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Abstract. In this paper, we consider a fractional integro-differential equation
of order α ∈ (1,2] with deviated argument in a separable Hilbert space X .

We used the α-order cosine family of linear operators and Banach fixed point
theorem to study the existence and uniqueness of approximate solutions. We

define the fractional power of the closed linear operator and used it to prove
the convergence of the approximate solutions. Also, we prove the existence and

convergence of the Faedo-Galerkin approximate solutions. Finally, an example
is provided to illustrate the application of these abstract results.
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1. Introduction

We consider a fractional integro-differential equation of order α ∈ (1, 2] with
deviated argument in a separable Hilber space X

cDα
t x(t) + Ax(t) = f(t, x(a(t)), x[h(x(t), t)])

+

∫ t

0

k(t− s)g(s, x(s))ds, t ∈ (0, T ],

x(0) = x0, x′(0) = y0,(1.1)

where cDα
t is the Caputo fractional derivative, −A is the infinitesimal generator of a

α-order cosine family (Cα(t))t≥0 on a separable Hilbert space X. x : J(= [0, T ]) →
X is the state function and k : R+ → R is the kernal function. f : J ×X ×X →
X, h : X × [0, T ] → R

+, a : [0, T ] → [0, T ] and g : J ×X → X are the functions
satisfying some suitable conditions to be specified later.

The theory of fractional calculus started with a correspondence between L’Hospital
and Leibniz in 1695. Lots of literature available on theoretical as well as numeri-
cal work on this topic. It has application in numerous fields, for example, control
theory, signal and image processing, aerodynamics and biophysics etc. Few years
back, many scientists and engineers have shown a great interest in fractional theory
due to the memory character of fractional derivative, which is the generalization of
integer-order derivative and can describe many phenomena of physics, biology and
finance etc. that integer-order derivative can’t explain.

For the details on the different kind of fractional differential equations, we
refers to [1]- [9] and the references cited in these papers. Recently, Li Kexue et
al. [5] studied the exact controllability of the fractional differential system of order
α ∈ (1, 2] with non-local conditions in an infinite dimensional Banach space by using
the Sadovskii fixed point theorem.

Initial studies concerning existence, uniqueness and finite-time blow-up of so-
lutions for the following equation

u′(t) + Au(t) = g(u(t)), t ≥ 0,

u(0) = φ,

have been considered by Segal [10], Murakami [11] and Heinz and Von Wahl [12].
Bazley [13, 14] has considered the following semilinear wave equation

u′′(t) + Au(t) = g(u(t)), t ≥ 0,(1.2)

u(0) = φ, u′(0) = ψ,

and has established the uniform convergence of approximations of solutions to (1.2)
using the results of Heinz and von Wahl [12]. Goethel [15] has proved the conver-
gence of approximations of solutions to equation (1.2) but assumed g to be defined
on the whole of H .

To my knowlege, Gal [16] was the first person who has considered the nonlinear
abstract differential equations of order one with deviated arguments and study the
existence and uniqueness of solutions by using the semigroup of linear operators.
After the Gal [16], some authors [17]-[19] have worked on different types of abstract
differential equations with deviated arguments. Several authors [17]-[24] studies the
existence and convergence of approximate solutions of abstract differential equations
of order one by using the analytic semigroup of linear operators in a separable
Hilbert space.
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To the best of author’s knowledge, there are no papers discussing the fractional
differential equations of order α ∈ (1, 2] with deviated arguments in infinite dimen-
sional spaces. Therefore, we consider a fractional integro-differential equation (1.1)
with deviated argument of order α ∈ (1, 2] in a separable Hilbert space and studied
the Faedo-Galerkin approximations . The results of this paper will also be true if
g(t, x(t)) = 0. Also, we can extend these results to nonlocal problems with some
additional suitable conditions.

The work of this manuscript is motivated by [3, 5] and [13]. We use the ideas of
Bazley [13], Miletta [21] and Muslim [22] to establish the existence and convergence
of finite dimensional approximate solution of system (1.1).

In the first and second section, we give the introduction and provide some of the
notions and the results required for later sections. In the third section, we studies
the existence of approximate solutions and seciton 4 deals with the convergence of
the approximate solutions obtained in section 3. In section 5, we study the existence
and convergence of Faedo-Galerkin approximate solutions and in the last section,
we have given an example to illustrate the application of these results.

2. Preliminaries and Assumptions

In this section, we briefly review some basic definitions and notions which will
be used in the subsequent sections. Let X be a separable Hilbert space with norm
||.|| and the space of all bounded linear operators form X into X is denoted by
L(X). Lp([0, T ], X), 1 ≤ p < ∞ denote the space of X-valued Bochner integrable

functions f̃ : [0, T ] → X with the norm

||f̃ ||Lp =
( ∫ T

0

||f̃(t)||pdt
) 1

p

.

C([0, T ], X), C1([0, T ], X) denote the spaces of functions f̃ : [0, T ] → X, which are
continuous, continuously differentiable respectively and endowed with the norms

||f̃ ||C = sup
t∈J

||f̃(t)||, ||f̃ ||C1 = sup
t∈J

1∑
k=0

||f̃k(t)||.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 is
defined by

Jα
t x(t) =

1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds,

where x(t) ∈ L1([0, T ], X) and Γ(.) is the gamma function.

