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Abstract. The smooth evolutions along the trajectories of the main physi-

cal quantities of the two dimensional Boussinesq system with viscousity and

thermal diffusivity not both non-zero are studied. Specifically, for a spatially
Hm solution with m > 4 (only m > 3 is needed for some result), quantities

including the speed, vorticity, temperature gradient and their stretching rates
are shown to evolve smoothly along the trajectories. Conclusions on their evo-

lutions are obtained. Results on some of the stretching rates give information
on the evolutions of the relative sizes of some basic quantities. When the vis-

cousity and thermal diffusivity are zero, it is not known if smooth solutions
exist globally and we study the dichotomy between finite time singularity and

the long time behaviors of the main quantities. If either the viscousity or
thermal diffusivity is non-zero, it is known that smooth solutions are global

and this investigation provides some information about them by describing the
dynamics of the main quantities.
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1.1. Introduction. We consider the Boussinesq system in R
2

(1.1)

⎧⎨
⎩

div v = 0,
vt + (v · ∇)v = νΔv −∇p + θe2 ,
θt + v · ∇θ = κΔθ,

where v = (v1(x, t), v2(x, t)) is the velocity with x = (x1, x2) ∈ R
2 and t > 0,

θ = θ(x, t) is the temperature, p = p(x, t) is the pressure, e2 = (0, 1)�, ν ≥ 0 and
κ ≥ 0 are the viscousity and thermal diffusion coefficients respectively. We denote
the i-th equation of (1.1) by (1.1)i. It describes the motion of a slightly compressible
fluid subject to convective heat transfer with the presence of viscousity or thermal
diffusion, and models geophysical flows like ocean circulations. See for instance
[17, 19, 22]. Though a lot has been written on the equations in two or three
spatial dimensions, with or without viscousity and thermal diffusivity, isotropic
or anisotropic, they are usually on well-posedness and regularity issues. A very
incomplete list is [1, 3, 4, 6, 11, 12, 13, 16, 21, 23]. Little has been written on
the evolution of the system. We take up this topic in this paper, and investigate the
smooth evolutions along the trajectories of the main physical quantities of the 2D
Boussinesq system with ν and κ not both non-zero. There are two reasons for this
interest. First, when ν = κ = 0, it is not known if local smooth solutions can be
extended to global ones, and the evolutions of the quantities along the trajectories
may give information on whether this is possible. Specifically, if contradictions in
the dynamics derived under the assumption that a global smooth solution exists,
then it does not. See the discussions in [7, 8] in studying the finite time blow-up
problem for the three dimensional incompressible Euler system. Second, in case ν
and κ are not all zero, it is known that smooth solutions are global [6, 16]. The
dynamics of the main quantities then give some of their global and asymptotic
properties, on which little has been written.

The following existence results provide the foundations for our discussions. In
[11], it is proved that for initial values (v0, θ0) ∈ Hm(R2) × Hm(R2) with m > 2
(same notation for vector- and scalar-valued Sobolev functions), (1.1) with κ = ν =
0 has a local solution (v, θ) ∈ C([0, T ]; Hm(R2)×Hm(R2)). In fact, it also belongs
to C1([0, T ]; Hm−2(R2) ×Hm−2(R2)) (see Proposition 3.1). It blows up at T∗ > 0

if and only if
∫ T∗

0 ‖∇θ(t)‖L∞(R2)dt = ∞. Hence ∇θ is a quantity determining the
finite time blow-up of smooth solutions, like the vorticity or deformation tensor in
the three dimensional incompressible Euler equations [2, 20, 18]. If either ν or κ
is non-zero, global C([0,∞); Hm(R2) × Hm(R2)) solution exists [6] (and [16] for
the case ν > 0 and κ = 0 only). When ν and κ are both positive, the existence
of global smooth solution is well known (see the discussions in [3, 6, 16]), and
for instance can be proved by modifying the argument in [6]. Though the method
employed here also yields results for this case, we choose not to discuss them as the
results and their interpretations are clumsy. Quantities like ∇Δθ, Δω (where ω is
the vorticity) and Δv would appear in the theorems and obscure the clear results
we now have.

Let a ∈ R
2. Let X(a, t) be the particle trajectory starting from a at t = 0, the

solution to

(1.2)
dX(a, t)

dt
= v(X(a, t), t), X(a, 0) = a.
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For a smooth function f on R
2×(0, T ), the material derivative of f is Df

Dt
= ∂tf +v ·

∇f . We will write f(X(a, t), t)′ or simply f ′ for d
dt

f(X(a, t), t) =
(

Df

Dt

)
(X(a, t), t).

