let
Zea(u,v) == / (=2 |VulP+| Vo 24V (2)|u2+V (2)|v]*) = (G (u)+ F (v))+A uv,
RN RN
denote the energy function of system (7).
Set
ve = Inf{Z: x(u,v) : (u,v) # 0 is a solution of (J£)}.
The solution (¢°, %) # 0 with v. = 22 A (¥%, ¢°) is usually called a ground state
solution. If 20 = (¥, ") is a solution of system (#Z) with 4° > 0 and ¢° > 0,
we call 2 a positive solution of system (#z). We say 2° = (¢°,0°) > 0 (or > 0)
means that ¥ > 0 (or > 0) and ¢° > 0 (or > 0). Let £/ denote the set of all
positive ground state solutions of system (.J7z).
We summarize our main results as follows.

THEOREM 1.1. Suppose that (%) and (F1)-(F3) hold. Then for all sufficiently
smalle >0 and 0 < X\ < § := min{l, Vo, My}, there exists at least one ground state
solution we = (ue,v.) in E = HY(RN) x HYRYN) to system (). In addition, if V
and M are uniformly continuous functions, and g(t) = g1(t) + c1[t|7%t and f(t) =
f1(t) + c2|t|P=2t, where p and q are given in (F3), c1,c2 > 0, 3g91(t)t — G1(t) = 0
and Lfi(t)t — Fi(t) > 0, and Gy(t) = fotg(s)ds and Fy(t) = fot f(s)ds, then the
following three statements are true.

(%) £ is compact in HY(RYN) x HY(RY).

(%) There exists a mazimum point . of w. such that

Elii% dist(x., V) = 0.

For any sequences of such point . — xg as e — 0, ho(x) = we(ex + x.)
uniformly converges to a positive ground state solution of the system
—Au+ V(zg)u = g(u) + Av in RN,
(Hv,) —Av+ M(zo)v = f(v) + Au in RN,
u>0,v>0, inRY, uve HY(RY),
as e — 0.
(45) There holds

lim we(z) =0 and lim |Vw.(x)| =0,
|#|—o0 || —o0
where w, € C’llo’g(]RN) with o € (0,1). Furthermore, there exist two con-
stants C, ¢ > 0 such that

wo(a)] < e~ e
for all z € RV,

THEOREM 1.2. Suppose that (1) and (F1)-(F3) hold. Then for all sufficiently
small e > 0 and 0 < A < ¢ := min{1, Vy, My}, there is at least one ground state
solution we = (ue,v:) in E to system (). Moreover, if V. and M are uniformly
continuous functions, and g(t) = g1(t) + c1t97 ! and f(t) = fi(t) + cotP~L, where p
and q are given in (F3), c1, ca > 0, $g1(t)t — G1(t) > 0 and 3 f1(t)t — Fi(t) > 0,
by replacing ¥V with A in (%), then all three statements of (% )-(95) remain true.

From Theorems 1.1 and 1.2, we can obtain the following corollary immediately.
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COROLLARY 1.3. Suppose that (¥%)-(#1) and (%#1)-(.%3) hold. Then for all suf-
ficiently small e > 0 and 0 < A < ¢ := min{1, Vj, My}, system (. #2) has two positive
ground state solutions 2! and 22, which satisfy the concentration phenomena as de-
scribed in Theorems 1.1 and 1.2 if V' and M are uniformly continuous functions.
Moreover, the two positive solutions 2J (j = 1,2) are distinct if VA =0.

Now, we shall state the existence of multiple positive solutions for system (.#2).
To do this, we recall that, if Y is a closed subset of a topological space X, the
Ljusternik-Schnirelmann category catx (Y) is the least number of closed and con-
tractible sets in X which cover Y. We assume that the following condition holds:

(Ky) It A Oy # 0, we set O = My N Mo.

In view of (%) or (#1), the set & is compact. For any § > 0, we denote
Os = {z e RN : dist(z, 0) < §}.

THEOREM 1.4. Suppose that (%) or (¥1), (K1) and (F1)-(F3) hold. If V
and M are uniformly continuous functions, and g(t) = g1(t) + c1t? % and f(t) =
fi(t) + cotP™!, where p and q are given in (F3), c1,c2 > 0, $g1(t)t — G1(t) > 0
and %fl(t)t — Fi(t) > 0, then for each § > 0, there exist an 5 > 0 such that for

any e € (0,e5) and 0 < A < ¢ := min{l, Vy, My}, the following three statements are
true.

(A1) There are at least catg; (O) positive solutions to system (H#z).

(S) If we = (u.,v.) denotes one of these positive solutions and o. € RY such
that we(0.) = max,epy we(x), then we have 0. — yo € 0.

(H3) There holds

lim |we(x)| =0 and u. € CL7(RN) with o € (0,1).

e loc
Furthermore, there exist two constants C,c > 0 such that
lwe ()| < Cezlo—oel
for all x € RV,

THEOREM 1.5. Suppose that (¥3) and (F1)-(F3) hold. Then for any 0 < A <
0 := min{1, Vo, My}, there is no ground state solution for all e > 0 to system (Jz).

REMARK 1.6. In the present paper, we devote to the study of the multiplicity
and concentration of positive solutions of system (#z), see Corollary 1.3 and The-
orem 1.4. We wish that these results can fill in the gap of some existing results in
the literature.

REMARK 1.7. The conditions (%5)-(¥1) and the sets ¥ and .# were introduced
in [30, 31], where they were used to study the concentration of solutions of Dirac
and Schrodinger equations.

Making the change of variable ey = z, we can reduce system (#Z) to an equiv-
alent system

—Au+V.(z)u = g(u) + v, =€ RY,
(2.) —Av+ M (z)v = f(v) + A\u, x€ RN,
u(z),v(z) — 0, as |z| — oo.

Throughout the paper we will often use the notation ¢ to denote a generic positive
constant. The value of ¢ is allowed to vary from place to place.
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The paper is organized as follows. In Section 2, we present some technical
lemmas. In Section 3, we study some properties of the least energy solutions of
the associated systems. Section 4 is dedicated to the concentration phenomena of
ground state solutions of system (Z2.). In Section 5, we demonstrate the proofs of
our main results on the existence and concentration of positive solutions for system
(Z:). In Section 6, we apply the Ljusternik-Schnirelmann category to discuss the
multiplicity of positive solutions of system (Z.).

2. Variational Setting and Nehari Manifolds

Let X and Y be two Banach spaces with norms ||-|| x and ||-||y, respectively. De-
note by X xY the product space of X and Y with the norm ||(z,y)||xxy = (||z]|%+
|yll2)2. If X and Y are Hilbert spaces with the inner products (-,)x and (-,-)y,
then X x Y is also a Hilbert space with the inner product ((z,y), (w,2))xxy =
(*T” w)X + (y7 Z)Y'

Let | - |, denote the usual L%-norm and (-, )2 denote the usual L? := L?(RY)-
inner product. For the Hilbert space H'(R"), the inner product is denoted by

(u1,u2) :/ (Vui Vug + uqus),
RN

and correspondingly the norm is denoted by |Ju|| = (u,u)=.
Let B = HYRY) x HY(RY). For any ¢ > 0, let H! = {u € H'RY) :
Jan V(ex)u® < oo} denote the Hilbert space endowed with the inner product

(u,v)e = / VuVo + V(ex)uv, for u,u € H,
RN

and the induced norm is denoted by |[ul|? = (u,u).. Clearly, || - || and || - | are
equivalent norms for any € > 0 and V,, < co. Similarly, one can define a Hilbert
space by

Hf:{uEHl(RN): M(ELE)U2<OO}.
RN
Let E. = H! x H2. Clearly, E = E. for each ¢ > 0. On E. we define a

functional as

Hea(z) = Fea(u,v)

1
f/ (|Vu|2 +|Vol]? + V(ex)|ul® + M(E.’L‘)|’U|2)
RN

2
- /RN(F(U) +Gu) — A/RN w.

for u € E.. Obviously, Z.\ € CY(E.,R) and a standard argument shows that
critical points of Z. y are solutions of system () (see [2, 6, 7]).

We may use the Nehari method to achieve our goal. This method has been
widely used and developed in the past several decades, for instance, see [2, 3, 16,
39, 40, 41]. Following [16], we define the Nehari manifold corresponding to _#. »
by

Ao = {(u,v) € B\ {(0,0)} + 77 \(u,v)(u,v) =0}
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One can see that for z = (u,v) € AZ, it has
(2.1)
[ vu + Ve@luf? + Vo + Mool = [
RN

RN

(F@)v + gluyu) + 2 / w,

RN

where V. (x) = V(ex). This implies that for u € 42, there holds

1 1
21 ol = [ (300 F0) + (a0 - 6]
RN
Here, let us present some elementary properties for 4%.

LEMMA 2.1. Under the assumptions of Theorem 1.1, for 0 < X\ < min{1, Vy, My}
and e > 0, we have that for all z = (u,v) € S = {z € E. : ||2]lc = (|Jul2+][v]?)z =
1}, there exists a unique t, > 0 such that t,z € .. Moreover, ms(z) = t,z is the
unique mazimum of We x on E.. Conversely, for each z € A, we define

(2.3) me(z) =mZ ' (z) = W € S..

That is, the mapping me is a homeomorphism between S. C E. and Nz, and ¢ is
a Nehari manifold.

Proor. Following [11, 12], for each z = (u,v) € S; and ¢ > 0, we define
k(t) = Zea(tu,tv). Tt is easy to verify that k(0) = 0 and k(t) < 0 for the large
t > 0. Moreover, we claim that

(2.4) E(t) >0 for ¢> 0 small.