Definition 2.2. If x(t) ∈ L1([0, T ], X), then the Riemann-Liouville fractional
derivative of order α ∈ (1, 2) is defined by

Dα
t x(t) =

d2

dt2
J2−α

t x(t),

where Dα
t x(t) ∈ L1([0, T ], X).

Definition 2.3. The Caputo fractional derivative of order α ∈ (1, 2] is defined
by

cDα
t x(t) = J2−α

t

d2

dt2
x(t),

where x(t) ∈ L1([0, T ], X)∩ C1([0, T ], X).
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Consider the following fractional order differential problem

cDα
t x(t) = Ax(t), x(0) = η, x′(0) = 0,(2.3)

where α ∈ (1, 2], A : D(A) ⊂ X → X is a closed densely defined linear operator in
separable Hilbert space X. By applying the Riemann-Liouville fractional integral of
order α ∈ (1, 2] on both sides of (2.3), we have

x(t) = η +
1

Γ(α)

∫ t

0

(t− s)α−1Ax(s)ds.(2.4)

Definition 2.4. ( [4]). A family (Cα(t))t≥0 ⊂ L(X), α ∈ (1, 2] is called the
solution operator (or a strongly continuous α-order fractional cosine family) for
(2.3) and A is called the infinitesimal generator of Cα(t), if the following conditions
are hold:
(i) Cα(t) is strongly continuous for t ≥ 0 and Cα(0) = I, where I is identity
operator;
(ii) Cα(t)D(A) ⊂ D(A) and ACα(t)η = Cα(t)Aη for all η ∈ D(A), t ≥ 0;
(iii) Cα(t)η is solution for (2.3) for all η ∈ D(A).

Definition 2.5. The fractional sine family Sα : [0,∞) → L(X) associated with
Cα is defined by

Sα(t) =

∫ t

0

Cα(s)ds, t ≥ 0.(2.5)

Definition 2.6. The fractional Riemann- Liouville family Pα : [0,∞) → L(X)
associated with Cα is defined by

Pα(t) = Jα−1Cα(t).(2.6)

Definition 2.7. The α-order cosine family Cα(t) is called exponentially bounded
if there are constants M1 ≥ 1 and ω ≥ 0 such that

||Cα(t)|| ≤M1e
ωt, t ≥ 0.(2.7)

An operator A is said to belong to Cα(X;M,ω), if the problem (1.1) has an
solution operator Cα(t) satisfying (2.7). Throughout this paper, we assume that
A ∈ Cα(X;M,ω) for α ∈ (1, 2], hence from Theorem (3.3) in [4], A generates an
analytic semigroup and hence the fractional power Aβ , 0 ≤ β ≤ 1 is defined. For
the details on the fractional power of operators please see Pazy [25].

In order to prove the existence and convergence of approximate solution of the
problem (1.1), we need the following assumptions.

(A1). Operator A is a closed, positive definite, linear, self-adjoint with domain
D(A) dense in X, A has the pure poitn spectrum,

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · ·

with λm → ∞ as m → ∞ and a corresponding complete orthonormal
system of eigenfunctions φi, i.e

Aφi = λiφi, and 〈φi, φj〉 = δij ,

where δij = 1 if i = j and zero otherwise.
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If the condition (A1) is satisfied then −A is the infinitesimal generator of an analytic
semigroup S(t) in X (cf., [Pazy [25], pp. 69-75]). Therefore, the fractional powers
Aβ of A are well defined from domain D(Aβ ) into X. D(Aβ ) is a Banach space
endowed with the norm

‖x‖β = ‖Aβx‖.

We denote this space by Xβ . Also, for each β > 0, we define X−β = (Xβ)∗, the dual
space of Xβ is a Banach space endowed with the norm ‖x‖−β = ‖A−βx‖.

It can be seen easily that Cβ
t = C([0, t];Xβ), for all t ∈ [0, T ], is a Banach space

endowed with the supremum norm,

‖ψ‖t,β := sup
0≤η≤t

‖ψ(η)‖β , ψ ∈ Cβ
t .

We set, Cβ−1
T = C([0, T ];Xβ−1) = {y ∈ Cβ

T : ‖y(t) − y(s)‖β−1 ≤ L|t − s|, ∀ t, s ∈
[0, T ]}, where L is a suitable positive constant to be specified later and 0 ≤ β < 1.

(A2). f : J×Xβ ×Xβ−1 → X is a continuous function and there exists positive
constants K1 and K2 such that

‖f(t, x1, y1) − f(t, x2, y2)‖ ≤ Lf (‖x1 − x2‖β + ||y1 − y2‖β−1)

for every x1, x2 ∈ Xβ and y1, y2 ∈ Xβ−1 and

max
t∈J

||f(t, x(t), x[h(x(t), t)])|| = Kf .

(A3). h : Xβ × J → R
+ is a uniformly continuous and there exists a positive

constant Lh = Lh(α) such that

|h(x1, s) − h(x2, s)| ≤ Lh||x1 − x2||β, ∀x1, x2 ∈ Xβ 0 ≤ s ≤ T0

and satisfies h(., 0) = 0.
(A4). (i) g : J × Xβ → X is a continuous function and there exists positive

constants Lg and Kg such that

||g(t, x1) − g(t, x2)|| ≤ Lg ||x1 − x2||β

for every x1, x2 ∈ X and maxt∈J ||g(t, x)|| = Kg for all t ∈ [0, T ], x ∈ Xβ.

