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Abstract. Let Ω ⊂ R
N be an arbitrary bounded open set. We consider a

degenerate parabolic equation associated to the fractional p-Laplace opera-
tor (−Δ)s

p (p ≥ 2, s ∈ (0, 1)) with the Dirichlet boundary condition and a

monotone perturbation growing like |τ |q−2 τ, q > p and with bad sign at in-
finity as |τ | → ∞. We show the existence of locally-defined strong solutions
to the problem with any initial condition u0 ∈ Lr(Ω) where r ≥ 2 satisfies
r > N(q− p)/sp. Then, we prove that finite time blow-up is possible for these
problems in the range of parameters provided for r, p, q and the initial datum
u0.
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1. Introduction

The article is concerned with the following non-local initial-boundary value
problem for the degenerate parabolic equation
(1.1)⎧⎪⎨⎪⎩

∂tu(x, t) + (−Δ)s
pu(x, t)− |u(x, t)|q−2u(x, t) = f(x, t) (x, t) ∈ Ω× (0, T )

u(x, t) = 0 (x, t) ∈ (RN\Ω)× (0, T )
u(x, 0) = u0(x) x ∈ Ω.

Here u0 ∈ Lr(Ω), 2 ≤ p, q, r < ∞, T > 0, f is a given function, (−Δ)s
p denotes the

fractional p-Laplace operator and Ω is an arbitrary bounded open subset of R
N ,

N ≥ 1. To introduce the fractional p-Laplace operator, let 0 < s < 1, p ∈ (1,∞)
and set

Lp−1(RN ) :=
{

u : R
N → R measurable,

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

For u ∈ Lp−1(RN ), x ∈ R
N and ε > 0, we let

(−Δ)s
p,εu(x) = CN,p,s

∫
{y∈RN ,|y−x|>ε}

|u(x)− u(y)|p−2 u(x)− u(y)
|x− y|N+ps

dy,

where the normalized constant

CN,p,s =
s22sΓ

(
ps+p+N−2

2

)
π

N
2 Γ(1− s)

and Γ is the usual Gamma function (see, e.g., [5, 8, 9, 10, 11] for the linear case
p = 2, and [24, 25] for the general case p ∈ (1,∞)). The fractional p-Laplacian
(−Δ)s

p is defined by the formula

(−Δ)s
pu(x) =CN,p,sP.V.

∫
RN

|u(x)− u(y)|p−2 u(x)− u(y)
|x− y|N+ps

dy

= lim
ε↓0

(−Δ)s
p,εu(x), x ∈ R

N ,(1.2)

provided that the limit exists. We notice that if 0 < s < (p− 1) /p and u is smooth
(i.e., at least bounded and Lipschitz continuous), then the integral in (1.2) is in
fact not really singular near x.

The case p = 2 and f ≡ 0, which corresponds to the case of a semilinear frac-
tional heat equation, sufficient conditions for the existence of weak solutions with
u0 ∈ L2 (Ω) , and strong solutions for u0 ∈ L∞ (Ω) , have already been proved in
[13]. Additionally, further dynamical properties (i.e., existence of finite dimensional
global attractors and global asymptotic stabilization to steady states as time goes
to infinity) were also derived for a semilinear parabolic problem of the form

(1.3) ∂tu + (−Δ)s
2u + h (u) = 0 in Ω× (0,∞), u = 0 on (RN\Ω)× (0,∞),

with nonlinearity h (τ) which has a good sign at infinity as |τ | → ∞, and which is
coercive in a precise sense. Finally, some blow-up results were also proved in [13]
for (1.3) with h (τ) ∼ − |τ |q−2

τ , as |τ | → ∞, emphasizing the same critical blow-up
exponent q = p = 2 as for the corresponding parabolic equation associated with the
classical Laplace operator −Δ. We extend our work of [13] to prove the local in time
existence of solutions to parabolic equations with degenerate fractional diffusion and
more singular kernels using an approach based on [3, 4] and also developed further
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in [2]. Although our general scheme follows closely that of [2, 3, 4], many of the
key lemmas used in the case of the classical p-Laplace operator cannot be adapted
or exploited in their classical form to deal with the fractional p-Laplacian (−Δ)s

p

for s ∈ (0, 1) and p ∈ (1,∞). Hence, we develop some new techniques including
some new functional inequalities allowing us to extend the results of [2] in the
present setting. Among these new tools that we derive it is worth mentioning a
nonlinear version of the classical Stroock-Varopoulos inequality (see Lemma 3.9)
which is an important inequality in the theory of Markovian semigroups, and a
new coercitivity estimate (see Lemma 3.10) which is also crucial in the proofs
for the energy estimates. In particular, Lemma 3.9 extends the classical Stroock-
Varopoulos inequality which was available only in the case p = 2 (see [20, 21]) and
covers also the case when p 	= 2. Lemma 3.9 is the main tool in proving our first
main result of Theorem 2.3. Then we also generalize the blow-up results of [13] to
the present case (see Theorem 2.5) when q > p following a technique adapted from
[18]. We emphasize that our results hold without any regularity assumptions on
Ω. There is vast literature on degenerate parabolic equations involving the classical
diffusion operator −Δp. We refer the reader to the following list [2, 3, 4, 6, 18]
(and references contained therein) which is not meant to be exhaustive.

To the best of our knowledge, little is known about parabolic problems asso-
ciated with the fractional p-Laplacian (−Δ)s

p with the exception of [22, 24, 25].
In [25], some regularity results are provided for the quasi-linear parabolic equation
∂tu + (−Δ)s

pu = 0 and Dirichlet boundary condition u = 0 in R
N\Ω, whereas in

[22] for the same quasi-linear problem, it is proven the eventual boudedness of u in
L∞ ((τ, T ) ;L∞ (Ω)), for every τ > 0, provided that the initial datum u0 ∈ Lp (Ω).
Most recently an integration by parts formula for the regional fractional p-Laplace
operator has been also derived in [24].
Outline of paper. In Section 2.1, we state the relevant definitions and notation of
fractional order Sobolev spaces. Furthermore, in Section 2.2 we give a summary of
the main results but reserve the proofs for subsequent sections. In Section 3, we
introduce an auxiliary and a regularized version of the original problem and prove
some local existence results for them. Finally, the local existence result for the
original problem and then a finite time blow-up result are proved in Section 4.

2. Outline of results

2.1. Fractional order Sobolev spaces. In this subsection, we recall some
well-known results on fractional order Sobolev spaces. To this end let Ω ⊂ R

N be
an arbitrary open set with boundary ∂Ω. For p ∈ [1,∞) and s ∈ (0, 1), we denote
by

W s,p(Ω) :=
{

u ∈ Lp(Ω) :
∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|N+ps

dxdy < ∞
}

the fractional order Sobolev space endowed with the norm

‖u‖W s,p(Ω) :=
(∫

Ω

|u|p dx +
CN,p,s

2

∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|N+ps

dxdy

) 1
p

.

In order to handle a non-smooth Ω ⊂ R
N in the case when Ω is simply an open

and bounded set, we let

W s,p
0 (Ω) = D(Ω)

W s,p(Ω)
and W̃ s,p(Ω) := W s,p(Ω) ∩ C(Ω)

W s,p(Ω)
.
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By definition, W s,p
0 (Ω) is the smallest closed subspace of W̃ s,p(Ω) containing the

space D(Ω) := C∞c (Ω) (equipped with the topology that corresponds to conver-
gence in the sense of test functions). If p ∈ (1,∞), then one may characterize the
space W s,p

0 (Ω) as follows (considering W s,p
0 (Ω) as a subspace of W̃ s,p(Ω))

W s,p
0 (Ω) = {u ∈ W̃ s,p(Ω) : ũ = 0 quasi-everywhere on ∂Ω},

where ũ is the quasi-continuous version of u with respect to the capacity defined
with the space W̃ s,p(Ω) (cf. [23, Theorem 4.5]). Finally we define the space

W s,p
0 (Ω) = {u ∈W s,p(RN ) : u = 0 a.e. on R

N \ Ω}.
It is clear that W s,p

0 (Ω) and W s,p
0 (Ω) are both subspace of W s,p(Ω), but there

is no obvious inclusion between W s,p
0 (Ω) and W s,p

0 (Ω). We notice that W s,p
0 (Ω)

contains the space of test functions D(Ω) but the latter space is not always dense
in W s,p

0 (Ω). It has been proved in [14, Theorem 1.4.2.2] (see also [12] for some
more general spaces) that if Ω has a continuous boundary, then D(Ω) is dense in
W s,p

0 (Ω). In addition if Ω has a Lipschitz continuous boundary and s 	= 1/p, then
W s,p

0 (Ω) = W s,p
0 (Ω) with equivalent norm.

Throughout the remainder of the paper, we make the convention that if we
write u ∈ W s,p

0 (Ω) we mean that u ∈ W s,p(RN ) and u = 0 a.e. on R
N\Ω. In that

sense, a simple calculation shows that

(2.1) ‖|u‖|W s,p
0 (Ω) =

(
CN,p,s

2

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp

dxdy

) 1
p

defines an equivalent norm on the space W s,p
0 (Ω). We shall always use this norm

for the space W s,p
0 (Ω) even when Ω is simply an open bounded subset of R

N . Let
p� be given by

(2.2) p� =
Np

N − sp
if N > sp and p� ∈ [p,∞) if N = sp.

Then by [11, Section 7], there exists a constant C = C (N, p, s) > 0 such that for
every u ∈W s,p

0 (Ω),

(2.3) ‖u‖q,Ω ≤ C‖u‖W s,p
0 (Ω), ∀ q ∈ [p, p�].

Since Ω is bounded, we have that (2.3) also holds for every q ∈ [1, p�]. Moreover,
the embedding W s,p

0 (Ω) ↪→ Lq(Ω) is compact for every q ∈ [1, p�). The following
version of the Gagliardo-Nirenberg inequality for the space W s,p

0 (Ω) in the non-
smooth setting will be used. Let p ∈ (1,∞), q, r ∈ [1,∞] and 0 ≤ α ≤ 1 satisfy

(2.4)
1
q

=
α

p�
+

1− α

r
=

N − sp

Np
α +

1− α

r
.

Then there exists a constant C > 0 such that for every u ∈W s,p
0 (Ω),

(2.5) ‖u‖Lq(Ω) ≤ ‖u‖α
Lp� (Ω)‖u‖1−α

Lr(Ω) ≤ C‖|u‖|α
W s,p

0 (Ω)
‖u‖1−α

Lr(Ω).

If 0 < s < 1, p ∈ (1,∞) and p′ = p/(p−1), the space W−s,p′
(Ω) is defined as usual to

be the dual of the reflexive Banach space W s,p
0 (Ω), that is, (W s,p

0 (Ω))� = W−s,p′
(Ω).

For more information on fractional order Sobolev spaces we refer the reader to
[1, 11, 14, 15, 17, 23] and the references contained therein.
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2.2. Main results. Let Ω ⊂ R
N be an arbitrary bounded open set. As usual

for a Banach space X, we denote by Cw([a, b];X) the set of all X-valued weakly
continuous functions on the interval [a, b]. We also denote by 〈·, ·〉X∗,X the duality
between X∗ and X. First, we introduce the rigorous notion of solution to the
system (1.1).

