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Abstract. We study the long time behavior of solutions to a nonlinear par-
tial differential equation arising in the mean-field description of trapped ro-
tating Bose-Einstein condensates. The equation can be seen as a hybrid be-
tween the well-known nonlinear Schrödinger/Gross-Pitaevskii equation and
the Ginzburg-Landau equation. We prove existence and uniqueness of global
in-time solutions in the physical energy space and establish the existence of a
global attractor within the associated dynamics. We also obtain basic struc-
tural properties of the attractor and an estimate on its Hausdorff and fractal
dimensions. As a by-product, we establish heat-kernel estimates on the linear
part of the equation.
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1. Introduction

1.1. Physical motivation. The study of quantized vortex dynamics in Bose-
Einstein condensates (BECs) is a topic of intense experimental and theoretical
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investigations. A particular interesting situation is created when the BEC is stirred
through an external rotating confinement potential. Indeed, if the rotation speed
exceeds some critical value vortices and, more generally, vortex lattices are being
created, see, e.g., [1, 3] for a broader introduction.

From a mathematical point of view, rotating BECs can be described within the
realm of a mean-field model, the so-called Gross-Pitaevskii equation [29]. In the
following, we shall assume, without loss of generality, that the system rotates around
the z-axis with a given speed Ω ∈ R. Placing ourselves in the associated rotating
reference frame, the corresponding mathematical model is a nonlinear Schrödinger
equation (NLS) given by

(1.1) i∂tψ = −1
2
Δψ + λ|ψ|2ψ + V (x)ψ − ΩLψ.

Here, t ∈ R, x ∈ R
d with d = 3, or d = 2, respectively. The latter corresponds to

the assumption of homogeneity of the BEC along the z-axis (see, e.g., [7, 27], for
a rigorous scaling limit from three to effective two-dimensional models for BEC).
The parameter λ � 0 describes the strength of the inter-particle interaction, which
in this work is assumed to be repulsive. The potential V describes the magnetic
trap and is usually taken in the form of a harmonic oscillator, i.e.

(1.2) V (x) =
1
2
ω2|x|2, ω ∈ R.

Here, and in the following, we choose V to be rotationally symmetric for simplicity.
All our results can be easily generalized to the case of an anisotropic harmonic
oscillator. Finally, ΩLψ describes the rotation around the z-axis, where

(1.3) Lψ := −i(x1∂x2ψ − x2∂x1ψ) ≡ −ix⊥ · ∇ψ,
denotes the corresponding quantum mechanical rotation operator.

Most rigorous mathematical results on vortex creation are based on standing
wave solutions of (1.1), i.e. solutions of the form ψ(t, x) = ϕ(x)e−iμt, μ ∈ R, which
leads to the following nonlinear elliptic equation

(1.4) −1
2
Δϕ+ λ|ϕ|2ϕ+ V (x)ϕ− ΩLϕ− μϕ = 0.

Equation (1.4) can be interpreted as the Euler-Lagrange equation of the associated
Gross-Pitaevskii energy functional [29, 30]:

(1.5) EGP(ϕ) :=
∫

Rd

(
1
2
|∇ϕ|2 + V (x)|ψ|2 +

λ

2
|ϕ|4 − ΩϕLϕ

)
dx,

One possible way of constructing solutions to (1.4) is thus to minimize (1.5) under
the constraint ‖ϕ‖2L2 = M , where M > 0 denotes a given mass. This consequently
yields a chemical potential μ = μ(M) � 0 playing the role of a Lagrange multi-
plier. In order to do so, one requires ω > |Ω| which ensures that EGP is bounded
from below. Physically speaking, this condition means that the confinement po-
tential V (x) is stronger than the rotational forces, ensuring that the BEC stays
trapped. Within this framework, it was proved in [30] that the hereby obtained
physical ground states, i.e. energy minimizing solutions of (1.4), undergo a symme-
try breaking (of the rotational symmetry) for sufficiently strong Ω and/or λ � 0.
The latter is interpreted as the onset of vortex-lattice creation.

On the other hand, it is often argued in the physics literature that a small
amount of dissipation must be present for the experimental realization of stable
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vortex lattices, cf. [17, 25, 26]. In order to describe such dissipative effects, not
present in the original Gross-Pitaevskii equation (1.1), the following phenomeno-
logical model has been proposed in [34] and subsequently been studied in, e.g.,
[10, 18, 21, 25, 26]:

(1.6) (iβ − γ)∂tψ = −1
2
Δψ + λ|ψ|2ψ + V (x)ψ − ΩLψ − μψ.

Here β ∈ R and γ > 0 are physical parameters whose ratio describes the strength of
the dissipation. (In [21] the authors use formal arguments based on quantum kinetic
theory to obtain γ

β ≈ 0.03.) Note that any time-independent solution ψ = ϕ(x) of
(1.6) solves the stationary NLS (1.4). In contrast to (1.1), equation (1.6) is no
longer Hamiltonian and only makes sense for t ∈ R+.

1.2. Mathematical setting and main result. This work is devoted to a
rigorous mathematical analysis of (1.6). In particular, we shall be interested in the
long time behavior of its solutions as t → +∞. To this end, it is convenient to
re-scale time such that β2 + γ2 = 1. Then we can write

iβ − γ = −eiϑ, for some ϑ ∈
(
− π

2
,
π

2

)
.

Note that by doing so, the real part of eiϑ has the same (positive) sign as γ > 0. We
shall thus be concerned with the following initial value problem for (t, x) ∈ R+×R

d

and d = 2, 3:

(1.7) −eiϑ∂tψ = −1
2
Δψ + λ|ψ|2σψ + V (x)ψ − ΩLψ − μψ, ψ|t=0 = ψ0(x),

where ψ0 will be chosen in some appropriate function space (see below), and σ > 0
a generalized nonlinearity. Formally, the usual Gross-Pitaevskii equation (1.1) is
obtained from (1.7) in the limit ϑ → ±π

2 . On the other hand, if ϑ = 0 the
Hamiltonian character of the model is completely lost and (1.7) instead resembles
a nonlinear parabolic equation of complex Ginzburg-Landau (GL) type, cf. [2] for
a review on this type of models.

Equation (1.7) can thus be seen as a hybrid between the Gross-Pitaevskii/Non-
linear Schrödinger equation and the complex Ginzburg-Landau equation. Both kind
of models have been extensively studied in the mathematical literature: For local
and global well-posedness results on NLS, with or without quadratic potentials V ,
we refer to [11, 8, 9]. Allowing for the inclusion of a rotation term, the initial value
problem for (1.1) has been analyzed in [4]. Similarly, well-posedness results for the
complex GL equation in various spaces can be found in [19, 23, 24]. The existence
and basic properties of a global attractor for solutions to GL (on bounded domains
D ⊂ R

d) are studied in [31] and [28]. Moreover, the so-called inviscid limit which
links solutions of GL to solutions of NLS has been established in [35]. However,
none of the aforementioned results directly apply to the model (1.7), which involves
an unbounded (quadratic) potential V and a rotation term, neither of which have
been included in the studies on GL cited above. One should also note that the GL
equation in its most general form allows for different complex pre-factors in front of
the Laplacian and the nonlinearity. In our case those pre-factors coincide, allowing
for a closer connection to NLS. Very recently, a similar type of such restricted GL
models with λ < 0 (and without potential and rotation terms) has been studied
in [12, 13] as an “intermediate step” between the NLS and the nonlinear heat
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equation. Finally, we also mention that equation (1.6) with β = 0 is used to
numerically obtain the Gross-Pitaevskii ground states, cf. [5, 16].

As announced before, we shall mainly be interested in the long time behavior
of solutions to (1.7). In view of this, the main result of our paper can be stated in
the following form:

Theorem 1.1. Let ω > |Ω|, ϑ ∈ (−π
2 ,

π
2 ), λ � 0, and 0 < σ < d

2(d−2) with
d ∈ {2, 3}. Then for any

ψ0 ∈ Σ :=
{
f ∈ H1(Rd) : |x|f ∈ L2(Rd)

}
there exits a unique strong solution ψ ∈ C([0,∞),Σ) to (1.7). The associated mass
and energy thereby satisfy the identities (4.4) and (4.5) below. If, in addition,
λ > 0, the evolutionary system (1.7) possesses a global attractor A ⊂ Σ, i.e., A is
is invariant under the time-evolution associated to (1.7) and such that

inf
φ∈A

‖ψ(t)− φ‖L2(Rd)
t→+∞−→ 0.

More precisely,

A =
{
ψ0 : ψ0 = ψ(0) for some ψ ∈ C((−∞,∞); Σ) solution to (1.7)

}
is a connected compact set in L2(Rd) and uniformly attracts bounded sets in L2(Rd).
Furthermore, for σ � 2

d , A has finite Hausdorff and fractal dimensions which de-
pend on the given parameters as described in Proposition 6.10. Finally, if μ < ωd

2
it holds A = {0}.

Here, Σ is the physical energy space ensuring that EGP(ψ(t)) is finite. The
assumption on σ > 0 is thereby slightly more restrictive than the one for the usual
H1-subcritical nonlinearities (see Remark 3.2 below). Note however, that we may
always take σ = 1 in the above theorem which corresponds to the usual cubic
nonlinearity. In addition, the condition ω > |Ω| ensures that the confinement is
stronger than the rotation, and thus, the system remains trapped for all times t � 0.