(ii) KT =
∫ t

0
|k(t− s)|ds.

(iii) Delay function a : [0, T ] → [0, T ] is Lipschitz continuous; that is,
there exists a positive constant La such that

|a(t) − a(s)| ≤ La|t− s|, ∀ s, t ∈ [0, T ].

(A5). A is the infinitesimal generator of a α-order cosine family Cα(t) on X and
there exists a constant M ≥ 1 such that

||Cα(t)|| ≤M.

Definition 2.8. A continuous function x ∈ Cβ−1
T ∩ Cβ

T is said to be a mild
solution of equation (1.1) if x is the solution of the following integral equation

x(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t− s)
[
f(s, x(a(s)), x[h(x(s), s)])

+

∫ s

0

k(s− η)g(η, x(η))dη
]
ds.(2.8)
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3. Existence of Approximate Solutions

In this section, we will study the existence of approximate solution of the
problem (1.1). Let Xn denote the finite dimensional subspace of X spanned by
{φ1, φ2, · · · , φn} and P n : X → Xn be the corresponding orthogonal projection
operator for n = 1, 2, 3, · · · .

We define

hn : D(Aβ) × J −→ R+ as hn(x(t), t) = h(P nx(t), t)

and

gn : R+ ×D(Aβ) −→ X as gn(t, x(t)) = g(t, P nx(t))

Similarly, we define

fn : J ×D(Aβ) ×D(Aβ−1) → X

such that

fn(s, x(a(s)), x[h(x(s), s)]) = f(s, P nx(a(s)), P nx[h(P nx(s), s)]).

We set

W = {x ∈ Cβ
T0

∩ Cβ−1
T0

: x(0) = x0, x′(0) = y0, ‖x‖T0,β ≤ R}.

Clearly, W is a closed and bounded subset of Cβ−1
T .

For n = 1, 2, 3, · · · , we define a map Fn : W → W given by

(Fnx)(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t − s)
[
fn(s, x(a(s)), x[h(x(s), s)])

+

∫ s

0

k(s− η)gn(η, x(η))dη
]
ds.(3.9)

Theorem 3.1. If x0, y0 ∈ D(A) and all the assumptions (A1)-(A5) are sat-
isfied. Then, there exist an unique xn ∈ W such that Fnxn = xn for each n =
1, 2, 3, · · · . i.e. xn satisfies the approximate integral equation

xn(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t− s)
[
fn(s, x(a(s)), x[h(x(s), s)])

+

∫ s

0

k(s− η)gn(η, x(η))dη
]
ds, t ∈ [0, T ].(3.10)

Proof: We denote

sup
0≤t≤T0

‖Pα(t)‖ = ρ1 and sup
0≤t≤T0

‖APα(t)‖ = ρ2 ,

where ρ1, ρ2 > 0 and we choose a suitable R such that

M‖x0‖β +M‖y0‖βT0 + ‖Aβ−1‖ρ2[Kf +KTKg]T0 = R.
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First, we need to show that Fnx ∈ Cβ−1
T0

for any x ∈ Cβ−1
T0

. If x ∈ Cβ−1
T0

and
T0 > t2 > t1 > 0, then, we get

‖(Fnx)(t2) − (Fnx)(t1)‖β−1 ≤ ‖Aβ−1‖‖(Cα(t2) − Cα(t1))x0‖

+‖Aβ−1‖‖(Sα(t2) − Sα(t1))y0‖

+

∫ t1

0

‖Aβ−1‖‖Pα(t2 − s) − Pα(t1 − s)‖
[
‖fn(s, x(s), x[h(x(s), s)])‖

+

∫ s

0

|k(s− τ )|‖gn(τ, x(τ ))‖dτ
]
ds

+

∫ t2

t1

‖Aβ−1‖‖Pα(t2 − s)‖
[
‖fn(s, x(s), x[h(x(s), s)])‖

+

∫ s

0

|k(s− τ )|‖gn(τ, x(τ ))‖dτ
]
ds

≤ I1 + I2 + I3 + I4.(3.11)

We have,

I1 = ‖Aβ−1‖‖(Cα(t2) −Cα(t1))x0‖ = ‖Aβ−1‖||

∫ t2

t1

APα(τ )x0dτ ||

≤ C1(t2 − t1),(3.12)

where C1 = ρ2‖x0‖‖A
β−1‖.

Similarlly,

I2 = ‖Aβ−1‖‖(S(t2) − S(t1))y0‖ = ‖Aβ−1‖‖

∫ t2

t1

Cα(τ )dτ‖‖y0‖

≤ C2(t2 − t1),(3.13)

where C2 = ‖Aβ−1‖M‖y0‖.
Third part of inequality (3.11) is calculated as follows

I3 = ‖Aβ−1‖

∫ t1

0

‖Pα(t2 − s) − Pα(t1 − s)‖
[
‖fn(s, x(s), x[h(x(s), s)])‖

+

∫ s

0

|k(s− τ )|‖gn(τ, x(τ ))‖dτ
]
ds.