Definition 2.1. Let 0 < s < 1, 2 ≤ p, q, r < ∞, p′ = p/(p− 1), r′ = r/(r − 1)
and q′ = q/(q − 1). Let u0 ∈ Lr(Ω) and

f ∈W 1,p′
((0, T );W−s,p′

(Ω) + Lr′
(Ω)) ∩ L1+γ((0, T );Lr(Ω))

for some γ ≥ 0 and T > 0. A function u is said to be a (strong) solution of (1.1) if

(2.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ L∞((0, T );Lr(Ω)) ∩ Lp((0, T );W s,p

0 (Ω)) ∩ Lq((0, T ); Lq(Ω)),
∂tu ∈ Lq′

((0, T );W−s,p′
(Ω) + Lr′

(Ω)),
u(t) ∈W s,p

0 (Ω) ∩ Lr(Ω), a.e. t ∈ (0, T ),
u ∈W 1,2

loc ((0, T );L2(Ω)),

and, a.e. t ∈ (0, T ) for every v ∈ W s,p
0 (Ω) ∩ Lr(Ω) =: V , with r > N(q−p)

sp ,

〈∂tu (t) , v〉V ∗,V(2.7)

+
CN,p,s

2

∫
RN

∫
RN

|u(x, t)− u(y, t)|p−2 (u(x, t)− u(y, t))(v(x)− v (y))
|x− y|N+sp

dxdy

=
〈|u (t) |q−2u (t) , v

〉
V ∗,V

+ 〈f (t) , v〉V ∗,V ,

and u satisfies the initial condition

u(·, t) → u0 strongly in Lr(Ω) as t → 0+.

Remark 2.2. Notice that
〈|u (t) |q−2u (t) , v

〉
V ∗,V

on the right-hand side of

(2.7) is well-defined since for r > N(q−p)
sp , V ⊂ Lq (Ω) boundedly (see also (3.7)

below).

The following is the first main result of the article.

Theorem 2.3. Let T > 0 be fixed, 0 < s < 1 and p, q, r ∈ [2,∞) be such that
p < q and assume that

r >
N(q − p)

sp
.

Let u0 ∈ Lr(Ω) and assume

f ∈W 1,p′
((0, T );W−s,p′

(Ω) + Lr′
(Ω)) ∩ L1+γ((0, T );Lr(Ω))

for some γ ≥ 0. Then the following assertions hold.
(a) If γ > 0, then there exist a non-increasing function T� : [0,∞)× [0,∞) →

(0, T ] independent of T, u0 and f and

T0 := T�

(
‖u0‖Lr(Ω),

∫ T

0

‖f(t)‖1+γ
Lr(Ω) dt

)
,

such that (1.1) has at least one strong solution on (0, T0).
(b) If γ = 0, then there exist a non-increasing function Tf : [0,∞) → (0, T ]

independent of T and u0, and T0 := Tf (‖u0‖Lr(Ω)), such that (1.1) has at
least one strong solution on (0, T0).
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(c) The strong solution has in addition the following regularity:{
|u| r−2

p u ∈ Lp((0, T0);W
s,p
0 (Ω)), (−Δ)s

pu ∈ Lp′
((0, T0);W−s,p′

(Ω)),
t

1
p u ∈ Cw([0, T0];W

s,p
0 (Ω)),

√
t∂tu ∈ L2((0, T0);L2(Ω)).

The proof of Theorem 2.3 relies on rewriting (1.1) as a first order Cauchy
problem which is governed by the difference of two subdifferential operators in
reflexive Banach spaces following the work of [2]. A family of approximate problems
and refined energy estimates will be employed to construct solutions with initial
data u0 ∈ Lr (Ω). The primary new difficulty, due to the nonlocal character of the
fractional p-Laplacian, is obtaining a new comparison lemma for various energy
forms (see Lemma 3.9) and several other critical lemmas properly modified from
[2] to handle our case. Solutions are first constructed for some auxiliary problems
associated with (1.1).

The second main result deals with blow-up phenomena for the strong solutions
of (1.1). To this end, we define the following energy functional

(2.8) E (t) :=
CN,p,s

2p

∫
RN

∫
RN

|u(x, t)− u(y, t)|p
|x− y|N+sp

dxdy − 1
q

∫
Ω

|u (x, t) |qdx

and notice that when f ≡ 0,

(2.9)
d

dt
E (t) = −‖∂tu (t)‖2L2(Ω) ≤ 0

for as long as a smooth solution exists. In fact, every strong solution of Theorem
2.3 satisfies an energy inequality, as follows.

Proposition 2.4. Let u be a solution in the sense of Theorem 2.3 and further
assume that u0 ∈W s,p

0 (Ω) and f ≡ 0. Then

(2.10) E (t) ≤ E (0) ,

for almost all t ∈ (0, T0), for as long as a strong solution exists.

Theorem 2.5. Let u be a strong solution of (1.1) in the sense of Theorem 2.3
and f ≡ 0. Let u0 ∈W s,p

0 (Ω) such that E (0) < E0 and ‖|u0|‖W s,p
0 (Ω) > α with

α = C
− q

q−p∗ , E0 =
(

1
p
− 1

q

)
C
− qp

q−p∗ ,

where C∗ > 0 is the best Sobolev constant in (2.3) and q ∈ (p, p∗]. Then the strong
solution blows-up in a finite time t∗ > 0 with

(2.11) t∗ ≤
(

1
2

)q−1 ‖u0‖q−2
L2(Ω) |Ω|

q
2−1(

q
2 − 1

) (
1− αq

βq

)
(q − p)

,

for some β > α.

Remark 2.6. These results can be also extended to degenerate parabolic equa-
tions of the form

∂tu + Lp,s,Ω (u)− g (u) = f (x, t) , (x, t) ∈ Ω× (0, T ),

subject to the condition u = 0 in R
N\Ω, where

Lp,s,Ω (u (x)) := P.V.
∫

RN

a (u (x) , u (y))
(

u(x)− u(y)
|x− y|N+ps

)
dy
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with a ∈ C
(
R

2, R+

)
satisfying the following condition

cp |τ1 − τ2|p−2 ≤ a (τ1, τ2) ≤ c0(1 + |τ1 − τ2|p−2),

for all τ1, τ2 ∈ R, for some c0, cp > 0. The function g is a maximal monotone graph
in R

2 such that |g (s)| ≤ cg |s|q−1 as |s| → ∞. We leave the details to the interested
reader.

3. Auxiliary and regularized problems

3.1. Subdifferentials. In this subsection we introduce some useful properties
of subdifferentials of proper, convex and lower semi-continuous functionals on a
Banach space.

Definition 3.1. Let X be a reflexive Banach space.
(a) A mapping ϕ : X → (−∞,∞] is called proper if its effective domain

D(ϕ) := {x ∈ X : ϕ(x) <∞}
is not empty. For a proper mapping ϕ : X → (−∞,∞], we define the
convex conjugate ϕ� by

ϕ� : X� → (−∞,∞], ϕ�(x�) := sup
x∈X

x�(x)− ϕ(x).

Note that ϕ� is convex even if ϕ is not.
(b) Given a mapping ϕ : X → (−∞,∞] and x0 ∈ X, a functional x� ∈ X� is

called a subgradient of ϕ at x0 if for all x ∈ X, we have

x�(x− x0) ≤ ϕ(x)− ϕ(x0).

The set of all these subgradients is called the subdifferential of ϕ at x0 and
is denoted by ∂Xϕ(x0). The domain D(∂Xϕ) of the subdifferential ∂Xϕ
is given by

D(∂Xϕ) := {x ∈ X : ∂Xϕ(x) 	= ∅}.
Obviously, D(∂Xϕ) ⊂ D(ϕ).

It is well-known (see e.g. [6, 19]) that every subdifferential of a proper, convex
and lower semi-continuous functional is maximal monotone. Moreover, if X = H
is a Hilbert space then the subdifferential ∂Hϕ can be written for u ∈ D(ϕ) as

∂Hϕ(u) = {w ∈ H : ϕ(v)− ϕ(u) ≥ (w, v − u)H , for all v ∈ D(ϕ)},
where (·, ·)H denotes the inner product of H, and also ∂Hϕ becomes a maximal
monotone operator on H. For a proper, convex and lower semi-continuous func-
tional ϕ on H, the Moreau-Yosida approximation ϕλ of ϕ is defined as follows:

(3.1) ϕλ(u) := inf
v∈H

{
1
2λ
‖u− v‖2H + ϕ(v)

}
, for all u ∈ H, λ > 0.

We recall that the Yosida approximation of a maximal monotone operator A on a
Hilbert space H is defined as

(3.2) Aλ :=
1
λ

[
I − (I + λA)−1

]
, λ > 0.

The following result provides some useful properties of Moreau-Yosida and
Yosida approximations. Its proof can be found in [6, Proposition 2.11, p.39].
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Proposition 3.2. Let ϕ be a proper, convex and lower semi-continuous func-
tional on H and ϕλ be its Moreau-Yosida approximation. Then ϕλ is convex,
Fréchet differentiable in H, and its Fréchet derivative ∂H(ϕλ) coincides with the
Yosida approximation (∂Hϕ)λ of ∂Hϕ. Moreover, the following properties hold:

(3.3)

⎧⎪⎨⎪⎩
ϕλ(u) = 1

2λ‖u− Jϕ
λ u‖2H + ϕ(Jϕ

λ u), for all u ∈ H,λ > 0,

ϕ(Jϕ
λ u) ≤ ϕλ(u) ≤ ϕ(u), for all u ∈ H,λ > 0,

ϕ(Jϕ
λ u) ↑ ϕ(u) as λ → 0+, for all u ∈ H,

where Jϕ
λ := (I + λ∂Hϕ)−1 is the resolvent operator of ∂Hϕ.

The following type of chain rule for subdifferentials is taken from [2, Proposition
5].

Proposition 3.3. Let X be a reflexive Banach space, T > 0 be fixed and let
ϕ : X → (−∞,∞] be a proper, convex and lower semi-continuous functional. Let
p ∈ (1,∞) and let u ∈ W 1,p((0, T );X) be such that u(t) ∈ D(∂Xϕ) for a.e. t ∈
(0, T ). Suppose that there exits g ∈ Lp′

((0, T ); X�) such that g(t) ∈ ∂Xϕ(u(t)) for
a.e. t ∈ (0, T ). Then the function t �→ ϕ(u(t)) is differentiable for a.e. t ∈ (0, T ).
Moreover, for a.e. t ∈ (0, T ),

(3.4)
d

dt
ϕ(u(t)) =

〈
f,

du

dt
(t)

〉
X�,X

for all f ∈ ∂Xϕ(u(t)).

Next, let θ be a maximal monotone graph in R
2. In the following result, for

a given u ∈ L2(Ω) we discuss the representation of θ(u(·)) as the subdifferential
∂L2(Ω)Θ(u) for some proper, convex and lower semi-continuous functional Θ on
L2(Ω).