As we shall see, neither the mass nor the (total) energy are conserved quantities
of the time-evolution, but for a defocusing, non-vanishing nonlinearity λ > 0, there
are absorbing balls for ψ in both the mass and the energy space, see Section 5 for
a precise definition. The existence of a global attractor A therefore requires the
presence of the nonlinearity and, of course, the presence of the confining potential
V . Clearly, all stationary solutions ϕ ∈ Σ of (1.4) are members of A. However,
since for μ sufficiently large there are always at least two such solutions (namely,
zero and the nontrivial energy minimizer) and since A is connected, it is unclear
what the precise long-time behavior of (1.7) is. Indeed, in the case of the GL
equation for superconducting materials it is known [33] that the global attractor
contains not only all possible steady state solutions, but also the heteroclinic orbits
joining these steady states, and we consequently expect a similar behavior to also
hold also in our model.

Except in the case μ < ωd
2 , the precise dependence of the dimension of A on

the given physical parameters is not known. In Section 6.2 we shall prove that the
Hausdorff dimension dimH(A) � m, where m depends in a rather complicated way
on all the involved parameters. It is interesting, however, to check that m→ +∞,
as |Ω| → ω. In other words, the influence of the rotation term potentially increases
the dimension of the attractor. This is consistent with numerical and physical
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experiments on the creation of vortex lattices in rotating BEC. For a recent (non-
rigorous) study which employs numerical simulations and asymptotic analysis to
investigate the corresponding pattern formation mechanism, we refer to [10]. In
fact, one easily observes that in the linear case (λ = 0) the dynamics admits expo-
nentially growing modes, cf. Section 2.1 below for more details. It is argued in [10]
that this type of instability mechanism is responsible for the nucleation of a large
number of vortices at the periphery of the atomic cloud, as can be seen in physical
experiments.

The proof of Theorem 1.1 will be done in several steps: First, we shall establish
local (in-time) well-posedness of (1.7) in Section 3 below. Then, we will show how
to extend this result to global in-time solutions in Section 4, where we also prove
that for μ < ωd

2 solutions decay to zero as t → +∞. The main technical step for
the existence of an attractor is then to prove certain uniform bounds on the total
mass and energy as done in Section 5. This will allow us to conclude the existence
of an absorbing ball and of a global attractor in Section 6, where we shall also
prove the announced estimates on the dimension under the additional hypothesis
σ � 2

d . Finally, we collect some basic computations regarding the kernel of the
linear semigroup in the appendix.

2. Mathematical preliminaries

In this section we shall collect several preliminary results to be used later on.

2.1. Spectral properties of the linear Hamiltonian. In the following, we
denote by

(2.1) HΩ := −1
2
Δ + V (x)− ΩL, x ∈ R

d,

the linear Hamiltonian operator, with V (x) given in (1.2). Note that in the case
without rotation, i.e. Ω = 0, the operator

(2.2) H0 =
1
2

(
−Δ + ω2|x|2

)
,

is nothing but the (isotropic) quantum mechanical harmonic oscillator in, respec-
tively, d = 2, or 3 spatial dimensions. The spectral properties of H0 are well known
[20, 32]:

Lemma 2.1. H0 is essentially self-adjoint on C∞0 (Rd) ⊂ L2(Rd) with compact
resolvent. The spectrum of H0 is given by σ(H0) = {E0,n}n∈N, where

E0,n = ω
(d

2
+ n− 1

)
, n = 1, 2, . . . .

In addition, the eigenvalue E0,n is
(
d+ n− 2
n− 1

)
−fold degenerate.

In particular, E0,n � E0,1 ≡ ωd
2 > 0, for all n ∈ N. The associated eigenfunc-

tions form a complete orthonormal basis of L2(Rd). In d = 2, they are explicitly
given by [20]:

χ0
n1,n2

(x1, x2) = fn1(x1)fn2(x2), nj ∈ N,
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where n1+n2 = n and the fnj ∈ S(R) are the eigenfunctions of the one-dimensional
harmonic oscillator, i.e., an appropriately normalized Gaussians times a Hermite
polynomial of order nj − 1. An analogous formula holds in d = 3 dimensions.

In the case with Ω 
= 0, we first note that the commutator [HΩ, L] = 0, due
to the rotational symmetry of the potential V . This implies that HΩ and L have
a common orthonormal basis of eigenfunctions {χn}n∈N0 , which can be obtained
by taking appropriate linear combinations of the eigenvalues of H0, see [20]. An
important assumption throughout this work, will be that ω > |Ω|, ensuring confine-
ment of the BEC. In mathematical terms, this condition implies that the rotational
term can be seen as a perturbation of the positive definite operator H0, such that
HΩ is still positive definite. In other words, we have that

(2.3) HΩχn = EΩ,nχn,

where the new eigenvalues EΩ,n ∈ R (indexed in increasing order) are related to
the unperturbed E0,n via

{EΩ,n, n ∈ N} = {E0,	 +mΩ, −�+ 1 � m � �− 1, for � ∈ N}.
In particular, under the assumption that ω > Ω, we still have: EΩ,n � ωd

2 , for all
n ∈ N. Thus, the ground state energy eigenvalue stays the same with and without
rotation.

With these spectral data at hand, we can now look at the linear time-evolution
(λ = 0) associated to (1.6), i.e.

(2.4) (iβ − γ)∂tψ = HΩψ − μψ.
Using the fact that {χn}n∈N comprises an orthonormal basis, we can decompose
the solution to this equation via

(2.5) ψ(t, x) =
∑
n∈N

cn(t)χn(x),

where {cn(t)}n∈N ∈ �2, i.e.
∑ |cn(t)|2 < +∞. In view of (2.3), (2.4) we find

cn(t) = cn(0) exp(−(iβ + γ)(EΩ,n − μ)t),

In particular, the normalization β2 + γ2 = 1 yields

‖ψn(t)‖2L2 ≡
∞∑

n=1

|cn(t)|2 =
∞∑

n=1

|cn(0)|2e−2 cos ϑ(EΩ,n−μ)t,

where we identify γ = cosϑ. For ϑ ∈ (−π
2 ,

π
2 ) the right hand side exponentially

decays to zero as t → +∞, provided μ < EΩ,n, for all n ∈ N. This is equivalent
to saying that μ < EΩ,1. On the other hand, if cn(0) = 0, then cn(t) = 0 for all
t > 0. Hence, given a μ > EΩ,1 the solution is exponentially decaying as long as
the initial data is such that cn(0) = 0 for all n ∈ N for which EΩ,n < μ. Otherwise,
we have, in general, exponential growth of the L2-norm of ψ(t).

Remark 2.2. In the case where we choose μ = EΩ,m for some fixed m ∈ N0,
we see that the |cm(t)|2 = |cm(0)|2 is a conserved quantity of the linear time
evolution. All higher modes exponentially decay towards zero, whereas all lower
modes will exponentially increase. We consequently expect linear instability of
stationary states of the nonlinear system.
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2.2. Dispersive properties of the linear semi-group. In order to set up
a well-posedness result for the nonlinear equation (1.6), we need to study the reg-
ularizing properties of the linear semigroup associated to HΩ, i.e.

SΩ(t) := exp
(
−e−iϑtHΩ

)
, t ∈ R+,

As usual we identify SΩ(t) with its associated integral kernel via

SΩ(t)f(x) =
∫

Rd

SΩ(t, x, y)f(y) dy, f ∈ L2(Rd).

The following lemma states some basic properties of SΩ(t) to be used later on.

Lemma 2.3. Let ϑ ∈ (−π
2 ,

π
2 ) and t > 0. Then

SΩ(t, x, y) =
(

ω

2π sinh(e−iϑωt)

) d
2

exp (Φ(t, x, y)) ,(2.6)

where the pre-factor in front of the exponent is understood in terms of the principal
value of the complex logarithm, and the phase function Φ is given by

Φ(t, x, y) = − ω

sinh(e−iϑωt)

(
1
2
(|x|2 + |y|2) cosh(e−iϑωt)− cosh(e−iϑΩt)(x1y1 + x2y2)

+ i sinh(e−iϑΩt)(x2y1 − x1y2)
)
.

Moreover, for ω > |Ω|, there exists δ > 0 such that

(2.7) ‖SΩ(t)f‖Lr � C t
d
2 ( 1

r− 1
q )‖f‖Lq

and

(2.8) ‖∇SΩ(t)f‖Lr + ‖xSΩ(t)f‖Lr � C t−
1
2+ d

2 ( 1
r− 1

q )‖f‖Lq ,

for all 1 � q � r � ∞ and all 0 < t < δ, where the constants C and δ only depend
on ϑ, ω, and Ω.

The proof of Lemma 2.3 is a lengthy but straightforward calculation given
in the Appendix. It is based on the well-known Mehler formula, cf. [9], and a
time-dependent change of coordinates introduced in [4].

Remark 2.4. The decay estimates stated above are the same as for the heat
equation. Indeed, SΩ(T ) may be viewed as an analytic perturbation of the classical
heat semigroup. In the case without potential and without rotation, i.e. Ω = ω = 0,
similar estimates have been derived in, e.g., [12].