We have,

‖Pα(t2 − s) − Pα(t1 − s)‖

≤

∫ t1−s

0

[(t2 − s− τ )
α−2

Γ(α− 1)
+

(t1 − s− τ )
α−2

Γ(α− 1)

]
‖Cα(τ )‖dτ

+

∫ t2−s

t1−s

(t2 − s− τ )
α−2

Γ(α− 1)
‖Cα(τ )‖dτ

≤
M

(α− 1)Γ(α− 1)

[
(t2 − s)α−1 + (t1 − s)α−1

]
.

We use the above inequality in I3 and get the following

I3 ≤ ‖Aβ−1‖
M [Kf +KT0

Kg ]

(α− 1)Γ(α− 1)

∫ t1

0

[
(t2 − s)α−1 + (t1 − s)α−1

]
ds

≤ C3(t2 − t1),(3.14)
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where

C3 = ‖Aβ−1‖
M [Kf +KT0

Kg ]

(α − 1)Γ(α− 1)
[
1

α
[−(t2 − t1)

α−1 + tα2 (t2 − t1)
−1 + tα1 (t2 − t1)

−1]].

Fourth part of the inequality (3.11) is calculated as

I4 = ‖Aβ−1‖

∫ t2

t1

‖Pα(t2 − s)‖
[
‖fn(s, x(s), x[h(x(s), s)])‖

+

∫ s

0

|k(s− τ )|‖gn(τ, x(τ ))‖dτ
]
ds

≤ C4(t2 − t1),(3.15)

where C4 = ρ1‖A
β−1‖[Kf +KT0

Kg ].
We use the inequalities (3.12), (3.13), (3.14) and (3.15)) in inequality (3.11)

and get the following inequality

||(Fnx)(t2) − (Fnx)(t1)||β−1 ≤ L|t2 − t1|,(3.16)

where L = C1 + C2 + C3 + C4. Hence, Fnx ∈ Cβ−1
T0

for any x ∈ Cβ−1
T0

.

Our next task is to prove that Fn : W → W. For any t ∈ (0, T0] and x ∈ W, we
have

||(Fnx)(t)||β ≤ ||Cα(t)x0||β

+||Sα(t)y0||β + ‖Aβ−1‖

∫ t

0

||APα(t − s)||
[
‖fn(s, x(s), x[h(x(s), s)])‖

+

∫ s

0

|k(s− τ )|‖gn(τ, x(τ ))‖dτ
]
ds

≤M‖x0‖β +M‖y0‖βT0 + ‖Aβ−1‖ρ2[Kf +KTKg]T0.

Thus, we get ||Fnx||T0,β ≤ R.
Hence, Fn : W → W.
Now, we want to prove that the mapping Fn is a strict contraction mapping on

W.
For any x, y ∈ W, we have

||(Fnx)(t) − (Fny)(t)||β ≤ ‖Aβ−1‖

∫ t

0

‖APα(t− s)‖

[
‖fn(s, x(a(s), x[h(x(s), s)]) − fn(s, y(a(s), y[h(y(s), s)])‖

+

∫ s

0

|k(s− τ )|‖gn(τ, x(τ )) − gn(τ, y(τ ))‖dτ
]
ds

≤ λ||x− y||T0,β.

Therefore, ||(Fnx) − (Fny)||T0,β ≤ λ||x− y||T0,β ,

where λ =
[
‖Aβ−1‖ρ2[Lf(1+LLh+‖A−1‖)+KT0

Lg ]
]
T0.We choose T0 in such a way

that λ < 1. Hence, Fn is a strict contraction mapping. Therefore, Fn has a unique
fixed point xn(t) in W which is the approximate solution of the equation (1.1). �

Lemma 3.2. Let the conditions (A1)-(A5) are hold. If x0, y0 ∈ D(A) then
un(t) ∈ D(Aϑ) for all t ∈ (0, T ], where 0 ≤ ϑ < 1.
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Proof: If x0, y0 ∈ D(A) then Cα(t)x0 ∈ D(A) and Sα(t)y0 ∈ D(A). From

proposition (3.3) in [3],
∫ t

0
Pα(t − s)fn(s, xn(s), xn[h(xn(s), s)])ds ∈ D(A) for all

fn(s, xn(s), xn[h(xn(s), s)]) ∈ X. Hence, the required result follows from these
facts and the facts that D(A) ⊆ D(Aϑ) for all 0 ≤ ϑ ≤ 1. �

Lemma 3.3. Let all the conditions (A1) - (A5) are hold. If x0, y0 ∈ D(A), then

‖xn‖T0,ϑ ≤ U0, t ∈ [0, T0], n = 1, 2, · · · ,

for some suitable constant U0.

Proof: We have

xn(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t− s)
[
fn(s, xn(a(s)), xn[h(xn(s), s)])

+

∫ s

0

k(s− η)gn(η, xn(η))dη
]
ds.(3.17)

Let 0 ≤ ϑ < 1. By Applying the Aϑ on the both side of equation (3.17), we get the
following

‖xn(t)‖ϑ ≤ ‖Cα(t)‖‖Aϑx0‖ + ‖Sα(t)‖‖Aϑy0‖

+

∫ t

0

‖Aϑ−1‖‖APα(t − s)‖
[
‖fn(s, xn(s), xn[h(xn(s), s)])‖

+

∫ s

0

|k(s− η)|‖gn(η, xn(η))‖dη
]
ds

≤ U0,(3.18)

where U0 = M‖x0‖ϑ + T0M‖y0‖ϑ + ρ2‖A
ϑ−1‖[Kf +KT0

Kg ]T0. �

4. Convergence of Approximate Solutions

In this section, we will establish the convergence of the approximate solution
xn ∈ W to a unique mild solution x of equation (1.1).