We study the main quantities of the system including speed, vorticity, tempera-
ture gradient and their stretching rates which in turn are composed of more basic
quantities like the first three mentioned quantities together with pressure gradient,
buoyancy force and deformation tensor. From (1.1), we derive some ordinary differ-
ential equations that govern their evolutions along a trajectory, which yield results
on their evolutions. The evolutions of the stretching rates in turn give results on
the evolution of the relative sizes of the basic quantities. These are the contents of
Theorems 1.1 and 1.2, phrased in terms of f , g, α, Φ and Ψ to be defined in Section
1.2

This paper is inspired by Chae [8] and uses some of the methods in there (see
also [9, 10]). The purpose of [8] is to investigate the finite time blow up problem
of the three dimensional incompressible Euler equations. The approach in there is
to study the evolutions of the vorticity and quantities related to its growth like the
vorticity stretching rate and the eigenvalues of the deformation tensor (see [5]) with
an eye on possible contradictions arising from the assumption of global existence
of smooth solutions. The followings are the main differences between [8] and this
paper. First, we investigate the 2D Boussinesq system with ν and κ not both
nonzero instead of the 3D incompressible Euler system. Second, when either κ or ν
is positive, there is no finite-time blow-up. In that case, our interest is on the global
behaviors of global smooth solutions. Third, the focus of [8] is on the vorticity and
related quantities which are relevant to the blow up of local smooth solutions. In
contrast, we investigate all the main variables like velocity, temperature, pressure
and vorticity of the Boussinesq equations, the evolutions of which give a good
picture of the system. Consequently, we work with the momentum equation, the
heat convection equation as well as the vorticity equation. Finally, the scenario in
which the magnitude of vorticity decreases along the trajectories is not discussed
in [8], possibly because finite-time blow-up is the main concern. In contrast, we
also discuss the scenarios in which |v|, |ω| and |∇θ| are decreasing. They make up
scenario 2 in Theorem 1.1. As a result, we can describe scenario changes in addition
to single-scenario long time behaviors and give a more complete description of the
evolution of the system. The method in [8] is generally applicable and has been
used to discuss the dynamics of the Camassa-Holm equation in [15].

To facilitate the description of our result, we formally define the concept of
vague monotonicity which has already appeared in [8].

Definition 1. A continuous function Φ : [0,∞) → R is vaguely increasing
(decreasing) if there is an infinite sequence {tj}

∞
j=0 with 0 = t0 < t1 < · · · < tj <

tj+1 → ∞ such that for all j = 0, 1, . . ., Φ(tj) < Φ(tj+1) (Φ(tj) > Φ(tj+1) ) and
Φ(tj) = maxt∈[0,tj] Φ(t) (Φ(tj) = mint∈[0,tj] Φ(t)). Φ is said to be vaguely monotonic
if it is vaguely increasing or decreasing.

This is a weak sense of monotonicity. In particular, that Φ is vaguely increas-
ing implies that there exists a sequence {tj} increasing to infinity along which Φ is
strictly increasing and that Φ is definitely not monotonic decreasing. Similar state-
ments hold if Φ is vaguely decreasing. However, Φ can be simultaneously vaguely
increasing and decreasing when it fluctuates increasingly wildly. We will use the fact
that if Φ : [0,∞) → R is continuous, positive (negative) and lim inft→∞Φ(t) = 0
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(lim supt→∞Φ(t) = 0), then Φ is vaguely decreasing (increasing). See Proposition
2.1 for the proof.

Throughout this paper, we will stick to the wordings and meanings in the fol-
lowing definitions of blowing up. Let (v, θ) be a time-continuous Hm(R2)×Hm(R2)-
valued solution of (1.1). We say that (v, θ) blows up at T∗ < ∞ if (v(t), θ(t)) is
continuous on [0, T∗) but cannot be extended continuously to T∗. Next, let T∗ be

the blow-up time of a solution or ∞ if it never blows up in finite time. For T̃ ≤ T∗,
we say that a quantity β blows up along a trajectory (X(a, t), t) at T̃ if β(X(a, ·), ·)

is continuous on [0, T̃) and limT↗T̃ supt∈[0,T ] |β(X(a, t), t)| =∞.
We make two remarks. First, we have only defined the blowing up of a quantity

along a trajectory before or at the solution blow-up time (i.e. T̃ ≤ T∗) and do not

worry about T̃ > T∗. Notice that even if a solution blows up at T∗ < ∞ and can
only be continued beyond T∗ as a weaker solution, it is possible that some or even
most of the trajectories and the solution along them can be continued smoothly.
Then the smooth evolution and blowing-up of a quantity along a trajectory can still
be discussed after T∗. However in this paper, in Theorem 1.1 and 1.2, our discussion
will stop at any finite blow-up time of the solution. Hence we need not consider this
issue, saving the trouble of deciding if a trajectory and a quantity defined along it
can be smoothly extended beyond T∗. The second remark is that sometimes the
blow-up of a quantity along a trajectory at T̃ implies that the solution blows up at
the same time. This is the case if for instance the quantity is v, ω or ∇θ and m > 2.
However, if a quantity like θx1/ω blows up along a trajectory at T̃ , it could be that

ω goes to 0 as t increases to T̃ and the solution need not blow up at that time.

