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Logarithmic stability in determining a boundary coefficient
in an IBVP for the wave equation

Käıs Ammari and Mourad Choulli

Communicated by Armen Shirikyan, received November 17, 2015.

Abstract. In [2] we introduced a method combining together an observability
inequality and a spectral decomposition to get a logarithmic stability estimate
for the inverse problem of determining both the potential and the damping
coefficient in a dissipative wave equation from boundary measurements. The
present work deals with an adaptation of that method to obtain a logarithmic
stability estimate for the inverse problem of determining a boundary damp-
ing coefficient from boundary measurements. As in our preceding work, the
different boundary measurements are generated by varying one of the initial
conditions.
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1. Introduction

We are concerned with an inverse problem for the wave equation when the
spatial domain is the square Ω = (0, 1) × (0, 1). To this end we consider the
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following initial-boundary value problem (abbreviated to IBVP in the sequel) :

(1.1)

⎧⎪⎪⎨⎪⎪⎩
∂2

t u − Δu = 0 in Q = Ω × (0, τ),
u = 0 on Σ0 = Γ0 × (0, τ),
∂νu + a∂tu = 0 on Σ1 = Γ1 × (0, τ),
u(·, 0) = u0, ∂tu(·, 0) = u1.

Here

Γ0 = ((0, 1) × {1}) ∪ ({1} × (0, 1)),

Γ1 = ((0, 1) × {0}) ∪ ({0} × (0, 1))

and ∂ν = ν ·∇ is the derivative along ν, the unit normal vector pointing outward of
Ω. We note that ν is everywhere defined except at the vertices of Ω. The boundary
coefficient a is usually called the boundary damping coefficient.

In the rest of this text we identify a|(0,1)×{0} by a1 = a1(x), x ∈ (0, 1) and
a|{0}×(0,1) by a2 = a2(y), y ∈ (0, 1). In that case it is natural to identify a, defined
on Γ1, by the pair (a1, a2).

1.1. The IBVP. We fix 1/2 < α ≤ 1 and we assume that a ∈ A , where

A = {b = (b1, b2) ∈ Cα([0, 1])2, b1(0) = b2(0), bj ≥ 0}.
This assumption guarantees that the multiplication operator by aj , j = 1, 2, de-
fines a bounded operator on H1/2((0, 1)). The proof of this fact will be proved in
Appendix A.

Let V = {u ∈ H1(Ω); u = 0 on Γ0} and we consider on V × L2(Ω) the linear
unbounded operator A given by

Aa = (w, Δv), D(Aa) = {(v, w) ∈ V × V ; Δv ∈ L2(Ω) and ∂νv = −aw on Γ1}.
One can prove that Aa is a m-dissipative operator on the Hilbert space V ×

L2(Ω) (for the reader’s convenience we detail the proof in Appendix B). Therefore,
Aa is the generator of a strongly continuous group of contractions etAa . Hence, for
each (u0, u1), the IBVP (1.1) possesses a unique solution denoted by ua = ua(u0, u1)
so that

(ua, ∂tua) ∈ C([0,∞); D(Aa)) ∩ C1([0,∞), V × L2(Ω)).

1.2. Main result. For 0 < m ≤ M , we set

Am,M = {b = (b1, b2) ∈ A ∩ H1(0, 1)2; m ≤ bj , ‖bj‖2
H1(0,1) ≤ M}.

Let U0 given by

U0 = {v ∈ V ; Δv ∈ L2(Ω) and ∂νv = 0 on Γ1}.
We observe that U0 × {0} ⊂ D(Aa), for any a ∈ A .

Let Ca ∈ B(D(Aa); L2(Σ1)) defined by

Ca(u0, u1) = ∂νua(u0, u1)|Γ1 .

We define the initial to boundary operator

Λa : u0 ∈ U0 −→ Ca(u0, 0) ∈ L2(Σ1).



LOGARITHMIC STABILITY IN DETERMINING A BOUNDARY COEFFICIENT 35

Clearly Ca ∈ B(D(Aa); L2(Σ1)) implies that Λa ∈ B(U0; L2(Σ1)), when U0 is
identified to a subspace of D(Aa) endowed with the graph norm of Aa. Precisely
the norm in U0 is the following one

‖u0‖U0 =
(
‖u0‖2

V + ‖Δu0‖2
L2(Ω)

)1/2

.