Indeed, from the conditions (.#;)-(.%3), we deduce that for each € > 0 there exists

a C¢ > 0 such that
(25) [f ()] < efo| + CclofP~! and  |F(v)] < efv]* + Cclo]?,
' 9(u)] < elul + Celu["" and |G (u)| < euf® + Celul?,

where p and ¢ are given in (#3). It follows that

K(t) = t;/RN(|Vu|2 T Vo2 + V(en)lul? + M(ex) o]?)
_ / (F(to) + Gltu)) — 27 | ww.
RN RN
> 507;2(”””2 +[0ll*) = et?(Jul3 + [v]3) — Ce(t?[vl} + t7|ulf) — M?|ul2]v]2
= %50 = N llull® + [10]*) = #(l[ull® + [0]*) = cCe(t[[v][” + 7 ull*)

t2
= 5 (% = A= c)([[ull® + [[v]*) = cCe(@[v]I” + #[[ull),

where 09 = min{1, Vp, My}. Since p,q > 2, if € is small enough such that A+ce < dy,
we find that k(t) > 0 for the small ¢ > 0. Hence, max;s¢k(t) is attained at a
t =t, > 0so that ¥'(t,) = 0 and ¢,z € 4Z. Suppose that there exist t,1 > t,2 >0
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such that ¢, 12, t. 22 € 4. Then we have

£ (lull + [01) = [ (Fteao)tean + glterutegn) + 32, [ o

RN RN

(2.6)

Ealllull + [ol2) = [ (F(teavtezo + glteatezn) + 72, [ uo
RN

RN

A direct calculation gives

0 :/ ftzav)  f(te2v) 02 +/ g(tzau)  g(tsou) 2,
RN tz711] tz721} RN tz71u t272u

which makes no sense in view of (%) and t,1 > t,2 > 0. Conversely, the inverse
of m is given by (2.3). That is, the mapping m. is a homeomorphism between
S. C E. and /.. O

LEMMA 2.2. Under the assumptions of Lemma 2.1, for 0 < A < min{1, V, My}
and € > 0, the following three properties are true.
(A1) The set A is bounded away from 0. Furthermore, AZ is closed in E..
(Ay) There is a > 0 such that t, > « for each u € Se and for each compact
subset W C S¢, there exists Cyy > 0 such that t, < Cyy, for all u € W.
(As) cc =inf 4. _Zo x> p >0 and g, x is bounded below on Az, where p > 0
is independent of €.

PROOF. (A;) For u € A%, it follows from (2.1) and (2.5) that
l[ull2 + [[olI2 < ce(lfull2 + [[v]12) + cCe([lull2 + [[v][2) + Mulz|v]2

(2‘7) 2 2 q P )\
< ce(fjulle + 11012 + eCellullz + llvlle) + 5p=lulle + l[v]le)-

From (2.7), we have

(1 e 5y ) (Il + 101 < cColalz + ol
Since A < Vj, we can choose € small enough such that 1 — ce — ﬁ > (0. There
is a ¢ > 0 (independent of €) such that
[ull2™2 + |o]l2™2 > o
It further gives
(2.8) 1201272 + (201272 > flufl 22 + 0272 > o

That is, the set 4. is bounded away from 0. To prove that the set 4. is closed in
E., we let {z,} C Az such that 2, — z in E.. We know that ¢ ,(z5) is bounded,
and then from

i) — FLa(2)z = (Fla(zn) = L)z 4+ L\ (20) (20 — 2)

— 0, asn — oo,
we see that 7! ,(z)z = 0. It follows from (2.7) that
212 = lim |lzn]|Z > 6 > 0.
n—oo
So we arrive at z € ..

(A2) For {z,} C E.\ {0}, there exist t,, such that ¢, z, € Az. From Part
(A1), one can see that ||[t,, zn|le = t2, [|2nlle > o > 0. It is impossible to have that
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t., — 0,asn — oo. To prove t, < C)y for all z € W C S, by way of contradiction,
we suppose that there exists {z,} C W C S; such that t,, =t,, — oo. Since W is
compact, there exists z = (u,v) € W such that z, = (up,v,) — 2z = (u,v) in E;
and z,(r) — z(r) a.e. on RY after passing to a subsequence. Then, it follows from

(yg,) that
jé)\(zn)

t2
=2 [ (IVunl* + [Vou]* + V(ew)|un|* + M(e2)[vn]?)
RN

_ /R (F(tyon) + Gltnun)) = M2 /R v

1 F(tpon) G(tnun)
<t2 - n 2 n 2 A allcllonlle _/ nvn) 2 nn) 9
<t [2<||u I+ D)+ Alwnlelfonlle = | To=ssol + 555l

— — 00, as n — OQ.

However, from (2.2) we know that #. x(¢,2,) > 0. This yields a contradiction.
(Ag) Fore >0, A >0, s> 0 and z = (u,v) € E. \ {0}, similar to the proof of
Lemma 2.1, we can see that for each € > 0, there exists a C. > 0 such that

52

Ferlss) = 5 [ (Va4 Vo + Vieo)ul? + M(ea)lof)
- Sv Su)) — 32 uv
[ Feo+ G —as [
> 500 = A= o) (JlulP + JolP) — Ce (PP + 7ull),

where € is small enough such that A 4+ ce < dg. So, there is a p > 0 such that
Fea(sz) > p >0 for small s > 0. On the other hand, it follows from Lemma 2.1
that

@ =B SeA = il M S () = el e Sealow)
Hence, we obtain ¢, > p > 0 and _Z. x|.4 > p > 0. O

Let us move to the functionals ?/;7,\ :E.\{0} - Rand % : S: — R defined
by

62/5,/\(2> = fe,)\(mg(z)) and %6,/\ = /6,)\
respectively, where m.(z) = t,z = t,(u,v) is the unique maximum of _#. ) on E..

LEMMA 2.3. (See [16, Corollary 3.3]) Under the assumptions of Lemma 2.5,

for X# 0 and € > 0 we have that

(B1) % € C'(S:,R), and

Daw)z = [lme(w)le £\ (me(w))z for 2 € TpySe.

(B2) {wn} is a Palais-Smale sequence for % x if and only if {m.(w,)} is a
Palais-Smale sequence for Z. x. If {un,} C A% is a bounded Palais-Smale
sequence for 7. x, then mg(z,) is a Palais-Smale sequence for % x, where
e(z) = mz3(2) = T

(Bs) infg, % =inf 4. _Fe x = c.. Moreover, z € S, is a critical point of U x
if and only if me(2) is a critical point of fZe x, and the corresponding
critical values coincide.

Sos
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REMARK 2.4. By Lemma 2.1, we note that the infimum of 7.y over .4, has
the following minimax characterization:

(9) = BLSa) = o) ey Seale) = ol g Seale)

3. Ground State Solutions for Autonomous Equations

In this section, we shall prove some properties of the least energy solutions of
the autonomous equations. Specifically, for each u > Vy, 0 > My and A # 0, we
consider the following system

—Au+ pu = g(u) + M in RY,
(Puo.n) —~Av+ov=f(v) + M in RV,
u(z) — 0,v(x) — 0, as |z| — cc.

For any o > 0, let
H, = {UGHI(RN):/ pu? <oo}
RN

be the Sobolev space endowed with the norm [[u||2 = [on [Vul® + plul*. Clearly,
the norms || - ||, and || - || are equivalent. Let E,, = H, x H,. It is easy to see
E=H'RY)x H (RY) = E,,, for each y,0 > 0. We define the functional on E,,,
by

1
Huon(2) = Juoa(u,v) = 5 /RN(\VUIz +[Vol? + plul? + ofuf?)

—/RN(F(vHG(u)) —)\/RN w

foru € E,,. Obviously, £, € Cl(E,w, R) and a standard argument shows that
critical points of _Z,, » are solutions of system (2., ) (see [2, 6, 7]). In order
to find critical points of the functional _Z,, x, we will employ the Nehari manifold
methods. We define the Nehari manifold associated with _#Z,,, x by

Mo ={u € Epg \ {0} : 75 x(u,v)(u,v) = 0}
For u € 4}, one can see that
(3.1)

U2 U2 ’U2 O"U2Z v)v u)u uv.
L9l [ (Ve +oloR) = [ () atup)+2 [

N

This implies that for u € .4},,, there holds

B2 Sl = [ |GI00 - FE) + (et - 6w) .

Similar to Lemmas 2.1 and 2.2, we know that .4}, has the following elementary
properties.

LEMMA 3.1. Under the assumptions of Theorem 1.1, for 0 < XA < &g =

min{1, Vo, Mo} and p,o > 0, the following statements are true.

(C1) Forall z € Syo = {z = (u,v) € Eyuo : |[ull2 + |Jv]|2 = 1}, there exists a
unique t, > 0 such that t.z € N,,. Moreover, m,,(z) = t.z is the unique
mazimum of Fuox on Eyus.

(C3) The set N, is bounded away from 0. Furthermore, A, is closed in E,,
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(C3) There is § > 0 such that t, > ¢ holds for each u € S,, and for each
compact subset W C S, there exists Cyy > 0 such that t, < Cyy holds
forallze W

(C1) Mo is a regular manifolds diffeomorphic to the sphere of E,.

(Cs) cuo =infy,, Zuor >0, and Z,5 1| 4, is bounded below by some positive
constant.

From (C4) of Lemma 3.1, we know that for each z € E,, \ {0}, there exists
a unique t, > 0 such that t,z € A4},. So we can define the mapping: 7m,.:
Euo \ {0} = Ao by
Mue(2) =tz
Clearly, m,o = Mu0|s,,, -
Let

522“0)\ tEue \ {0} =R,

Do\ (w) := Ao (m/w (w)),

Uo ) = Upo\|S,, -

If the inverse of the mapping m,, to S, is given by
u

[ullpo”

1. N _
Mpyg = My Npoe — Spe and 1My, =

then by using the same arguments as in [16, Corollary 10] we have the following
lemma.

LEMMA 3.2. Under the assumptions of Lemma 3.1, for
0<A<dg= min{l, ‘/O,MO}

and p,0 >0 and € > 0, the following statements are true.
(1) Upox € CI(SM,R), and

Uiy \(W)2 = Mg (W)l o F s 3 (Mo (W) 2, for 2 € TySpior

(11) {wyn} is a Palais-Smale sequence for e if and only if {m,,(wy)} is
a Palais-Smale sequence for Z,uox. If {zn} C A» is a bounded Palais-Smale
sequence for Z.ox, then Myuq(z,) ts a Palais-Smale sequence for f#,, 1, where
My (2) = m;al(z) = HZ\TM'

(i4i) There holds

}SI:E %/1.0'7)\ = }%{ /;m,)\ = Cuo-

Moreover, z € Sy, is a critical point of e if and only if m,s(z) is a critical
point of _Z,q,x, and the corresponding critical values coincide.

REMARK 3.3. By Lemma 3.1, we note that the infimum of #,, \ over A4,
has the following minimax characterization:
(3.3)

0< = inf = inf = inf )
Cur = J0f Shoa(z) =k max Fuoa(sw) = inf max Fuoa(sw)

To prove compactness of minimizing sequences for _#,, x, we need the following
technical lemma [18].
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LEMMA 3.4. Letr >0 and q € [2,2*]. If {z,} is bounded in H'(RY) x H'(RY)
and satisfies

lim sup/ |zn]? =0,
"0 y€eRN J Br(y)

then we have z, — 0 in LP(RYN) x LP(RYN) for p € (2,2*). Moreover, if ¢ = 2%,
then z, — 0 in LP(RN) x LP(RN) for p € (2,2*], where 2* = 22 if N > 3 and
2 — o0 if N = 1,2.