1.2. Evolutions of the quantities. The evolutions of the main quantities
of the system along the trajectories are governed by several ordinary differential
equations derived from (1.1). We group the quantities into three groups and orga-
nize our discussions under three cases. Each one of them deals with one of |v|, |ω|,
|∇θ| and its stretching rate. In case I, we assume ν = 0, κ ≥ 0 and discuss the
evolution of speed |v| and its stretching rate, which is the ratio of the trajectorial
component of force and speed. Taking the dot product of (1.1)2 with v, we get

|v|
D|v|
Dt

= v Dv
Dt

= (−v · ∇p + v2θ). For v 	= 0, let ξ = (ξ1, ξ2) := v/|v|. Then

Dξp := ξ · ∇p is the directional derivative of the pressure and ξ2θ is the component
of the buoyancy force along the flow direction. Hence F := −Dξp + ξ2θ is the
trajectorial component of the force. Therefore when |v| 	= 0,

(1.3)
D|v|

Dt
= α1|v|, where α1 :=

F

|v|
.

α1 is the |v|-stretching rate. We will also draw conclusion on the relative sizes of
|v|2 and F , the quantity denoted

(1.4) Φ1(a, t) :=
α1

|v|
(X(a, t), t) =

F

|v|2
(X(a, t), t).

Notice that the positivity or negativity of F , α1 and Φ1 means that the force is
pushing or working against the fluid along its trajectory. Looking further into the
evolution of |v| (by considering D2|v|/Dt2) will involve the derivative of α1, given

by α′1 = F ′

|v| − α2
1 =

(
F ′|v|
F2 − 1

)
α2

1. When F (X(a, t), t) is defined and non-zero, if
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we define

(1.5) Ψ1(a, t) :=
F ′|v|

F 2
(X(a, t), t) =

[
−

DF−1

Dt
|v|

]
(X(a, t), t),

then

(1.6) α1(X(a, t), t)′ = [Ψ1(a, t)− 1]α1(X(a, t), t)2.

In case II, we still suppose ν = 0 and κ ≥ 0. We consider the evolution of the
vorticity ω = v2

x1
− v1

x2
and its stretching rate. Take the curl of (1.1)2 to get the

vorticity equation

(1.7)
Dω

Dt
= θx1 .

When ω 	= 0, multiply (1.7) by ω to get

(1.8)
D|ω|

Dt
= α2|ω| with α2 =

sgn(ω)θx1

|ω|
=

θx1

ω
,

where sgn(ω) is 1, −1 or undefined when ω is positive, negative or 0. α2 is the
vorticity stretching rate. Define

(1.9) Φ2(a, t) :=
α2

|ω|
(X(a, t), t) =

(sgn ω)θx1

ω2
(X(a, t), t).

Hence α2 and Φ2 are positive if and only if θx1 and ω are of the same sign. Their
evolutions give information on that of ω relative to θx1 . Again for a refinement
(consider D2|ω|/Dt2) we need to look at α′2. When [sgn(ω)θx1 ](X(a, t), t) is defined
and non-zero, if we define

Ψ2(a, t) :=
θ′x1

ω

θ2
x1

(X(a, t), t) =

[
−

Dθ−1
x1

Dt
ω

]
(X(a, t), t)(1.10)

=

[
−

D[sgn(ω)θx1 ]
−1

Dt
|ω|

]
(X(a, t), t),

then

(1.11) α2(X(a, t), t)′ = [Ψ2(a, t)− 1]α2(X(a, t), t)2.

In case III, let ν ≥ 0, κ = 0 and consider the evolution of |∇θ| and its stretching
rate. Take the gradient of (1.1)3 to get

(1.12)
D∇θ

Dt
= −V∇θ,

where V is a 2 × 2 matrix with Vij = ∂xi
vj . Take the dot product with ∇θ to

get |∇θ|D|∇θ|
Dt

= ∇θ · D∇θ
Dt

= −∇θ · V∇θ. If ∇θ 	= 0, let η := ∇θ/|∇θ|. Let

S = (V + V T )/2 be the deformation tensor. Then

(1.13)
D|∇θ|

Dt
= α3|∇θ|, α3 = −η · V η = −η · Sη.

Thus α3 is the temperature gradient stretching rate. Define

(1.14) Φ3(a, t) :=
α3

|∇θ|
(X(a, t), t) =

−∇θ · S∇θ

|∇θ|3
(X(a, t), t).
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Using (1.13),

α′3 =

(
−η · S∇θ

|∇θ|

)′
=

(−η · S∇θ)′

|∇θ|
−

(−η · S∇θ)|∇θ|′

|∇θ|2

=
(−η · S∇θ)′

|∇θ|
− α2

3 =

[
(−η · S∇θ)′|∇θ|

(−η · S∇θ)2
− 1

]
α2

3.