Henceforth, for simplicity sake, the norm of Λa −Λ0 in B(U0; L2(Σ1)) will denoted
by ‖Λa − Λ0‖.

Theorem 1.1. There exists τ0 > 0 so that for any τ > τ0, we find a constant
c > 0 depending only on τ such that

(1.2) ‖a − 0‖L2((0,1))2 ≤ cM
(∣∣ln (

m−1‖Λa − Λ0‖
)∣∣−1/2

+ m−1‖Λa − Λ0‖
)

,

for each a ∈ Am,M .

We point out that our choice of the domain Ω is motivated by the fact the
spectral analysis of the laplacian under mixed boundary condition is very simple
in that case. However this choice has the inconvenient that the square domain Ω
is no longer smooth. So we need to prove an observability inequality associated to
this non smooth domain. This is done by adapting the existing results. We note
that the key point in establishing this observability inequality relies on a Rellich
type identity for the domain Ω.

The inverse problem we discuss in the present paper remains largely open for an
arbitrary (smooth) domain as well as for the stability around a non zero damping
coefficient. Uniqueness and directional Lipschitz stability, around the origin, was
established by the authors in [3].

The determination of a potential and/or the sound speed coefficient in a wave
equation from the so-called Dirichlet-to-Neumann map was extensively studied
these last decades. We refer to the comments in [2] for more details.

2. Preliminaries

2.1. Extension lemma. We decompose Γ1 as follows Γ1 = Γ1,1 ∪Γ1,2, where
Γ1,1 = (0, 1) × {0} and Γ1,2 = {0} × (0, 1). Similarly, we write Γ0 = Γ0,1 ∪ Γ0,2,
with Γ0,1 = {1} × (0, 1) and Γ0,2 = (0, 1) × {1}.

Let (g1, g2) ∈ L2((0, 1))2. We say that the pair (g1, g2) obeys the compatibility
condition of the first order at the vertex (0, 0) if

(2.1)
∫ 1

0

|g1(t) − g2(t)|2 dt

t
< ∞.

We can define in a similar manner the compatibility condition of the first order
at the other vertices of Ω.

We need also to introduce compatibility conditions of the second order. Let
(fj , gj) ∈ H1((0, 1)) × L2((0, 1)), j = 1, 2. We say that the pair [(f1, g1), (f2, g2)]
satisfies the compatibility conditions of second order at the vertex (0, 0) when

f1(0) = f2(0),
∫ 1

0

|f ′
1(t) − g2(t)|2 dt

t
< ∞(2.2)

and
∫ 1

0

|g1(t) − f ′
2(t)|2

dt

t
< ∞.
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The compatibility conditions of the second order at the other vertices of Ω are
defined in the same manner.

The following theorem is a special case of [4, Theorem 1.5.2.8, page 50].

Theorem 2.1. (1) The mapping

w −→ (w|Γ0,1 , w|Γ0,2 , w|Γ1,1 , w|Γ1,2) = (g1, . . . , g4),

defined on D(Ω) is extended from H1(Ω) onto the subspace of H1/2((0, 1))4 con-
sisting in functions (g1, . . . , g4) so that the compatibility condition of the first order
is satisfied at each vertex of Ω in a natural way with the pairs (gj , gk).
(2) The mapping

w → (w|Γ0,1 , ∂xw|Γ0,1 , w|Γ0,2 , ∂yw|Γ0,2w|Γ1,1 ,−∂yw|Γ1,1 , w|Γ1,2 , − ∂xw|Γ1,2)

= ((f1, g1), . . . (f4, g4))

defined on D(Ω) is extended from H2(Ω) onto the subspace of [H3/2((0, 1)) ×
H1/2((0, 1))]4 of functions ((f1, g1), . . . (f4, g4)) so that the compatibility conditions
of the second order are satisfied at each vertex of Ω in a natural way with the pairs
[(fj , gj), (fk, gk)].

Lemma 2.1. (Extension lemma) Let gj ∈ H1/2((0, 1)), j = 1, 2, so that (g1, g2),
(g1, 0) and (g2, 0) satisfy the first order compatibility condition respectively at the
vertices (0, 0), (1, 0) and (0, 1). Then there exists u ∈ H2(Ω) so that u = 0 on Γ0

and ∂νu = gj on Γ1,j, j = 1, 2.