Proposition 3.4. Let Ω ⊂ R
N be an open and bounded set and let θ : R →

(−∞,∞] be a proper, convex and lower semi-continuous functional. Define the
functional Θ : L2(Ω) → (−∞,∞] with effective domain D(Θ) = {u ∈ L2(Ω) :
θ(u(·)) ∈ L1(Ω)} and given by

Θ(u) :=

⎧⎨⎩
∫

Ω

θ(u(x))dx if u ∈ D(Θ),

+∞ otherwise.

Let JΘ
λ and jθ

λ (λ > 0) denote the resolvent operators of the subdifferentials ∂L2(Ω)Θ
and ∂Rθ, respectively. Then the following properties hold.

(a) The functional Θ is proper, convex and lower semi-continuous on L2 (Ω).
(b) For all f, u ∈ L2(Ω), we have that f ∈ ∂L2(Ω)Θ(u) if and only if f(x) ∈

∂Rθ(u(x)) for a.e. x ∈ Ω.
(c) For all u ∈ L2(Ω), JΘ

λ u(x) = jθ
λu(x) for a.e. x ∈ Ω and for all λ > 0.

(d) For every m ∈ [1,∞], if u, v ∈ Lm(Ω) ∩ L2(Ω), then JΘ
λ u, ∂L2(Ω)Θλ(u) ∈

Lm(Ω) ∩ L2(Ω) for all λ > 0 and

‖JΘ
λ u− JΘ

λ v‖Lm(Ω) ≤ ‖u− v‖Lm(Ω),

‖∂L2(Ω)Θλ(u)− ∂L2(Ω)Θλ(v)‖Lm(Ω) ≤ 2
λ
‖u− v‖Lm(Ω).
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(e) If ∂Rθ(0) � 0, then for every p ∈ (1,∞) and s ∈ (0, 1), we have that
JΘ

λ 0 = 0, JΘ
λ u ∈W s,p

0 (Ω)∩L2(Ω) for all u ∈W s,p
0 (Ω)∩L2(Ω) and for all

λ > 0. Moreover,

(3.5)
∫

RN

∫
RN

|JΘ
λ u(x)− JΘ

λ u(y)|p
|x− y|N+sp

dxdy ≤
∫

RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp

dxdy.

Proof. The proof of parts (a), (b) (c) and (d) is contained in [2, Proposition
6] (see also [19, Proposition 8.1] for parts (a) and (b) and also [6, Proposition 2.16,
p.47]).

Next, let λ > 0, p ∈ (1,∞), s ∈ (0, 1) and u ∈ W s,p(RN ) ∩ L2(RN ). It follows
from part (d) that JΘ

λ u ∈ Lp(RN ) ∩ L2(RN ). Since

|jθ
λ(u(x))− jθ

λ(u(y))| ≤ |u(x)− u(y)| for a.e. x, y ∈ R
N ,

then we obtain (3.5) by using the assertion (c).
It remains to show the assertion (e). First, let λ > 0, p ∈ (1,∞), s ∈ (0, 1) and

u ∈W s,p(RN ) ∩ L2(Ω). It follows from part (d) that JΘ
λ u ∈ Lp(Ω) ∩ L2(Ω). Since

(3.6) |jθ
λ(u(x))− jθ

λ(u(y))| ≤ |u(x)− u(y)| for a.e. x, y ∈ R
N ,

then we obtain (3.5) by using the assertion (c). Next, assume that ∂Rθ(0) � 0. Then
it is clear that jθ

λ0 = 0 and hence, JΘ
λ 0 = 0 and |JΘ

λ u(x)| ≤ |u(x)| for a.e. x ∈ Ω. Let
u ∈W s,p

0 (Ω)∩L2(Ω) ⊂W s,p(RN )∩L2(Ω) and λ > 0. Since JΘ
λ u ∈ Lp(Ω)∩L2(Ω)

(see above), it follows from (3.6) and part (c) that JΘ
λ u ∈W s,p(RN )∩L2(Ω). Since

|JΘ
λ u(x)| ≤ |u(x)| for a.e. x ∈ R

N we also have that JΘ
λ u = 0 on R

N \Ω. Therefore
JΘ

λ u ∈W s,p
0 (Ω)∩L2(Ω) and we have shown part (e). The proof of the proposition

is finished. �

3.2. The auxiliary problems. We first write the system (1.1) as a first order
Cauchy problem. To this end recall that 0 < s < 1, p, r ∈ [2,∞) and denote
V := W s,p

0 (Ω) ∩ Lr(Ω) as the Banach space equipped with the norm

‖u‖V :=
(
‖u‖2Lr(Ω) + ‖|u‖|2

W s,p
0 (Ω)

) 1
2

.

where the second norm is given by (2.1). Let V � denote the dual of the reflexive
Banach space V . Then

V � = W−s,p′
(Ω) + Lr′

(Ω) := {u = u1 + u2; u1 ∈W−s,p′
(Ω), u2 ∈ Lr′

(Ω)},
where p′ = p/(p− 1) and r′ = r/(r − 1). For every r ≥ 2, we have the continuous
injections V ↪→ L2(Ω) ↪→ V �.

Next, for p, q, r ∈ [2,∞) satisfying p < q and

(3.7) r >
N(q − p)

sp
⇐⇒ q <

N + sr

N
p,

we have that V is continuously embedded into Lq(Ω). Indeed, if q ≤ r, then V
is trivially continuously embedded into Lq(Ω). If r ≤ q, then it follows from (3.7)
that q < p�. Since W s,p

0 (Ω) ↪→ Lp�

(Ω), we also have V ↪→ Lq(Ω).
Let us now define the functionals Φ, ψ : V → [0,∞) by

Φ(u) :=
CN,p,s

2p

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp

dxdy, ψ(u) :=
1
q

∫
Ω

|u|qdx,



56 CIPRIAN G. GAL AND MAHAMADI WARMA

for all u ∈ V . It is easy to see that Φ, ψ ∈ C1(V, R). We state the following basic
proposition whose proof is postponed until the Appendix.

Proposition 3.5. Let ∂V Φ and ∂V ψ denote the single valued subgradients of
Φ and ψ, respectively. Then ∂V Φ is an operator from V to V � and can be expressed
as

D(∂V Φ) = V and ∂V Φ(u) = (−Δ)s
pu, for all u ∈ V.

More precisely, ∂V Φ is a realization in V � of the fractional p-Laplace operator
(−Δ)s

p with the Dirichlet boundary condition u = 0 on R
N\Ω. Finally, under the

assumption (3.7), we also have that ∂V ψ is an operator from V to V � with

D(∂V ψ) = V and ∂V ψ(u) = |u|q−2u, for all u ∈ V.

By virtue of Proposition 3.5, the system (1.1) can be rewritten as the following
abstract Cauchy problem

(3.8)

⎧⎨⎩
du

dt
(t) + ∂V Φ(u(t))− ∂V ψ(u(t)) = f(t) in V �, 0 < t < T,

u(0) = u0.

Next, we also define the functional φ : L2(Ω) → [0,∞] by

φ(u) :=

⎧⎨⎩
1
r

∫
Ω

|u|rdx if u ∈ Lr(Ω)

+∞ otherwise.

We note that the energy functional Φ (u) − ψ(u) is not bounded from below on
W s,p

0 (Ω)∩Lq(Ω) but the sum Φ (u)−ψ(u)+IX , where IX denotes the characteristic
function over some ball X in Lr (Ω) turns out to be coercive provided that r satisfies
(3.7). In this respect, we can establish the following crucial result.

Lemma 3.6. Let 0 < s < 1 and let p, q, r ∈ [2,∞) satisfy p < q and (3.7).
Then there exist a constant ε ∈ (0, 1] and an increasing differentiable function
F : [0,∞) → [0,∞) such that for every u ∈ D(Φ) ∩D(ψ) = W s,p

0 (Ω) ∩ Lr(Ω) = V ,

(3.9) ψ(u) ≤ F(φ(u))[Φ(u) + 1]1−ε.

Proof. Let u ∈ W s,p
0 (Ω) ∩ Lr(Ω). If q ≤ r, since Ω is bounded then by the

classical Hölder inequality, we have that there exists a constant C > 0 such that

1
q

∫
Ω

|u|qdx = ψ(u) ≤ C

(
1
r

∫
Ω

|u|rdx

) q
r

= C[φ(u)]
q
r .

Hence, we have that (3.9) holds with ε = 1 and F(t) = Ctq/r.
If r < q, then q < p� (see (2.2)). Hence, using the Gagliardo-Nirenberg’s

inequality (2.5), one can find a constant C > 0 such that

(3.10) ‖u‖Lq(Ω) ≤ C

(
CN,p,s

2p

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp

dxdy

)α
p

‖u‖1−α
Lr(Ω),

where α ∈ (0, 1) is given by

(3.11)
1
q

=
α

p�
+

1− α

r
=

N − sp

Np
α +

1− α

r
.
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We notice that (3.11) and (3.7) imply that

(3.12) 0 < αq = (q − r)
(

1− N − sp

Np
r

)
<

(
N+sr

N

)
p− r

1−
(

N−sp
Np

)
r

= p.

It follows from (3.10) that

ψ(u) ≤ C

(
CN,p,s

2p

∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp

dxdy

)αq
p

‖u‖(1−α)q
Lr(Ω)

= C[Φ(u)]
αq
p [φ(u)]

(1−α)q
r .

Note that 0 < αq/p < 1 by (3.12). Thus we have shown (3.9) with the constant
ε = 1− αq/p and F(t) = Ct

(1−α)q
r . The proof of lemma is finished. �

Next, let T > 0 be fixed, u0 ∈ D(Φ) = V = W s,p
0 (Ω) ∩ Lr(Ω) and f ∈

C1([0, T ];V ). We shall introduce an auxiliary problem associated with the abstract
Cauchy problem (3.8). To do this, we let σ := φ(u0) + 1 and set

Vσ = {v ∈ V : φ(v) ≤ σ ⇐⇒ ‖v‖r
Lr(Ω) ≤ rσ}.

We define the proper, convex, lower semi-continuous functional Φσ : V → [0,∞] by

Φσ(u) :=

{
Φ(u) if u ∈ Vσ,

+∞ otherwise.

Clearly, D(Φσ) = Vσ ⊂ V = D(Φ) and D(∂V Φσ) = Vσ ⊂ V = D(∂V Φ). It follows
from [7, Theorem 2.2] that for all u ∈ D(∂V Φσ),

(3.13) ∂V Φσ(u) = ∂V Φ(u) + ∂V χVσ
(u)

where χVσ denotes the indicator function of the convex set Vσ defined by

χVσ (u) =

{
0 u ∈ Vσ

∞ u 	∈ Vσ.

We notice that by [6, Example 2.8.2], the subdifferential ∂V χVσ
of the functional

χVσ is given by

(3.14) ∂V χVσ (u) =

⎧⎪⎨⎪⎩
∅ if u 	∈ Vσ,

{0} if u ∈ Int(Vσ),
the normal exterior cone to Vσ if u ∈ boundary(Vσ).

Corresponding to problem (3.8) we consider the following modified problem

(3.15)

⎧⎨⎩
du

dt
(t) + ∂V Φσ(u(t))− ∂V ψ(u(t)) � f(t) in V �, 0 < t < T,

u(0) = u0.