The following lemma is regarding the property for minimizing sequences.

LEMMA 3.5. Let {z,} C A, be a minimizing sequence for Z,, . Then {z,}
is bounded. Moreover, there exist r,0 > 0 and a sequence {y,} C RN such that

lim inf/ \Zn|2 >6>0,
Br(yn)

n—oo

where By (yn) = {y € RN : [y —yn| <7},

PROOF. We first prove the boundedness of {z,}. By way of contradiction,
we suppose that there exists a sequence {z,} C .4, such that ||z, — oo and

/,u,cr,)\(un) — Cuo- Let

Zn

Wy, and z, = (2}, 22).

~ Nlzallue

Then w,, — w and w,(r) — w(z) a.e. in RY after passing to a subsequence. We
have two cases: either {w,} is vanishing, i.e.,

(3.4) lim sup/ |w,|* =0,
Br(y)

n— oo yERN

or it is non-vanishing, i.e., there exist 7,d > 0 and a sequence {y,,} C RY such that

n—oo

(3.5) lim inf/ [wn|? =6 > 0.
Br(yn)

As shown in [19, 23], we will reveal that neither (3.4) nor (3.5) takes place, which
leads to the desired contradiction.
If {w,} is vanishing, it follows Lemma 3.4 that

w, — 0in L' = LY(RY) x LY(RY)
for t € (2, %) From (2.5), we see that
IP(0) + G(w)] < el[uf? + o) + CL(Jult + [o]"),
where ¢ = max{p, ¢} and C/ > 0. This gives

/ (G(rwl) + F(hw?)) — 0 as n — oo
RN
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for each h,r € R, where w,, = (wl,w?). Making use of inequalities 0 < \ <
min{l, Vo, Mo}, n > Vo > 0 and o > My > 0, we have
Cuo + 0(1) > /ua,)\(zn) > /ua,)\(hwn)

h2

2 Jan

2 1,2
— Ah /anwn
R

h2(1— ) — /RN (F(hw?) + G(hw}))

(VWL + Vo2 + ek + ofuwl[?) - / (F(hw?) + G(huwt))
]RN

>

DN =

1
— §h2(1 —A), as n — oo.

This yields a contradiction when A is large enough.

On the other hand, if non-vanishing occurs, we set v, (z) = w, (2 + y,). Since
lonllpe = llwnllpos vn is bounded in E,,. Then we extract a subsequence again,
and then there holds v,(z) — vo(z) in E. By (3.5) we know that vy #Z 0. In
particular, we can find a set O C RY x R¥ such that

(3.6) meas(0) >0 and wv,(x) = vo(z) #0 forz € O.

From condition (%#3), for the large n we deduce that

0< fHU;)\(’z’ﬂ)

N HZnH;QLa

L[ s fe(FE) GG
2 RN [E2
fon (FGR) + GEL)

[

:7/ (F(za(x +yn)) + Glzp(z + yn)))
o |z(@+yn)l? + [z (e +yn)l?

|wn (2 + yn)|?
< 0.

This is, obviously, a contradiction.
Note that {z,} is bounded. If

lim sup / |zn]? = 0,
0 yeRN J B, (y)

from Lemma 3.4 we deduce that
u, — 0 in L' = LYRY) x LY(RY)
for t € (2, %) Since 7/ \(2n)2n = 0, we get
| VAP +192P 4 kP olz2) = [ 72+ geyah2n [ sk
RN RN RN
and

/<|Vzi|2+|wi|2>+<u—x>/ |zi|2+<o—x>/ 222
RN RN RN

< f(22)22 4 g(2)2, — 0, as n — oc.
RN
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Consequently, we see that z, — 0 in F,, as n — oo. This is a contradiction with
the fact that .4, is bounded away from 0. O

THEOREM 3.6. Under the assumptions described in Theorem 1.1, the following
three statements are true.

(A1) There is at least one positive ground state solution Zue x = (Upor, Vpor) in
E,, to system (P,5) when 0 < X < 6y = min{1, Vy, Mo} and p,o > 0.
(A2) When 0 < XA < dg = min{l, Vy, My} and p,o > 0, there holds

‘ llim [upon(@)] = ‘ 1‘im [Vpo(z)] =0,
and
lim |[Vuger(z) = lim |[Vouea(z)| =0,
|z|—o00 |z|— 00

where Uuo x, Vpo, ) € Cllo’g with o € (0,1). Furthermore, there exist C,c >
0 such that

UHUN(:E) + uuon(m) < Ce_clx_x#w,*"
where

|Z[L0',)\(‘r;l,0‘,)\)| = ;2%3% |Z/_w,)\(x)|'

(A3) If g(t) = g1(t) + c1t? Y and f(t) = fi(t) + cot? Y (p and q are given in
(F3)), c1,¢2 >0, 3g1(H)t— G (t) > 0 and 5 f1 (1)t — Fi(t) > 0, then Lo
is compact in E,; when 0 < X < 6y = min{1, Vy, Mo} and X < p, o, where
Fi(t) = fot f1(s)ds, G1(t) = fot g1(s)ds, and Lo\ denotes the set of all
least energy solutions of system (Z,0.2)-

PrROOF. (A;) We follow the idea of [16]. From (C5) of Lemma 3.1 we know
that ¢ o > 0 for p,0 > 0. If 2y € A, satisfies 7,51 (20) = cuo, then 1M, (20)
is a minimizer of %, and a critical point of %+ x. According to Lemma 3.2,
2o is a critical point of £, . It remains to show that there exists a minimizer
z of _Zu01] N,.- By Ekeland’s variational principle [17], there exists a sequence
{vn} C S, such that

/
Lo A

Upo\(Vn) — cuo and %, \(vn) — 0, as n — oc.

Set
Zn = Mpue(Vn) = (Un, V) € Mo
for all n € N. We find
o (un) = cuo and 7/ (un) — 0, as n — oo.

By Lemma 3.4, we know that {z,} is bounded and there exist r,§ > 0 and a
sequence {y,} C RY such that

lim |zn|> >0 > 0.

nmee By (yn)
So we can choose a 7’ > r > 0 and a sequence {y,} C Z" such that

5
. 25 ¢
(3.7) lim |, |” > 5> 0.

"B (yn)



174 JUN WANG AND ZHAOSHENG FENG

Note that #,,  and .4, are invariant under translations. We may take {y, }
being bounded in Z3. So z, — z = (u,v) # 0 and Hioa(z) = 0. To prove
Fuo(2) = cuo, using Fatou’s lemma and (1.5), we get

. 1
Cuo = lim inf (/M’,\(zn) - 2/;0’)\(2”)2'”)

n—oo

n— oo RN

= lim inf <;f(vn)vn — F(v,) + %g(un)un - G(“ﬂ))
> [ (3700 £+ ot - G

= Suoa2) — 5 Fan(2)2
= Juo(2).

That is, #,0.1(2) < cuo. However, the reverse inequality follows from the definition
of ¢, due to z = (u,v) € Njo. So we get _Z,01(2) = Cpo-
To find a positive ground state solution for system (#,,,)), we know that, for
each z = (u,v) € E = HY(RY) x H*(RY), there exists a t > 0 such that
tlz| = (t[ul, t|v]) € Ao
It follows from condition (.%#;) that

Huoa(tlul, tlv]) < _Zuea(tu, tv).
Since z € A}, there holds _#,5 1 (tu,tv) < _Z,0.2(u,v). This leads to

o (tlul, to]) < Lo (u,v)
and (t|u|,t|v]) is a nonnegative ground state solution. It follows from Harnack’s
inequality [24] that
Zpo\ = (U/La,)\avua,)\) = (t|u\,t\v|) >0
for all z € RV,

(Az) Suppose that 2,0 x(2) = (Upo(2),Vuen(2)) is a positive ground state
solution of system (P,, ). By the standard arguments as shown in [25, 26], we
find uy, v, € LI(RY) for all g € [2, 00]. Using a similar proof to that of [26, Theorem
2.1], one can see that

lim vyea(z) =0, lim wuyea(z) =0,
[z]—o0 |z|—o00

lim [Vvuea(z)|=0 and lim |Vu,ea(z)| =0,

|| —o0 || —o0
where 0.3, Vo x € C17 (RN) for some o € (0,1).
To prove
[2poa (@)] < Cemclrmonoal,
where
202 ()] = max [z0.1(2)],
by following [26] we choose a fixed number € € (0, ), where 6 = min{y/;x — X, v/o — A},
and let n = 0% — 2. Since 2,01 () = (Upo A (T), Vo r(2)) — 0 as [z] — oo, there is
a r > 0 such that
(3.8) g(uuo)\(x))
Upo\ ()

f(Wpor(2))

<7 and
Vyo A ()

<n, Viz[>r
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Let
K(z) = Ge &= onoal=r),

where
G = max{|uy ()| : | — x| = r} + max{|ve ()] : |2 — 2pon| =7}
For M > r, we define the set 11, by
My ={zeRY :r <|z— 405 < M,
Upo (@) + Vpo a () > K(2), upor(z) >0, vyea(x) > 0}
We claim that II; is empty. Suppose, by contradiction, that IIy; # 0. For

x € Il we have
—1
ACK =ty — o) = (52 - |>) K (@) + (9(trn) — (1 — Nttorn)

+ (f (Vuon) = (0 = ANvuo,n)-
Using (H2) and (3.8) yields
A(K — Upo,\ — 'Uua,)\)

§NV

Uyeo, Vuo
§§2K(x) + Upo,\ |:g(“>\) - (:u' - )‘)] + Vpo,\ |:M - (,U' - /\)

Upo,\ Vpo,\

3.9

B9 <K (@) + upoa(n— (1= N) + vuo ) (1~ (0 = V)

§§2K(x) + 'U';w)\(n - 62) + Uuo)\)(n - 62)

=¢* [K(2) = Upor — Vpo,A] -

From the definition of IIy; and (3.9), it has A(K — uue.n) — Vpo,a)) < 0in . By

the maximum principle, we find

K(x) — upo () — vpoa () > min (K — tuex — Vo)
(228573

Since |z — z40,2| = r does not belong to the boundary of II;s, we have
K(I) - uua’,)\(-r) - vua,)\(x) > min {07 | mml M(K(I) - uua)\(z) - ’U,uo,k(z))} :
T—Tpuoa|=

Let M — oo. Note that u,,» and v,s x decay to 0 at infinity. So for each fixed
|z — 45 x| > 7, there holds

K(2) — trr () = Vo (@) > 0.