Proof. (i) We define f1(t) =
∫ t

0
g2(s)ds and f2(t) =

∫ t

0
g1(s)ds. Then (f1, g1)

and (f2, g2) satisfy the compatibility conditions of the second order at the vertex
(0, 0).

(ii) Let g̃1 ∈ H1/2((0, 1)) be such that
∫ 1

0
|eg1(t)|2

t dt < ∞. Let f̃1(t) =
∫ t

0
g2(s)ds.

Hence, it is straightforward to check that (f̃1, g̃1) and (0, g2) satisfy the compati-
bility conditions of the second order at (0, 0).

(iii) From (i) and (ii) we derive that the pairs [(f1, g1), (f2, g2)], [(f1, g1), (0, g2)]
and [(0, g1), (f2, g2)] satisfy the second order compatibility conditions respectively at
the vertices (0, 0), (1, 0) and (0, 1). We see that unfortunately the pair [(0, g1), (0, g2)]
doesn’t satisfy necessarily the compatibility conditions of the second order at the
vertex (1, 1). We pick χ ∈ C∞(R) so that χ = 1 in a neighborhood of 0 and
χ = 0 in a neighborhood of 1. Then [(0, χg1), (0, χg2)] satisfies the compatibility
condition of the second order at the vertex (1, 1). Since this construction is of local
character at each vertex, the cutoff function at the vertex (1, 1) doesn’t modify the
construction at the other vertices. In other words, the compatibility conditions of
the second order are preserved at the other vertices. We complete the proof by
applying Theorem 2.1. �

Corollary 2.1. Let a = (a1, a2) ∈ A and gj ∈ H1/2((0, 1)), j = 1, 2, so that
(g1, g2), (g1, 0) and (g2, 0) satisfy the first order compatibility condition respectively
at the vertices (0, 0), (1, 0) and (0, 1). Then there exists u ∈ H2(Ω) so that u = 0
on Γ0 and ∂νu = ajgj on Γ1,j, j = 1, 2.

Proof. It is sufficient to prove that (a1g1, a2g2) and (ajgj , 0), j = 1, 2, satisfy
the first order compatibility condition at (0, 0) with a1(0) = a2(0) for the first pair
and without any condition on aj for the second pair.
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Using a1(0) = a2(0), we get

t−1|a1(t) − a2(t)|2 ≤ 2t−1|a1(t) − a1(0)|2 + 2t−1|a2(t) − a2(0)|2
≤ 2t−1+2α([a1]2α + [a2]2α)

≤ 2([a1]2α + [a2]2α).

Here

[ai]α = sup{|ai(x) − ai(y)||x − y|−α; x, y ∈ [0, 1], x �= y}, i = 1, 2.

The last estimate together with the following one

|a1(t)g1(t) − a2(t)g2(t)|2 ≤ 2|a1(t) − a2(t)|2|g1(t)|2 + 2|a2(t)|2|g1(t) − g2(t)|2

yield∫ 1

0

|a1(t)g1(t) − a2(t)g2(t)|2 dt

t
≤ 4([a1]2α + [a2]2α)‖f‖L2((0,1))

+ 2‖a2‖L∞((0,1))

∫ 1

0

|g1(t) − g2(t)|2 dt

t
.

Hence ∫ 1

0

|g1(t) − g2(t)|2 dt

t
< ∞ =⇒

∫ 1

0

|a1(t)g1(t) − a2(t)g2(t)|2 dt

t
< ∞.

If (gj , 0) satisfies the first compatibility at the vertex (0, 0). Then∫ 1

0

|gj(t)|2 dt

t
< ∞.

Therefore ∫ 1

0

|ajgj(t)|2 dt

t
≤ ‖aj‖2

L∞((0,1))

∫ 1

0

|gj(t)|2 dt

t
< ∞.

Thus (ajgj , 0) satisfies also the first compatibility at the vertex (0, 0). �

2.2. Observability inequality. We discuss briefly how we can adapt the
existing results to get an observability inequality corresponding to our IBVP. We
first note that

Γ0 ⊂ {x ∈ Γ; m(x) · ν(x) < 0},
Γ1 ⊂ {x ∈ Γ; m(x) · ν(x) > 0},

where m(x) = x − x0, x ∈ R
2, and x0 = (α, α) with α > 1.