We observe that a solution of problem (3.15) on (0, T ) is also a solution of (3.8)
on (0, T ) provided that one has in addition φ(u (t)) < σ. Indeed, in that case
∂V χVσ (u (t)) = {0} by (3.14), and by (3.13), this implies ∂V Φσ(u (t)) = ∂V Φ(u (t))
a.e. t ∈ (0, T ). Thus, in order to establish the existence of a solution to problem
(3.8) it suffices to construct a sufficiently regular solution to the Cauchy problem
(3.15) and to derive additional a priori estimates on this solution. To this end,
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we first define the extensions Φ
σ
, ψ of Φσ and ψ, respectively, to the Hilbert space

H := L2(Ω) by

Φ
σ
(u) :=

{
Φσ(u) if u ∈ V,

+∞ otherwise.

and

ψ(u) :=

⎧⎨⎩
1
q

∫
Ω

|u|qdx if u ∈ Lq(Ω),

+∞ otherwise.

Then, Φ
σ

and ψ are proper, convex and lower semi-continuous on H = L2(Ω).
Let ∂HΦ

σ
and ∂Hψ denote the subdifferentials of Φ

σ
and ψ, respectively. Then, it

readily follows

(3.16)

{
D(Φ

σ
) = D(Φσ), D(∂HΦ

σ
) ⊂ D(∂V Φσ),

∂HΦ
σ
(u) ⊂ ∂V Φσ(u), for all u ∈ D(∂HΦ

σ
),

and

(3.17)

{
ψ(u) = ψ(u) ∀ u ∈ V, D(∂Hψ) ∩ V ⊂ D(∂V ψ),
∂Hψ(u) ⊂ ∂V ψ(u) for all u ∈ D(∂Hψ) ∩ V.

Now consider ψλ as the Moreau-Yosida approximation (see (3.1)) of ψ, for λ > 0.
Associated with problem (3.15), we introduce the following regularized problem in
H = L2(Ω),

(3.18)⎧⎨⎩
duλ

dt
(t) + ∂HΦ

σ
(uλ(t))− ∂Hψλ(uλ(t)) � f(t) in H = L2(Ω), 0 < t < T,

uλ(0) = u0.

Regarding the functionals defined above, we mention the following facts.

Remark 3.7. (a) It follows from Lemma 3.6 that for every u ∈ D(Φσ) =
Vσ,

(3.19) ψ(u) ≤ F [φ(u)] [Φ(u) + 1]1−ε ≤ 1
2
Φ(u) + F(σ).

(b) There exists a constant C > 0 such that for every u ∈ D(Φσ) = Vσ,

‖u‖p
V =‖u‖p

W s,p
0 (Ω)∩Lr(Ω)

=
(
‖u‖2Lr(Ω) + ‖|u‖|2

W s,p
0 (Ω)

) p
2

(3.20)

≤C
(
‖u‖p

Lr(Ω) + ‖|u‖|p
W s,p

0 (Ω)

)
≤ C

(
Φσ(u) + σ

p
r

)
.

(c) The subdifferential ∂V ψ : V → V � is a compact operator. Indeed, let
C ≥ 0 and let un be a sequence in V such that ‖un‖V ≤ C. Then, after
a subsequence if necessary, un converges weakly to some u in the reflexive
Banach space V . Since the embedding V ↪→ Lq(Ω) is compact, passing to
a subsequence if necessary, we may assume that

un → u strongly in Lq(Ω).

Since ∂V ψ(un) = |un|q−2un we have that

∂V ψ(un) → ∂V ψ(u) strongly in Lq′
(Ω).
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Since Lq′
(Ω) ↪→ V �, it follows that

∂V ψ(un) → ∂V ψ(u) strongly in V �.

Hence, ∂V ψ : V → V � is a compact operator.
(d) Finally, let Jψ

λ (λ > 0) be the resolvent operator of ∂Hψ. By Proposition
3.4, parts (e) and (f), we readily have

(3.21) φ(Jψ
λ u) ≤ φ(u) ≤ σ, Φ(Jψ

λ u) ≤ Φ(u), for all u ∈ D(Φσ).

Moreover,

(3.22) Φσ(Jψ
λ u) ≤ Φσ(u), for all u ∈ D(Φσ).

We conclude this subsection with the following lemma.

Lemma 3.8. Recall 0 < s < 1 and let p, q, r ∈ [2,∞) satisfy p < q and (3.7).
Let u ∈ Lr(Ω) be such that v := |u| r−2

p u ∈ W s,p
0 (Ω). Let ψλ and φλ (λ > 0) be

the Morreau-Yosida approximation of ψ and φ, respectively. Then there exist a
constant ε ∈ (0, 1] and an increasing differentiable function F : [0,∞) → [0,∞)
such that ∫

Ω

∂Hψλ(u)∂Hφλ(u)dx(3.23)

≤F(φ(u))
[
1 +

CN,p,s

2

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+sp

dxdy

]1−ε

.

Proof. Let λ > 0 and let u ∈ Lr(Ω) be such that v := |u| r−2
p u ∈ W s,p

0 (Ω).
Since |Jψ

λ u(x)| ≤ |u(x)| and |Jφ
λ u(x)| ≤ |u(x)| for a.e. x ∈ Ω, we have that∫

Ω

∂Hψλ(u)∂Hφλ(u)dx

=
∫

Ω

|Jψ
λ u(x)|q−2Jψ

λ u(x)|Jφ
λ u(x)|r−2Jφ

λ u(x)dx ≤
∫

Ω

|u(x)|q+r−2dx.

In light of (3.7) we easily see that

(3.24) q + r − 2 <

(
N + rs

N

)
p + r − 2 =

(
1 +

sp

N

)
r + p− 2.

If sp < N , then(
r + p− 2

p

)
p� =

(
N

N − sp

)
r +

(
N

N − sp

)
(p− 2)(3.25)

=
(

1 +
sp

N − sp

)
r +

(
N

N − sp

)
(p− 2).

It follows from (3.24) and (3.25) that

ρ := p

(
q + r − 2
r + p− 2

)
< p�.

Next, let v := |u| r−2
p u. Then

|u|q+r−2 = |v|ρ and |u|r = |v| pr
r+p−2 .
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Assume that v ∈W s,p
0 (Ω). Since 1 < pr

r+p−2 < ρ < p� and

‖|v|‖W s,p
0 (Ω) ≤

[
‖v‖

L
rp

r+p−2 (Ω)
+

(
CN,p,s

2

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+sp

dxdy

) 1
p

]
,

then using the Gagliardo-Nirenberg inequality (2.5), we have that there exists a
constant C > 0 such that

‖v‖Lρ(Ω) ≤ C‖|v|‖α
W s,p

0 (Ω)
‖v‖1−α

L
rp

r+p−2 (Ω)

(3.26)

≤C

[
‖v‖

L
rp

r+p−2 (Ω)
+

(
CN,p,s

2

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+sp

dxdy

) 1
p

]α

‖v‖1−α

L
rp

r+p−2 (Ω)

≤C

[(
CN,p,s

2

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+sp

dxdy

) 1
p

]α

‖v‖1−α

L
rp

r+p−2 (Ω)
+ C‖v‖

L
rp

r+p−2 (Ω)

with 0 ≤ α ≤ 1 satisfying

1
ρ

=
α

p�
+

(1− α)(r + p− 2)
rp

.

A simple calculation gives

0 < α =

(
r+p−2

pr

)
−

(
r+p−2

p(q+r−2)

)
(

r+p−2
pr

)
−

(
N−sp

Np

) < 1.

It follows from (3.26) that,

∫
Ω

|u|q+r−2dx =
∫

Ω

|v|ρdx

(3.27)

≤C

[(
CN,p,s

2

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+sp

dxdy

) 1
p

]αρ

‖v‖(1−α)ρ

L
rp

r+p−2 (Ω)
+ C‖v‖ρ

L
rp

r+p−2 (Ω)

≤C

[(
CN,p,s

2

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+sp

dxdy

) 1
p

]αρ

‖v‖(1−α)(q+r−2)
Lr(Ω) + C‖v‖q+r−2

Lr(Ω) .

Letting

F(t) := sup
{

t
(1−α)(q+r−2)

r , t
q+r−2

r

}
, t ≥ 0

we have that F : [0,∞) → [0,∞) is increasing and differentiable. Thus, (3.23)
follows from (3.27) together with the simple estimate

1− ε =
αρ

p
=

1
p

q − 2(
r+p−2

p

)
−

(
N−sp

Np

) <
1
p

(
N+rs

N

)
p− 2(

r+p−2
p

)
−

(
N−sp

Np

)
r

= 1.

The proof of the lemma is finished. �
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3.3. Solutions to the auxiliary problems. In this subsection, we investi-
gate the existence and regularity of solutions to problems (3.15), (3.18) for regular
initial datum u0 ∈ D (Φ) = V and f ∈ C1([0, T ];V ). Before we turn our attention
directly to the Cauchy problem (3.18), we require the following two crucial lem-
mas. The first result is essential and is of independent interest. The second one
establishes a kind of coercitivity estimate. Their proofs are postponed until the
Appendix.

Lemma 3.9. Let p ∈ (1,∞), r ∈ [2,∞) and let E be the energy given by

E (u, v) =
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K (x, y) dxdy,

for some positive kernel K : R
N × R

N → R+. Then

(3.28) Cr,pE(|u| r−2
p u, |u| r−2

p u) ≤ E(u, |u|r−2
u),

for all functions u for which the terms in (3.28) make sense, and where

Cr,p := (r − 1)
(

p

p + r − 2

)p

.

Lemma 3.10. Let 0 < s < 1, p, q, r ∈ [2,∞) satisfy p < q and (3.7). Let
u ∈ D(∂V Φ) and let Jφ

μ := (I + μ∂Hφ)−1, μ > 0. Then

Jφ
μu ∈ D(∂V Φ), ∂Hφμ(u) ∈ V, vμ := |Jφ

μu| r−2
p Jφ

μu ∈W s,p
0 (Ω).

In particular, if u ∈ D(∂V Φσ), then there exists a positive constant β independent
of μ such that for all g ∈ ∂V Φσ(u),

(3.29)
βCN,p,s

2

∫
RN

∫
RN

|vμ(x)− vμ(y)|p
|x− y|N+sp

dxdy ≤ 〈g, ∂Hφμ(u)〉V �,V .

We have the following result of existence of solutions to the abstract Cauchy
problem (3.18).

Proposition 3.11. Let 0 < s < 1, p, q, r ∈ [2,∞) satisfy p < q and (3.7).
Let T > 0 be fixed, u0 ∈ D(Φ), λ > 0 and f ∈ C1([0, T ];V ). Then there exists a
unique function uλ ∈ Cw([0, T ];V )∩W 1,2((0, T );L2(Ω)) which is a strong solution
of (3.18) on (0, T ). Moreover,

(3.30) sup
t∈[0,T ]

φ(uλ(t)) ≤ σ and vλ := |uλ|
r−2

p uλ ∈ Lp((0, T );W s,p
0 (Ω)).

In addition, the function t �→ Φ
σ
(uλ(t)) is absolutely continuous on [0, T ].