Theorem 4.1. Let all the conditions (A1)-(A5) are hold. If x0, y0 ∈ D(A),
then

lim
m→∞

sup
{n≥m, 0≤t≤T0}

‖xn(t) − xm(t)‖β = 0.

Therefore, {xn} is a Cauchy sequence in W which converges to the solution x of
equation (1.1).

Proof Let 0 < β < ϑ < 1. We have the following inequality

‖(P n − Pm)xm(t)‖β ≤ ‖Aβ−ϑ(P n − Pm)Aϑxm(t)‖ ≤
1

λϑ−β
m

‖Aϑxm(t)‖ ≤
1

λϑ−β
m

U0.

For n ≥ m, we have

‖fn(t, xn(t), xn[h(xn(t), t)]) − fm(t, xm(t), xm[h(xm(t), t)])‖

≤ ‖fn(t, xn(t), xn[h(xn(t), t)]) − fn(t, xm(t), xm[h(xm(t), t)])‖

+‖fn(t, xm(t), xm[h(xm(t), t)]) − fm(t, xm(t), xm[h(xm(t), t)])‖

≤ J1 + J2.(4.19)
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We calculate J1 as follows:

J1 = ‖fn(t, xn(t), xn[h(xn(t), t)]) − fn(t, xm(t), xm[h(xm(t), t)])‖

≤ Lf [‖P nxn(t) − P nxm(t)‖β

+‖P nxn[h(P nxn(t), t)] − P nxm[h(P nxm(t), t)]‖β−1]

≤ Lf [‖xn(t) − xm(t)‖β + ‖xn[h(P nxn(t), t)] − xm[h(P nxm(t), t)]‖β−1]

≤ Lf [‖xn − xm‖T,β + ‖A−1‖‖xn − xm‖T,β]

≤ Lf [1 + ‖A−1‖]‖xn − xm‖T,β.(4.20)

Similarly, we calculate I2 as follows:

J2 = ‖fn(t, xm(t), xm[h(xm(t), t)]) − fm(t, xm(t), xm[h(xm(t), t)])‖

≤ Lf [‖(P n − Pm)xm(t)‖β

+‖P nxm[h(P nxm(t), t)]− Pmxm[h(Pmxm(t), t)]‖β−1]

≤ Lf [‖(P n − Pm)xm(t)‖β

+‖P nxm[h(P nxm(t), t)]− Pmxm[h(P nxm(t), t)]‖β−1

+‖Pmxm[h(P nxm(t), t)]− Pmxm[h(Pmxm(t), t)]‖β−1]

≤ Lf [‖(P n − Pm)xm(t)‖β + ‖(P n − Pm)xm[h(P nxm(t), t)]‖β−1

+‖xm[h(P nxm(t), t)] − xm[h(Pmxm(t), t)]‖β−1]

≤ Lf [‖(P n − Pm)xm(t)‖β + ‖(P n − Pm)xm[h(P nxm(t), t)]‖β−1

+L|h(P nxm(t), t) − h(Pmxm(t), t)‖]

≤ Lf [‖(P n − Pm)xm(t)‖β + ‖A−1‖‖(P n − Pm)xm[h(P nxm(t), t)]‖β

+LLh‖(P
n − Pm)xm(t)‖β ]

≤ Lf [(1 + LLh)‖(P n − Pm)xm(t)‖β

+‖A−1‖‖(P n − Pm)xm[h(P nxm(t), t)]‖β]

Thus, we get

‖fn(t, xn(t), xn[h(xn(t), t)]) − fm(t, xm(t), xm[h(xm(t), t)])‖

≤ Lf [1 + ‖A−1‖]‖xn − xm‖T,β + Lf [(1 + LLh)‖(P n − Pm)xm(t)‖β

+‖A−1‖‖(P n − Pm)xm[h(P nxm(t), t)]‖β]

≤ Lf [1 + ‖A−1‖]‖xn − xm‖T,β + Lf (1 + LLh + ‖A−1‖)
1

λϑ−β
m

U0.(4.21)

Also, for n ≥ m, we have

‖gn(t, xn(t)) − gm(t, xm(t))‖

≤ ‖gn(t, xn(t)) − gn(t, xm(t))‖

+‖gn(t, xm(t)) − gm(t, xm(t))‖

≤ Lg [‖xn − xm‖T0,β +
1

λϑ−β
m

U0].(4.22)



FAEDO-GALERKIN APPROXIMATIONS 361

Hence,

‖xn(t) − xm(t)‖β

≤

∫ t

0

‖Aβ−1‖‖APα(t− s)‖
[
‖fn(s, xn(a(s)), xn[h(xn(s), s)])

−fm(s, xm(a(s)), xm[h(xm(s), s)])‖

+

∫ s

0

|k(s− η‖‖gn(η, xn(η)) − gm(η, xm(η))‖dη
]
ds

≤ ρ2‖A
β−1‖T0

(
(Lf [1 + ‖A−1‖] +KT0

Lg)‖xn − xm‖T0,β

+LF (1 + LLh + ‖A−1‖+KT0
Lg)

1

λϑ−β
m

U0

)
.