The following Rellich identity is a particular case of identity [5, (3.5), page
227]: for each 3/2 < s < 2 and ϕ ∈ Hs(Ω) satisfying Δϕ ∈ L2(Ω),

(2.3) 2
∫

Ω

Δϕ(m · ∇ϕ)dx = 2
∫

Γ

∂νϕ(m · ∇ϕ)dσ −
∫

Γ

(m · ν)|∇ϕ|2dσ.

Lemma 2.2. Let (v, w) ∈ D(Aa). Then

2
∫

Ω

Δv(m · ∇v)dx = 2
∫

Γ

∂νv(m · ∇v)dσ −
∫

Γ

(m · ν)|∇v|2dσ.
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Proof. Let (v, w) ∈ D(Aa). By Corollary 2.1, there exists ṽ ∈ H2(Ω) so that
ṽ = 0 on Γ0 and ∂ν ṽ = −aw on Γ1. In light of the fact that z = v − ṽ is such
that Δz ∈ L2(Ω), z = 0 on Γ0 and ∂νz = 0 on Γ1, we get z ∈ Hs(Ω) for some
3/2 < s < 2 by [5, Theorem 5.2, page 237]. Therefore v ∈ Hs(Ω). We complete
the proof by applying Rellich identity (2.3). �

Lemma 2.2 at hand, we can mimic the proof of [7, Theorem 7.6.1, page 252] in
order to obtain the following theorem:

Theorem 2.2. We assume that a ≥ δ on Γ1, for some δ > 0. There exist
M ≥ 1 and ω > 0, depending only on δ, so that

‖etAa(v, w)‖V ×L2(Ω) ≤ Me−ωt‖(v, w)‖V ×L2(Ω), (v, w) ∈ D(Aa), t ≥ 0.

An immediate consequence of Theorem 2.2 is the following observability in-
equality.

Corollary 2.2. We fix 0 < δ0 < δ1. Then there exist τ0 > 0 and κ, depending
only on δ0 and δ1 so that for any τ ≥ τ0 and a ∈ A satisfying δ0 ≤ a ≤ δ1 on Γ1,

‖(u0, u1)‖V ×L2(Ω) ≤ κ‖Ca(u0, u1)‖L2(Σ1).

Moreover, Ca is admissible for e−tAa and (Ca, Aa) is exactly observable.

We omit the proof of this corollary. It is quite similar to that of [7, Corollary
7.6.5, page 256].

Remark 2.1. It is worth mentioning that in Corollary 2.2 the observability
region Γ1 can be substituted by Γ0 or Γ2 = ({0} × (0, 1)) ∪ ((0, 1) × {1}) or Γ3 =
((0, 1)×{0})∪ ({1}× (0, 1)). In that case, the statement of Theorem 1.1 still holds
if Γ1 is substituted by Γj , j = 0 or j = 2 or j = 3.

3. The inverse problem

3.1. An abstract framework for the inverse source problem. In the
present subsection we consider an inverse source problem for an abstract evolu-
tion equation. The result of this subsection is the main ingredient in the proof of
Theorem 1.1.

Let H be a Hilbert space and A : D(A) ⊂ H → H be the generator of contin-
uous semigroup (T (t)). An operator C ∈ B(D(A), Y ), Y is a Hilbert space which
is identified with its dual space, is called an admissible observation for (T (t)) if for
some (and hence for all) τ > 0, the operator Ψ ∈ B(D(A), L2((0, τ), Y )) given by

(Ψx)(t) = CT (t)x, t ∈ [0, τ ], x ∈ D(A),

has a bounded extension to H.
We introduce the notion of exact observability for the system

z′(t) = Az(t), z(0) = x,(3.1)

y(t) = Cz(t),(3.2)

where C is an admissible observation for T (t). Following the usual definition, the
pair (A, C) is said exactly observable at time τ > 0 if there is a constant κ such
that the solution (z, y) of (3.1) and (3.2) satisfies∫ τ

0

‖y(t)‖2
Y dt ≥ κ2‖x‖2

X , x ∈ D(A).
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Or equivalently

(3.3)
∫ τ

0

‖(Ψx)(t)‖2
Y dt ≥ κ2‖x‖2

X , x ∈ D(A).

Let λ ∈ H1((0, τ)) such that λ(0) �= 0. We consider the Cauchy problem

(3.4) z′(t) = Az(t) + λ(t)x, z(0) = 0

and we set

(3.5) y(t) = Cz(t), t ∈ [0, τ ].