Proof. First, we notice that by Proposition 3.2, ∂Hψλ coincides with the
Yosida approximation (∂Hψ)λ of the maximal monotone operator ∂Hψ (see (3.2)).
Hence, by Proposition 3.4 ∂Hψλ is Lipschitz continuous in Lr(Ω) as well as in
L2(Ω). Since Φ

σ
is proper, convex and lower semi-continuous on H = L2(Ω) and

the mapping t �→ f(t) belongs to L2((0, T ); L2(Ω)), we can exploit [6, Proposition
3.12 and Theorem 3.6] to infer that for every u0 ∈ D(Φ

σ
) = L2 (Ω), the Cauchy

problem (3.18) has a unique strong solution uλ. Moreover, it holds
√

t
duλ

dt
(t) ∈ L2((0, T );L2(Ω)).



62 CIPRIAN G. GAL AND MAHAMADI WARMA

In particular, if u0 ∈ D(Φ
σ
) we have

uλ ∈ Cw([0, T ];V ) ∩W 1,2((0, T );L2(Ω)) and uλ(t) ∈ V, φ(uλ(t)) ≤ σ,

for all t ∈ [0, T ]. Hence, the function t �→ Φσ(uλ(t)) is absolutely continuous
on [0, T ] and the first statement of (3.30) also follows. It remains to show the
second part of (3.30). To this end, multiplying (3.18) by ∂Hφμ(uλ(t)), μ > 0, then
employing the chain rule formula (3.4) (see Proposition 3.3), we obtain

d

dt
φμ(uλ(t)) +

∫
Ω

∂Hφμ(uλ(t))
[
f(t)− duλ

dt
(t) + ∂Hψλ(uλ(t))

]
dx(3.31)

=
∫

Ω

∂Hψλ(uλ(t))∂Hφμ(uλ(t))dx +
∫

Ω

f(t)∂Hφμ(uλ(t))dx.

Let vλ,μ(t) := |Jφ
μuλ(t)| r−2

p Jφ
μuλ(t). Note that vλ,μ(t) ∈ W s,p

0 (Ω) ∩ Lr(Ω) = V .
Recall that by Lemma 3.10 and virtue of (3.16) it holds

β
CN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, t)− vλ,μ(y, t)|p
|x− y|N+sp

dxdy

≤〈∂HΦ
σ
(uλ(t)), ∂Hφμ(uλ(t))〉V �,V .(3.32)

By Proposition 3.4, ∂Hψλ is Lipschitz continuous from Lr(Ω) to Lr(Ω). Hence,
Hölder’s inequality together with Proposition 3.2 yields the estimate∫

Ω

∂Hψλ(uλ(t))∂Hφμ(uλ(t)) dx ≤ ‖∂Hψλ(uλ(t))‖Lr(Ω)‖∂Hφμ(uλ(t))‖Lr′ (Ω)

≤ Cλφ(uλ(t)) ≤ Cλσ, ‘(3.33)

for some constant Cλ > 0 depending only on λ > 0 but not on μ > 0. Moreover,
exploiting Hölder’s inequality once again, one can find a constant C > 0 such that∫

Ω

f(t)∂Hφμ(uλ(t))dx ≤ Cσ
1
r′ ‖f(t)‖Lr(Ω).

Combining (3.32) together with (3.33), then integrating (3.31) over (0, t), and using
Proposition 3.2 once more, we deduce

φμ(uλ(t)) + β

∫ t

0

CN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, τ)− vλ,μ(y, τ)|p
|x− y|N+sp

dxdydτ(3.34)

≤φ(u0) + CλσT + βσ
1
r′

∫ T

0

‖f(τ)‖Lr(Ω)dτ,

for all t ∈ [0, T ]. Now passing to the limit as μ → 0+ in the foregoing uniform
estimate, by virtue of Proposition 3.2, we obtain

Jφ
μ (uλ) → uλ strongly in C([0, T ];L2(Ω)).

Finally, since 2(p + r − 2)/p ≤ r, it follows from (3.34) that as μ→ 0+,⎧⎪⎨⎪⎩
Jφ

μ (uλ) → uλ weakly-star in L∞((0, T );Lr(Ω)),
vλ,μ → vλ weakly-star in L∞((0, T ); L2(Ω)),
vλ,μ → vλ weakly in Lp((0, T ); W s,p

0 (Ω)),

where vλ = |uλ|
r−2

p uλ. The proof is finished. �
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Having obtained a solution to the regularized problem (3.18), we can now pass
to the limit as λ → 0+ to deduce a solution to problem (3.15). We have the
following.

Proposition 3.12. Let 0 < s < 1, p, q, r ∈ [2,∞) satisfy p < q and (3.7). Let
T > 0 be fixed, u0 ∈ D(Φ) and f ∈ C1([0, T ];V ). Then there exists a unique func-
tion u ∈ Cw([0, T ];V ) ∩W 1,2((0, T ); L2(Ω)) which is a strong solution of problem
(3.15) on (0, T ).

Proof. Let u0 ∈ D(Φ) and f ∈ C1([0, T ];V ). Let λ > 0 and let uλ be the
unique strong solution of (3.18) which exists by Proposition 3.11. In the subsequent
proofs, C > 0 will always denote a constant that is independent of t, f , λ, which
only depends on the other structural parameters of the problem. Such a constant
may vary even from line to line. We multiply (3.18) by duλ(t)

dt and we integrate the
resulting identity over (0, t). Using (3.19), (3.20) and Proposition 3.3, we get that
there exists a constant C > 0 such that

(3.35)
∫ T

0

∥∥∥∥duλ

dt
(t)

∥∥∥∥2

L2(Ω)

dt + sup
t∈[0,T ]

Φσ(uλ(t)) ≤ C.

The estimates (3.20) and (3.35) imply that

(3.36) sup
t∈[0,T ]

‖uλ(t)‖V ≤ C.

Furthermore, we also have there exists a constant C > 0 such that

(3.37) sup
t∈[0,T ]

‖Jψ
λ uλ(t)‖V ≤ C

on account of (3.22) and (3.35). Let now

gλ := f(t)− duλ

dt
(t) + ∂Hψλ(uλ(t)) ∈ ∂HΦ

σ
(uλ(t)).

Then, passing to a subsequence of {λ} if necessary, we get that as λ → 0+,

(3.38)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uλ → u, Jψ

λ (uλ) → u weakly star in L∞((0, T );V ),

uλ → u, Jψ
λ (uλ) → u weakly in W 1,2((0, T );L2(Ω))

∂Hψλ(uλ(·)) → ∂V ψ(u(·)) strongly in C([0, T ];Lq′
(Ω)),

gλ → g ∈ ∂V Φσ(u(·)) weakly in L2((0, T ); V �).

The first two foregoing convergence properties follow from (3.35), (3.37) and (3.36).
The third convergence property follows from (3.35) in light of Remark 3.7, part (c).
On the other hand, the last convergence property follows from the second and third
of (3.38) on the account of the fact that L2(Ω) and Lq′

(Ω) are both continuously
embedded into V �. Clearly, (3.38) also yields

g(t) = f(t)− du (t)
dt

+ ∂V ψ(u(t)), a.e. t ∈ (0, T ).

Finally, since uλ(t) → u0 strongly in Lr(Ω) as t → 0+, we may conclude that the
limit function u is the unique strong solution to the auxiliary problem (3.15) on
(0, T ). The proof of the proposition is finished. �

4. Proof of the main results

In this section we prove the main results stated in Section 2.2.
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4.1. Proof of Theorem 2.3. We can now complete the proof of the first
main result of the article. This program will be divided into several steps.

Step 1 (Additional uniform estimates). We give further (uniform) estimates
of solutions to the regularized problem (3.18) that will be needed in the sequel.
Recall that p, q, r ∈ [2,∞) satisfy p < q and (3.7). Let λ > 0 and consider the
unique strong solution uλ to (3.18). Multiplying (3.18) by uλ(t), integrating the
resulting identity over (0, t) and using (3.20), we deduce

1
2
‖uλ(t)‖2L2(Ω) +

∫ t

0

Φ
σ
(uλ(τ))dτ(4.1)

≤1
2
‖u0‖2L2(Ω) +

∫ t

0

‖∂Hψ(uλ(τ))‖Lq′ (Ω)‖uλ(τ)‖Lq(Ω)dτ

+
∫ T

0

‖f(τ)‖V �‖uλ(τ)‖V dτ

≤1
2
‖u0‖2L2(Ω) + C

∫ t

0

ψ(uλ(τ))dτ + C

∫ T

0

‖f(τ)‖p′
V �dτ

+
1
2

∫ t

0

Φ
σ
(uλ(τ))dτ +

T

2
σ

p
r .

Lemma 3.6 together with (3.19) thus gives

sup
t∈[0,T ]

‖uλ(t)‖2L2(Ω) +
∫ T

0

Φ
σ
(uλ(τ))dτ

≤ C

(
‖u0‖2L2(Ω) + TF(σ) +

∫ T

0

‖f(τ)‖p′
V �dτ

)
.

Next, multiplying (3.18) by tduλ(t)
dt and using the fact that

∫
Ω

f(t)t
duλ(t)

dt
dx =

d

dt

(
t

∫
Ω

f(t)uλ(t)dx

)
−

∫
Ω

f(t)uλ(t)dx

− t

∫
Ω

df

dt
(t)uλ(t)dx,

we obtain

t

∥∥∥∥duλ(t)
dt

∥∥∥∥2

L2(Ω)

+
d

dt

[
tΦ

σ
(uλ(t))

]
− Φ

σ
(uλ(t))

≤ d

dt

[
tψλ(uλ(t))

]− ψλ(uλ(t)) +
d

dt

(
t

∫
Ω

f(t)uλ(t)dx

)
−

∫
Ω

f(t)uλ(t)dx− t

∫
Ω

df

dt
(t)uλ(t)dx.
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Integrating the foregoing inequality over (0, t) and using (3.19) and (3.20) once
more, we readily see that∫ t

0

τ

∥∥∥∥duλ(τ)
dτ

∥∥∥∥2

L2(Ω)

dτ + tΦ
σ
(uλ(t)) +

∫ t

0

ψλ(uλ(τ))dτ(4.2)

≤tψλ(uλ(t)) +
∫ t

0

Φ
σ
(uλ(τ))dτ + t

∫
Ω

f(t)uλ(t)dx

−
∫ t

0

∫
Ω

f(τ)uλ(τ)dxdτ −
∫ t

0

τ

∫
Ω

df

dτ
(t)uλ(τ)dxdτ

≤ t

2
Φ

σ
(uλ(t)) + C

∫ T

0

Φ
σ
(uλ(τ))dτ + C sup

τ∈[0,T ]

τ‖f(τ)‖p′
V �

+
t

4
Φ

σ
(uλ(t)) + C

∫ t

0

‖f(τ)‖p′
V �dτ +

∫ T

0

∥∥∥∥τ
df

dτ
(τ)

∥∥∥∥p′

V �

dτ + TF(σ).

On the other hand, using the fact that

sup
t∈[0,T ]

t‖f(t)‖p′
V � ≤ C

(∫ T

0

‖f(t)‖p′
V � dt +

∫ T

0

∥∥∥∥t
df

dt
(t)

∥∥∥∥p′

V �

dt

)
,

we further get from (4.2) that∫ T

0

t

∥∥∥∥duλ

dt
(t)

∥∥∥∥2

L2(Ω)

dt + sup
t∈[0,T ]

tΦ
σ
(uλ(t))(4.3)

≤C

(
‖u0‖2L2(Ω) + TF(σ) +

∫ T

0

‖f(t)‖p′
V �dt +

∫ T

0

∥∥∥∥t
df

dt
(t)

∥∥∥∥p′

V �

dt

)
.