When (η · S∇θ)(X(a, t), t) is defined and non-zero, if we define

(1.15) Ψ3(a, t) :=
(−η · S∇θ)′|∇θ|

(−η · S∇θ)2
(X(a, t), t),

then

(1.16) α3(X(a, t), t)′ = [Ψ3(a, t)− 1]α3(X(a, t), t)2.

One can calculate S′, η′ etc. to get an expression for Ψ3 involving no derivatives,
but the resulting expression would be complicate. Moreover the present form is
convenient for us to give a uniform description of the dynamics in all the three
cases.

The dynamics of |v|, |ω| and |∇θ| follow similar patterns and can be described
in a uniform manner. Let f : R

2 × [0, T ] → R be either |v|, |ω| or |∇θ|. Corre-
spondingly, let g be F , sgn(ω)θx1 or −η · S∇θ, defined on R

2 × [0, T ] \ Zf with
Zf := {(x, t) ∈ R

2 × [0, T ] : f(x, t) = 0} the zero set of f . Let

(1.17) α :=
g

f
on R

2 × [0, T ] \ Zf .

It is the f-stretching rate, and is either α1, α2 or α3 corresponding to the three
choices of f and g. We call attention to the fact that α 	= 0 implies that both f and
g are non-zero. Indeed, for α to be defined, g has to be too and hence f 	= 0. Then
α = g/f 	= 0 implies that g 	= 0. Then (1.3), (1.8) and (1.13) can be written as

Df

Dt
= αf, α =

g

f
on R

2 × [0, T ] \ Zf .

In particular,

(1.18) f(X(a, t), t)′ = (αf)(X(a, t), t) when f(X(a, t), t) 	= 0.

Define

(1.19) Φ(a, t) :=
α

f
(X(a, t), t) =

g

f2
(X(a, t), t) when (X(a, t), t) /∈ Zf

to be one of the Φi’s, i = 1, 2, 3. If one attempt a refinement of the dynamics and
looks into the second derivative of f(X(a, t), t), one encounters α′. From (1.18),
α′ = (g′/f)− α2 = [(g′f/g2)− 1]α2. The functions Ψi (i = 1, 2, 3) defined in (1.5),
(1.10) and (1.15) are summarily given by

Ψ(a, t) :=
g′f

g2
(X(a, t), t)(1.20)

=

[
−

Dg−1

Dt
f

]
(X(a, t), t) when g(X(a, t), t) 	= 0.

Then the evolutions of the αi’s given by (1.6), (1.11) and (1.16) can be written as

(1.21) α(X(a, t), t)′ = [Ψ(a, t)− 1]α(X(a, t), t)2.

Information on Ψ and its evolution translates into those on g and f . For instance,
Ψ > 1 means that (sgn g)(log g)′ > |g|/f or g′/g2 > f−1, or any form sensible to
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the reader. For easy reference, we summarize the quantities in the three cases in
Table 1.

General Case I Case II Case III

f |v| |ω| |∇θ|

g F sgn(ω)θx1 −η · S∇θ

α = g

f
α1 = F

|v| α2 =
sgn(ω)θx1

|ω| =
θx1
ω

α3 = −η · Sη

Φ = α
f

= g

f2 Φ1 = α1
|v|

= F
|v|2

Φ2 = α2
|ω|

=
sgn(ω)θx1

|ω|2
Φ3 = α3

|∇θ|
= − η·Sη

|∇θ|

Ψ = g′f

g2 Ψ1 = F ′|v|

F2 Ψ2 =
θ′

x1
ω

θ2
x1

Ψ3 = (−η·S∇θ)′|∇θ|

(−η·S∇θ)2

Table 1. A summary of f , g, α, Φ and Ψ in the three cases. The
entries in the last two rows should read Φ(a, t) = (g/f2)(X(a, t), t)
and Ψ(a, t) = (g′f/g2)(X(a, t), t) etc. In the first three rows, the
arguments are (x, t) or (X(a, t), t).

1.3. The main theorems and a description of the dynamics. Through-
out the rest of this paper, α0(a) and f0(a) stand for α(a, 0) and f(a, 0) respectively.
The following theorem describes the evolutions of f , g and Φ in the three cases.
Recall that in Case I and Case II, ν = 0 and κ ≥ 0, while in Case III, ν ≥ 0 and
κ = 0.

Theorem 1.1. Let m > 4 (m > 3 is sufficient for Case I). Let (θ, v) be a
C([0, T ]; Hm(R2)×Hm(R2))∩C1([0, T ]; Hm−2(R2)×Hm−2(R2)) solution of (1.1)
(notice that T is not the maximal time of existence). Define the sets

Σ+(t) := {a ∈ R
2|α(X(a, t), t) > 0}, Σ−(t) := {a ∈ R

2|α(X(a, t), t) < 0}

associated with (v, θ). In particular, both g(X(a, t), t) and f(X(a, t), t) are non-zero
for a to belong to any one of them (see the remark after the definition of α (1.17)).
We say that the system is in scenario 1 (scenario 2) along X(a, ·) at time t, or
simply that the system is in scenario 1 (or 2), if a ∈ Σ+(t) (a ∈ Σ−(t)). Then the
following conclusions hold (for a continuation of (v, θ)) for any initial time t0 ≥ 0,
though only stated and proved for t0 = 0 for clarity.