We fix β in the resolvent set of A. Let H1 be the space D(A) equipped with the
norm ‖x‖1 = ‖(β − A)x‖ and denote by H−1 the completion of H with respect to
the norm ‖x‖−1 = ‖(β−A)−1x‖. As it is observed in [1, Proposition 4.2, page 1644]
and its proof, when x ∈ H−1 (which is the dual space of H1 with respect to the pivot
space H) and λ ∈ H1((0, T )), then, according to the classical extrapolation theory
of semigroups, the Cauchy problem (3.4) has a unique solution z ∈ C([0, τ ];H).
Additionally y given in (3.5) belongs to L2((0, τ), Y ).

When x ∈ H, we have by Duhamel’s formula

(3.6) y(t) =
∫ t

0

λ(t − s)CT (s)xds =
∫ t

0

λ(t − s)(Ψx)(s)ds.

Let
H1

� ((0, τ), Y ) =
{
u ∈ H1((0, τ), Y ); u(0) = 0

}
.

We define the operator S : L2((0, τ), Y ) −→ H1
� ((0, τ), Y ) by

(3.7) (Sh)(t) =
∫ t

0

λ(t − s)h(s)ds.

If E = SΨ, then (3.6) takes the form

y(t) = (Ex)(t).

Let Z = (β − A∗)−1(X + C∗Y ).

Theorem 3.1. We assume that (A, C) is exactly observable at time τ . Then
(i) E is one-to-one from H onto H1

� ((0, τ), Y ).
(ii) E can be extended to an isomorphism, denoted by Ẽ, from Z ′ onto L2((0, τ); Y ).
(iii) There exists a constant κ̃, independent on λ, so that

(3.8) ‖x‖Z′ ≤ κ̃|λ(0)|e
‖λ′‖2

L2((0,τ))
|λ(0)|2 τ‖Ẽx‖L2((0,τ),Y ).

Proof. (i) and (ii) are contained in [1, Theorem 4.3, page 1645]. We need
only to prove (iii). To do this, we start by observing that S∗, the adjoint of S,
maps L2((0, τ), Y ) into H1

r ((0, τ); Y ) =
{
u ∈ H1((0, τ), Y ); u(τ) = 0

}
. Moreover

S∗h(t) =
∫ τ

t

λ(s − t)h(s)ds, h ∈ L2((0, τ); Y ).

We fix h ∈ L2((0, τ); Y ) and we set k = S∗h. Then

k′(t) = λ(0)h(t) −
∫ τ

t

λ′(s − t)h(s)ds.
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Hence

|λ(0)‖h(t)‖2 ≤
(∫ τ

t

|λ′(s − t)|
|λ(0)| [|λ(0)|‖h(s)‖]ds + ‖k′(t)‖

)2

≤ 2
(∫ τ

t

|λ′(s − t)|
|λ(0)| [|λ(0)|‖h(s)‖]ds

)2

+ 2‖k′(t)‖2

≤ 2
‖λ′‖2

L2((0,τ))

|λ(0)|2
∫ t

0

[|λ(0)|‖h(s)‖]2ds + 2‖k′(t)‖2.

The last estimate is obtained by applying Cauchy-Schwarz’s inequality.
A simple application of Gronwall’s lemma entails

[|λ(0)|‖h(t)‖]2 ≤ 2e
2

‖λ′‖2
L2((0,τ))

|λ(0)|2 τ‖k′(t)‖2.

Therefore,

‖h‖L2((0,τ);Y ) ≤
√

2
|λ(0)|e

‖λ′‖2
L2((0,τ))

|λ(0)|2 τ‖k′‖L2((0,τ);Y ).

This inequality yields

(3.9) ‖h‖L2((0,τ);Y ) ≤
√

2
|λ(0)|e

‖λ′‖2
L2((0,τ))

|λ(0)|2 τ‖S∗h‖H1
r ((0,τ);Y ).