Letting λ → 0+, from (3.38) and (4.1) we infer

sup
t∈[0,T ]

‖u(t)‖2L2(Ω) +
∫ T

0

Φσ(u(τ))dτ

≤ C

(
‖u0‖2L2(Ω) + TF(σ) +

∫ T

0

‖f(t)‖p′
V �dt

)
(4.4)

and ∫ T

0

t

∥∥∥∥du

dt
(t)

∥∥∥∥2

L2(Ω)

dt + sup
t∈[0,T ]

tΦσ(u(t))(4.5)

≤C

(
‖u0‖2L2(Ω) + TF(σ) +

∫ T

0

‖f(t)‖p′
V �dt +

∫ T

0

∥∥∥∥t
df

dt
(t)

∥∥∥∥p′

V �

dt

)
,

for some constant C > 0 independent of t, f and λ > 0.

Step 2 (Passage to limit). Let T > 0 be fixed, u0 ∈ D(Φ) and f ∈ C1([0, T ];V ).
Let φμ be the Moreau-Yosida approximation of φ for μ > 0 and let uλ (λ > 0) be
the unique strong solution to (3.18). Multiplying (3.18) by ∂Hφμ(uλ(t)) and using
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the chain rule formula (see Proposition 3.3), we have

d

dt
φμ(uλ(t)) +

∫
Ω

gλ(t)∂Hφμ(uλ(t))dx

=
∫

Ω

∂Hψμ(uλ(t))∂Hφμ(uλ(t))dx +
∫

Ω

f(t)∂Hφμ(uλ(t))dx.

Let vλ,μ (t) := |JΦ
μ uλ (t) | r−2

p JΦ
μ uλ (t) for a.e. t ∈ (0, T ) and note that vλ,μ(t) ∈

W s,p
0 (Ω) on account of Lemma 3.10. Inserting the estimates of Lemmas 3.10 and

3.8 into the foregoing identity, we readily have

d

dt

[
φμ(uλ(t))

]
+

βCN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, t)− vλ,μ(y, t)|p
|x− y|N+sp

dxdy(4.6)

≤F(σ)
[
CN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, t)− vλ,μ(y, t)|p
|x− y|N+sp

dxdy

]1−ε

+
∫

Ω

f(t)∂Hφμ(uλ(t))dx.

Hölder’s inequality and (3.21) allow us to deduce∫
Ω

f(t)∂Hφμ(uλ(t)) dx ≤‖f(t)‖Lr(Ω)‖∂Hφμ(uλ(t))‖Lr′ (Ω)(4.7)

≤C‖f(t)‖Lr(Ω)φ(Jφ
λ (uλ(t)))

1
r′

≤Cσ
1
r′ ‖f(t)‖Lr(Ω).

Integrating (4.6) over (0, t), using (4.7), and recalling that the function vλ,μ ∈
Lp((0, T );W s,p

0 (Ω)), there holds

φμ(uλ(t)) + β

∫ t

0

CN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, τ)− vλ,μ(y, τ)|p
|x− y|N+sp

dxdydτ(4.8)

≤φμ(u0) + F(σ)
∫ t

0

[
CN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, τ)− vλ,μ(y, τ)|p
|x− y|N+sp

dxdy

]1−ε

dτ

+ Cσ
1
r′

∫ t

0

‖f(τ)‖Lr(Ω)dτ,

for some C > 0 independent of μ > 0. Therefore, since φμ(u0) ≤ φ(u0), after
passing to a subsequence of {μ} if necessary, we can infer the existence of a function
wλ ∈ Lp((0, T );W s,p

0 (Ω)) such that, as μ→ 0+,

(4.9) vλ,μ → wλ weakly in Lp((0, T );W s,p
0 (Ω)).

Next, it follows from Proposition 3.2 that

(4.10)
1
2μ

∥∥uλ(t)− Jφ
μuλ(t)

∥∥2

L2(Ω)
= φμ(uλ(t))− φ(Jφ

μuλ(t)) ≤ σ.

Estimate (4.10) implies that Jφ
μuλ(t) → uλ strongly in C([0, T ];L2(Ω)), as μ→ 0+.

Hence, by (4.9) we can deduce that wλ = vλ = |uλ|
r−2

p uλ. Moreover, by lower
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semi-continuity it follows that∫ t

0

CN,p,s

2

∫
RN

∫
RN

|vλ(x, τ)− vλ(y, τ)|p
|x− y|N+sp

dxdydτ

≤ lim inf
μ→0+

∫ t

0

CN,p,s

2

∫
RN

∫
RN

|vλ,μ(x, τ)− vλ,μ(y, τ)|p
|x− y|N+sp

dxdydτ.

Passing to the limit in (4.8) with respect to μ→ 0+, and applying Young’s inequal-
ity, we get that

φ(uλ(t)) +
β

2

∫ t

0

CN,p,s

2

∫
RN

∫
RN

|vλ(x, τ)− vλ(y, τ)|p
|x− y|N+sp

dxdydτ(4.11)

≤φ(u0) + tF(σ) + t
β

2
+ Cσ

1
r′

∫ t

0

‖f(τ)‖Lr(Ω)dτ,

for all t ∈ [0, T ]. Next, since the embedding V ↪→ Lq(Ω) is compact, the application
of Ascoli’s compactness lemma together with (3.38) yields

uλ → u strongly in C([0, T ];Lq(Ω)).

Since φ(uλ(t)) ≤ σ for all t ∈ [0, T ] and 2 (p + r − 2) /p ≤ r, then letting λ → 0+

in (4.11), we also obtain that

(4.12)

⎧⎪⎨⎪⎩
uλ → u weakly star in L∞((0, T );Lr(Ω)),
vλ → v weakly star in L∞((0, T );L2(Ω)),
vλ → v weakly in Lp((0, T );W s,p

0 (Ω)),

where vλ := |uλ|
r−2

p uλ and v := |u| r−2
p u. We can then conclude from (4.11) and

(4.12) that there exists a constant C > 0 such that

φ(u(t)) +
β

2

∫ t

0

CN,p,s

2

∫
RN

∫
RN

|v(x, τ)− v(y, τ)|p
|x− y|N+sp

dxdydτ(4.13)

≤φ(u0) + tF(σ) + t
β

2
+ Cσ

1
r′

∫ t

0

‖f(τ)‖Lr(Ω)dτ.

The final estimate (4.13) implies that

(4.14) lim sup
t→0+

φ(u(t)) ≤ φ(u0).

Since u ∈ C([0, T ];L2(Ω)) and φ is lower semi-continuous, we have that

(4.15) lim inf
t→0+

φ(u(t)) ≥ φ(u0).

Since Lr(Ω) is uniformly convex, we obtain from (4.14) and (4.15) that

(4.16) u(t) → u0 strongly in Lr(Ω) as t → 0+.

Step 3 (Solution to the original problem) Let T > 0 be fixed, u0 ∈ D(Φ) and

(4.17) f ∈W 1,p′
(0, T ; W−s,p′

(Ω) + Lr′
(Ω)) ∩ L1+γ(0, T ; Lr(Ω)) =: Yf

for some γ ≥ 0. Let F : [0,∞) → [0,∞) be an increasing differentiable function
satisfying the conclusion of Lemmas 3.6 and 3.8.
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• If γ > 0, we take a non-increasing function T� : [0,∞) × [0,∞) → (0, T ]
independent of T , u0 and f such that

T�(η, ξ)
[
F(η + 1) +

β

2

]
+ C(η + 1)

1
r′ T�(η, ξ)

γ
γ+1 ξ

1
1+γ ≤ 1

2
.

• If γ = 0, we take a non-increasing function Tf : [0,∞) → (0, T ] which
depends on f but not on T and u0 such that

Tf (η)
[
F(η + 1) +

β

2

]
+ C(η + 1)

1
r′

∫ T�(η)

0

‖f(τ)‖Lr(Ω) ≤ 1
2
.

Let now

T0 := T�

(
φ(u0),

∫ T

0

‖f(τ)‖1+γ
Lr(Ω) dτ

)
> 0 if γ > 0

and
T0 := Tf (φ(u0)) if γ = 0.

Since σ = φ(u0) + 1, it follows that

sup
t∈[0,T0]

φ(u(t)) < σ.

Since φ(u(t)) < σ for all t ∈ [0, T0], it follows from (3.14) that ∂V χVσ (u(t)) = {0},
a.e. t ∈ [0, T0]; thus by (3.13), ∂V Φσ(u(t)) = ∂V Φ(u(t)) for a.e. t ∈ [0, T0]. We have
shown that u is a strong solution of (3.8) on (0, T0) and hence, a strong solution of
(1.1) on (0, T0) if the initial datum u0 ∈ D (Φ).

Step 4 (Final argument). In this final step, we remove the assumption on the
initial datum u0 ∈ D(Φ). To this end, for fixed time T > 0, consider u0 ∈ Lr(Ω)
and a function f satisfying (4.17). Let u0,n ∈ D(Φ) and fn ∈ C1([0, T ];V ) be
sequences such that u0,n → u0 strongly in Lr(Ω) and fn → f strongly in Yf . Let
σ := φ(u0) + 2. Then for sufficiently large n ≥ n0, we have

φ(u0,n) ≤ φ(u0) + 1 and
∫ T

0

‖fn(t)‖1+γ
Lr(Ω)dt ≤

∫ T

0

‖f(t)‖1+γ
Lr(Ω)dt + 1.

Moreover, there exists a function h ∈ L1+γ(0, T ) such that, after passing to a
subsequence if necessary, we also have

‖fn(t)‖Lr(Ω) ≤ h(t) for a.e. t ∈ (0, T ).

We now consider the n-approximate problem

(4.18)

⎧⎨⎩
dun

dt
(t) + ∂V Φ(un(t))− ∂V ψ(un(t)) = fn(t), t ∈ (0, T )

un(0) = u0,n.

Note that (4.18) possesses a strong solution un on (0, T0) satisfying

(4.19) sup
t∈[0,T0]

φ(un(t)) ≤ φ(u0,n) + 1 ≤ σ

for some T0 independent of n. Indeed, employing Step 1 once again, we have the
following alternatives.
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• If γ > 0, then it is clear that

T�

(
φ(u0,n),

∫ T

0

‖fn‖1+γ
Lr(Ω)dt

)
≥ T�

(
Φ(u0) + 1,

∫ T

0

‖f‖1+γ
Lr(Ω)dt + 1

)
.