(1) If a ∈ Σ+(0), then at least one of the following is true.
(a) (finite time singularity, possible only if ν = κ = 0) The solution blows

up in finite time.
(b) (possible scenario change from 1 to 2) (finite time extinction of α)

There is a t̃ < ∞ such that α(X(a, t̃), t̃) = 0.
(c) (single-scenario long time behavior)(Φ vaguely decreasing) Φ(a, t) > 0

for all t ≥ 0 and lim inft→∞Φ(a, t) = 0.
(2) If a ∈ Σ−(0), then at least one of the following is true.

(a) (finite time singularity, possible only if ν = κ = 0) The solution blows
up in finite time.
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(b) (possible scenario change from 2 to 1)
(i) (finite time extinction of α) There is a t̃ < ∞ such that

α(X(a, t̃), t̃) = 0.

(ii) (finite time extinction of f) There is a t̄ < ∞ such that

f(X(a, t̄), t̄) = 0.

(c) (single-scenario long time behavior)
(i) (f decaying at the rate 1/t) There is an ε∗ > 0, t∗ > 0 such

that for t ≥ t∗,

(1.22) f(X(a, t), t) ≤
f(X(a, t∗), t∗)

1 + ε∗(t − t∗)f(X(a, t∗), t∗)
.

(ii) (Φ vaguely increasing) Φ(a, t) < 0 for all t ≥ 0 and

lim sup
t→∞

Φ(a, t) = 0.

We make three remarks about the options in the theorem. First, notice that
in scenario 2, even though equation (1.18) implies that f(X(a, t), t) (one of the |v|,
|ω| or |∇θ| under discussion) decreases, the finite-time blow up option 2(a) is still a
possibility (when ν = κ = 0). Second, notice that no option in scenario 1 correspond
to option 2(b)ii, the finite time extinction of f . In fact, we claim that in scenario 1,
f cannot vanish unless some other option has already happened. The reason is as
follows. Write f(t) for f(X(a, t), t) temporarily. Suppose that f(t1) = 0 but f > 0
on [0, t1). Then Proposition 3.2 implies that α is continuous over [0, t1). If 1(b)
has not happened before t1, α remains positive over [0, t1). Then (1.18) implies
that f increases over there, contradictory to f(t1) = 0. Our claim is proved. In
contrast, in scenario 2, if 2(a) and 2(b)i have not happened, α(X(a, t), t) remains
negative. Then from (1.18), f decreases and the possibility that it vanishes at some
finite t̄ cannot be ruled out. Third, let us explain why the finite time extinction of
f (option 2(b)ii) is a scenario change option. Consider Case I, when f = |v| and
α = α1 = F/|v|. If |v(X(a, t), t)| vanishes, the smoothly varying v(X(a, t), t) can
’reverse’ direction. Then ξ can change direction abruptly causing F and hence α
to change sign. Then the system enters scenario 1 from scenario 2. Notice that
the locus of the particle can have a cusp even though the trajectory X(a, t) and
v(X(a, t), t) are smooth functions of t. Next consider Case II where f = |ω| and
α = α2 = sgn(ω)θx1/ω. If ω(X(a, t̄), t̄) = 0, then α(X(a, t), t) can go to ±∞ as
t ↗ t̄ and can change sign after t̄ resulting in a scenario change. Consider Case III
where f = |∇θ| and α = α3 = −η ·Sη. When |∇θ| vanishes, η may change direction
abruptly even though ∇θ varies smoothly, possibly causing α to change sign and
a scenario change. Of course, in all the three cases, options 1(b) and 2(b) do not
necessarily result in scenario changes, as α can retain its original sign after these
options happened.

From Theorem 1.1, the evolutions of f and g can be described as follows. From
(1.18), f(X(a, t), t) increases in scenario 1 and decreases in scenario 2 . If 1(b)
happens, α may change sign after t̃ and the system may enter scenario 2 from
scenario 1, and vice versa if any one of the options in 2(b) happens. Hence along a
particle trajectory, the system can go back and forth among the two scenarios. If
it stays in scenario 1 after a certain time, then f(X(a, t), t) keeps on increasing. It
may blow up in finite time (possible only if ν = κ = 0), or lim inft→∞Φ(a, t) = 0,
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which implies that Φ is vaguely decreasing (see Proposition 2.1) or equivalently g
decreases relative to f2 in a vague sense. If it stays in scenario 2, then f keeps on
decreasing. The solution may blow up in finite time, or f decays at the rate 1/t or
lim supt→∞Φ(a, t) = 0 which implies that Φ is vaguely increasing. As g < 0 in this
case, |g| still decreases vaguely relative to f2 .