Therefore, we take the supremum and get

‖xn − xm‖T,β ≤ ρ2‖A
β−1‖T0

(
(Lf [1 + ‖A−1‖] +KT0

Lg)‖xn − xm‖T0,β

+Lf (1 + LLh + ‖A−1‖ +KT0
Lg)

1

λϑ−β
m

U0

)
.

Hence,

‖xn − xm‖T,β ≤
ρ2‖A

β−1‖T0(Lf [1 + ‖A−1‖] +KT0
Lg)

1 − ρ2‖Aβ−1‖T0(Lf (1 + LLh + ‖A−1‖) +KT0
Lg)

1

λϑ−β
m

U0.

Therefore,

lim
m→∞

sup
{n≥m, 0≤t≤T0}

‖xn(t) − xm(t)‖β = 0

since 1
λϑ−β

m

→ 0 as m→ ∞. This completes the proof of the theorem. �

With the help of Theorem (3.1)and Theorem (4.1), we can state the following
existence, uniqueness and convergence results.

Theorem 4.2. If x0 ∈ D(A), y0 ∈ D(A) and all the assumptions (A1)-(A5)
are satisfied. Then, there exist an unique xn ∈ W for each n = 1, 2, 3, · · · and
x ∈ W satisfying

xn(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t − s)
[
fn(s, xn(a(s)), xn[h(xn(s), s)])

+

∫ s

0

k(s− η)gn(η, xn(η))dη
]
ds(4.23)

and

x(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t− s)
[
f(s, x(a(s)), x[h(x(s), s)])

+

∫ s

0

k(s− η)g(η, x(η))dη
]
ds(4.24)

such that xn → x in W as n→ ∞, where fn and gn are defined as earlier.
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Proof: Existence and convergence of xn is already proved in Theorem (3.1) and
Theorem (4.1). We only need to prove that the limit of xn is given by equa-
tion (4.24). We have

‖xn(t) − x(t)‖β

≤ d1

∫ t

0

‖fn(s, xn(a(s)), xn[h(xn(s), s)]) − f(s, x(s), x[h(x(s), s)])‖ds

+d1

∫ t

0

∫ s

0

|k(s− η)|‖gn(η, xn(η)) − g(η, x(η))‖dηds, t ∈ [0, T0],(4.25)

where d1 = ρ2‖A
β−1‖. We have the following inequlities

‖fn(t, xn(t), xn[h(xn(t), t)]) − f(t, x(t), x[h(x(t), t)])‖, t ∈ [0, T0]

≤ K1[‖P
nxn(t) − x(t)‖β + ‖P nxn[h(xn(t), t)]− x[h(x(t), t)]‖β−1]

≤ K1[‖P
n(xn(t) − x(t))‖β + ‖(P n − I)x(t)‖β]

+K1‖A
−1‖‖P nxn[h(xn(t), t)] − P nx[h(x(t), t)]‖β

+K1‖A
−1‖‖(P n − I)x[h(x(t), t)]‖β

≤ K1[‖xn − x‖T0,β + ‖(P n − I)x‖T0,β ]

+K1‖A
−1‖‖xn − x‖T0,β +K1‖A

−1‖‖(P n − I)x‖T0,β.

and

‖gn(η, xn(η)) − g(η, x(η))‖, t ∈ [0, T0]

≤ Lg‖P
nxn(t) − x(t)‖β

≤ Lg[‖P
n(xn(t) − x(t))‖β + ‖(P n − I)x(t)‖β ]

≤ Lg[‖xn − x‖T0,β + ‖(P n − I)x‖T0,β].

Hence, ‖fn(t, xn(t), xn[h(xn(t), t)]) − f(t, x(t), x[h(x(t), t)])‖ → 0 and
‖gn(η, xn(η))−g(η, x(η))‖ → 0 as n → ∞ because xn → x and P nx→ x as n → ∞.
This completes the proof of the theorem. �

5. Faedo-Galerkin Approximation

For any 0 < t < T0, we have a unique x ∈ W satisfying the integral equation

x(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t− s)
[
f(s, x(a(s)), x[h(x(s), s)])

+

∫ s

0

k(s− η)g(η, x(η))dη
]
ds.(5.26)

Also, we have a unique solution xn ∈ W of the approximate integral equation

xn(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t − s)
[
fn(s, xn(a(s)), xn[h(xn(s), s)])

+

∫ s

0

k(s− η)gn(η, xn(η))dη
]
ds.(5.27)
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The Faedo-Galerkin approximation of solution to equation (1.1) is defined as x̂n(t) =
P nxn(t). Faedo-Galerkin Approximate solution x̂n(t) = P nxn(t) satisfies the fol-
lowing equation

x̂n(t) = Cα(t)P nx0 + Sα(t)P ny0

+

∫ t

0

Pα(t− s)
[
P nfn(s, xn(a(s)), xn[h(xn(s), s)])

+

∫ s

0

k(s− η)P ngn(η, xn(η))dη
]
ds.(5.28)

Solutions x and x̂n which are given by equation (5.26) and equation (5.28) respec-
tively, have the following representation

x(t) =

∞∑
i=1

αi(t)φi, αi(t) = 〈x(t), φi〉, i = 1, 2, . . . ;(5.29)

x̂n(t) =

n∑
i=1

αn
i (t)φi, αn

i (t) = 〈x̂n(t), φi〉, i = 1, 2, . . . , n.(5.30)