The adjoint operator of S∗, acting as a bounded operator from [H1
r ((0, τ); Y )]′

into L2((0, τ); Y ), gives an extension of S. We denote by S̃ this operator. By [1,
Proposition 4.1, page 1644] S̃ defines an isomorphism from [Hr((0, 1); Y )]′ onto
L2((0, τ); Y ). In light of the fact that

‖S̃‖B([H1
r ((0,τ);Y )]′;L2((0,τ);Y )) = ‖S∗‖B(L2((0,τ);Y );H1

r ((0,τ);Y )),

(3.9) implies

(3.10)
|λ(0)|√

2
e
−

‖λ′‖2
L2((0,τ))

|λ(0)|2 τ ≤ ‖S̃‖B([H1
r ((0,τ);Y )]′;L2((0,τ);Y )).

On the other hand, according to [1, Proposition 2.13, page 1641], Ψ possesses a
unique bounded extension, denoted by Ψ̃ from Z ′ into [H1

r ((0, τ); Y )]′ and there
exists a constant c > 0 so that

(3.11) ‖Ψ̃‖B(Z′;[H1
r ((0,τ);Y )]′) ≥ c.

Consequently, Ẽ = S̃Ψ̃ gives the unique extension of E to an isomorphism from Z ′

onto L2((0, τ); Y ).
We end up the proof by noting that (3.8) is a consequence of (3.10) and (3.11).

�
3.2. An inverse source problem for an IBVP for the wave equation.

In the present subsection we are going to apply the result of the preceding subsection
to H = V × L2(Ω), H1 = D(Aa) equipped with its graph norm and Y = L2(Γ1).

We consider the IBVP

(3.12)

⎧⎪⎪⎨⎪⎪⎩
∂2

t u − Δu = λ(t)w in Q,
u = 0 on Σ0,
∂νu + a∂tu = 0 on Σ1,
u(·, 0) = 0, ∂tu(·, 0) = 0,
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Let (0, w) ∈ H−1 and λ ∈ H1((0, τ)). From the comments in the preceding
subsection, (3.12) has a unique solution uw so that (uw, ∂tuw) ∈ C([0, τ ];V ×L2(Ω))
and ∂νuw|Γ1 ∈ L2(Σ1).

We consider the inverse problem consisting in the determination of w, so that
(0, w) ∈ H−1, appearing in the IBVP (3.12) from the boundary measurement
∂νuw|Σ1 . Here the function λ is assumed to be known.

Taking into account that {0}× V ′ ⊂ H−1, where V ′ is the dual space of V , we
obtain as a consequence of Corollary 2.1:

Proposition 3.1. There exists a constant C > 0 so that for any λ ∈ H1((0, τ))
and w ∈ V ′,

(3.13) ‖w‖V ′ ≤ C|λ(0)|e
‖λ′‖2

L2((0,τ))
|λ(0)|2 τ‖∂νuw‖L2(Σ1).

3.3. Proof of Theorem 1.1. We start by observing that ua is also the unique
solution of ⎧⎪⎪⎨⎪⎪⎩

∫
Ω

u′′(t)vdx =
∫

Ω

∇u(t) · ∇vdx −
∫

Γ1

au′(t)v, v ∈ V.

u(0) = u0, u′(0) = u1.

Let u = ua − u0. Then u is the solution of the following problem

(3.14)

⎧⎪⎪⎨⎪⎪⎩
∫

Ω

u′′(t)vdx =
∫

Ω

∇u(t) · ∇vdx −
∫

Γ1

au′(t)v −
∫

Γ1

au′
0(t)v, v ∈ V.

u(0) = 0, u′(0) = 0.

For k, � ∈ Z, we set

λk� = [(k + 1/2)2 + (� + 1/2)2]π2

φk�(x, y) = 2 cos((k + 1/2)πx) cos((� + 1/2)πy).

We check in a straightforward manner that u0 = cos(
√

λk�t)φk� when (u0, u1) =
(φk�, 0).

In the sequel k, � are arbitrarily fixed. We set λ(t) = cos(
√

λk�t) and we define
wa ∈ V ′ by

wa(v) = −
√

λk�

∫
Γ1

aφk�v.

In that case (3.14) becomes⎧⎪⎪⎨⎪⎪⎩
∫

Ω

u′′(t)vdx =
∫

Ω

∇u(t) · ∇vdx −
∫

Γ1

au′(t)v + λ(t)wa(v), v ∈ V.

u(0) = 0, u′(0) = 0.