If one wants more information on the evolution of f and consider its second
derivative, one encounters α′. The following theorem considers the evolutions of α
and Ψ, which in turn gives further information on those of f and g. It works with
(1.21) instead of (1.18).

Theorem 1.2. Let m > 4 and (θ, v) be a C([0, T ]; Hm(R2) × Hm(R2)) ∩
C1([0, T ]; Hm−2(R2) × Hm−2(R2)) solution of (1.1) (T not the maximal time of
existence). Define the sets

Σ++(t) := {a ∈ R
2|α(X(a, t), t) > 0, Ψ(a, t) > 1},

Σ+−(t) := {a ∈ R
2|α(X(a, t), t) > 0, Ψ(a, t) < 1},

Σ−+(t) := {a ∈ R
2|α(X(a, t), t) < 0, Ψ(a, t) > 1},

Σ−−(t) := {a ∈ R
2|α(X(a, t), t) < 0, Ψ(a, t) < 1}

associated with (v, θ). In particular, g(X(a, t), t), f(X(a, t), t) and Ψ(a, t) − 1 are
non-zero for a to belong to any one of them (see the remark after (1.17)). We say
that the system is in scenario 1 (scenario 2) along X(a, ·) at time t, or simply that
the system is in scenario 1 (or 2), if a ∈ Σ++(t) ∪ Σ−−(t) (a ∈ Σ+−(t) ∪ Σ−+(t)).
Then the following conclusions hold (for a continuation of (v, θ)) for any initial
time t0 ≥ 0, though only stated and proved for t0 = 0 for clarity

(1) If a ∈ Σ++(0) ∪ Σ−−(0), then at least one of the following is true.
(a) (finite time singularity, possible only if ν = κ = 0) The solution blows

up in finite time.
(b) (possible scenario change from 1 to 2)

(i) (finite time extinction of f, possible only if a ∈ Σ−−(0)) There
exists a t̄ < ∞ such that f(X(a, t̄), t̄) = 0.

(ii) (finite time extinction of Ψ−1) There exists a t̂ <∞ such that
Ψ(a, t̂) = 1.

(c) (single-scenario long time behavior)
(i) (Ψ vaguely decreasing) For a ∈ Σ++(0), Ψ(a, t) > 1 for all

t ≥ 0 and lim inft→∞Ψ(a, t) = 1.
(ii) (Ψ vaguely increasing) For a ∈ Σ−−(0), Ψ(a, t) < 1 for all

t ≥ 0 and lim supt→∞Ψ(a, t) = 1.
(2) If a ∈ Σ+−(0) ∪ Σ−+(0), then at least one of the following is true.

(a) (finite time singularity, possible only if ν = κ = 0) The solution blows
up in finite time.

(b) (possible scenario change from 2 to 1)
(i) (finite time extinction of α) There is a t̃ < ∞ such that

α(X(a, t̃), t̃) = 0.

(ii) (finite time extinction of Ψ − 1) There is a t̂ < ∞ such that
Ψ(a, t̂) = 1.

(c) (single-scenario long time behavior)
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(i) (α decays at the rate 1/t) There is an ε∗ > 0, t∗ > 0 such that
for t ≥ t∗,

|α(X(a, t), t)| ≤
|α(X(a, t∗), t∗)|

1 + ε∗(t − t∗)|α(X(a, t∗), t∗)|
.

(ii) (A) (Ψ vaguely increasing) If a ∈ Σ+−(0), Ψ(a, t) < 1 for
t ≥ 0 and lim supt→∞Ψ(t) = 1.

(B) (Ψ vaguely decreasing) If a ∈ Σ−+(0), Ψ(a, t) > 1 for
t ≥ 0 and lim inft→∞Ψ(t) = 1.

We make four remarks on the options. First, although we work with α and
(1.21) in this theorem, the blow up referred to in 1(a) and 2(a) are that of the solu-
tion (v, θ). The blow-up of α along X(a, t), i.e. limT→T̃ supt∈[0,T ] |α(X(a, t), t)| =∞

for some T̃ < ∞, is not our focus. The latter implies that either

lim
T→T̃

sup
t∈[0,T ]