The Faedo-Galerkin method approximates equation (1.1) by

dαP nx(t)

dtα
= P nAP nx(t) + P nf(t, P nx(t), P nx[h(P nx(t), t)])

+

∫ t

0

k(t− η)P ngn(η, xn(η))dη, t ∈ (0, T0],

P nx(0) = P nx0, P nx′(0) = P ny0.(5.31)

Equation (5.30) leads to the following system of fractional differential equations

dααn
i (t)

dtα
=

n∑
j=1

αn
j (t)〈Aφi, φj〉 + fn

i (t, αn
1 , · · · , α

n
n) + gn

i (t, αn
1 , · · · , α

n
n),

αn
i (0) = 〈x0, φi〉, α̇n

i (0) = 〈y0, φi〉 i = 1, 2, · · · , n,

where t ∈ (0, T0],

fn
i (t, αn

1 , · · · , α
n
n) = 〈f(t,

n∑
i=1

αn
i (t)φi,

n∑
i=1

αn
i (h(

n∑
i=1

αn
i (t)φi, t))φi), φi〉

and gn
i (t, αn

1 , · · · , α
n
n) = 〈

∫ t

0
k(t − τ )g(τ,

∑n
i=1 α

n
i (τ )φi)dτ, φi〉. Since φi, i =

1, 2, 3, · · · are the eigenfunctions of A with corresponding eigenvalues λi, these above
equation becomes

dααn
i (t)

dtα
= λiα

n
i (t) + fn

i (t, αn
1 , · · · , α

n
n) + gn

i (t, αn
1 , · · · , α

n
n), t ∈ (0, T0],

αn
i (0) = 〈x0, φi〉, α̇n

i (0) = 〈y0, φi〉 i = 1, 2, · · · , n.

Theorem 5.1. Let all the assumptions (A1)-(A5) are satisfying and x0, y0 ∈
D(A). Then, we have the following

lim
n→∞

sup
{n≥m, 0≤t≤T0}

‖Aβ[x̂n(t) − x̂m(t)]‖ = 0.
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Proof For n ≥ m, we have

‖Aβ[x̂n(t) − x̂m(t)]‖ = ‖Aβ[P nxn(t) − Pmxm(t)]‖

≤ ‖P n[xn(t) − xm(t)]‖β + ‖(P n − Pm)xm‖β

≤ ‖xn(t) − xm(t)‖β +
1

λϑ−β
m

U0.

We use the Theorem (4.1) and Lemma (3.3) to get the desired result. �

Now we can state a theorem which will ensure the existence and convergence
of Faedo-Galerkin approximate solution of equation (1.1).

Theorem 5.2. If all the assumptions (A1)-(A5) are satisfying and x0, y0 ∈
D(A). Then, there exists a unique function x̂n ∈ W given by

x̂n(t) = Cα(t)P nx0 + Sα(t)P ny0

+

∫ t

0

Pα(t − s)
[
P nfn(s, xn(a(s)), xn[h(xn(s), s)])

+

∫ s

0

k(s− η)P ngn(η, x(η))dη
]
ds

and x ∈ W given by

x(t) = Cα(t)x0 + Sα(t)y0 +

∫ t

0

Pα(t− s)
[
f(s, x(a(s)), x[h(x(s), s)])

+

∫ s

0

k(s− η)g(η, x(η))dη
]
ds

such that x̂n → x as n→ ∞ in W on [0, T0].

Proof: Proof of this theorem is the consequence of Theorems (3.1) and Theo-
rem (4.1). �

We have the following convergence theorem for {αn
i (t)}.

Theorem 5.3. Let all the assumptions (A1)-(A5) are satisfied and x0, y0 ∈
D(A). Then, we have the following.

lim
n→∞

sup
t0≤t≤T

[ n∑
i=0

λ2β
i |αi(t) − αn

i (t)|2
]

= 0.

Proof: We have

Aβ[x(t) − x̂n(t)] = Aβ
[ ∞∑

i=0

(αi(t) − αn
i (t))φi

]
=

∞∑
i=0

λβ
i (αi(t) − αn

i (t))φi,

where αn
i (t) = 0 for all i > n.

Therefore, we have

‖Aβ[x(t) − x̂n(t)]‖2 ≥

n∑
i=0

λ2β
i (αi(t) − αn

i (t))2.

Result follows from Theorem (5.2). �
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6. Application

Let X = L2[0, π]. We consider the following partial differential equations with
deviated argument,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cDα
t Z(t, y) = ∂yyZ(t, y) + f2(y, Z(a(t), y)),+f3(t, y, Z(t, y))

+
∫ t

0
k(t− τ )g1(t, y, Z(t, y))dτ, y ∈ (0, π), t > 0,

Z(t, 0) = Z(t, π) = 0, t ∈ [0, T ], a(t) ≤ t, 0 < T <∞,
Z(0, y) = x0, y ∈ (0, π),
∂tZ(0, y) = y0, y ∈ (0, π),

(6.32)

where

α ∈ (1, 2], f3(t, y, Z(t, y)) =

∫ y

0

K(y, s)Z(s, h(t)(a1 |Z(t, s)| + b1|Z(t, s)|))ds.