3. Local well-posedness

In this section we set up a local well-posedness result for the initial value prob-
lem (1.7). In order to do so, we use Duhamel’s formula to rewrite (1.7) as

(3.1) ψ(t) = SΩ(t)ψ0 − e−iϑ

∫ t

0

SΩ(t− τ)
(
λ|ψ(τ)|2σ − μ

)
ψ(τ) dτ,

for all t ∈ [0, T ]. Here, and in the following, we denote ψ(t) ≡ ψ(t, ·). We shall
work in the physical energy space given by

Σ =
{
f ∈ H1(Rd) : |x|f ∈ L2(Rd)

}
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and equipped with the norm

‖f‖2Σ := ‖f‖2L2 + ‖∇f‖2L2 + ‖xf‖2L2 .

The estimates on the semi-group SΩ(t) stated in Lemma 2.3 allow us to infer the
following result (which is similar to those in [19, 23]).

Proposition 3.1. Let λ, μ ∈ R, ϑ ∈ (−π
2 ,

π
2 ), ω > |Ω|, and d ∈ {2, 3}.

(i) Let p > max(σd, 2σ + 1) and ψ0 ∈ Lp(Rd). Then there exists a time
T > 0 and a unique solution ψ ∈ C([0, T ];Lp(Rd)) to (1.7), depending
continuously on the initial data.

(ii) If, in addition, 0 < σ < d
2(d−2) and ψ0 ∈ Σ, then there exists a T ∗ > 0

such that the solution from (i) satisfies

ψ ∈ C([0, T ∗]; Σ).

Moreover, the solution is maximal in the sense that either T ∗ = +∞, or
the following blow-up alternative holds:

lim
t→T∗−

‖ψ(t)‖Σ = ∞.

Proof. The proof is based on a fixed point argument using Duhamel’s formula
and the properties of the semigroup SΩ(t). To this end, we first note that the term
μψ is of no importance here, as it can always be added in a subsequent step (in
fact, we could have included it in the kernel of SΩ(t)). Hence let us assume that
μ = 0 for notational convenience.

To prove (i), we will show that the mapping

ψ �→ Ξ(ψ)(t) := SΩ(t)ψ0 − e−iϑ

∫ t

0

SΩ(t− τ)
(
λ|ψ(τ)|2σψ(τ)

)
dτ

is a contraction in the space

XT :=
{
ψ ∈ C([0, T ];Lp(Rd)) : ‖ψ‖L∞(0,T ;Lp) � 2‖ψ0‖Lp

}
for small enough T > 0. To do so, we can use the kernel estimate (2.7) with the
following choice of parameters:

r = p � 2σ + 1, q =
p

2σ + 1
, when d = 2,

r = p > max(σd, 2σ + 1), q =
p

2σ + 1
, when d = 3.

Note that any such a choice of p implies that dσ < p. One can also see that
1 � q � r �∞ in both cases. This yields

‖Ξ(ψ)(t)‖Lp � ‖ψ0‖Lp + λ

∫ t

0

∥∥SΩ(t− τ)
(
|ψ(τ)|2σψ(τ)

)∥∥
Lp dτ

� ‖ψ0‖Lp + C

∫ t

0

(t− τ)−dσ/p‖ψ(τ)‖2σ+1
Lp dτ

� ‖ψ0‖Lp + C‖ψ‖2σ+1
L∞(0,T ;Lp)

∫ T

0

τ−dσ/p dτ

Since σ < p
d , the remaining integral is finite and hence,

‖Ξ(ψ)(t)‖Lp � ‖ψ0‖Lp + CT 1− dσ
p ‖ψ‖2σ+1

L∞(0,T ;Lp),
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where 1 − dσ
p > 0. Thus, for T > 0 sufficiently small, we conclude that Ξ indeed

maps XT onto itself. Likewise it holds that for two solutions ψ and ψ̃

‖Ξ(ψ̃)(t)− Ξ(ψ)(t)‖Lp

� λ

∫ t

0

∥∥SΩ(t− τ)
(
|ψ̃(τ)|2σψ̃(τ)− |ψ(τ)|2σψ(τ)

)∥∥
Lp dτ

� C

∫ t

0

(t− τ)−dσ/p
(
‖ψ̃(τ)‖2σ

Lp + ‖ψ(τ)‖2σ
Lp

)
‖ψ̃(τ)− ψ(τ)‖Lp dτ

� CT 1− dσ
p ‖ψ‖2σ

L∞(0,T ;Lp)‖ψ̃ − ψ‖L∞(0,T ;Lp),

which shows that Ξ is a contraction for T > 0 sufficiently small.

To prove (ii), we first note that by Sobolev imbedding Σ ↪→ Lp(Rd), for p <
p∗ = 2d

d−2 when d = 3 and p < ∞ when d = 2, respectively. Thus Σ ∩ Lp(Rd) = Σ
for p < p∗. We now want to show that for 0 < σ < d

2(d−2) , the Σ norm of the
solution is controlled by an appropriately chosen Lp norm satisfying p < p∗ and the
conditions in part (i).

The first step to do so, relies on appropriate expressions for the commutators
[∇, SΩ(t)] and [x, SΩ(t)]. At least formally, it holds that

−eiϑ∂t[∇, SΩ(t)] = [∇,HΩSΩ(t)] = HΩ[∇, SΩ(t)] + [∇,HΩ]SΩ(t),

and one easily computes

[∇,HΩ] = ∇V + iΩ∇⊥ = ω2x+ iΩ∇⊥,
in view of (1.2). Hence, Duhamel’s formula and the fact that [∇, SΩ(0)] = 0 imply

[∇, SΩ(t)] = −e−iϑ

∫ t

0

SΩ(t− τ)
(
ω2x+ iΩ∇⊥

)
SΩ(τ) dτ.

Using the fact that
[x,HΩ] = ∇− iΩx⊥,

we likewise obtain

[x, SΩ(t)] = −e−iϑ

∫ t

0

SΩ(t− τ)
(
∇− iΩx⊥

)
SΩ(τ) dτ.

Straightforward calculations then yield

∇ψ(t) = SΩ(t)∇ψ0 − e−iϑ

∫ t

0

SΩ(t− τ)
(
λ∇(|ψ|2σψ) + (ω2x+ iΩ∇⊥)ψ

)
(τ) dτ

as well as

xψ(t) = SΩ(t)xψ0 − e−iϑ

∫ t

0

SΩ(t− τ)
(
λx|ψ|2σψ + (∇− iΩx⊥)ψ

)
(τ) dτ.

We consequently expect that the combination of ψ, xψ,∇ψ will form a closed set
of estimates (a fact already observed in [4]).

It follows that the Σ norm of ψ is controlled by its Lp norm. For instance,
choose r = 2 and q such that

1
q

=
2σ
p

+
1
2
, in (2.7).
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Note that the condition q � 1 is equivalent to p � 4σ and thus we require the
existence of a p such that

max(4σ, σd, 2σ + 1) < p <
2d
d− 2

.

For d ∈ {2, 3} one can readily check that 0 < σ < d
2(d−2) ensures the existence of

such a p. It follows that∥∥∥∫ t

0

SΩ(t− τ)∇
(
|ψ|2σψ

)
(τ) dτ

∥∥∥
L2

� C‖ψ‖2σ
L∞(0,T ;Lp)‖∇ψ‖L∞(0,T ;L2)

∫ t

0

(t− τ)− dσ
p dτ.

On the other hand, the linear terms can be estimated with r = q = 2 in (2.7), to
obtain

‖∇ψ‖L∞(0,T ;L2) � ‖∇ψ0‖L2 + C1T
1− dσ

p ‖ψ‖2σ
L∞(0,T ;Lp)‖∇ψ‖L∞(0,T ;L2)

+ C2T
(
‖xψ‖L∞(0,T ;L2) + ‖∇ψ‖L∞(0,T ;L2)

)
� ‖∇ψ0‖L2 + C3T

1− dσ
p ‖ψ‖2σ

L∞(0,T ;Lp)‖∇ψ‖L∞(0,T ;L2).

for T > 0 sufficiently small (depending on the size of ‖ψ‖L∞Lp). Similar arguments
for ψ and xψ imply

‖ψ‖L∞(0,T ;Σ) � ‖ψ0‖Σ + CT 1− dσ
p ‖ψ‖2σ

L∞(0,T ;Lp)‖ψ‖L∞(0,T ;Σ).

Choosing T > 0 even smaller, if necessary, the second term on the right hand side
can be absorbed on the left hand side and we are done. As before, this inequality
also applies to the differences of two solutions ψ, ψ̃, which yields the continuity of
ψ in Σ.

We denote by T ∗ > 0 the maximal time of existence in Σ. This is always less
than or equal to T > 0, the maximal time of existence in Lp(Rd). To prove the
blow-up alternative, assume by contradiction that T ∗ <∞, and ‖ψ(t, ·)‖Σ remains
bounded for t ∈ [0, T ∗]. Then, by Sobolev imbedding ‖ψ(t, ·)‖Lp also remains
bounded and thus, we can restart the local existence argument in Σ leading to a
contradiction. �

Remark 3.2. Unfortunately, our method of proof does not yield existence of
solutions for the full H1-subcritical regime, i.e., σ < 2

d−2 . We expect that this is
only a technical issue that can be overcome using a different approach (for example,
by using ideas from [23], or by generalizing the space-time estimates of [6] to SΩ).
Note, however, that our slightly more restrictive condition σ < d

2(d−2) still allows to
take σ = 1 in d = 3. Hence, the physically most relevant case of a cubic nonlinearity
is covered.