This obviously contradicts the definition of II,;. So, the set II,; is empty, i.e., for
|# — x,0,2| > 1 such that u,,x > 0 and vy, \ > 0, we have

Uno A (%) + Vpoa () < K ().
That is, for |z — 2,,,x] > 7, it has
[tior (2)] + [t (2)] < K (2) = GemsUrmoueal=r),
Hence, there exist C, ¢ > 0 such that
|Zuo ()] < Cecle=Tuonl,
(A3) Take a bounded sequence {z;, \} C Lo xNApo. Clearly, Fuoa (2], ) =

cuo and 77 (2], \) = 0. Without loss of generality, we assume that z},

(uzo_)\,vza ) = Zuor = (Upon, Vpuon) in E,p. As shown in the proof of Lemma
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3.4, one can easily see that {z];, ,} is non-vanishing. Namely, there exist {y,,} C N
and 0,7 > 0 such that

. )
lim ‘ZZU7>\|2 >—=>0.
n—oo Br(yn) 2

By the invariance of #,,, x and .4}, under translations of the form z — z(- —k)
with k € ZV, we may assume that {y,, } is bounded in Z". So 2" o — Zuox 7 0and
/M,A zw)\) = 0. Moreover, as shown in (A;), we know that /W,,\(z,w,,\) = Cuo-
It follows that

o = Fuor(Zuon)
1
= flﬂ"’)\(z#ﬂ;)\) - 7(/}10,)\(2110,)\)72#0,/\)
2

! 1
N /N 291 (o \)uox = G1(o) + 5 f1 (Vo)) Vo x = Fi(Vo,2)
R

1 1 / 1 1
+ = - - UJ,AP+<_>/ uo’,)\q
(2p>RNIﬂI 2qR|#|

< lim inf |:/[RN igl(uua,)\>uuo,k Gl( Uye, )x) =+ fl( Vo, )\) Vpo N — Fl( uo’,)\):|

n—oo

. . 1 1 n 1 1 n
[ (32) [ e (32) [

= liminf [/#Ua)\(zﬁa,)\) jpo‘ )\( [1.0' )\) ua,)\:|

n—0oo

= Cuo-

So, we get

lim [ 0= / ot and Tim [ o P = / Ul
RN RN RN RN

n—oo n—oo

It follows from Brezis-Lieb’s lemma [17] that uy;, \ — w0 in LI(RYN) and Vior =
Uuox in LP(RY). Note that 27!, \ satisfies

_ n n _ n n q—2,n n : N
Au/_LO',)\ + /’[’u;m',)\ =0 (u;m',)\) + ‘u,ucr,)\| u,uo’,)\ + /\U/_La,)\ in R ’

(3.10)
Avuo A + O”Uﬁo_’)\ = fl (IUZU,)\) + |UZ<7 /\|p 2 QoA + Au in RN
Using uy, \ — Upuo,n as a test function for the first equation of system (3.10),
we have
/]RN [VU’ZU,)\V(UZU,A - ullff,)\) + N’UZJ,)\(UZU,)\ - UHU,)\)]
B = [ ()6 = ) + N (0~ )]

+/]RN |U;La)\|q ? p,cr/\( ,u,a',)\_u#ﬁ’/\)'
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Clearly, it follows from (%) and (:#3) that for each 8 > 0, there exists a Cg > 0
such that

[gl (UZJ,)\)(UZU,)\ - “uaJ\) + | Upe, )\|q 2 uo A(UZO',)\ - UNUJ)
RN RN

Sﬂ/ |UZO',)\||UZU,)\ - U‘MU,A‘ + CCﬁ/ ‘ ,ua A|q l‘uua/\ U#U,)\|

<cf+ cCg|uW A — Upo A La(RY)-

(3.12)

Since |ujy, \ = Upor|Lay) — 0 as n — oo, by (3.11) and (3.12) we have

/ [VUZU7AV(UZU,>\ - U’MU,)\) + /’LUZU,)\(uZU,A - uuo’,)\)]
(3.13) o

= - A,UMO' >\( Upo, N — U’HUJ\) + On(l)’

where 0,(1) denotes a quantity approaching zero as n — oo. Similarly, using
Vo — Uno,x @8 a test function for the second equation of (3.10), we have

[ (T a0 = ) + 0 (00 = V)
(3.14) &

[ AW thna) + 0u )
RN
Furthermore, since z,, ) satisfies the system
s uo, Y
—2 : N
_AU';LO',)\ + HUpo N = g1 (uua,)\) + ‘uuo,k|q Upo,\ + AUNO’,)\ in R )
(3.15)
-2 : N
7A’UW77)\ + 0Vuo N = fi (vua,)\) + |Uuo,>\|p Vyo,\ + Au,ua,)\ in R™.

Using the same arguments as for (3.13) and (3.14), we deduce that

[ (Tt A V0 = ) + 00 (02 = 1)

(3.16)
[ o = ) + onl),
and
/R (Voue V(v Vpox — Vo) + GUHU,A(UZU,A — Vpo,n))
(3.17)

:)\/ u/w,/\(”ﬁa,A — Uuo,n) + 0n(1).
]RN

Combining (3.13), (3.14), (3.16) and (3.17), we infer that
[V = )P [ = e
RN RN
4 [ V= )P0 [ 1ol =
RN RN
2 [ (Whn = )0 r = ) 00 1)

N i = s PN [ s = v+ 00 1),
RN RN

(3.18)
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1 n
Since A < p,0, we can deduce that [luy,

Vuo |1 (myy — 0 as n — oo. That is, ||ZZU7)\

n

— UMO-7)\||H1(RN) — 0 and H’Uua’)\ -

— Zuo|lE,, — 0asn — oo.
REMARK 3.7. We point out that our arguments in this section can be applied

to the case of periodic potentials. That is,

{—Au +V(z)u=g(u)+ v inRY,

P
(Pracs) —Av+ M(z)v = f(v) + A u  in RV,

where V() and M (z) are positive continues functions and periodic in z. By an
analogous argument, the conclusions of Theorem 3.6 still hold.

4. Some Useful Results

In this section we shall present some preliminary results which will be used in
the next section.

LEMMA 4.1. Suppose that assumptions of (F1) — (F3) are satisfied. If k =
min{p; — pg,02 — o1} > 0, then Curoy = Cusoy holds for all X > 0. Moreover, if
k>0, then ¢y, 0, < Cuyo, holds for all X > 0. In particular, we have ¢, o, > Cuso,
if 1 > po, and cp,o, > Cpio, if 01 < o2 (1=1,2).

PROOF. For pi,po,01,00 > 0, one has that E, ., = E (i,j = 1,2). Let
21 = (u1,v1) € N, 0, satisfy

Cuyoy = /ﬂlah)\(zl) = weH}EaX /Muﬁ,)\(w)'
nio1

On the other hand, let zo = (u2,v2) € E,,, 4, satisfy

/Mztfz,)\(z2>: max jﬂzﬂz,A(w>'

WEE 0,

So we see that
Cuioy > jﬂltfl,/\(z’?)

= Lo n(22) + (11 — pi2) /RN uj + (09 — 01)/ v3

]RN
> Cppoy + (1 — u2)/ uj + (o2 — 01)/ v3.
RN RW
O

To prove the concentration phenomena of ground state solutions of system
(Z.), we start with an auxiliary system
—Au+ Vo(z)u = g(u) + l, e RN,
(Z:) —Av+ M.(z)v = f(v) + M, z€ RV,
u(z),v(z) — 0, as |z| — oo,
where V.(z) = V(ex) and M, (x) = M(ez). Correspondingly, the energy functional
is given by

Fer@) =5 [ (VP + V@) + 5 [ (90 + M)

_ /RN(F@) +Gu) - )\/RN o,
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where
z = (u,v) € H'(RY) x HY(RY).

As in the first section, we can define

¢ = inf Z.(w),

weEKE.
where
b= HYx B2, H) = {ue H(RY) :/ V(z)u? < oo}
RN
and
H? = {ue H'(R"): M (x)u? < oo}
RN

LEMMA 4.2. Under assumptions of (¥5) — (#1) and (F1)— (F3), The following
two statements are true.
(i) There holds

lim S(l)lp Ce < CV(yo)M(yo)
E—

for yo € R. In particular,
limsup ¢ < ey (oynm (o)

e—0
holds for all € > 0. Moreover, if M1 N M2 # 0, then lim._,o cc = ¢y, -
(ii) If Vo(z) — 91 and M.(z) — ¥y uniformly on bounded sets of x as e — 0, then
there holds
lim ¢; < cy,09,-
e—0

PROOF. (i) Since V and M are bounded functions, for each ¢ > 0 and p, o > 0,
it has E. = E,, = E = H'(RY) x HY(RY). Let z = (u,v) € A (y)m(ye) Satisfy

CV (yo)M(y0) = AV (yo)M(yo)(2) = AV (o) M (yo) (tw).

inf max
wEEY (yo)M(yy) \{0} >0

For we(z) = z(x — £) = (uc,v:) = (u(x — L), v(x — L)), there exists a t. > 0
such that t.w. € M. It is not difficult to see that t. is bounded for small € > 0.
Conversely, if t. — oo as € — 0, there holds

0<e < /&(tawa)

1 ’ ? 1 v 2 EX v 2
_ 5/RN(IV@EuE)I + V(ex)|teuc|?) + Q/RN(W(tE N2+ M(ex)|tov?)

- /]R (F(tev.) + Gltaus)) ~ W2 /R e
<05 [ (V0P + Vo + M)+ 5 [ (V@R + (M + V)

_ AN(F(tEUE)UQ + G(tEUE)UZ)}

202 e Tizz e
1 1
=205 [ (9P + Vs + D)+ 5 [ (TP + (M + el
F(tev) 5  G(teu) o
a /]RN< 202 * t2u? w)

— —o00, as € — 0,
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where

Vinae = max V(z) and M., = max M(x).
zeRN r€RN

This is certainly impossible.
Now we claim that

(4.1) te —1lase— 0.

Since z = (u,v) € A (yo)M(yo)> We know that

(4.2)

[ 09el vy + [ (vol + o) = [ (e gt +a [ .

