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Small Ḃ−1
∞,∞ implies regularity

Taoufik Hmidi and Dong Li

Communicated by Y. Charles Li, received April 29, 2016.

Abstract. We show that smallness of Ḃ−1∞,∞ norm of solution to d-dimensional
(d ≥ 3) incompressible Navier-Stokes prevents blowups.
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1. Introduction

In recent [9], Farhat, Grujić and Leitmeyer proved that any unique L∞ mild
solution to 3D Navier-Stokes equation cannot develop finite-time blowups if the
B−1
∞,∞ norm is sufficiently small (near the first possible blowup time). This result

is perhaps a bit surprising in view of the illposedness result of Bourgain-Pavlović
[3]. The proof in [9] has a strong geometric flavor, and in particular relies on a
geometric regularity criteria and characterization of the super-level sets developed
in the series of works [6, 11, 10]. We refer the readers to the introduction in [9]
and the references therein (see also [1]–[13]) for more details on these techniques
and also related developments. The purpose of this note is to revisit this problem
from the point of view of Littlewood-Paley calculus. In particular we will give a
streamlined proof for all dimensions d ≥ 3.
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Consider d-dimensional Navier-Stokes Equation (NSE):⎧⎪⎪⎨
⎪⎪⎩

∂tv + (v · ∇)v = Δv −∇p, (t, x) ∈ (0,∞) × Rd,

∇ · v = 0,

v
∣∣∣
t=0

= v0.

(1.1)

Theorem 1.1. Let d ≥ 3. Suppose v is a smooth solution to (1.1) and let T > 0
be the first possible blow-up time. There exists a positive constant m0 depending
only on the dimension d, such that if the solution v satisfies

sup
t∈(T−ε,T )

‖v(t)‖Ḃ−1
∞,∞ ≤ m0,

for some 0 < ε < T , then T is not a blow-up time, and the solution can be continued
past T .

Remark 1.2. Here to allow some generality we do not specify the particular
class of smooth solution. As an example one can consider as in [9] the unique mild
solution emanating from L∞ initial data. By smoothing (cf. [7]) the solution is
immediately in W k,∞ for all k. Other classes of solutions can also be considered
and we will not dwell on this issue here.

We gather below some notation used in this note.

Notation. For any two quantities X and Y , we denote X � Y if X ≤ CY
for some constant C > 0. The dependence of the constant C on other parameters
or constants are usually clear from the context and we will often suppress this
dependence.

We will need to use the Littlewood–Paley (LP) frequency projection operators.
To fix the notation, let φ0 ∈ C∞c (Rn) and satisfy

0 ≤ φ0 ≤ 1, φ0(ξ) = 1 for |ξ| ≤ 1, φ0(ξ) = 0 for |ξ| ≥ 7/6.

Let φ(ξ) := φ0(ξ) − φ0(2ξ) which is supported in 1
2 ≤ |ξ| ≤ 7

6 . For any f ∈ S(Rn),
j ∈ Z, define

P̂≤jf(ξ) = φ0(2−jξ)f̂(ξ),

P̂jf(ξ) = φ(2−jξ)f̂(ξ), ξ ∈ Rn.

Sometimes for simplicity we write fj = Pjf , f≤j = P≤jf . Note that by using
the support property of φ, we have PjPj′ = 0 whenever |j − j′| > 1. The Bony
paraproduct for a pair of functions f, g take the form

fg =
∑
i∈Z

fig̃i +
∑
i∈Z

fig≤i−2 +
∑
i∈Z

gif≤i−2,

where g̃i = gi−1 + gi + gi+1. For s ∈ R, 1 ≤ p ≤ ∞, the homogeneous Besov Ḃs
∞,∞

norm is given by

‖f‖Ḃs∞,∞
= sup

j∈Z

(
2js‖Pjf‖∞

)
.