4. Global existence and asymptotic vanishing of solutions

In this section, we shall first prove the global existence of solutions in the energy
space before showing that for any choice of μ < EΩ,1, these solutions asymptotically
vanish as t→ +∞.
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4.1. Global existence. In order to prove global well-posedness of (1.7), we
will need to collect some useful a-priori estimates. To this end, we denote for ψ ∈ Σ
the total mass by

(4.1) M(ψ) := ‖ψ‖2L2 ,

and the total energy by

(4.2) E(ψ) :=
∫

Rd

(
1
2
|∇ψ|2 + V (x)|ψ|2 +

λ

σ + 1
|ψ|2σ+2 − ΩψLψ

)
dx.

The latter is nothing but the sum of the kinetic, potential, nonlinear potential,
and rotational energy. Clearly, for ψ ∈ Σ, Sobolev’s imbedding implies that all the
terms in E(ψ) are finite, provided σ < 2

d−2 (and hence also for our range of σ).
For simplicity of notation, we will write E(t) ≡ E(ψ(t, ·)) and likewise for M(t),
whenever we compute the mass and energy of the time-dependent solution ψ(t, x)
to (1.7). In addition, the free energy is given by

(4.3) F (ψ) := E(ψ)− μM(ψ).

In the case of the usual Gross-Pitaevskii equation, i.e. ϑ = ±π
2 , one finds, that

both M(t) = M(0) and E(t) = E(0) are conserved in time [4]. In our dissipative
model this is no longer the case. Instead we have the following result, which can
be seen as an extension of some well-known identities proved for the classical GL
equation, cf. [19, 24, 31, 35].

Lemma 4.1. Let σ < d
2(d−2) and ψ ∈ C([0, T ]; Σ) be a solution to (1.7). Then

the following identities hold:

(4.4) M(t) + 2 cosϑ
∫ t

0

(
E(s) +

λσ

σ + 1
‖ψ(s, ·)‖2σ+2

L2σ+2 − μM(s)
)
ds = M(0),

and

(4.5) F (t) + 2 cosϑ
∫ t

0

∫
Rd

|∂tψ(s, x)|2 dx ds = F (0).

In particular, for ϑ ∈ (−π
2 ,

π
2 ), the free energy F (ψ) is a non-increasing functional

along solutions of (1.7).

Proof. In a first step, let us assume sufficient regularity (and spatial decay)
of ψ, such that all the following calculations are justified. Then, as in the case
of the usual NLS, identity (4.4) is obtained by multiplying (1.7) by ψ̄, integrating
with respect to x ∈ R

d and taking the real part of the resulting expression (see,
e.g., [4, 11]). This yields

(4.6)
d

dt
M(t) = −2 cosϑ

(
E(t) +

λσ

σ + 1
‖ψ(t)‖2σ+2

L2σ+2 − μM(t)
)

which directly implies (4.4) after an integration in time. Similarly, after multiplying
(1.7) by ∂tψ̄, integrating with respect to x, and taking the real part, we obtain

(4.7)
d

dt

(
E(t)− μM(t)

)
= −2 cosϑ

∫
Rd

|∂tψ(t, x)|2 dx,

which yields (4.5) after integration w.r.t. time.
The second step then consists of a classical density argument (cf. [12]), which,

together with the fact that ψ(t) depends continuously on the initial data ψ0 ∈ Σ,
allows us to extend (4.4) and (4.5) to the case of general solutions ψ ∈ C([0, T ; Σ).
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Finally, we note that for ϑ ∈ (−π
2 ,

π
2 ) we have cosϑ > 0, and thus (4.5) directly

implies that F (t) � F (0), for all t � 0. �

Having in mind that ψ ∈ C([0, T ],Σ) the assumption on σ implies (via Sobolev
imbedding) that the integrand appearing in identity (4.4) is a continuous function
of time. The fundamental theorem of calculus therefore allows us to differentiate
(4.4) w.r.t. t and consequently use the differential inequality (4.6). However, the
same is not true for (4.5), i.e., we cannot use (4.7), since at this point we do not
know wether ∂tψ ∈ C([0, T ;L2(Rd)) holds true. This fact will play a role in some
of the proofs given below.

Another preliminary result, to be used several times in the following, is the
fact that under our assumptions on the parameters ω,Ω, λ, σ, the energy is indeed
non-negative.

Lemma 4.2. Let ω > |Ω|, λ � 0, and σ < 2
d−2 . Then for any u ∈ Σ there exists

a constant c = c(ω,Ω, λ, σ) > 0, such that such that

‖∇u‖2L2 + ‖xu‖2L2 + ‖u‖2σ+2
L2σ+2 � cE(u).

Proof. Since λ � 0, the only possibly negative term within E(u) is given by
the rotational energy. However, since Ω2/ω2 =: ε < 1, Young’s inequality applied
to (1.3) yields the pointwise interpolation estimate∣∣ΩuLu∣∣ � ω2

2
|x⊥|2|u|2 dx+

ε

2
|∇⊥u|2 � V (x)|u|2 +

ε

2
|∇u|2.

We therefore can bound the energy from below via

0 � 1− ε
2
‖∇u‖2L2 +

λσ

σ + 1
‖u‖2σ+2

L2σ+2 � E(u).

Analogously, we have

0 � 1− ε
2
‖xu‖2L2 +

λσ

σ + 1
‖u‖2σ+2

L2σ+2 � E(u).

Combining these two estimates then yields the desired result with a constant

c =
4

min{1− ε, 2λσ
σ+1}

.

Note that c→ +∞ as |Ω| → ω. �

The mass/energy-relations stated in Lemma 4.1 can now be used to infer global
existence of solutions in the case of defocusing case λ > 0.

Proposition 4.3. Let ω > |Ω|, ϑ ∈ (−π
2 ,

π
2 ), λ � 0, and σ < d

2(d−2) . Then,
for any ψ0 ∈ Σ there exists a unique global-in-time solution ψ ∈ C([0,∞); Σ) to
(1.7).

Proof. In view of the blow-up alternative stated in Proposition 3.1, all we
need to show is that the Σ-norm remains bounded for all t � 0. Lemma 4.2
implies that this is the case, as soon as we we can show that both M(t) and E(t)
are bounded. In order to do so, we first consider the case μ < 0 and recall that
cosϑ > 0 for ϑ ∈ (−π

2 ,
π
2 ). In this case identity (4.5) implies

E(t) + |μ|M(t) � F (0) < +∞,
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and since both E(t) andM(t) are non-negative, we directly infer the required bound
on the mass and energy.

On the other hand, for μ � 0, identity (4.4) yields (since λ � 0)

M(t) � M(0) + 2μ cosϑ
∫ t

0

M(s) ds,

and hence, Grownwall’s lemma implies

(4.8) M(t) � M(0)
(
1 + 2μt cosϑ e2μt cos ϑ

)
.

Using this estimate in identity (4.5) we obtain

E(t) � F (0) + μM(t) � E(0) + 2μ2t cosϑM(0)e2μt cos ϑ.

The right hand side is finite, for all t � 0 and thus, the assertion is proved. �

Remark 4.4. The global in-time strong solutions constructed above are of the
same type as the corresponding solutions for NLS with quadratic potentials, cf.
[4, 8]. It is certainly possible to, alternatively, construct global weak solutions
to (1.7) as has been done for the usual GL model in, e.g., [19, 23]. But since we
consider the equation (1.7) as a toy model describing possible relaxation phenomena
in the mean-field dynamics of BEC, we have decided to remain as close as possible to
the corresponding NLS theory. In particular, we do not make any use of the strong
smoothing property of the linear (heat type) semigroup SΩ(t) for ϑ ∈ (−π

2 ,
π
2 ). We

finally note that our set-up makes it possible to directly generalize the inviscid limit
results of [35] to our model.

4.2. Asymptotically vanishing solutions. The discussion in Section 2.1
shows that solutions to the linear time evolution λ = 0 asymptotically vanish,
provided μ < E0, i.e., the lowest (positive) energy eigenvalue of HΩ. We shall
prove that the same is true for in the nonlinear case λ > 0.

Proposition 4.5. Let ϑ ∈ (−π
2 ,

π
2 ), λ � 0, ω > |Ω|, and ψ ∈ C([0,∞),Σ) be

a solution of (1.7) with μ < EΩ,1 = ωd
2 . Then

lim
t→+∞ ‖ψ(t)‖L2 = 0,

exponentially fast.

Proof. For solutions ψ ∈ C([0,∞),Σ) we are allowed to use the differential
inequality (4.6), which together with the fact that λ � 0 implies

d

dt
M(t) � −2 cosϑ (E(t)− μM(t)) .

Decomposing ψ(t, x) in the form (2.5), and dropping the nonlinear term ∝ λ within
E(t), then allows us to rewrite this inequality as

d

dt
M(t) � −2 cosϑ

∞∑
n=0

(EΩ,n − μ)|cn(t)|2 � −2 cosϑ(EΩ,0 − μ)M(t),

since EΩ,n − μ � EΩ,0 − μ > 0, and M(t) =
∑∞

n=0 |cn(t)|2. The inequality above
can thus be rewritten as

d

dt

(
e+2t cos ϑ(EΩ,0−μ)M(t)

)
� 0,
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which after an integration in time implies

M(t) � M(0)e−2t cos ϑ(EΩ,0−μ) t→+∞−−−−→ 0,

since ϑ ∈ (−π
2 ,

π
2 ). �

At this point, it is unclear if the decay rate given above is indeed sharp.