Since tow. € Az, it gives

2] (Vuel> + V(en)|ue*) + 2 | (|Vve|* + M(ex)|ve|?)
(4.3) /R” /R”

:/ (f(tava)teve + g(teus)taue) + t§>\ Ue Ve
RN RN

From (4.3) we further have

2 / (Vul® + Viez +go)lul) + £ / (Vo + M(ez + yo)lo]?)
(4.4) B BN

2/ (f(tov)tev + g(teu)tou) + 2N uv.
RN RN

For each € > 0, there exists a R > 0 such that

[ et )~ Ko)luf? < ce
|z|>R

and
/ (K(z + yo) — K(yo))|ul* — 0, as € — 0.
|lz|<R
That is,
(45) Ko ty)luf = [ Kl +0-(0),
RN ]RN

where 0.(1) — 0 as e — 0.
Similarly, we can deduce that

(4.6) / M (ex + yo)|ul? :/ M (yo)|ul® + o-(1).
RN RN
Substituting (4.5) and (4.6) into (4.4) yields

& [ 0vul + Kl +42 [ (9ol + M)l
(4.7)

:/ (f(tov)tev + g(tou)tou) + 2 / uv + o (1
RN
From (4.2) and (4.7), we find

B flto)  fv), gltew) g(w)y o,
o_/RN( ) +/RN( Ju® + 0. (1).

(tev) v

So it follows from (%#2) that we arrive at (4.1).
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Since t.v. € N, it gives

ce < jz—:,/\(tswe)

= S uw+%@wmwwwm
2
- M(er))o?
(4.8) i .
= A t%»wgégvmmﬂw—vwmﬁ

+8 )~ ez +uo)?
= jV(yo M(yo)(tsws) +0:(1).
It follows that

lim sup ¢, <hmsup AV (o) M (yo) (tewe) + limsup o (1)

e—0 e—0

f/wyo)M(yo)(u’ v)

=SV (yo)M (yo)-
In particular, we take yo = 0, it has

limsup c: < ey 0)ar(o)-

e—0

181

For the case of VN M # (), we can assume that 0 € VN M and use an indirect
argument to prove c. > cy(o)a(0)- Namely, assume that c. < cy(0)a (o) for some
¢ > 0. By the definition of ¢, (see (2.9)), we can choose an w € E. \ {0} such that

max Hea(sw) < ey (oym(o)-
By the definition of ey (o)ar(0) (see (3.3)), we know that

Cv(0)M(0) < Max Avoymo)(sw).

Since V.(x) > V(0), M.(x) > M(0) and _Z. z(2) > Zvoym()(z) for all z € E,

we have
Cv(0)M(0) > TAX Hea(sw) > max Avoym©) (8w) > ¢y (0)m(0)-

This is, obviously, a contradiction. So we have

VO)M©0) < hm ce <limsupec. < cy(o)m(o)-

e—0

That is,

lim c. = ey, -
e—0
(73) Take z € A, 9, such that

Co19, = /191192 (u) - /191192( )

weEﬁ1192\{0}
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Then we take 2z, = (u1,v1) € E. \ {0} such that
ée S j&(zl)
= max FACY

s>

= Fnarle) + [ (Vo) o0t +3 [ (o) = ot

RN
Using the same argument as that of Part (i), one can easily check that

~ 1 ~
/ (Ve(x) — ﬁl)u% + f/ (M (x) — 192)|v1|2 — 0, ase — 0,
RN P JrN

and
te < max  Fy9,a(w) +o(l) = Fo,9,(u) +0o(1) = o9, +o(1).
wEEﬁIQQ\{O}
Consequently, we have completed the proof. (|

5. Positive Solutions for System (Z.)

5.1. A Compactness Condition. In order to obtain the existence of positive
solutions for system (£2.), we should prove some lemmas on compactness. So, the
main purpose of this subsection is to present the Palais-Smale sequences properties
for the functional _Z. . Since Vj < Vo and My < M, we can choose p,0 > 0
such that

(5.1) Vo<pu<Vy and My<o < M.

LEMMA 5.1. Assume that assumptions (%) and (F1) — (F3) hold. Let {z,} C
Nz satisfy _Zea(zn) = ¢, 0 <c < cuo < cvom., (1 and o are given in (5.1)) and
zn — 0 in E.. Then one of the following statements is true.

(i) zn — 0 in E;

(ii) there exist a sequence y, € RN and two constants r,§ > 0 such that

lim inf/ zi > 0.
n— oo Br(yn)

PROOF. Suppose that Case (i7) does not occur, i.e., there exists a r > 0 such
that

lim sup / ui =0.

"0 yeRN J B.(y)
By Lemma 3.4, we can derive that z, — 0 in L*(RY) x LY{(RY) for t € (2,2%).
From 7!, (2n)zn = 0, we get

/<mf+%umM%+/<mﬁ+%umw>
RN RN
= [ G+ gwao) £ [ e,

—0, as n — oo.

Since V and M are positive bounded functions, it follows that z, — 0 in E. as
n — o0. U

As in [28, Lemma 5.2] (also see [27, 38]), we have the following results.



MULTIPLE SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS 183

LEMMA 5.2. Under the assumptions of Lemma 5.1, Let {z,} C A¢ satisfy
Fealun) = ¢, 0<c<cu <cvm., and z, — 0 in E.. Then we have z, — 0 in
E. for small e > 0.

The next lemma is regarding the functional % ) and the Palais-Smale condi-
tion.

LEMMA 5.3. Under the assumptions of (%) and (F1) — (F3), for 0 < A <
6 = min{Vp, Mo, 1}, if {wn} C Sc satisfy % \(wn) — ¢ and %\ (w,) — 0 with
0<ec<euo <ceviom.,, then {wn} has a convergent subsequence in E..

Proor. Let
Zn = me(wy) = thwy,.

Then it follows from Lemma 2.3 that {t,w,} C ¢, and

(5.2) Healzn) = ¢, Fl\(za) =0 and fs/,A(Zn)Zn =0.

To prove the boundedness of {z,}. By way of contradiction, we assume that
llzn]le — oo, as n — oco. Let

Zn

Iznll<

kn = = (kL k2).

n»’'n

Then k, — k = (k*,k?) and k,(z) — k(x) a.e. in RV after passing to a subse-
quence. There are two cases: {k,} is either vanishing, i.e.,

n— oo yERN

(5.3) lim sup/ |kn|? =0,
Br(y)

or non-vanishing, i.e., there exist 7, > 0 and a sequence {y,} C R" such that

(5.4) lim inf |kn)? >0 > 0.

n—oo Br(yn)
As shown in [19], we will demonstrate that neither (5.3) nor (5.4) occurs and then
arrive at the desired result.
If {k,} is vanishing, by Lemma 3.4 we have
kn — 0inLP(RY) x LP(RN) for p € (2,2).

It follows from (2.5) that
/ (F(RK?) + G(Rk})) — 0 asn — oo
RN

for each R € R. For each € > 0, from the boundedness of V and M, we know that
two norms || - || and || - || are equivalent. From the equality ||k, || = 1, we see that
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there exists a d > 0 such that ||k, | > d, and
c+o(1) > Fon(zn)
> /E,A(Rkn)
R2
= k= [ (PR + GOk - AR [k
RN

RN
SR? AR?
> Sl = 25l = [ (F(RER) + G(REY)
RN

R2
> G- Nd- [ (P(RRE) + G(RkY)

2 v

dR?
— —— as n — 0.
2

This yields a contradiction if R is large enough.

Let

fin = b+ ya) = (b, 02)

This means k,, — k = (k',k2) in E. From (5.4) we know that there exists a subset

Q in RY x RY with the positive measure such that & #£ 0 a.e. in Q. For the large
n, it has

0< jpoﬁ,)\(zn)

22

(5.5) _ 1 _ fRN(G(un(x +yn)) + F(;}n(-T +yn)) _ )\/ k}zki
2 20 (@ + yn) |2 RN
clrad [ (Gl ) Flle )y

2 RN |2n (2 4 yn)|

where ¢; > 0.
Set
2(z) = (a(x), 0(x)) = 2(x + yn)-

By the equivalence of norms || - || and || - ||, we know that ||z,| — oo as n — oo.
Due to the fact ||2]|c = ||z(x + yn)|le > ¢||zn]|, there holds ||Z,] — oo as n — oo.
Since |2,] = ||Zn]le|kn] — o0 if k # 0 as n — oo, it follows from (.%3) that

(G(tn(2)) + F(0n()) (Gitn () + F(bn(x)) -
50 g el 2 [ e e o

— 00, as n — OQ.

Substituting (5.6) into (5.5) leads to another contradiction.
Thus, there exists z = (u,v) € E. such that z, — z in E., and z is a critical
point of #/,. Set h,, = z, — 2. By Brezis-Lieb’s Lemma (see [17]) we have

/ |th|2:/ |Vzn|2—/ V22 + o(1).
RN RN RN

Moreover, as shown in [29], one can easily check that

Henlhn) = Fen(zn) — Fe(2) +0(1) and /E/)\(hn) — 0, as n — oo.
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Thus, it follows from ¢/ ,(z) =0 and (1.5) that

1) Fer@) = Foalwn) = [ (GFu=Flu) + 3900)0 = G(0) =0,
That is,

/s,)\(hn) = /s,)\(zn) - /57)\(2) + 0(1) — C— dl, as n — oo,
where d; = _#. x(z) > 0. Using Lemma 5.2 and dy = ¢ — dy < ¢ < ¢u0 < Cviom.,
we see that h, = z, — 2z — 0 in E.. Apparently, z € _4,. Since z, = t,w, and
t, is bounded, it gives t,, — t # 0 (if ¢ = 0, then z = 0). From the boundedness
of {w,}, we infer that there exists a w such that w,, — w in E.. Consequently, it
follows from t,, — t and z,, — z that w,, — w and z = tw. O

5.2. Existence and Concentration of Positive Solutions. We now are in
a position to present the proof of the existence of positive ground state solutions of
system (Z.).

LEMMA 5.4. Under the assumptions of Theorem 1.1, for small € > 0, c. is
attained by the positive function z..

PROOF. From Lemma 2.2, we know that c. > p > 0 for each e > 0. If z. € A,
satisfies #. \(2zc) = c., according to Lemma 2.3, . (z.) is a minimizer of % » and
thus a critical point of %; », so that z. is a critical point of _#. x. It remains to show
that there exists a minimizer z. of #.| 4 . To this end, by Ekeland’s variational
principle [17], there exists a sequence {w,} C S. such that % x(w,) — c. and
U \(wn) — 0 as n — oo.