Consequently, u is the solution of (3.12) with w = wa. Applying Proposition 3.1,
we find

(3.15) ‖wa‖V ′ ≤ Ceλk�τ2‖∂νu‖L2(Σ1).
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But

a1(0)
∣∣∣ ∫

Γ1

(aφk�)2dσ
∣∣∣ =

1√
λk�

∣∣wa((a1 ⊗ a2)φk�)
∣∣(3.16)

≤ 1√
λk�

‖wa‖V ′‖(a1 ⊗ a2)φk�‖V ,

where we used a1(0) = a2(0), and

(3.17) ‖(a1 ⊗ a2)φk�‖V ≤ C0

√
λkl‖a1 ⊗ a2‖H1(Ω),

Here C0 is a constant independent on a and φk�.

We note (a1 ⊗ a2)φk� ∈ V even if a1 ⊗ a2 �∈ V .

Now a combination of (3.15), (3.16) and (3.17) yields

a1(0)
(
‖a1φk‖2

L2((0,1))+‖a2φ�‖2
L2((0,1))

)
≤ C‖a1‖H1(0,1)‖a2‖H1(0,1)e

λk�τ2/2‖∂νu‖L2(Σ1),

where φk(s) =
√

2 cos((k + 1/2)πs). This and the fact that m ≤ aj(0) and
‖aj‖H1((0,1)) ≤ M imply

‖a1φk‖2
L2((0,1)) + ‖a2φ�‖2

L2((0,1)) ≤ C
M2

m
eλk�τ2/2‖∂νu‖L2(Σ1),

Hence, where j = 1 or 2,

‖ajφk‖2
L2((0,1)) ≤ C

M2

m
ek2τ2π2‖∂νu‖L2(Σ1).

Let

ak
j =

∫ 1

0

aj(x)φk(x)dx, j = 1, 2.

Since

|ak
j | =

∣∣∣∣∫ 1

0

aj(x)φk(x)dx

∣∣∣∣ ≤ ‖ajφk‖L1((0,1)) ≤ ‖ajφk‖L2((0,1)),

we get

(ak
j )2 ≤ C

M2

m
ek2τ2π2‖∂νu‖L2(Σ1).

On the other hand

‖∂νu‖L2(Σ1) = ‖Λa(φkl) − Λ0(φkl)‖L2(Σ) ≤ Ck2‖Λa − Λ0‖.
Hence

(3.18) (ak
j )2 ≤ C

M2

m
ek2(τ2π2+1)‖Λa − Λ0‖.

Let q = M2

m and α = τ2π2 + 2. We obtain in a straightforward manner from (3.18)∑
|k|≤N

(ak
j )2 ≤ CqeαN2‖Λa − Λ0‖.
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Consequently,

‖aj‖2
L2((0,1)) ≤

∑
|k|≤N

(ak
j )2 +

1
N2

∑
|k|>N

k2(ak
j )2

≤ C

(
qeαN2‖Λa − Λ0‖ +

‖aj‖2
H1((0,1))

N2

)

≤ C

(
qeαN2‖Λa − Λ0‖ +

M2

N2

)
≤ CM2

(
1
m

eαN2‖Λa − Λ0‖ +
1

N2

)
.

That is

(3.19) ‖aj‖2
L2((0,1)) ≤ CM2

(
1
m

eαN2‖Λa − Λ0‖ +
1

N2

)
.

Assume that ‖Λa − Λ0‖ ≤ δ = me−α. Let then N0 ≥ 1 be the greatest integer
so that

C

m
eαN2

0 ‖Λa − Λ0‖ ≤ 1
N2

0

.

Using
1
m

eα(N0+1)2‖Λa − Λ0‖ ≤ 1
(N0 + 1)2

,

we find

(2N0)2 ≥ (N0 + 1)2 ≥ 1
α + 1

ln
(

m

‖Λa − Λ0‖
)

.

This estimate in (3.19) with N = N0 gives

(3.20) ‖aj‖L2((0,1)) ≤ 2C
√

α + 1M
∣∣ln (

m−1‖Λa − Λ0‖
)∣∣−1/2

.

When ‖Λa − Λ0‖ ≥ δ, we have

(3.21) ‖aj‖L2((0,1)) ≤ M

δ
‖Λa − Λ0‖.

In light of (3.20) and (3.21), we find a constants c > 0, that can depend only
on τ , so that

‖aj‖L2((0,1)) ≤ cM
(∣∣ln (

m−1‖Λa − Λ0‖
)∣∣−1/2

+ m−1‖Λa − Λ0‖
)

.