Remark 4.6. In the case where μ < 0, one does not need to use the decom-
position of ψ via the spectral subspaces of HΩ, at the expense of a slightly worse
decay rate. Indeed, for μ < 0, the inequality (4.6) directly yields

d

dt
M(t) � −2|μ| cosϑM(t),

and thus
M(t) � M(0)e−2t|μ| cos ϑ, ∀t � 0.

Note that for μ < 0 there are no nontrivial steady states ϕ(x) 
= 0, satisfying (1.4).
This can be seen by multiplying equation (1.4) with ϕ̄, integrating in x ∈ R

d, and
recalling the restriction ω > Ω � 0, which implies that μ has to be non-negative.

5. Bounds on the mass and energy

In this section we shall prove the existence of absorbing balls in both L2(Rd)
and Σ for solutions to (1.7). In view of the discussion on the linear model, cf.
Section 2.1, this might seem surprising, given that for general μ > 0 we can expect
exponentially growing modes. However, we shall see that for λ > 0, the nonlinearity,
combined with the confining potential, mixes the dynamics in a way that makes
it possible to infer a uniform bound on the mass and energy, and hence on the
Σ–norm of the solution. To this end, the following lemma is the key technical step.

Lemma 5.1. Let λ > 0, ω > |Ω| and 0 < σ < d
2(d−2) . Then there exists a

constant C = C(ω,Ω, λ, σ) > 0, such that

M(ψ) � CE(ψ)
σθ+1
σ+1 , with θ =

dσ

2σ + 2 + dσ
.

Proof. The proof of this result relies on the following localization property:
For all d � 1 and all p � 2 and any smooth, compactly supported f ∈ C∞0 (Rd):

(5.1) ‖f‖L2(Rd) � 2‖xf‖θ
L2(Rd)‖f‖1−θ

Lp(Rd)
,

with

θ =
d( 1

2 − 1
p )

1 + d( 1
2 − 1

p )
=

d(p− 2)
2p+ d(p− 2)

.

In order to show this, let BR denote the ball around the origin of radius r > 0. We
rewrite

‖f‖L2(Rd) = ‖f‖L2(Br) + ‖f‖L2(Rd\Br) � rd( 1
2− 1

p )‖f‖Lp(Br) +
1
r
‖xf‖L2(Rd\Br)

� rd( 1
2− 1

p )‖f‖Lp(Rd) +
1
r
‖xf‖L2(Rd).

The right-hand side is minimal if both summands are of the same order of magni-
tude, i.e.

r1+d( 1
2− 1

p ) =
‖xf‖L2(Rd)

‖f‖Lp(Rd)

.
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With this choice of r, the estimate (5.1) follows and a density argument allows to
extend it to any f ∈ Σ. Specifying p = 2σ + 2, consequently yields

(5.2) ‖ψ‖2L2 � 2
( ∫

Rd

|x|2|ψ(x)|2 dx
)θ( ∫

Rd

|ψ(x)|2σ+2 dx

) 1−θ
σ+1

,

where θ = dσ
2σ+2+dσ . In view of Lemma 4.2, both factors on the right hand side of

(5.2) are bounded by the energy. More precisely,

M(ψ) � 2(cE(ψ))θ+ 1−θ
σ+1 = CE(ψ)

σθ+1
σ+1 ,

where C = 2c
σθ+1
σ+1 and c = c(ω,Ω, λ, σ) > 0 is the constant from Lemma 4.2. �

Remark 5.2. Note that in order to infer this bound one needs the presence of
both the confinement and the nonlinearity, since the proof requires σ > 0, λ > 0
and ω > 0. Moreover, one checks that C → +∞, as |Ω| → ω.

With this result in hand, we can deduce global bounds on M(t) and E(t) along
solutions of (1.7).

Proposition 5.3. Let ψ ∈ C([0,∞),Σ) be a solution to (1.7) with ϑ ∈ (−π
2 ,

π
2 ).

Under the assumptions of Lemma 5.1, if additionally μ > 0, there exists a constant
K = K(ω,Ω, σ, λ, μ) > 0, independent of time, such that

E(t) � K + e−tμ cos ϑE(0), ∀ t � 0.

Proof. We first note that Lemma 5.1 and the differential inequality (4.6)
imply

d

dt
M(t) � −2 cosϑE(t) + CμE(t)

σθ+1
σ+1 .

Now, for any ϑ ∈ (−π
2 ,

π
2 ) and θ̃ = σθ+1

σ+1 , by Young’s inequality, we obtain

E(t)θ̃ � cosϑ
Cμ

E(t) + (1− θ̃)
(
Cμθ̃

cosϑ

) θ̃
1−θ̃

=
cosϑ
Cμ

E(t) + C̃,

where C̃ > 0, depends on all the parameters involved, but not on time. Thus, we
have

d

dt
M(t) � − cosϑE(t) + μCC̃.

On the other hand, identity (4.5) implies

E(t)− E(t0) ≤ μM(t)− μM(t0), 0 ≤ t0 ≤ t,

and hence

E(t)− E(s) �
∫ t

s

(−μ cosϑE(τ) + μ2CC̃) dτ, 0 ≤ s ≤ t,

as well as

E(t)− E(s) �
∫ t

s

(−μ cosϑE(τ) + μ2CC̃) dτ, 0 ≤ t ≤ s.
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Now, given any positive bump function χ ∈ C∞0 ((t− ε, t+ ε)), such that χ′ � 0
on (t − ε, t) and χ′ � 0 on (t, t + ε), we multiply by χ′(s) and integrate in s, to
obtain∫ t+ε

t−ε

[E(t)− E(s)]χ′(s) ds �
∫ t+ε

t−ε

∫ t

s

(−μ cosϑE(τ) + μ2CC̃)χ′(s) dτ ds

=
∫ t

t−ε

∫ τ

t−ε

(−μ cosϑE(τ) + μ2CC̃)χ′(s) ds dτ

−
∫ t+ε

t

∫ t+ε

τ

(−μ cosϑE(τ) + μ2CC̃)χ′(s) ds dτ

=
∫ t+ε

t−ε

(−μ cosϑE(τ) + μ2CC̃)χ(τ) dτ.

A similar computation gives the same inequality for a negative bump function
function χ ∈ C∞0 ((t− ε, t+ ε)), such that χ′ � 0 on (t− ε, t) and χ′ � 0 on (t, t+ ε).
Since an arbitrary test function can be written as a linear combination of positive
and negative bump functions, we have

−
∫ t

t0

E(τ)χ′(τ) dτ �
∫ t

t0

(
−μ cosϑE(τ) + μ2CC̃

)
χ(τ) dτ,

for any χ ∈ C∞0 ((t0, t)). Here, we have also used the fact that χ has compact
support on (t0, t). Choosing χ(τ) = eμτ cos ϑφ(τ) with φ ∈ C∞0 ((t0, t)), we obtain

−
∫ t

t0

E(τ)
(
eμτ cos ϑφ(τ)

)′
dτ �

∫ t

t0

(
−μ cosϑE(τ) + μ2CC̃

)
eμτ cos ϑφ(τ) dτ,

and thus

−
∫ t

t0

E(τ)eμτ cos ϑφ′(τ) dτ �
∫ t

t0

μ2CC̃eμτ cos ϑφ(τ) dτ

�
∫ t

t0

μ2CC̃

μ cosϑ
(1− eμτ cos ϑ)φ′(τ) dτ.

Hence

E(t)eμt cos ϑ +
μ2CC̃

μ cosϑ
(1− eμt cos ϑ) � E(t0)eμt0 cos ϑ +

μ2CC̃

μ cosϑ
(1− eμt0 cos ϑ),

for almost all 0 ≤ t0 ≤ t. In summary, for almost all t � 0 we have

E(t) � E(0)e−μt cos ϑ +K(1− e−μt cos ϑ),

where

K =
μCC̃

cosϑ
.

However, since ψ ∈ C([0,∞; Σ)) implies that E(t) is continuous in time, we conse-
quently infer the inequality for all t � 0. �

Remark 5.4. The proof above is slightly complicated due to the fact that we
cannot use the energy identity (4.5) in its differentiated form (4.7), see the discussion
below the proof of Lemma 4.1. If we ignore this problem for the moment, then we
have

d

dt
E(t) � μ

d

dt
M(t) � −μ cosϑE(t) + μ2CC̃,

which directly allows us to conclude the assertion proved above.
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In view of Lemma 5.1 the bound on E(t) obtained above implies a similar
bound on M(t). In particular, there is some constant ρM > 0 and a function tM (·),
such that for all ψ ∈ C([0,∞); Σ) solutions to (1.7), it holds

‖ψ(t, ·)‖L2 � ρM , ∀t � tM (M(0)).

Therefore
{ψ ∈ L2(Rd) : ‖ψ‖L2 � ρM} ⊂ L2(Rd)

is an absorbing ball for trajectories t �→ ψ(t, ·). Similarly, we know, that there
exists a ρΣ � ρM and a function tΣ(·), such that

‖ψ(t, ·)‖Σ � ρΣ, ∀t � tΣ(‖ψ(0)‖Σ).

In other words,

(5.3) X := {ψ ∈ Σ : ‖ψ‖Σ ≤ ρΣ}
is an absorbing ball in Σ for trajectories t �→ ψ(t, ·). In our study of the long time
dynamics of (1.7), the set X will play the role of a phase space.