We assume that a1, b1 ≥ 0, (a1, b1) �= (0, 0), h : R+ → R+ is locally Hölder continu-
ous in t with h(0) = 0 and K : [0, π]× [0, π] → R, b ∈ X. We define an operator A,
as follows,

(6.33) Ax = −
d2x

dy2
with x ∈ D(A) = {x ∈ H1

0 (0, π)∩H2(0, π) : x′′ ∈ X},

where H2(0, π) and H1
0(0, π) are the sobolev spaces.

Let m be a positive integer and let 1 ≤ p < ∞, we define the Sobolev space
Wm,p(Ω) as

(6.34) Wm,p(Ω) = {x ∈ Lp(Ω) | Dηx ∈ Lp(Ω) for all |η| ≤ m},

where ‖x‖m,p,Ω = (
∑

|η|≤m ‖Dηx‖p
Lp)

1

p . Here, η is a multi-index. If p = 2, we write

Hm(Ω) instead ofWm,2(Ω). If m = 1 and p = 2 then W 1,2(Ω) = H1(Ω). The closure
of the space D(Ω) in H1(Ω) is a proper closed subspace of H1(Ω) and denoted by
H1

0 (Ω). Here, D(Ω) denote the space of test functions in Ω. For the more details on
Sobolev spaces, we refer to [26].

We observe some properties of the operators A defined by equation (6.33). Let
x ∈ D(A) and λ ∈ R such that Ax = −x′′ that is

(6.35) x′′ + λx = 0.

Also, 〈Ax, x〉 = 〈λx, x〉. Hence, 〈−x′′, x〉 = |x′|2L2 = λ|x|2L2. Therefore, λ > 0.
Solutions (orthonormal eigenfunctions) of equation (6.35) are given by xn(s) =√

2/π sinns, n = 1, 2, 3, · · · , and eigenvalues are given by λn = n2. Since D(A) is
a seprable Hilbert space hence for any x ∈ D(A), there exists a sequence of reals
numbers (αn) such that

x =

∞∑
n=1

αnxn

with
∞∑

n=1

(αn)
2
<∞,

∞∑
n=1

(λn)
2
(αn)

2
<∞.

Here, αn = 〈x, xn〉. We apply the operator A on x and get the infinite series repre-
sentation

Ax =

∞∑
n=1

n2〈x, xn〉xn.
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Moreover, the operator A is the infinitesimal generator of a strongly continuous
cosine family C(t)t∈R on X which is given by

C(t)x =

∞∑
n=1

cosnt(x, xn)xn, x ∈ X,

and the associated sine family {S(t)}t∈R on X which is given by

S(t)x =

∞∑
n=1

1

n
sinnt(x, xn)xn, x ∈ X.

For more details on operator A and their representation please see [21, 25, 27, 28,
29].

For α = 2, the equation (6.32) can be reformulated as the following abstract
equation in X = L2[0, π]:

x′′(t) + Ax(t) = f(t, x(a(t)), x[h(x(t), t)]) +

∫ t

0

k(t − s)g(s, x(s))ds, t > 0,

x(0) = x0, x′(0) = y0, a(t) ≤ t,(6.36)

where x(t) = Z(t, .) that is x(t)(y) = Z(t, y), y ∈ [0, π]. The operator A is same as
in equation (6.33). The function g : R+ ×X → X, is given by

g(t, ς)(y) = g1(t, y, ς),(6.37)

where g1 is given by

g1(t, y, Z(t, y)) =

∫ y

0

K(y, s)Z(t, s)ds.(6.38)

The function f : R+ ×X ×X → X, is given by

f(t, ψ, ξ)(y) = f2(y, ξ) + f3(t, y, ψ),(6.39)

where f2 : [0, π]×X → H1
0(0, π) is given by

f2(y, ξ) =

∫ y

0

K(y, x)ξ(x)dx,(6.40)

and

‖f3(t, y, ψ)‖ ≤ V (y, t)(1 + ‖ψ‖H2(0,1))(6.41)

with V (., t) ∈ X and V is continuous in its second argument. For more details
see [16]. Thus, the theorem (3.1) can be applied to the problem (6.32).
For α ∈ (1, 2), since A is the infinitesimal generator of a strongly continuous cosine
family C(t)t∈R, form the subordinate principle (Theorem 3.1, [4]), it follows that
A is the infinitesimal generator of a strongly continuous exponentially bounded
fractional cosine family Cα(t) such that Cα(0) = I, and

Cα(t) =

∫ ∞

0

ϕt,α/2(s)C(s)ds, t > 0,

where ϕt,α/2(s) = t−α/2φα/2(st
−α/2), and

φγ(y) =

∞∑
n=0

(−y)n

n!Γ(−γn + 1 − γ)
, 0 < γ < 1.
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Thus, the equation (6.32) can be reformulated as the following fractional differential
equation in X = L2[0, π]

cDα
t x(t) + Ax(t) = f(t, x(a(t)), x[h(x(t), t)]) +

∫ t

0

k(t− s)g(s, x(s))ds, t > 0,

x(0) = x0, x′(0) = y0, a(t) ≤ t.(6.42)

Therefore, Theorem (3.1), Theorem (4.1) and other abstract results of the manu-
script can be obtained for the problem (6.32).
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