• If γ = 0, since ‖fn(t)‖Lr(Ω) ≤ h(t), then we can choose the function
Th : [0,∞) → (0, T ] such that

Th(η)
[
F(η + 1) +

β

2

]
+ C(η + 1)

1
r′

∫ Th(η)

0

|h(τ)|dτ ≤ 1
2

and Tfn
(η) ≥ Th(η),

for any η ∈ [0,∞).
Hence, we can take T0 > 0 uniformly with respect to n. In the remainder of

the proof, C > 0 will denote a constant that is independent of t, f , n, and initial
data, which only depends on the other structural parameters of the problem. Such
a constant may vary even from line to line. It remains to derive uniform estimates
for the solution un with respect to n. First, by estimates (4.4) and (4.5),

(4.20) sup
t∈[0,T0]

‖un(t)‖L2(Ω)+
∫ T0

0

CN,p,s

2

∫
RN

∫
RN

|un(x, t)− un(y, t)|p
|x− y|N+sp

dxdydt ≤ C

and
(4.21)∫ T0

0

t

∥∥∥∥dun

dt
(t)

∥∥∥∥2

L2(Ω)

dt + sup
t∈[0,T0]

tCN,p,s

2

∫
RN

∫
RN

|un(x, t)− un(y, t)|p
|x− y|N+sp

dxdy ≤ C.

Since ∂V Φ(un(t)) = (−Δ)s
pun(t) (see Proposition 3.5), then using (4.20) and the

fact that (see the proof of Proposition 3.5)

〈(−Δ)s
pun, un〉V �,V =

CN,p,s

2

∫
RN

∫
RN

|un(x, t)− un(y, t)|p
|x− y|N+sp

dxdy

we infer

(4.22)
∫ T0

0

‖∂V Φ(un(t))‖p′

W−s,p′ (Ω)
dt ≤ C.

Application of Lemma 3.6 also yields∫ T0

0

‖∂V Φ(un(t))‖q′

Lq′ (Ω)
dt ≤C

∫ T0

0

ψ(un(t))dt

≤F(σ)
∫ T0

0

(Φ(un(t)) + 1)1−ε
dt ≤ C.(4.23)

Therefore, since Lq′
(Ω) ↪→ V �, it follows from (4.18) that

(4.24)
∫ T0

0

∥∥∥∥dun

dt
(t)

∥∥∥∥q′

V �

dt ≤ C.

Estimate (4.13) with u = un, v = vn = |un|
r−2

p un, u0 = u0,n and f = fn gives the
uniform estimate

(4.25)
∫ T0

0

CN,p,s

2

∫
RN

∫
RN

|vn(x, t)− vn(y, t)|p
|x− y|N+sp

dxdydt ≤ C.

Since 2(p + r − 2)/r ≤ r, it follows from (4.19) that the sequence vn is bounded in
L∞((0, T0); L2(Ω)). We also notice the solution un satisfies the estimates (4.4) and
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(4.5) with a constant C > 0 independent of n. These uniform estimates allow us
to pass to the limit, after a subsequence if necessary, such that as n →∞,

(4.26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un → u weakly star in L∞((0, T0);Lr(Ω)),
un → u weakly in Lp((0, T0);V ),
t

1
p un → t

1
p u weakly start in L∞((0, T0);W

s,p
0 (Ω)),

vn → v weakly star in L∞((0, T0);L2(Ω)),
vn → v weakly in Lp((0, T0);W

s,p
0 (Ω)),

dun

dt → du
dt weakly in Lq′

((0, T0);V �),√
tdun

dt → √
tdu

dt weakly in L2((0, T0); L2(Ω)),
∂V Φ(un(·)) → g (·) weakly in Lp′

((0, T0);W−s,p′
(Ω)),

∂V ψ(un(·)) → h (·) weakly in Lq′
((0, T0);Lq′

(Ω)).

The first two of (4.26) follow from (4.19) and (4.20). The third and seventh con-
vergence properties of (4.26) follow from (4.21). The fourth and fifth convergence
properties are derived from the fact that vn is bounded in L∞((0, T0); L2(Ω)) and
from (4.24). The sixth convergence is an immediate consequence of (4.23), while
the convergence ∂V Φ(un(·)) → g is a consequence of (4.22). Finally, the last of
(4.26) follows from the sixth of (4.26) and ∂V Φ(un(·)) → g. Thus, we have shown

u ∈ Cw([0, T0];Lr(Ω)) ∩ C((0, T0];L2(Ω)).

We can now pass to strong convergence properties for the sequence un. Since the
embeddings V ↪→ Lq(Ω) and Lr(Ω) ↪→ V � are compact, it follows that

(4.27) un → u strongly in Lp((0, T0);Lq(Ω)) ∩ C([0, T0];V �),

which together with (4.26) implies that v = |u| r−2
p u. Moreover, it follows from

(4.23) and (4.27) that u(t) → u0 strongly in V � as t → 0+.
It remains to show that ∂V ψ(u(t)) = h(t) and g(t) = ∂V Φ(u(t)) for a.e. t ∈

(0, T0). Indeed, if r < q, as in the proof of Lemma 3.6 we have using (3.12) that∫ T

0

‖un(t)− u(t)‖q
Lq(Ω)dt(4.28)

≤C

(∫ T0

0

CN,p,s

2

∫
RN

∫
RN

|(un − u)(x, t)− (un − u)(y, t)|p
|x− y|N+sp

dxdydt

)αq
p

·
(∫ T0

0

‖un(t)− u(t)‖(1−α)qν
Lr(Ω) dt

) 1
ν

,

with α > 0 given by (3.11) and ν = p
p−αq . It follows from (4.19) and (4.27) that

un → u strongly in L(1−α)qν((0, T0);Lr(Ω)).

and, from (4.20) and (4.28), that

(4.29) un → u strongly in Lq((0, T0);Lq(Ω)).

We notice that ∂V ψ(u) = ∂Lq(Ω)ψLq (u) if u ∈ V , where ψLq : Lq(Ω) → [0,∞) is
defined by

ψLq (u) :=
1
q

∫
Ω

|u|qdx, for all u ∈ Lq(Ω).
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Since the subdifferential ∂Lq(Ω)ψLq is demi-closed in Lq(Ω)×Lq′
(Ω), we can apply

[16, Proposition 1.1] to infer that h(t) = ∂V ψ(u(t)), a.e. t ∈ (0, T0). If q ≤ r, then
(4.29) follows from (4.19) and (4.27). Hence, we have shown the first claim that
h(t) = ∂V ψ(u(t)) for a.e. t ∈ (0, T0). In order to show that g(t) = ∂V Φ(u(t)), a.e.
t ∈ (0, T0), we use (4.27) to take a set I ⊂ (0, T0) such that un(τ) → u(τ) strongly
on Lq(Ω) for all τ ∈ I and |(0, T0) \ I| = 0. Hence, for all τ ∈ I,∫ T0

τ

〈∂V Φ(un(t)), un(t)〉V �,V dt =
∫ T0

τ

〈fn(t), un(t)〉V �,V dt

+
∫ T0

τ

〈∂V ψ(un(t)), un(t)〉V �,V dt

− 1
2
‖un(T0)‖2L2(Ω) +

1
2
‖un(τ)‖2L2(Ω).

Since by (4.26), u ∈ W 1,2((τ, T0);L2(Ω)), then letting n → ∞ in the preceding
equality, we deduce

lim sup
n→∞

∫ T0

τ

〈∂V Φ(un(t)), un(t)〉V �,V dt ≤
∫ T0

τ

〈f(t), u(t)〉V �,V dt

+
∫ T0

τ

〈∂V ψ(u(t)), u(t)〉V �,V dt

− 1
2
‖u(T0)‖2L2(Ω) +

1
2
‖u(τ)‖2L2(Ω)

=
∫ T0

τ

〈g(t), u(t)〉V �,V dt.

It follows from (4.26) that g(t) = ∂V Φ(u(t)), a.e. t ∈ (τ, T0). Since τ was arbitrary
and |(0, T0) \ I| = 0, we have that g(t) = ∂V Φ(u(t)), a.e. t ∈ (0, T0).

It remains to show that u(0) = u0 in the sense of Lr(Ω). Estimate (4.13) with
u = un, v = vn, u0 = u0,n and f = fn allows us to pass to the limit as n →∞, to
get

φ(u(t)) ≤ φ(u0) + t

[
F(σ) +

β

2

]
+ Cσ

1
r′

∫ t

0

‖f(τ)‖Lr(Ω)dτ,

for all t ∈ [0, T0]. Arguing exactly as in (4.14)-(4.16) we easily find that u(t) → u0

strongly in Lr(Ω) as t → 0+ and u ∈ C([0, T0];L2(Ω)). We have shown that u
is a strong solution to problem (3.8) on (0, T0) and hence, a strong solution to
the initial-boundary value problem (1.1) on (0, T0). The proof of the theorem is
complete.

4.2. Proof of Theorem 2.5. In this subsection we prove Theorem 2.5. We
adapt a technique exploited by [18] to derive blow-up type results for the parabolic
equation associated with the classical p-Laplace operator. We divide the proof into
two parts.
Step 1 (Positive potential energies). We first establish that there is a constant
β > α such that

(4.30) |‖u (t)‖|W s,p
0 (Ω) ≥ β

and

(4.31) ‖u (t)‖Lq(Ω) ≥ C∗β
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for all t ≥ 0 (and for as long as the strong solution exists). First, we notice that by
definition (2.8) and the embedding (2.3), it holds

E (t) ≥ 1
p
|‖u (t)‖|p

W s,p
0 (Ω) −

1
q
Cq
∗ |‖u (t)‖|q

W s,p
0 (Ω)(4.32)

=
1
p
x̃p − Cq

∗
q

x̃q def= h (x̃) ,

where we have set x̃ := |‖u (t)‖|W s,p
0 (Ω). Clearly, the continuous function h is

increasing on (0, α) and decreasing on (α,∞) while h (x̃) → −∞ as x̃ → ∞ and
h (α) = E0. Then, since E (0) < E0 it immediately follows that one has a constant
β > α such that h (β) = E (0) . On the other hand, setting x̃0 = |‖u0‖|W s,p

0 (Ω)
then h (x̃0) ≤ E (0) = h (β) and x̃0 ≥ β on the account of (4.32). In order to
show (4.30), we proceed to prove it by contradiction. To this end, let us assume
that |‖u (t0)‖|W s,p

0 (Ω) < β for some t0 ∈ (0, T0) on which the strong solution exists.
By the continuity of this norm we can choose t0 > 0 such that |‖u (t0)‖|W s,p

0 (Ω) >

α. By (4.32), we find that E (t0) ≥ h
(
|‖u (t0)‖|W s,p

0 (Ω)
)

> h (β) = E (0) which
contradicts the fact that E (t) ≤ E (0), for all t ∈ (0, T0) , on which the strong
solution exists, with the latter following easily by (2.10). Hence, we have proved
(4.30). To prove (4.31), it remains to exploit (2.10) once again together with the
definition of E (t) and (4.30) in order to see that

1
q
‖u (t)‖q

Lq(Ω) ≥
1
p
|‖u (t)‖|p

W s,p
0 (Ω) − E (0) ≥ 1

p
βp − h (β) =

Cq
∗βq

q

from which (4.31) follows. Next, defining H (t) := E0 − E (t), we have from [18,
Lemma 4] that

(4.33) 0 < H (0) ≤ H (t) ≤ 1
q
‖u (t)‖q

Lq(Ω) ,

provided that E (0) < E0 and |‖u0‖|W s,p
0 (Ω) > α, for as long as the strong solution

exists.