6. The global attractor and its properties

In the previous section we proved that solutions ψ(t) exist globally in Σ, and,
moreover, all such solutions remain within an absorbing ball X ⊂ Σ for t > 0
large enough. It is therefore natural to ask whether there exists an A ⊂ Σ that
attracts all trajectories t �→ ψ(t, ·) ∈ Σ. Unfortunately, classical theories of global
attractors (see, e.g., [14, 31]) do not apply to our situation as they typically require
asymptotic compactness, which is unknown in Σ. However, the trajectories might
still converge to the global attractor A in some weaker metric, say L2. To prove that
this is indeed the case, we shall revisit the rather general framework of evolutionary
systems introduced in [15] and adapt it to our situation.

6.1. Existence of a global attractor. First, recall that our phase space
is the metric space (X, dL2(·, ·)) where X ⊂ Σ is given by (5.3) and dL2(ψ, φ) =
‖ψ − φ‖L2 . We note that X is dL2-compact. In addition, we also have the stronger
Σ-metric dΣ(ψ, φ) := ‖ψ − φ‖Σ on X, which satisfies: If dΣ(ψn, φn) → 0 as n→∞
for some ψn, φn ∈ X, then dL2(ψn, φn) → 0 as n → ∞. Note that any Σ-compact
set is L2-compact, and any L2-closed set is Σ-closed.

Now, let C([a, b];X•), where • = Σ or L2, be the space of d•-continuous X-
valued functions on [a, b] endowed with the metric

dC([a,b];X•)(ψ, φ) := sup
t∈[a,b]

d•(ψ(t), φ(t)).

Also, let C([a,∞);X•) be the space of d•-continuous X-valued functions on [a,∞)
endowed with the metric

dC([a,∞);X•)(ψ, φ) :=
∑
T∈N

1
2T

sup{d•(ψ(t), φ(t)) : a ≤ t ≤ a+ T}
1 + sup{d•(ψ(t), φ(t)) : a ≤ t ≤ a+ T} .

In order to define a general evolutionary system, we introduce

T := {I : I = [T,∞) ⊂ R, or I = (−∞,∞)},
and for each I ⊂ T , we denote the set of all X-valued functions on I by X (I).

Definition 6.1. A map E that associates to each I ∈ T a subset E(I) ⊂ X (I)
will be called an evolutionary system if the following conditions are satisfied:
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(i) E([0,∞)) 
= ∅.
(ii) E(I + s) = {ψ(·) : ψ(·+ s) ∈ E(I)} for all s ∈ R.
(iii) For all pairs I2 ⊂ I1 ∈ T : {ψ(·)|I2 : ψ(·) ∈ E(I1)} ⊂ E(I2).
(iv) E((−∞,∞)) = {ψ(·) : ψ(·)|[T,∞) ∈ E([T,∞)) ∀T ∈ R}.

In general, E(I) will be referred to as set of trajectories on the time interval I, and
trajectories in E((−∞,∞)) will be called complete.

We now consider the specific evolutionary system induced by the family of
trajectories of (1.7) in X. More precisely, we set

E([T,∞)) :=
{
ψ ∈ C([T,∞);X) a solution to (1.7), with ϑ ∈

(
− π

2
,
π

2
)
,

λ, μ > 0, ω > |Ω|, and 0 < σ <
d

2(d− 2)

}
.

(6.1)

Clearly, the properties (i)–(iv) above hold for the evolutionary system associated to
(1.7). In addition, due to Proposition 4.3, for any ψ0 ∈ X there exists ψ ∈ E([T,∞))
with ψ(T ) = ψ0. Standard techniques then imply the following lemma:

Lemma 6.2. Let (ψn)n∈N be a sequence of functions, such that ψn ∈ E([T1,∞))
for all n ∈ N. Then for any T2 > T1 there exists a sub-sequence (ψnj

)j∈N which
converges in C([T1, T2];XL2) to ψ ∈ E([T1,∞)).

Proof. Since X is compact in L2(Rd), there exists a sequence (ψnj )j∈N such
that ψnj (T1) → ψ̃ for some ψ̃ ∈ L2(Rd). However, since lower-semicontinuity and
the definition of X yield

‖ψ̃‖Σ � lim inf
j→∞

‖ψnj (T1, ·)‖Σ � ρΣ,

we have that ψ̃ ∈ X. In view of proposition 4.3 there exists ψ ∈ E([T1,∞)) with
ψ(T1) = ψ̃. Continuous dependence on the initial data, then gives the desired
result. �

Using this, we can prove one of the main structural properties of the set of
trajectories induced by (1.7):

Proposition 6.3. E([0,∞)) is a compact set in C([0,∞);XL2).

Proof. First note that E([0,∞)) ⊂ C([0,∞);XL2). Now take any sequence
(ψn)n∈N ∈ E([0,∞)). Thanks to Lemma 6.2, there exists a subsequence, still de-
noted by ψn, that converges to some ψ1 ∈ E([0,∞)) in C([0, 1];XL2) as n → ∞.
Passing to a subsequence and dropping a subindex once more, we obtain that
ψn → ψ2 in C([0, 2];XL2) as n → ∞ for some ψ2 ∈ E([0,∞)). Note that
ψ1(t) = ψ2(t) on [0, 1]. Continuing and picking a diagonal sequence, we obtain
a subsequence ψnj

of ψn that converges to some ψ ∈ E([0,∞)) in C([0,∞);XL2)
as nj →∞. �

In order to proceed further, we denote, as usual, the set of all subsets of X by
P (X). For every t � 0, we can then define a map R(t) : P (X) → P (X), by

R(t)A := {ψ(t) : ψ(0) ∈ A, such that ψ ∈ E([0,∞))}, for any A ⊂ X.

Note that the assumptions on E imply that R(s) enjoys the following property:

(6.2) R(t+ s)A ⊂ R(t)R(s)A, A ⊂ X, t, s � 0.
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Definition 6.4. A set A is called invariant under the dynamics, if R(t)A = A
for all t � 0.

We also recall the standard notion of and ω-limit associated to an evolutionary
system (see also [31]).

Definition 6.5. The ω•-limit (• = Σ, L2) of a set A ⊂ X is

ω•(A) :=
⋂

T�0

⋃
t�T

R(t)A
•
.

We also note that an equivalent definition of the ω•-limit set is given by

ω•(A) =
{
ψ ∈ X : there exist sequences tn

n→∞−−−−→∞ and ψn ∈ R(tn)A,

such that ψn(tn) n→∞−−−−→ ψ in the d•-metric
}
.

Finally, we will give a precise definition of what we mean by an attractor.

Definition 6.6. A set A ⊂ X is a d•-attracting set, if it uniformly attracts X
in d•-metric, i.e.

lim inf
φ∈A

d•(R(t)X,φ) t→+∞−−−−→ 0.

A set A ⊂ X is a d•-global attractor if A is a minimal d•-closed d•-attracting set.

After these preparations, we are able to prove the main result of this section:

Corollary 6.7. The evolutionary system (6.1) possesses a unique dL2-global
attractor A = ωL2(X), which has the following structure

A = {ψ0 : ψ0 = ψ(0) for some ψ ∈ E((−∞,∞))}
Furthermore, it holds:

(1) For any ε > 0 and T > 0, there exists a t0 ∈ R, such that for any
t∗ > t0, every trajectory ψ ∈ E([0,∞)) satisfies dL2(ψ(t), φ(t)) < ε, for
all t ∈ [t∗, t∗ + T ], where φ ∈ E((−∞,∞)) is some complete trajectory,
i.e., the uniform tracking property holds.

(2) If the Σ global attractor exists, then it coincides with A.
(3) A is connected in L2.
(4) A is the maximal invariant set.

Proof. Assertion (1) and (2) follow from the results proved in [15]. To this
end, one first shows that the ωL2-limit of X is an attracting set, which by defi-
nition is closed and the minimal set satisfying these two properties. Then, using
Proposition 6.3 and a diagonalization process, one can prove the structural prop-
erties of A, cf. [15, Theorem 5.6]. The fact that A is connected then follows from
Lemma 6.2 and uniqueness: We argue by contradiction and hence assume that A
is not L2-connected. Then there exist disjoint dL2-open sets U1, U2 ∈ X such that
A ⊂ U1 ∪ U2 and A ∩ U1, A ∩ U2 are nonempty. Define

Xj = {ψ ∈ X : ωL2(ψ) ∈ Uj}, j = 1, 2.

Since U1 and U2 are disjoint, we also have that X1, X2 are disjoint. Continuity
of trajectories implies that X1 ∪ X2 = X. Since A is dL2-attracting, there exists
T > 0 such that

R(t)X ∈ U1 ∪ U2, ∀t > T.
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By continuity of trajectories we have that for each ψ ∈ E([0,∞)), either ψ(t) ∈ U1

for all t > T , or ψ(t) ∈ U2 for all t > T . This implies that both X1 and X2

are nonempty. Moreover, Lemma 6.2 implies that X1 and X2 are dL2-open. This
contradicts the fact that X is dL2-connected. Finally we note that the structure of
A, together with uniqueness of solutions, imply that A is an invariant set. Clearly,
only complete trajectories are invariant, hence A is the maximal invariant set. �

Remark 6.8. In the case of the usual GL equation (posed on bounded domains
D ⊂ R

d) many more details concerning the global attractor are known, see, e.g.,
[28, 31, 33]. It is an interesting open problem to check which of these results can
be extended to our situation and what the main structural differences between (1.7)
and the usual GL equation are.