Set

Zn = me(wy) € N
for all n € N. Using Lemma 2.3 again, we derive that #. x(z,) — ¢, /E'A(zn)zn =
0 and /g”)\(zn) — 0 as n — oo. As in the proof of Lemma 4.2, we let yg = z,. By
virtue of Lemma 5.3 and limsup, _qc: < ¢y (z,)M(z,) < CVoo M., there is 2z € E.
such that h, = 2z, — 2z — 0 in E.. This implies that z € A and 7. »(2) = c..
Similar to the proof of Theorem 3.6, we can thus find a positive function z. such
that Z. x(2) = c.. O

Let .Z! denote the set of all positive ground state solutions of system ().
The following lemma is regarding compactness of .Z/.

LEMMA 5.5. Suppose that the assumptions of Theorem 1.1 are satisfied. Then
L is compact in E = HY(RY) x HY(RN) for small ¢ > 0.

€
PRrROOF. Let the bounded sequence {z,} C £/ N A satisfy #. \(2,) = c. and
/E’ \(zn) = 0. Without loss of generality, we may assume that z, — z € E,. Since
J. y is weakly continuous, it gives ¢/ () = 0. Set h,, = 2,, — z. By an analogous
discussion in the proof of Lemma 5.3, we arrive at h,, — 0 in E. O

LEMMA 5.6. Under the assumptions of Theorem 1.1, there is a mazimum point
Ye of |ze| such that dist(ey., V) — 0, eye — yo, and k.(x) = z-(z + y-) converges
in HY(RN) x HY(RN) to a positive ground state solution of
—Au+V(yo)u = g(u) + lv, in RN,
—Av + M(yo)v = f(v) + Au, inRY,
u,v >0 in RN, u,v € HY(RY),
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as ¢ — 0. In particular, if M1 O Mo # O, then dist(eye, #1 N M2) — 0, and
ke(z) = z.(x + y.) converges in HY(RN) x HY(RYN) to a positive ground state
solution of

—Au+ Vou = g(u) + v, in RN,

—Av+ Mov = f(v) + Au, in RV,

u,v >0 in RN w0 € HYRY),

as € — 0, where z. denotes the positive ground sate solution of system (Z:).

ProOF. Let e; — Oand z; € £, such that #.; \(2;) = c.; and /E’j7/\(zj) =0.
Obviously, {z;} C 4Z,. By the same arguments as shown in Lemma 5.3, it is
easy to see that {z;} is bounded in H'(RY) x H'(RY). Assume that z; — z in
HY(RN) x HY(RY). Since 7, x(2j) = ¢2; < Cv(yo)M(yo) for each yo € R with large
J, for yo = x,, (2, is given in (%)), we deduce that Z., \(u;) = cc; < cv(ye)M(yo)
for large j, according to Lemma 4.2. Then we have

lim co, < cvyo)m(ye) < Vo Mo -

J—00

We now separate our discussions into four steps.
Step 1. To prove that {z;} is non-vanishing, from the proof of Lemma 5.3,
there exist 7,6 > 0 and two sequences {y}}, {y;} C RY such that

Jj—o0

(5.8) liminf/ |zj|? > 8 >0,
Br(y;)

and

|2;(y;)| = max |25 ()]
We claim that there is a ¢ > 0 (independent of j) such that
(5.9) |2 (y;)| > 0 > 0, uniformly for all j € N.

Otherwise, we assume that |2;(y;)| — 0 as j — oo. It follows from (5.8) that
0<5§/ 12| < c|zj(y;)|*> — 0 as j — oo.
Br(y})

This is a contradiction. Furthermore, from (5.8)-(5.9), one can check that there
exist R > r > 0 and ¢’ > 0 such that
(5.10) liminf/ |z > ¢ > 0.
=0 JBr(y;)
Step 2. The sequence {¢,y;,} is bounded. To accomplish this, we set
w;j(x) = zj(x +y;) = (wj (z), w}(2)),

Ve, (@) = Vigi(@ + ),

J

M., (z) = M(ej(x +y5)).

Then along a subsequence we have w; — w = (w!,w?) # 0 in HY(RY) x HY(RV)
and w; — w in L (RN) x LY (RN) (p € (2,2*)). Apparently, w; solves

loc loc
—Aw; + V., (2)wj = g(wj) +  w?, in RN,
(P1) —Aw? + M, (x)w} = f(w?) + Awj, in RN,

1,2 mN 12 1N
wj,w; > 0in RY, wi,wi € H (R ).
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The corresponding energy functional is denoted by

Ouyaloy) = 5 [ (VulP+ Vo, @)w]?) + (Vw3 + N () )

_ / (F(wjz) + G(wjl)) - wjlw]2
= /sjyk(wj)

We are ready to show {e;y,} is bounded. Following [30], we assume by con-
tradiction that ¢;]y;| — oo. Without loss of generality, we assume V(g;y;) — V'
and M(gjy;) — M. Tt follows from (%) that V(yo) < V> and M (yo) < M.
Since both V' and M are uniformly continuous functions, we have

Ve, (@) = V|
<|V(ej(@ +y5)) = V(ejyp)| +1V(ejyy) = VOl < egjla] + [V (ejyy) — V™
—0, as j — oo,
and
M, (x) — M|
<IM(ej(x +y;)) — M(ejy;)| + [M(e;y;) — M™|
<cgjlz| + [ M(gjy;) — M>®| — 0, as j — oo.
In addition, for each ¢ = (¢!, ¢?) € C5°(RY), we deduce from w; — w in H*(RY) x
HY(RY) and w; — w in L? (RN) x LP (RN)(Vp € (2,2")) that

loc loc

jtholo ﬁéj,A(ij

=lim [ [(VwiVe' + V., (z2)wie") + (VwiVe? + M., (z)w?e?)]

j—oo JpN
—lim [ (f(w})¢? + g(w))$') - lim A/ (¢'w} + ¢*w))
j—oo  JgN
:/ [(Vw'Ve! + Vew'o!) + (Vw? V2 + Mow?¢?)]
RN

- [ (e e <3 [ @+ oty

RN
=0.

Thus, w = (w', w?) solves

—Aw! + Vm(x)wl =g(w') + Mw?, in RV,
(’@le\?loo) —Aw? + ]\Zoo(m)w2 = f(w?) + ', inRYN,
wh(z),w?(x) — 0, as |z| — oco.
Denote the associated energy functional by

Orn(®) = gl e + P B = [ [F0P) 0] <2 [t

RN
2 Ciroo foo -
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Notice that ~ B

Viyo) <V and M(yg) < M.
By Lemma 4.1 we deduce that cpe e > Cvyo)M(ye)- Since O, y(wj)w; =
FL \(z)z; =0, it follows from Fatou’s lemma and (1.5) that

(5.11)
lim ¢, = lim O, \ (w;)
Jj—o0 j—o00

= [0, (03) = 30 ) 5]

S 2
>imint { [ |57 @)t - ()] + 3o )t - G ()] |
- Bg (wh)w' -G (wl)]}

F
STAERR

= Uoo X (w) .
From (5.11) it gives
(5.12) CV (o) M(w0o) < CToesire < Poon (V) < 1M ce; < Cv(yo)M(yo)-

This is a contradiction, which implies that {¢;y; } is bounded. Hence, we can assume

9; = €;y; — Jo. Then, w = (w', w?) solves

—Aw! +V(go)w' = g(w!) + Mw?, in RV,
(P (50)M(50)) —Aw? + M(§o)w? = f(w?) + Aw?, in RV,
wh(z),w?(x) — 0, as |z| — oo.
Step 3. We claim that
(5.13) go € V.

We prove (5.13) by way of contradiction. Conversely, we assume that o € #. It
is easy to check that cy (y0)ar(ye) < Cv(50)M (o). Making use of the same derivation
as that for (5.12) (with V> and M replaced by V(§jo) and M (o), respectively),
leads to

(5.14) lim ce; < ey (yo)M(yo) < CV (o) M (o) S 1M Ce;.

J—00 J—00

This is, obviously, a contradiction.
To prove that (w!,w?) is a ground state solution of system (Pv ()M (G0))> We
choose 19 = 7p. From Lemma 4.2, we find

jlirgo Ce; = CV (4io) M(jo)-

By using the same derivation as shown in (5.11), one can infer that

CV (o) M (o) = JILHOIO Cej-
This implies that

CV (go)M(go) = JILIEO Ce;
and (w',w?) is a ground state solution of system (Zv 5,y (50))- In particular, if
U N Uy # D, then ¥V = U = U NU. Tt is easy to see that

lir% dist(eye, % NU) =0
£—
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and w. converges weakly in H'(RY) x H'(RY) (up to subsequences) to a least
energy solution of

—Aw' + Vow! = g(w!) + Aw?, in RY,
—Aw? + Mow? = f(w?) + Mw!, in RV,
wh(z),w?(x) — 0, as |z| — oo,

as e — 0.

Step 4. Since w; and w satisfy systems (Z; x) and (Pv (,)m(y,))> Tespectively,
we shall prove that w; — w = (w!, w!) in H1(RY) x HL(RY). It follows from (5.10)
that w # 0. By using the same argument as shown in the proof of (A3) of Theorem
3.6, we have

(5.15) . VwlV (w) — w)+V;, (2)w} (w) —w') = )\/RN w (wj —w')+o (1),

(5.16) VwiV (wf - w2)+‘75j (z) w} (W] —w?) = A w; (w} —w?)+o (1),
RN RN

(5.17) /RN Vw'V (wjl —w')+V (o) w' (wjl —w') = )\/RN w? (w]l —w')+o(1),

(5.18) Vw’V (w? —w?)+M (jo) w® (w} — w?) = )\/ w? (w? —w?)+o(1).
RN RN

Combining (5.15)-(5.18), we get
(5.19)

/]RN “V(wj1 — wl)|2 + ‘A/gj (z) ’wjl - 1111|2 + (VE] (z) — V(g}o))wl(w; — wl)}

=\ (wj —w') (W] — w?) + o(1).
RN

From y; — @0 and ¢; — 0 as j — oo, we see that for each 3 > 0 there exists a
R = R(B) > 0 such that

Vo, (2) = V(i) ) w' (w} —w')
. )

<c Vmw(wl)2 2 </$|>R |wj — w1!2> 2

VYEJ‘ ((E) - V(gO)
< cf+o(1).
This implies that

+c

’L“’(BR(O))

[0 = VGt ) - wh) = o)
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as j — 00. So we have

(5.20)
/ UV(w}—wl)f—i—Vaj(wa} —wlﬂ =A (wj1 —wl)(w?—wQ)—i—o(l).
RN RN
Similarly, from (5.16) and (5.18) we get
(5.21)
/ UV(wJQ - wz)’2 + ng () |wj — w2|2} = /\/ (wj — wh)(w] —w?) + o(1).
RN RN

Combining (5.20) and (5.21) leads to
[ IV} =P+ Mo — w? P
RN
4 [ 190 = wh)P 4 Volu} - w' ]
RN

w? — w?)|? Aij w?-—w22
- < [ 19 =t + 3, (@) ]
1 1412 9 1 12
+ [ 190} = ot V@)~

:2)\/ (w; —w")(w} —w?®) + o(1)

RN

S)\/ \w}—w1|2+)\/ |w]2-—w2\2+0(1).
RN RN

Since A < min{Vj, Mo}, we see that w; — w in H(RY) x H'(RY). Moreover,
it follows from w?, w} >0 in RY and (5.10) that w'!, w? > 0, w' # 0 and w? # 0.
Consequently, it follows from Harnack’s inequality (see [24]) that w!, w? > 0 in
RN, ]

In order to obtain some exponent decay for the solution of system (Z.), we
need the following regularization results. For the details of the proofs, one can see
[24, 32, 33|.