|g(X(a, t), t)| = ∞

(then in all of Case I to Case III, the solution blows up no later than T̃ ) or
limT→T̃ inft∈[0,T ] f(X(a, t), t) = 0 (whereas the solution can remain smooth). Hence
the blowing up of α along X(a, t) is contained in the options 1(a), 1(b)i and 2(a).
Second, there is no option in scenario 1 corresponding to option 2(b)i, the finite
time extinction of α. Indeed, we claim that for α to vanish, f or Ψ− 1 must have
already vanished (i.e. 1(b)i or 1(b)ii has already happened). To see this, suppose
that a ∈ Σ++(0). Suppose that α vanishes at t1 > 0 but not before, and f does
not vanish on [0, t1). Then Proposition 3.2 implies that α and α′ are continuous
over there. Temporarily, we write α(t) for α(X(a, t), t) and similarly for α′. As
α(0) > 0 and α(t1) = 0, there is a t2 ∈ (0, t1) such that α′(t2) < 0. As α′(0) > 0
(from (1.21)), there is a t3 ∈ (0, t2) such that α′(t3) = 0. Then (1.21) implies that
Ψ(a, t3) − 1 = 0, i.e. 1(b)ii has already happened at t3 before t1. For a ∈ Σ−−(0),
the argument is similar. Our claim is proved. Third, there is no option in scenario 2
corresponding to option 1(b)i, the finite time extinction of f . In fact, we claim that
f can vanish before some other options happen only if a ∈ Σ−−(0). To see this,
suppose that f(t1) := f(X(a, t1), t1) = 0 for some t1 > 0, f > 0 on [0, t1) and no
other options happen before t1. Then Proposition 3.2 implies that α is continuous
on [0, t1). First suppose that a ∈ Σ++(0). From the previous remark (the second
remark after Theorem 1.2), α does not vanish on [0, t1). Hence α > 0 over there
and (1.18) implies that f(t1) > 0, contradictory to our assumption. Next suppose
that a ∈ Σ+−(0) in scenario 2. As we are assuming that 2(b)i does not happen on
[0, t1), α > 0 over there. Again (1.18) gives the contradiction f(t1) > 0. Finally
suppose that a ∈ Σ−+(0). As 2(b)i does not happen in [0, t1), α = g/f < 0 over
there. Then g < 0 on [0, t1) and Proposition 3.2 implies that Ψ − 1 is continuous
over there. Hence Ψ − 1 > 0 over [0, t1) as it is positive at t = 0. Then (1.21)
implies that α′ > 0 and hence α > α0(a) on [0, t1). Consequently (1.18) gives

f(t1) = exp{
∫ t1

0
α(X(a, s), s)ds}f0(a) > 0, yielding a contradiction. This proves

our claim. Fourth, as explained in the third remark after Theorem 1.1, the van-
ishing of f may (but not necessarily) cause α to change sign and hence a change
of scenario. Hence 1(b)i is a scenario change option. Of course, the vanishing of α
and Ψ− 1 are scenario change options.

Theorem 1.2 gives more information on the evolutions of the main quantities
of the system. From (1.21), if the system is in scenario 1 at time t, whether a is
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in Σ++(t) or Σ−−(t), |α(X(a, t), t)| is increasing. If 1(b)i happens, α may change
sign. If 1(b)ii happens, Ψ(a, t) − 1 may change sign. In either case, the system
leaves scenario 1 and enters scenario 2. If the system is in scenario 2 at time t,
whether a is in Σ+−(t) or Σ−+(t), |α(X(a, t), t)| is decreasing. If any one of the
options in 2(b) happens, the system may enter scenario 1 from 2. Hence along a
particle trajectory, the system can go back and forth among the two scenarios. If
it stays in scenario 1 after a certain time, then |α(X(a, t), t)| keeps on increasing.
The solution can blow up (possible only if ν = κ = 0 also) or f and g are such that
Ψ is vaguely monotonic (decreasing when a ∈ Σ++(t), increasing if a ∈ Σ−−(t)). If
it stays in scenario 2, then |α(X(a, t), t)| keeps on decreasing. Either the solution
blows up (possible only when ν = κ = 0), or α decays at the rate 1/t or Ψ is vaguely
monotonic (increasing if a ∈ Σ+−(t), decreasing if a ∈ Σ−+(t)). Notice that the
relative behaviors of f and g are given by the behavior of Ψ.

We prove the Theorem 1.1 and 1.2 in Section 2. In Section 3, we prove that
the regularity requirements on the solution in the theorems ensure the smooth
evolutions of various quantities along the trajectories, providing the foundations for
the arguments in Section 2 and the remarks following the theorems in this section.

2. Proof of the theorems on the dynamics of the 2D Boussinesq system

Recall that α0(a) and f0(a) stand for
sumalpha(a, 0) and f(a, 0) respectively. We first prove the sufficient condition for
vague monotonicity mentioned after Definition 1.

Proposition 2.1. Let Φ : [0,∞) → R be continuous and strictly positive
(negative), with lim inft→∞Φ(t) = 0 (lim supt→∞Φ(t) = 0). Then Φ is vaguely
decreasing (increasing).