6.2. Dimension of the attractor. We hereby follow the, by now, classical
theory of estimating the Lyapunov numbers associated to E([0,∞)) by studying
the evolution of an m-dimensional volume element of our phase space X, cf. [31,
Chapter V] for a general introduction. Using this technique, the case of the usual
GL equation on bounded domains D ⊂ R

n, with n = 1, 2 is studied, e.g., in [31,
Chapter VI, Section 7]. In our case, the same idea works, but requires several
adaptions on a technical level.

To this end, we first rewrite (1.7) as

∂tψ = −e−iϑG(ψ), ψ|t=0 = ψ0.

and, for any ψ0 ∈ A, consider the linearization around a given orbit ψ(t) = R(t)ψ0,
i.e.,

(6.3) ∂tφ = −e−iϑG′(ψ)φ, ψ|t=0 = ξ.

Here, ξ ∈ X and G′ denotes the Frechet derivative

G′(ψ)φ = HΩφ− μφ+ λ
(
|ψ|2σφ+ σψ|ψ|2σ−2Re (ψφ)

)
,

where HΩ is the linear Hamiltonian (with rotation) defined in (2.1). It is easy
to see, that the linearized equation (6.3) admits a unique strong solution for any
given ξ ∈ X and ψ ∈ A. We now consider φ1(t), . . . , φm(t) solutions to (6.3),
corresponding to initial data ξ1, . . . , ξm, m ∈ N, and choose an L2-orthonormal
basis χ1(t), . . . , χm(t) of

Pm(t)X := span{φ1(t), . . . , φm(t)},
where Pm denotes the corresponding orthogonal projection. Then, it is easy to see
(cf. [31]), that the evolution of the m-dimensional volume element in X is given by

|φ1(t) ∧ · · · ∧ φm(t)| = |ξ1 ∧ · · · ∧ ξm| exp
(
−

∫ t

0

Re Tr e−iϑG′(ψ(s)) ◦ Pm(s) ds
)
.

In order to proceed, we first note that:

Lemma 6.9. Let H0 be given by (2.2). Then, for any orthonormal family
{χj}m

j=1 ⊂ L2(Rd) there exists a constant c = c(ω, d) > 0, such that

m∑
j=1

〈H0χj , χj〉L2 � cm1+1/d.
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Proof. Having in mind the form and the degeneracy of the eigenvalues stated
Lemma 2.1, one checks that when counted with multiplicity E0,m ∼ m1/d, as m→
∞. The desired result then follows directly from [31, Chapter VI, Lemma 2.1]. �

Using this, we can prove the following result for the dimension of A:

Proposition 6.10. Consider the dynamical system (6.1) with σ � 2
d , and let

m ∈ N be defined by

m− 1 <
(
κ2

κ1

)d/(d+1)

� m,

where

κ1 =
γc

4

(
1− Ω2

ω2

)
, κ2 = c′γμ1+d

(
1− Ω2

ω2

)−d

+
c′′(λ|β|)1+α

γα

(
1− Ω2

ω2

)−α

δ,

with c, c′, c′′, α, α̃ positive constants depending only on ω, d, σ, and

δ = lim sup
t→∞

sup
ψ0∈A

(
1
t

∫ t

0

‖R(s)ψ0‖2σα̃
L2σ+2 ds

)
�

(
K
σ + 1
λ

) 2σ
2σ+2−dσ

.

Here, K is the constant from Proposition 5.3.
Then, as t → +∞, the m-dimensional volume element in X is exponentially

decaying. Moreover, the fractal (and hence Hausdorff) dimension of A is less than
or equal to m.

Proof. Having in mind the representation formula for the m-dimensional vol-
ume element as given above, we introduce

qm := lim sup
t→∞

sup
‖ξj‖L2�1

(
−1
t

∫ t

0

Re Tr e−iϑG′(ψ(s)) ◦ Pm(s) ds
)
.

and quote the following result from [14, Chapter III, Corollary 4.2]: If there are
constants κ1,2 � 0, such that

qj � −κ1j
θ + κ2, ∀j ≥ 1,

then the fractal dimension of A enjoys the following bound:

dF (A) ≤
(
κ2

κ1

)1/θ

.

In order to obtain the required estimate on qj , we first note that

Re Tr e−iϑG′(ψ(t)) ◦ Pm(t) =
m∑

j=1

Re 〈e−iϑG′(ψ(t))χj(t), χj(t)〉L2 .

Next, we recall that e−iϑ = γ + iβ, with γ > 0, and compute (suppressing all the
t-dependence for a moment)

− Re 〈e−iϑG′(ψ)χj , χj〉L2 = −γ
2

(
‖∇χj‖2L2 + ω2‖xχj‖2L2

)
+ γΩ

∫
Rd

χjLχj dx+ γμ

− λγ
∫

Rd

|ψ|2σ|χj |2 dx+ σλ

∫
Rd

|ψ|2σ−2Re (ψχj)
(
βIm (ψχj)− γRe (ψχj)

)
dx,
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where we have also used the fact that ‖χ(t)‖L2 = 1. Next, we estimate the term
proportional to Ω as we did in the proof of Lemma 4.2 and we also use that fact
that ∫

Rd

βRe (ψχj)βIm (ψχj) dx � |β|
∫

Rd

|ψ|2|χj |2 dx.

In summary, this yields

−Re 〈e−iϑG′(ψ)χj , χj〉L2 � − γ

2

(
1− Ω2

ω2

) (
‖∇χj‖2L2 + ω2‖xχj‖2L2

)
+ γμ

− λ(γ − σ|β|)
∫

Rd

|ψ|2σ|χj |2 dx.

Thus,

−
m∑

j=1

Re 〈e−iϑG′(ψ)χj , χj〉L2 � − γ
(
1− Ω2

ω2

) m∑
j=1

〈H0χj , χj〉L2 + γμm

+ σλ|β|
m∑

j=1

∫
Rd

|ψ|2σ|χj |2 dx,
(6.4)

in view of definition (2.2). To further estimate the right hand side of (6.4), we use
Hölder’s inequality and Gagliardo-Nirenberg to obtain

m∑
j=1

∫
Rd

|ψ|2σ|χj |2 dx � ‖ψ‖2σ
L2σ+2

⎛
⎜⎝∫

Rd

⎛
⎝ m∑

j=1

|χj |2
⎞
⎠

σ+1
⎞
⎟⎠

1
σ+1

.

We will use the generalized Sobolev-Lieb-Thirring inequality (see [22]) that reads⎛
⎜⎝∫

Rd

⎛
⎝ m∑

j=1

|χj |2
⎞
⎠

p
p−1

dx

⎞
⎟⎠

2(p−1)
d

� c1

m∑
j=1

∫
Rd

|∇χj |2 dx,

provided max{1, d/2} < p ≤ 1+d/2. Here c1 = c1(d, p) > 0 some absolute constant.
Choosing p = 1 + 1

σ (which requires σ ≥ 2/d), we obtain⎛
⎜⎝∫

Rd

⎛
⎝ m∑

j=1

|χj |2
⎞
⎠

σ+1
⎞
⎟⎠

1
σ+1

�

⎛
⎝ m∑

j=1

‖∇χj‖2L2

⎞
⎠

dσ
2(σ+1)

.

Young’s inequality then implies that for any ε > 0, there exists a c2 = c2(d, σ) > 0,
such that

‖ψ‖2σ
L2σ+2

⎛
⎝ m∑

j=1

‖∇χj‖2L2

⎞
⎠

dσ
2(σ+1)

� c2
εα
‖ψ‖2σα̃

L2σ+2 + ε

m∑
j=1

‖∇χj‖2L2

� c2
εα
‖ψ‖2σα̃

L2σ+2 + ε

m∑
j=1

〈H0χj , χj〉L2 ,

where α = dσ
2σ+2−dσ , and α̃ = 2σ+2

2σ+2−dσ . Note that both of these exponents are
positive for σ < d

2(d−2) . Thus, we an appropriate choice of ε, we obtain from (6.4),
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that

−
m∑

j=1

Re 〈e−iϑG′(ψ)χj , χj〉L2 � − γ

2

(
1− Ω2

ω2

) m∑
j=1

〈H0χj , χj〉L2 + γμm

+
c3(λ|β|)1+α

γα

(
1− Ω2

ω2

)−α

‖ψ‖2σα̃
L2σ+2 .

Now, using the estimate from Lemma 6.9 above, we have

−
m∑

j=1

Re 〈e−iϑG′(ψ)χj , χj〉L2 � − γc

2

(
1− Ω2

ω2

)
m1+1/d + γμm

+
c3(λ|β|)1+α

γα

(
1− Ω2

ω2

)−α

‖ψ‖2σα̃
L2σ+2 .

This can be estimated further by

−
m∑

j=1

Re 〈e−iϑG′(ψ(t))χj , χj〉L2 � −κ1m
1+1/d + ρ(t),

where κ1 is as defined above and

ρ(t) = c4γμ
1+d

(
1− Ω2

ω2

)−d

+
c3(λ|β|)1+α

γα

(
1− Ω2

ω2

)−α

‖ψ(t)‖2σα̃
L2σ+2 ,

with c4 = c4(ω, d) > 0.
Now, for ψ(t) = R(t)ψ0 ∈ A, we have that

δ = lim sup
t→∞

sup
ψ0∈A

(
1
t

∫ t

0

‖R(s)ψ0‖2σα̃
L2σ+2 ds

)
<∞,

due to Lemma 4.2 and Proposition 5.3, which imply that for ψ(t) ∈ A:

‖ψ(t)‖2σα̃
L2σ+2 � ‖ψ(t)‖2σα̃

Σ � ρ2σα̃
Σ .