LEMMA 5.7. Let 2 € HY(RY) satisfy
—Az+ (Q(x)+ H(x))z = f(x,2), z€ H(RY),

where H € L (RY), Q(z) > 0 in RN, Q € L2 (RN, RT), and f is a Caratheodory
function such that

0< fz,s) SCp(s+s"71), Vs20,
where 2 < r < % Then z € LP(RN) for all 2 < p < oo. Furthermore, there is a
positive constant C), depending on p, Cy and Q such that [z|»@~y < Cpll2]| g1 @ny-
The dependence on Q) of Cp, can be given uniformly on Cauchy sequences Qy, in
L= (RYN).

LEMMA 5.8. Suppose that t > N, k € L= (A) and z € H'(A) satisfies
—Az < k(x),
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in the weak sense, where A is a open subset of RN . Then for any ball Bar(y) C A,
we have
< + ‘ )
;;I(E)/)Z =¢ (‘Z |L2(Ban(y) + ‘k|L§(B2R(y)) ’
where C' depends on N, t and R.

The following lemma is concerning the exponent decay of the positive ground
state solution of system ().

LEMMA 5.9. Under the assumptions of Theorem 1.1, if ze = (ue,v.) is a positive
ground state solution of system (2. ), then for small € > 0 we have

| l‘im ue(x) = ‘ llim ve(z) =0,
5.23 ZT|—00 r(—0o0
(5:23) | l‘im |Vue(x)| = | llim Ve (x)] =0,

where ug,v. € C’llo’s(RN) for o € (0,1). Furthermore, there exist C,c > 0 such that
e () 4 ve(z) < Ceclz=vel
where |z:(y: )| = max epn [z:(x)].
ProOOF. By the proof of (A3) of Theorem 3.6, we know that for each small
e >0, (5.23) holds and u.,v. € C’llo’Z(RN) for o € (0,1). In the following we shall
prove the exponent decay for the positive solution of w. = u. +v.. Let €; — 0 and
zj = (uj,v;) € £, such that % \(z;) = ¢, and %/ \(z;) = 0. As in the proof of

Lemma 5.6, we have g;(z) = (¢j (x), ¢} (x)) = zj(x + y;) = (u;(z + y;),v;(z + y;))
that solves

—Ag} + V., (2)q} = g(q}) + Ag?, in RV,
(Z:.2) —Ag + M., (2)q? = f(¢?) + Aq}, in RN,

qf,q; >0in RN, ¢i,¢7 € H'(RYN).
From the first two equations, there holds
(96,3) - Ad}j + (MEj (‘T) + ‘A/Ej ($) - )‘)UN}J = f(q?) +g(qg1') + ME]‘ (x)QJl + ‘A/Ej (:L‘)qu
in RY, where w; = qjl- + q]2-. Furthermore, we know that qj1 — ¢! and qj2- — ¢?
in H'(RY), and |z;(y;)| = max,cg~ |2;(y)|. So, we deduce from Lemma 5.7 that
w; € LY(RY) for all ¢ > 2 and
(5.24) [Wj| ey < Nellw |l @y,

where N; does not depend on j. Clearly, for each | € (2,2*] there holds

(5.25) Rlim " [(qjl)2 + (q})l + (qu)2 + (qf)l] =0, uniformly for j € N.
7 J|z|>R

Let g;(x) = f(q7) + 9(qj). Then system (2 3) is equivalent to
(Ze4) = Adj+ (M (2) = N + (Ve (2) = N)gj = gj(x) in RY.
This gives
(Z:5) — Aij < gj(x) in RN,
On the other hand, it deduces from (5.24) and (2.5) that for all ¢ > 2, there
exists a C' > 0 such that

|95t ry < C, for all j € N.
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By Lemma 5.8, for all y € RY we find

(5.26) Sup wj < (|5l L2(Bay)) T 1951 Lt (Baw)))-

This implies that [,]~ is uniformly bounded. Combining (5.25) with (5.26) yields
lim @;(z) = 0 uniformly for all j € N.

|z|—o00
Namely, there is an €9 > 0 such that

| l‘im We(x) = 0 uniformly for all € € (0, go].
Consequently, by using the same arguments as shown in the proof of (As) of
Theorem 3.6, we know that there exist C,d > 0 (independent of £) such that

e (z) < Ce Mo,

where
We = uc(x + Ye) + v(x + y:) and |22 (ye)| = max |z (y)].
yeRN

Now we are ready to prove Theorems 1.1 and 1.2.

PROOF OF THEOREMS 1.1 AND 1.2. To prove Theorem 1.1, we go back to sys-
tem () with the variable substitution: x +— %. By Lemma 6.1 there is at least
one positive ground state solution to system () for small £ > 0, by Lemma 6.2
Part (%) holds, and by Lemmas 6.3 and 6.6 Parts (%) and (¢3) hold too.

To prove Theorem 1.2, we replace the condition (¥#)) by (#1), and the proof
follows along the lines of the proof of Theorem 1.1. As stressed differences in the

proofs of Lemmas 5.1-5.3, and 6.1-6.6, in (5.1) we take p, o > 0 such that
(5.27) Vo < < Voo and My < 0 < Ma.

In addition, in the proofs of Lemmas 6.1 and 6.3, we take yo = z,,, and replace ¥
by % . O

6. Multiplicity of Positive Solutions of System (Z.)

In this section, we present the proof of the existence of multiple positive solu-
tions of system (Z.) by using the Ljusternik-Schnirelmann category theory. To ac-
complish this, we shall make good use of the ground state solution of (v (y,)n1(yo),1)
for yo € R. In the following discussion, we only consider the case of Vj < V. In-
deed, the proof of the case of My < M., is almost the same as that of the case
of Vo < V. Let us consider 6 > 0 and .# € C§°(R™,[0,1]) denote a smooth
nonincreasing function such that #(s) = 1if0<s < $ and #(s) =0if s > 4. If
O = M N My # 0, we let 21 = (u1,us) denote a positive ground state solution of
the problem (P, a1, ). For any y € €, we define

(6.1) biew(®) = 7 (e — yu ( ‘y> i=12

e

Apparently, (¢1.¢4(x), ¥26,y(x)) € E.. Then there exist a t; . > 0 such that
tl,s(wl,e,y(x)vwQ,s,y(x)) S </1(5



MULTIPLE SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS 193

Define the mapping V¥.: & — 4, by
(62) \I’e(y) = tl,s(wl,e,gﬁ ¢2,5,y)~

We know that W, (y) has a compact support for any y € ¢. By using almost the
same argument as described in [27, 28, 34], one can obtain the following results.

LEMMA 6.1. Under the assumptions of (%) and (F1)-(F3), we have
lim 7 s(W. () = cvyary. uniformly fory € 0.

For each ¢ > 0, let p = p(¢) satisty 05 C B,(0 ) Define v: RY — RY by

v(x) =z for || < p and y(z) = T— * for |z] > o.

| |
Also, we define a barycenter type map (.: -4 — R by
Blusv) = S~ y(ex)u? S~ y(ex)v?
2IRN u? 2 fRN v2
As shown in Lemma 6.1, by using Lebesgue’s Theorem it is easy to see that
B.(T.(y)) = fRN Y(ex) (Y1, () n fRN Y(ex) (Pa,e ()
2f]RN (V1,6,y(2))? QfRN (V2,6,y9(2))?
_ Jev ezt y)lu(@) I (ex))? | fpn v(ew +y)luz(@) S (ea|)?
2 o fua(2) I (e 2 [on uz(@)S ([ex])]?
(6.3) fRN (ez +y) —yhu(@)y(ez))* |y
2 2 [ [ua(z)y(lez])[? 2
fRN (e +y) — y)luz(2)y(|e])?
2 fan luz(@)y(|ex)|?
=y+o(1),
as € — 0 uniformly for y € &. Hence, we see that

811_{% B-(Y-(y)) =y

uniformly for y € 0.

LEMMA 6.2. Suppose that the assumptions of (%) and (F1)—(Fs3) hold. If 0 =
My N My # D, we take z, = (Un, V) C My, such that vy a(zn) — vy, -
Then either {z,} has a subsequence strongly convergent in H'(RY) x HY(RN) or
there exists {y, } C RY such that the sequence w,, () = z,(z+y,) converges strongly
in HY(RN) x HYRY). In particular, there exists a minimizer of cy, u, -

PRrROOF. By Lemma 3.5, we know that {z,} is a bounded sequence. From
Lemma 3.2, w,, = My, m,(2n) is & minimizer sequence of %y n,.». By Ekeland’s
variational principle [17], we may assume that

Myynig N(Wn) = cvonr, and A g\ (wn) — 0.
So it follows that

(6.4)  Fvomon(zn) = cvortos  Fpnmon(zn) = 0 and #7503 (20)20 = 0,

where z, = my,n,(wy,). For some subsequence, still denoted by {z,}, we may
assume that there exists z = (u,v) € H*(RY) x HY(RY) such that z, — z in
HY(RN) x HYRY). We divide our discussions into two cases.
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(a1) If z # 0, then z € A, p, and

VoMo < IvoMo A (2)

RO AN

- /RN (;gl(u)u—Gl(U)) +/]RN (;fl(U)U—Fl(U))
+cl/RNuq++02/Rva

< lim nf _/RN (;gl(un)un - Gl(un)> + /RN <;f1(vn)vn _ Fl(vn)>

—|—cl/ U%++02/ Uf’l}
RN RN

. . [ 1
=liminf | _Zy,mo0(20) — 2/‘//0M0,)\(Z71)Zn:|

n—oo

= CVoMo-

lim \un|q:/ |u|? and lim/ |vn|p:/ [v]P.
n—00 JpN RN n—oo JrN RN

It follows from Brezis-Lieb’s lemma and Sobolev’s inequality that u,, — uin Lf(RY)
(Vt € [2,q]) and v, — v in LY{(RYN) (Vt € [2,p]). Since

jl//oMo (2n)(2n — 2) = o(1) and /\I/OMO (2)(zn —2) =0,

by using the same argument as shown in the proof of Theorem 3.6, we obtain

So we have

1t — ull g1y, |vn — vl @yy — 0 as n — oo.