We will use without explicit mentioning the following simple estimate:

‖etΔPjf‖L∞(Rd) � e−c22jt‖Pjf‖L∞(Rd), ∀ t > 0,

where c > 0 is a constant depending only on d.
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2. Proof of Theorem 1.1

Lemma 2.1. Let γ > 1. Then for any j ∈ Z, we have

‖Pj((v · ∇)v)‖∞ � 2j(2−γ)‖v‖Ḃ−1
∞,∞‖v‖Ḃγ

∞,∞ .

Proof of Lemma 2.1. Although this is utterly standard we give a proof for
completeness. By paraproduct decomposition, we have

(v · ∇)v =
∑
l∈Z

(v≤l−2 · ∇)vl +
∑
l∈Z

(vl · ∇)v≤l−2 +
∑
l∈Z

(vl · ∇)ṽl

=: A + B + C,

where ṽl = vl−1 + vl + vl+1. Then by frequency localization, we have

‖Pj(A)‖∞ �
∑

|l−j|≤2

‖v≤l−2 · ∇vl‖∞ � 2j‖v‖Ḃ−1
∞,∞ · 2j(1−γ)‖v‖Ḃγ

∞,∞ .

Similar estimate hold for B. Now for the estimate of C, note that by using the
divergence-free property we can write (vl · ∇)ṽl = ∇ · (vl ⊗ ṽl) and this gives

‖Pj(C)‖∞ � 2j
∑

l≥j−2

2−l‖vl‖∞ · ‖ṽl‖∞ · 2γl · 2−l(γ−1) � 2j(2−γ)‖v‖Ḃ−1
∞,∞‖v‖Ḃγ

∞,∞ .

Here we used the assumption γ > 1.
�

Lemma 2.2. Suppose v = v(t) is a smooth solution to (1.1) on some time
interval [0, T ] with smooth initial data v0. Let γ > 1. There exists constants
C1 > 0, δ1 > 0 which depend only on (γ, d), such that if

sup
0≤t≤T

‖v(t)‖Ḃ−1
∞,∞ ≤ δ1,

then

max
0≤t≤T

‖v(t)‖Ḃγ
∞,∞ ≤ C1‖v0‖Ḃγ

∞,∞ .

Proof of Lemma 2.2. Write vj = Pjv. Then

∂tvj − Δvj = −Pj

(
Π((v · ∇)v)

)
,

where Π is the usual Leray projection operator. Then for any t > 0, by using
Lemma 2.1, we have

‖vj(t)‖∞

� e−c22jt‖vj(0)‖∞ +
∫ t

0

e−c·22j(t−s)2j(2−γ)‖v(s)‖Ḃ−1
∞,∞‖v(s)‖Ḃγ

∞,∞ds

� e−c22jt‖vj(0)‖∞ + (1 − e−c22jt) · 2−jγ · sup
0≤s≤t

‖v(s)‖Ḃ−1
∞,∞ · max

0≤s≤t
‖v(s)‖Ḃγ

∞,∞ .

This implies that for some constants C̃1 > 0, C̃2 > 0 depending only on (γ, d),

max
0≤t≤T

‖v(t)‖Ḃγ
∞,∞ ≤ C̃1‖v0‖Ḃγ

∞,∞ + C̃2 · sup
0≤t≤T

‖v(t)‖Ḃ−1
∞,∞ · max

0≤t≤T
‖v(t)‖Ḃγ

∞,∞ .

The result obviously follows. �
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Proof of Theorem 1.1. Choose γ = 3/2 and m0 = δ1 as specified in Lemma
2.2. Consider the solution v = v(t) on the time interval [T − ε, T − η], where η > 0
will tend to zero. By Lemma 2.2 (regarding v(T −ε) as initial data), we then obtain
uniform estimate on ‖v‖Ḃγ

∞,∞ independent of η. A standard argument then implies
that v must be regular beyond T .

�
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[9] A. Farhat, Z. Z. Grujić and K. Leitmeyer. The space B−1∞,∞, volumetric sparseness,
and 3D NSE. Preprint. arXiv:1603.08763v2
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