Step 2 (Blow-up in L2-norm). As in [18] (and references therein), setting
G (t) := 1

2 ‖u (t)‖2L2(Ω), we have

G
′
(t) =

∫
Ω

u (t) ∂tu (t) dx =
∫

Ω

|u (t)|q dx− |‖u (t)‖|p
W s,p

0 (Ω)

= (1− p)
∫

Ω

|u (t)|q dx− pH (t)− pE0,

owing to the definition of H. By Step 1, (4.30)-(4.31), it is easy to check that

(4.34) pE0 =
αq (q − p)

βqq
Cq
∗β

q ≤ αq (q − p)
βq

‖u (t)‖q
Lq(Ω) ,

for as long as the strong solution exists. Setting d = (1− αq/βq) (q − p) > 0, it
follows that

(4.35) G
′
(t) ≥ d ‖u (t)‖q

Lq(Ω) + pH (t) ≥ 0.
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On the other hand, by Hölder’s inequality we observe that

(4.36) G
q
2 (t) ≤ Lq,Ω ‖u (t)‖q

Lq(Ω) , Lq,Ω :=
(

1
2

) q
2

|Ω| q2−1
.

Thus, combining (4.35)-(4.36), we get G
′
(t) ≥ (d/Lq,Ω) Gq/2 (t) and one can di-

rectly integrate this inequality over (0, t) , t > 0. It follows that

G
q
2−1 (t) ≥

(
G1−q/2 (0)− d

d/Lq,Ω

(q

2
− 1

)
t

)−1

which shows that G (t) blows-up in finite time with a time t ≤ t∗, given by (2.11).
The proof is finished.

5. Appendix

We now prove Proposition 3.5, Lemma 3.9, Lemma 3.10 and Proposition 2.4.

Proof of Proposition 3.5. Let f ∈ V � and u ∈ V = W s,p
0 (Ω) ∩ Lr(Ω). We

claim that f = ∂V Φ(u) if and only if for every v ∈ V ,

〈f, v〉V �,V(5.1)

=
CN,p,s

2

∫
RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))
|x− y|N+sp

dxdy.

Indeed, let f ∈ V � and u ∈ V = W s,p
0 (Ω)∩Lr(Ω) be such that (5.1) holds for every

v ∈ V . Then (5.1) holds with v replaced by v − u. Using the following well-known
inequality

|b|p
p
− |a|

p

p
≥ |a|p−2a(b− a), for any a, b ∈ R,

we get that for every v ∈ V ,

Φ(v)− Φ(u)

=
CN,p,s

2p

∫
RN

∫
RN

|v(x)− v(y)|p − |u(x)− u)(y)|p
|x− y|N+sp

dxdy

≥ CN,p,s

2

∫
RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))((v − u)(x)− (v − u)(y))
|x− y|N+sp

dxdy

= 〈f, v − u〉V �,V .

Hence, f = ∂V Φ(u). Conversely, let u ∈ V and set f := ∂V Φ(u) ∈ V �. Then by
definition, for every v ∈ V , we have that

(5.2) Φ(v)− Φ(u) ≥ 〈f, v − u〉V �,V .

Let t ∈ [0, 1], w ∈ V and set v = tw + (1− t)u in (5.2). Then

t〈f, w − u〉V �,V

(5.3)

≤ CN,p,s

2p

∫
RN

∫
RN

|(tw + (1− t)u)(x)− (tw + (1− t)u)(y)|p − |u(x)− u(y)|p
|x− y|N+sp

dxdy.
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Using the Dominated Convergence Theorem, we get from (5.3) that

〈f, w − u〉V �,V ≤ lim
t↓0

Φ(tw + (1− t)u)− Φ(u)
t

(5.4)

=
CN,p,s

2

∫
RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))((w − u)(x)− (w − u)(y))
|x− y|N+sp

dxdy.

Replacing w by u + w in (5.4), we get that for every w ∈ V ,

〈f, w〉V �,V(5.5)

≤CN,p,s

2

∫
RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))(w(x)− w(y))
|x− y|N+sp

dxdy.

Since (5.5) holds with w replaced by −w, it follows that

〈f, w〉V �,V =
CN,p,s

2

∫
RN

∫
RN

|u(x)− u(y)|p−2 (u(x)− u(y))(w(x)− w(y))
|x− y|N+sp

dxdy

and we have shown (5.1). The proof of the claim is finished. �

Proof of Lemma 3.9. We prove the inequality by elementary analysis. Let
the function g : R× R → R be given by

(5.6) g (z, t) = |z − t|p−2 (z − t)
(
|z|r−2

z − |t|r−2
t
)
− Cr,p

∣∣∣|z| r−2
p z − |t| r−2

p t
∣∣∣p ,

where we recall that

Cr,p = (r − 1)
(

p

r + p− 2

)p

.

Using the definition of E , we first notice that (3.28) is equivalent to showing that

(5.7) g (z, t) ≥ 0, ∀ (z, t) ∈ R
2.

Second, we mention that it is easy to verify that

g(z, t) = g(t, z), g(z, 0) ≥ 0, g(0, t) ≥ 0 and g(z, t) = g(−z,−t).

Therefore, without any restriction, we may assume that z ≥ t and hence, we have
that

g (z, t) = (z − t)p−1
(
|z|r−2

z − |t|r−2
t
)
− Cr,p

∣∣∣|z| r−2
p z − |t| r−2

p t
∣∣∣p ,

A simple calculation shows that

p

r + p− 2

[
|z| r−2

p z − |t| r−2
p t

]
=

∫ z

t

|τ | r−2
p dτ.(5.8)
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Since the function ϕ : R → R given by ϕ(τ) = |τ |p (p > 1) is convex, then using
the well-known Jensen inequality, it follows from (5.8) that

Cr,p

∣∣∣|z| r−2
p z − |t| r−2

p t
∣∣∣p = (r − 1)

∣∣∣∣ p

r + p− 2

[
|z| r−2

p z − |t| r−2
p t

]∣∣∣∣p
= (r − 1)

∣∣∣∣∫ z

t

|τ | r−2
p dτ

∣∣∣∣p
= (r − 1)(z − t)p

∣∣∣∣∫ z

t

|τ | r−2
p

dτ

z − t

∣∣∣∣p
≤ (r − 1)(z − t)p

∫ z

t

|τ |r−2 dτ

z − t

= (r − 1)(z − t)p−1

∫ z

t

|τ |r−2 dτ

= (z − t)p−1
(
|z|r−2

z − |t|r−2
t
)

.

We have shown (5.7) and this completes the proof of lemma. �

Proof of Lemma 3.10. Let u ∈ D(∂V Φ) = V and μ > 0. It follows from
Proposition 3.2 that Jφ

μu ∈ V = D(∂V Φ). Therefore,

∂Hφμ(u) =
u− Jφ

μu

μ
∈ V, for all u ∈ V.

Next, let w ∈ D(∂V Φ) ∩ D(∂Hφ) = V be such that ∂Hφ(w) ∈ V . Since
∂Hφ(w) = |w|r−2w ∈ W s,p

0 (Ω), it follows from Lemma 3.9 that there exists a
constant β = β(r, p, s) > 0 such that

βCN,p,s

2

∫
RN

∫
RN

∣∣∣|w(x)| r−2
p w(x)− |w(y)| r−2

p w(y)
∣∣∣p

|x− y|N+sp
dxdy

(5.9)

≤CN,p,s

2

∫
RN

∫
RN

|w(x)− w(y)|p−2 (w(x)− w(y))(|w(x)|r−2w(x)− |w(y)|r−2w(y))
|x− y|N+sp

dxdy

=
∫

Ω

(−Δ)s
pw|w|r−2wdx =

∫
RN

(−Δ)s
pw|w|r−2wdx = 〈∂V Φ(w), ∂Hφ(w)〉V �,V .

Now, let vμ := |Jφ
μu| r−2

p Jφ
μu. Note that vμ = 0 on R

N \ Ω and using that
∂Hφ(Jφ

μu) = ∂Hφμ(u) ∈ V , we get that∫
RN

|vμ|p dx =
∫

Ω

|vμ|p dx =
∫

Ω

|Jφ
μu|r−2+p dx ≤

∫
Ω

|u|r−2+p dx

≤
∫

Ω

|u|r−1|u|p−1 dx ≤
(∫

Ω

|u|p(r−1) dx

) 1
p
(∫

Ω

|u|p dx

) p−1
p

< ∞.

Since Jφ
μu ∈ D(∂V Φ) = V and ∂Hφ(Jφ

μu) = ∂Hφμ(u) ∈ V , (5.9) allows us to deduce
that vμ ∈W s,p

0 (Ω). We have shown the first claim (3.29).
Finally, assume that u ∈ D(∂V Φσ) = Vσ. Then by Propositions 3.2 and 3.4,

there holds Jφ
μu ∈ Vσ. Hence, for all u ∈ D(∂V Φσ) = Vσ and g ∈ ∂V Φσ(u), we have
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the estimate

〈g, ∂Hφλ(u)〉V �,V ≥λ−1
(
Φσ(u)− Φσ(Jφ

λ (u))
)

(5.10)

=λ−1
[
Φ(u)− Φ(Jφ

λ (u))
]

≥λ−1〈∂V Φ(Jφ
λ (u)), u− Jφ

λ (u)〉V �,V

=λ−1〈∂V Φ(Jφ
λ (u)), ∂Hφλ(u)〉V �,V .

Combining (5.9) together with (5.10), we easily obtain (3.29). This finishes the
proof of lemma. �

Proof of Proposition 2.4. As in Step 4 of the proof of Theorem 2.3, we
can pick a sufficiently smooth sequence of initial data u0,n ∈ D(Φ) ∩ V such that
u0,n → u0 strongly in V = W s,p

0 (Ω) ∩ Lr(Ω) as n → ∞. Then we consider again
the approximate problem (4.18) on (0, T0) (of course, now fn ≡ 0) which we test it
again with ∂tun ∈ L2

(
(0, T0); L2 (Ω)

)
. We note that every smooth solution of the

approximate problem (4.18) does possess such regularity. We obtain

(5.11)
d

dt
En (t) + ‖∂tun (t)‖2L2(Ω) = 0,

for all t ∈ (0, T0), and where we have set

En (t) :=
CN,p,s

2p

∫
RN

∫
RN

|un(x, t)− un(y, t)|p
|x− y|N+sp

dxdy − 1
q

∫
Ω

|un (x, t) |qdx.

Integrating (5.11) over the interval (0, t) allows us to deduce

En (t) ≤ En (0)

for all t ∈ (0, T0). We can now easily conclude the proof of Proposition 2.4 exploiting
the foregoing inequality. Indeed, recalling that r > N(q−p)

sp with q > p, we see that
un (t) → u (t) strongly in Lq (Ω), a.e. for t ∈ (0, T0), owing to (4.29). Passing to
the limit as n →∞, we first have En (0) → E (0) and then also∫

Ω

|un (x, t) |qdx →
∫

Ω

|u (x, t) |qdx a.e. for t ∈ (0, T0) .

This basic fact together with the weak lower-semicontinuity of the W s,p
0 (Ω)-norm

entails that E (t) ≤ lim infn→∞En (t) and this concludes the proof of (2.10). �
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