Appendix A

We prove the following lemma

Lemma A.1. Let 1/2 < α ≤ 1 and a ∈ Cα([0, 1]). Then the mapping f �→ af
defines a bounded operator on H1/2((0, 1)).

Proof. We recall that H1/2((0, 1)) consists in functions f ∈ L2(0, 1) with
finite norm

‖f‖H1/2((0,1)) =
(
‖f‖2

L2((0,1)) +
∫ 1

0

∫ 1

0

|f(x) − f(y)|2
|x − y|2 dxdy

)1/2

.



44 KAÏS AMMARI AND MOURAD CHOULLI

Let a ∈ Cα([0, 1]). We have

|a(x)f(x) − a(y)f(y)|2
|x − y|2 ≤ ‖a‖2

L∞(0,1)

|f(x) − f(y)|2
|x − y|2 + |f(y)|2 [a]2α

|x − y|2(1−α)
,

where
[a]α = sup{|a(x) − a(y)||x − y|−α; x, y ∈ [0, 1], x �= y}.

Using that 1/2 < α ≤ 1, we find that x → |x − y|−2(1−α) ∈ L1((0, 1)), y ∈ [0, 1],
and ∫ 1

0

dx

|x − y|2(1−α)
≤ 1

2α − 1
, y ∈ [0, 1].

Hence af ∈ H1/2((0, 1) with

‖af‖H1/2((0,1)) ≤
1

2α − 1
‖a‖Cα([0,1])‖f‖H1/2((0,1)).

Here
‖a‖Cα([0,1]) = ‖a‖L∞((0,1)) + [a]α.

�

Appendix B

We give the proof of the following lemma

Lemma B.1. Let a ∈ A and Aa be the unbounded operator defined on V ×L2(Ω)
by

Aa = (w, Δv), D(Aa) = {(v, w) ∈ V × V ; Δv ∈ L2(Ω) and ∂νv = −aw on Γ1}.
Then Aa est m-dissipative.

Proof. Let 〈·, ·〉 be scalar product in V × L2(Ω). That is

〈(v1, w1), (v2, w2)〉 =
∫

Ω

∇v1 · ∇v2dx +
∫

Ω

w1w2dx, (vj , wj) ∈ V ×L2(Ω), j = 1, 2.

For (vj , wj) ∈ D(Aa), j = 1, 2, we have

〈Aa(v1, w1), (v2, w2)〉 = 〈(w1, Δv1), (v2, w2)〉(B.1)

=
∫

Ω

∇w1 · ∇v2dx +
∫

Ω

Δv1w2dx

Applying twice Green’s formula, we get∫
Ω

∇w1 · ∇v2dx = −
∫

Ω

w1Δv2dx +
∫

Γ1

w1∂νv2,(B.2) ∫
Ω

Δv1w2dx = −
∫

Ω

∇v1 · ∇w2dx +
∫

Γ1

aw1w2.(B.3)

We take the sum side by side of identities (B.2) and (B.3). Using that ∂νv2 = −aw2

on Γ1 we obtain∫
Ω

∇w1 · ∇v2dx +
∫

Ω

Δv1w2dx = −
∫

Ω

w1Δv2dx −
∫

Ω

∇v1 · ∇w2dx

= −〈(v1, w1), Aa(v2, w2)〉 − 2�
∫

Γ1

a w1w2.
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This and (B.1) yield

〈Aa(v1, w1), (v2, w2)〉 = −〈(v1, w1), Aa(v2, w2)〉 − 2�
∫

Γ1

a w1w2.

In other words, Aa is dissipative.
We complete the proof by showing that Aa is onto implying that Aa is m-

dissipative according to [7, Proposition 3.7.3, page 99]. To this end we are going
to show that for each (f, g) ∈ V × L2(Ω), the problem

w = f − Δv = g.

has a unique solution (v, w) ∈ D(Aa).

In light of the fact ψ → (∫
Ω
|∇ψ|2dx

)1/2 defines an equivalent norm on V , we
can apply Lax Milgram’s lemma. We get that there exists a unique v ∈ V satisfying∫

Ω

∇v · ∇ψdx =
∫

Ω

gψdx −
∫

Γ1

awψ, ψ ∈ V.

From this identity, we deduce in a standard way that −Δv = g in Ω and ∂νv = −aw
on Γ1. The proof is then complete �
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