(az) If z = 0, according to Lemma 3.5, there exist {y,,} C RY and r,§ > 0 such
that

(6.5) liminf/ |2,]? > 6.
B (yn)

n—oo
Set wy () = zp( + yn). We know that
lwnllvorto = lznllvortes Fvoror(wn) — evonr, and i a3 (wn) — 0.

Clearly, there exists w € H'(RY) x HY(RY) with w # 0 such that w,, — w in
HYRN) x HY(RY). Then we arrive at the desired result by following the argument
used in the case of z # 0. O

By using an analogous argument as shown in Lemma 5.6, we can obtain the
following result immediately.

LEMMA 6.3. Under the assumptions of (%) and (F1) — (F3), if en — 0 and
{zn} C AL, such that fZ., \(zn) — cvomy, then there exists a sequence {y,} C RN
such that 4, = €nyn =y € 0.

Let &(g) denote the positive function such that &(¢) — 0 as ¢ — 0. We define
the set:

B ={z €M Zea(2) < cvym, +E(e)}-
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In fact, for any y € & we deduce from Lemma 6.1 that

&(e) = |/5,>\(\I/5(y)) —cyyM,| — 0 ase — 0r.
That is, ¥.(y) € B. and B, # @ for € > 0.

LEMMA 6.4. Suppose that the assumptions of Lemma 6.1 are satisfied. Then

lim sup dist(fB.(z),05) =0
e—=0 zEB .

holds for any 6 > 0.

ProOOF. Take {¢,} C RT such that £, — 0. By the definition there exists
{#n} C B, such that

diSt(ﬁen (Zn)v ﬁé) = sup diSt(ﬁsn (Z), ﬁ&) + 0(1)'
z€B

It suffices to find a sequence {g,} C € satisfying |5, (zn) — 9n| = o(1). Since
Ivorga(tzn) < _Fea(tzy,) for t > 0 and {2,} C B., C A%, , it gives
oMy < Ce,y S Feun(20) < cvymy + E(En),
which leads to
Henn(Zn) = €vong-
By Lemma 6.3 there exists a sequence {y,} C RV such that ¢, = y,&, € 05 for
the sufficiently large n. So we have
€nZ + Un) — gn)ui(z + Un)
2 fRN u%(z + ¥n)
i IRN ('Y(Enz + gn) - gn)erL(Z + ?jn) .
2 f]RN U%(z + Un)

Note that e,z + g, — y € 0. Hence, we obtain (. (z,) = ¥, + o(1) and then the
sequence {y, } is the desired one. O

Bsn (Zn) = gn + fRN (,Y(

LEMMA 6.5. Suppose that the assumptions of Theorem 1.4 are satisfied. If
Zn = (Un,vn) satisfies 7, \(2n) — cvym,, and there exist 7,0 > 0 and a sequence
{yn} C RY such that

n—oo

liminf/ |2n? > 8 >0,
Br(yn)
and wy, (z) = (U, Un) = 2n(x + yn) satisfies the problem
—Ady, + Ve, (2)in = g(iin) + A,  in RV,
('@875) 7A1~)n + MEJ‘ (:L')f)n - f(f)n) + Aﬁna in RN;
Gy > 0 in RN, iy, 0, € HY(RN),
where f/en () = V(enx+enyn), Mgn () = M (epx+enyn) and y, is given in Lemma

6.4. Then we have that w, — w in H'(RN) x HY(RN) with w # 0, w, € L>®(RN)
and ||wy || g @ny < C for all n € N. Furthermore,

lim @,(z) = lm 0,(z)=0
|z]— o0 |z|— o0

holds uniformly for n € N and @, () + 9, () < ceclz=vnl,
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Since w,, satisfies system (22!), we know that HLa(wp) =0and 7., x(wn) —
cvyM,- By using the same arguments as shown in the proofs of Lemmas 5.6 and
5.9, we can arrive at the desired result. So here we omit the details.

LEMMA 6.6. Under the assumptions of Theorem 1.4, there exist at least cat g, (O)
positive solutions to system (L) for small e > 0.

PRrROOF. We prove the existence of at least cat g, (&) positive solutions to system
(Z.) by using the Ljusternik- Schnirelman category theory. Usually this theory
needs .4, to be a Cl-submanifold of E.. However, here .4 is not a C''-submanifold.
So, we can not apply this theory to system (£2;) directly. Fortunately, from Lemma
2.2, we know that the mapping m. is a homeomorphism between 4. and S, and
S. is a C''-submanifold of E.. So, we can apply this theory to the functional

U (W) = FeA(e(w))|s. = Fea(me(w)),

where % » is given in Lemma 2.3.
Define

Ts(y) = m‘;l(tl,s(d}l,s,y, 1/}2,5,1/)) = m‘;l(\lls(y))

=1 ( 7/’176,?4 @[’2764/ > _ <¢176,y ¢2,67y>
- 4E€ 9 -
[tetbeyll” Ntetheyll [Yell” [¥eyll

for y € 0. It follows from Lemma 6.1 that

(6.6) lim % \(Te(y)) = lim 7 (Ve(y)) = cvonso-
Set
(6.7) B = {w e S.: U\(w) < cvym, + E(6)},

where &(g) — 01 as ¢ — 0T It follows from (6.6) that

&(e) = | Mex(Ye(y)) — cvorsg| — 0
as € — 0. Thus, To(y) € B. and B. # () for any € > 0.

Recall that B, = {z € A : _Z.(2) < cyym, + &(€)}. From Lemmas 2.1-2.3,
and 6.1 and 6.4, we know that for sufficiently small € > 0, the diagram
o

(6.8) AR SN SN SRS
is well-defined. By a similar derivation of (6.3), we get

(6.9) lim (. (V-(y)) = y, wniformly in y € .

For small ¢ > 0, we denote .(V.(y)) = y + ((y) for y € €, where [((y)] < §
uniformly for y € 0.
Denote

n(t,y) =y + (L= t)¢(y).
Then 7: [0,1] x & — O} is continuous, and
n(0,y) = B=(Ve(y)), n(l,y) =y, forallye .
Let

U, =m_ oW, and (. = fB. o m..
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The composite mapping BE oW, = (. o U, is homotopic to the inclusion mapping
id: 0 — 0. So it follows from Lemma 2.2 of [34] that

(6.10) catg (Be) > cates(O).

Choose a function &(g) > 0 such that &(¢) — 0 as ¢ — 0 and such that (cy,n, +
&(g)) is not a critical level for % 5. For small € > 0, from Lemma 5.3 one can see
that %\ satisfies the Palais-Smale condition in B.. So it follows from Theorem 2.1
of [34] that % ) has at least catg_ (B.) critical points on B.. By virtue of Lemma
2.3 and (6.10), we obtain that _#. x has at least catg, (€) critical points. O

LEMMA 6.7. Suppose that the assumptions of Theorem 1.4 hold. Let z. =
(ue,ve) denote one of positive solutions of system () and k. is a maximum of
|ze|. Then we have

lim V(ek.) = Vy, lim M(ek.) = Mo,
e—0 e—0

lim w.(x)= lim v.(z) =0 and lim |Vuc(z)|= lim |Vu.(x) =0,

|z|—o0 |z|—o0 |z|—o0 |z|—o0

where ue, v. € Cllo’cg (RN) with o € (0,1). Furthermore, there exist constants C,c > 0

(independent of £) such that
U () + ve(z) < Ceclzkel
for all x € RV,

The proof of this lemma can be completed by a similar idea described in [38],
so we omit the details here.
Now we are in the position to prove Theorem 1.4.

ProOOF OF THEOREM 1.4. From Lemma 6.6, we know that there are at least
cate; (O) positive solutions to system (Z.). Making the variable substitution:
r +— £ to system (), we see that there are at least catg, (&) positive solutions
to system (#Z). As shown in Lemma 6.7, the function h.(z) = 2.(%) is a posi-
tive solution of system (), then the maximum points o. and k. for h. and z.
respectively, satisfy the equality o. = k.. Consequently, we arrive at

lim V(o,) = lim V(e kn) =Vo
n—oo

and
lim M(oy,) = lim M(e,ky) = M.

n—oo n—o0

O

LEMMA 6.8. Under the assumptions of Theorem 1.5, there is no positive ground
state solution to system (Z.).

PROOF. For each € > 0, we know E = H'(RY) x H'(RY) = E.. By following
[11], it is easy to check that c. = ¢y . By way of contradiction, we assume that,
for some €9 > 0 there exists a positive 2 such that 2 € A, and ¢, = 7, 1(2).
From Lemma 2.2, there exists é = (é1,é2) € S., such that Z = m.,(é) = s1é, where
s1 > 0. By virtue of Lemma 2.2 again, we can infer that m.,(é) = m.,(é) is the
unique global maximum of #., » on E. Note that

cyoopoe < _Fveo poo A(Myeo pos (€)) = max oo nreo A(2).
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By (72), it follows that
V(z) >V and M(x) > M
for all z € R, and
Hvem=(2) < Fepa(2)
for each z € E. So we have
cyoopoe < _Fyee oo (Myes pres (€))

< Feor(mys = (€))

< /Eo)\(mfo (é))

= CE()

= Cy oo Moo
That is,
cyeopee = Jveonroe (Myoe s (€)) = e a(myeenree (€)).
o, v™) satisfies

Moreover, we can see that 2°° = myw e (é) = (u™, v

—Au™® +V>®u>® = g(u™®) + Av*>®, in RV,
(P,1) —Av® + M>®v™ = f(v®) + Au>®, in RV,
u™®, u® > 0in RN, > u® € HY(RY).
However, we know that

(6.11)
Hvee e (27)

~Sar) 5 [ V)@ g [ 08T - M) )
From (73) it gives
(6.12) %/RN(VOO —V(eoz))(u>)* + %/}RN(J\JOO — M(gox))(v™>)? < 0.

Combining (6.11) and (6.12) leads to _Fyeonre (2°°) < _Zoy A(2%°). This is a con-
tradiction. O

PROOF OF THEOREM 1.5. It is not difficult to see that, Theorem 1.5 exactly
follows Lemma 6.8. (]
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