This consequently yields

qm � −κ1m
1+1/d + κ2, for all m � 1,

which finishes the proof. �

Remark 6.11. In comparison to many classical results on the dimensions of
global attractors (e.g., [31]), the proof above requires the use of the generalized
Lieb-Thirring type inequality to control the term proportional to λ, see [22] for
more details.

Note that the restriction σ � 2
d is always fulfilled in the case of a cubic nonlin-

earity. We finally note that a careful analysis of all the involved constants in κ1, κ2

shows that for a given, fixed ω > 0, the fraction(
κ2

κ1

)
→ +∞, as |Ω| → ω.

The estimate on the dimension of A thus becomes larger the larger the rotation
speed.
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Appendix A. Derivation of the kernel of the linear semi-group

Our starting point for justifying the formula (2.6) for the kernel of the linear
semigroup, is the following linear Schrödinger equation

i∂tu = H0u, u|t=0 = u0(x).

where, as before, H0 = 1
2 (−Δ + |x|2). For this equation, Mehler’s formula yields

an explicit representation of (the kernel of) the associated semi-group [9]. More
precisely,

u(t, x) =
∫

Rd

S0(t, x, y)u0(y)dy,

where

S0(t, x, y) = (2πig0(t))−
d
2 exp

(
i

g0(t)

(
h0(t)

2
(|x|2 + |y|2)− x · y

))
,(A.1)

and

g0(t) =
sin(ωt)
ω

, h0(t) = cos(ωt).

It was shown in [4], that a simple change of variables allows to obtain an analogous
formula for solutions of the linear Schrödinger equation with non-vanishing rotation.
To this end, we write x = (x1, x2, x3) ∈ R

3 and set

x1 = cos(Ωt)x̃1 + sin(Ωt)x̃2, x2 = cos(Ωt)x̃2 − sin(Ωt)x̃1,

and x3 (if applicable) is left unchanged. Note that this transformation is volume-
preserving and hence does not affect the pre-factor (2πig0(t))−d/2 which ensures
that ∫∫

Rd×Rd

S0(t, x, y) dx dy = 1, for all t ∈ R+ .

Defining the new unknown ũ(t, x) = u(t, x̃) a straightforward calculation shows
that ũ solves

(A.2) i∂tũ = H0ũ− ΩLũ, ũ|t=0 = u0(x),

Substituting the new coordinates into Mehler’s formula (A.1) yields

S̃Ω(t, x, y) = (2πig0(t))−
d
2 exp

(
i

g0(t)

(
h0(t)

2
(|x|2+|y|2)−(cos(Ωt)x1+sin(Ωt)x2)y1

− (cos(Ωt)x2 − sin(Ωt)x1)y2

))
.

Here we drop the term x3y3 for notational convenience, since it is unchanged by
the change of coordinates. In order to finally obtain SΩ(t, x, y), i.e., the kernel for
the dissipative semi-group SΩ(t) associated to (1.7) we replace t �→ −ie−iϑt in the
above kernel. In other words,

SΩ(t, x, y) = S̃Ω

(
−ie−iϑt, x, y

)
,

which, after some algebra, yields (2.6). In there, the pre-factor in front of the
exponent is understood in terms of the principal value of the complex logarithm
via (a+ ib)γ = eγ log(a+ib) and is differentiable for small enough t > 0.

Next, in order to study the regularizing properties of SΩ(t) for short times, we
first note that the phase function Φ in (2.6) can be decomposed into its real and
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imaginary part, denoted by Φ = Φ1 + iΦ2. For Gaussian, i.e. heat kernel type,
regularity properties of the semi-group SΩ(t) for small t > 0, we require (at least)
an inverse quadratic decay of the real part Φ1. To this end, let

a = tω cosϑ, b = tω sinϑ, � =
Ω
ω
.

With this choice of notation we have
1
ω

Φ1 = Re
(

cosh(a+ ib)
sinh(a+ ib)

)
(x2 + y2)

2
− Re

(
cosh(�(a+ ib))

sinh(a+ ib)

)
(x1y1 + x2y2)

+ Im
(

sinh(�(a+ ib))
sinh(a+ ib)

)
(x1y2 − x2y1)

Let us investigate the behavior of the real part Φ1 of the exponent near t ≈ 0.
Standard trigonometric identities yield

(A.3) Re
(

cosh(�(a+ ib))
sinh(a+ ib)

)

=
cosh(�a) cos(�b) sinh(a) cos(b) + sinh(�a) sin(�b) cosh(a) sin(b)

sin2(b) + sinh2(a)
,

and

(A.4) Im
(

sinh(�(a+ ib))
sinh(a+ ib)

)

=
cosh(�a) sin(�b) sinh(a) cos(b)− sinh(�a) cos(�b) cosh(a) sin(b)

sin2(b) + sinh2(a)
,

for all a, b,� ∈ R. In case � = 1, the identity 2 sinh(a) cosh(a) = sinh(2a) yields

(A.5) Re
(

cosh(a+ ib)
sinh(a+ ib)

)
=

sinh(2a)
2 sin(b)2 + 2 sinh(a)2

.

Now, we can Taylor expand the expressions (A.3), (A.4) and (A.5) around t = 0.
Recalling a = tω cosϑ, b = −tω sinϑ, and � = Ω

ω , the denominator of all three
terms (A.3)–(A.5) equals

sin2(b) + sinh2(a) ≡ sin2(tω sinϑ) + sinh2(tω cosϑ).

Straight-forward expansion of the latter yields

sin2(tω sinϑ) + sinh2(tω cosϑ) = ω2t2 + 1
3ω

4t4 cos(2ϑ) +O(t6),

and thus
1

sin2(tω sinϑ) + sinh2(tω cosϑ)
=

1
ω2t2

(
1− 1

3ω
2t2 cos(2ϑ)

)
+O(t2).

Here, and in the following, the constant in the O(·)-notation only depend on ϑ, ω,
and Ω. The numerator of (A.5) satisfies

sinh(−2tω cosϑ) = −2tω cosϑ− 4
3 t

3ω3 cos3 ϑ+O(t5).

On the other hand, the terms in the numerator of (A.3) satisfy

cosh(tΩ cosϑ) cos(tΩ sinϑ) sinh(tω cosϑ) cos(tω sinϑ)

= tω cosϑ+ 1
2 t

3ω cosϑ
(
Ω2 cos2 ϑ− (ω2 + Ω2) sin2 ϑ

)
+ 1

6 t
3ω3 cos3 ϑ+O(t5)
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and

cosh(tΩ cosϑ) cos(tΩ sinϑ) sinh(tω cosϑ) cos(tω sinϑ)

= t3ωΩ2 cosϑ sin2 ϑ+O(t5).

Hence, their sum equals

tω cosϑ+ 1
6 t

3ω3 cosϑ
(
3Ω2 + 2ω2 cos(2ϑ)− ω2

)
+O(t5).

Likewise, we can easily check

cosh(tΩ cosϑ) sin(tΩ sinϑ) sinh(tω cosϑ) cos(tω sinϑ)

= t2ωΩ sinϑ cosϑ+O(t4)

= sinh(tΩ cosϑ) cos(tΩ sinϑ) cosh(tω cosϑ) sin(tω sinϑ)

and hence the numerator of (A.4) vanishes up to fourth order. Collecting all the
expansions so far, we obtain

Φ1(t, x, y) =
ω

t2ω2
(1− 1

3 t
2ω2 cos(2ϑ))

(
1
4 |x|

2 + |y|2
(
− 2tω cosϑ− 4

3 t
3ω3 cos3 ϑ

)
+ 2(x1y1 + x2y2)

(
tω cosϑ+ 1

6 t
3ω3 cosϑ(3Ω2 + 2ω2 cos(2ϑ)− ω2)

)
+O((x2 + y2)t4)

)

= −cosϑ
2t

(
|x|2 + |y|2)

(
1 + 1

3 t
2ω2

)
+ 2(x1y1 + x2y2)

(
− 1 + 1

6 t
2(ω2 − 3Ω2)

)
+O(|x|2 + |y|2)t3)

)
.

This expression can be further simplified by collecting coefficients of x−y and x+y
to obtain

Φ1(t, x, y) = −cosϑ
2t

(
|x− y|2

(
2 + 1

6 (ω2 + 3Ω2)t2
)
+

|x+ y|2 1
2 (ω2 − Ω2)t2 +O((x2 + y2)t3)

)
.

Note that cos(ϑ) > 0 if ϑ ∈ (−π
2 ,

π
2 ) and we assume that ω > Ω � 0. The term

O((|x|2 + |y|2)t3) can thus be absorbed in the other coefficients for small t > 0. In
particular, if t < δ for some small enough δ > 0, the real part satisfies

Φ1(t, x, y) � −|x− y|
2

ct
, with some c > 0.

Hence the semi-group has the same decay as the heat kernel and indeed satis-
fies (2.7). Since the exponent F is quadratic in x and y, the derivative of S w.r.t.
x yields only an extra linear factor. In summary, we find that for small t > 0, the
absolute value of the kernel is bounded by

|SΩ(t, x, y)| � (t+O(t2))−
d
2 exp

(
cosϑ
2t

(
|x− y|2

(
2 + 1

6 (ω2 + 3Ω2)t2
)

+ |x+ y|2 1
2 (ω2 − Ω2)t2 − x3y3 +O((x2 + y2)t3)

))
.
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