Proof. Suppose that Φ satisfies the hypothesis of the theorem (the strictly
positive part). Let t0 = 0. Suppose tn−1 has been chosen. We claim that there is
a tn ≥ tn−1 + 1 such that Φ(tn) ≤ Φ(tn−1)/2 and Φ(tn) = mins∈[0,tn] Φ(s). Indeed,
as mins∈[0,tn−1+1] Φ(s) > 0 and lim inft→∞Φ(t) = 0, there is a t′ > tn−1 + 1 such
that

1

2
min

s∈[0,tn−1+1]
Φ(s) > Φ(t′) ≥ min

s∈[tn−1+1,t′]
Φ(s) > 0.

As Φ is continuous, there is a tn ∈ [tn−1+1, t′] such that Φ(tn) = mins∈[tn−1+1,t′] Φ(s).
Then tn ≥ tn−1 + 1 and

Φ(tn) = min
s∈[0,tn]

Φ(s) = min
s∈[0,t′]

Φ(s) <
1

2
min

s∈[0,tn−1+1]
Φ(s) ≤

1

2
Φ(tn−1).

Our claim is proved. Consequently, 0 = t0 < t1 < · · · < tn < tn+1 → ∞ as
n→∞ and Φ(tj) > Φ(tj+1) for j = 0, 1, 2, . . .. Hence Φ is vaguely decreasing. The
corresponding sufficient condition for Φ being vaguely increasing can be proved
similarly. �

Proof of Theorem 1.1. Suppose a ∈ Σ+(0). Suppose 1(a) and 1(b) do not
hold. From the second remark after Theorem 1.1, f(X(a, t), t) > 0 for all t ≥ 0.
Then from Proposition 3.2, f ′, α and Φ are continuous along (X(a, t), t) for all
t ≥ 0. That 1(b) does not hold implies that for all t ≥ 0, α(X(a, t), t) > 0 and hence
from (1.18) f(X(a, t), t) > 0. Therefore Φ = α/f > 0 and lim inft→∞Φ(a, t) ≥ 0.
We claim that lim inft→∞Φ(a, t) = 0. To see this, suppose on the contrary that
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lim inft→∞Φ(a, t) = I > 0. Then there is some T1 > 0 such that for t ≥ T1,

Φ(a, t) > I/2 and (1.18) gives Df

Dt
1
f2 = α

f
= Φ > I/2. Integrating along X(a, ·)

from T1 to t, we get

f(X(a, t), t) >
2f(X(a, T1), T1)

2− I(t − T1)f(X(a, T1), T1)

and f blows up along X(a, t) no later than T1 + 2/If(X(a, T1), T1). Then the
solution also blows up no later than that time, contradicting the assumption that
1(a) does not happen. Our claim is proved. That is, 1(c) holds.

Next suppose that a ∈ Σ−(0). Suppose 2(a) and both options in 2(b) do not
happen. Then f is strictly positive along X(a, t) for all t ≥ 0 (2(b)ii does not
happen) and Proposition 3.2 guarantees that f ′, α and Φ are continuous along
(X(a, t), t). Hence for all t ≥ 0, α(X(a, t), t) < 0 (as 2(b)i does not hold) and
Φ = α/f < 0. Consequently, lim supt→∞Φ(a, t) = S ≤ 0. In case S < 0, there

is a T2 > 0 such that for t ≥ T2, S/2 > Φ(a, t) = Df

Dt
1

f2 (X(a, t), t)(by (1.18)).

Integrating along X(a, ·) from T2 to t, we get

f(X(a, t), t) <
2f(X(a, T2), T2)

2− S(t − T2)f(X(a, T2), T2)
.

As S < 0, 2(c)i holds. In case S = 0, 2(c)ii holds. The theorem is proved. �

We prove Theorem 1.2 below. Recall that the blowing up of α along X(a, t) is
not equivalent to the blowing up of the solution (v, θ), but is contained in the options
of blowing up of the solution (1(a) or 2(a)) and the vanishing of f somewhere along
X(a, t) (1(b)i) in Theorem 1.2. See the first remark after the theorem.

Proof of Theorem 1.2. Suppose a ∈ Σ++(0). Suppose that 1(a) and 1(b)
do not happen and we will show that 1(c) holds. Recall that a ∈ Σ++(0) implies
that f does not vanish along (X(a, t), t) (see the third remark after Theorem 1.2, or
anyway excluded by our assumption that 1(b) do not happen). Hence α is defined
there. Now α cannot vanish along (X(a, t), t) as we are assuming that 1(b)i and
1(b)ii do not happen (see the second remark after Theorem 1.2). Hence g 	= 0 along
(X(a, t), t). Then Proposition 3.2 implies that α, α′ and Ψ are continuous along
(X(a, t), t). It follows that for all t ≥ 0, α(X(a, t), t) and Ψ(a, t)−1 remain positive.
Hence lim inft→∞(Ψ(a, t)− 1) = I ≥ 0. We claim that I = 0. Suppose that I > 0.
Then there is a T1 > 0 such that for all t ≥ T1, I/2 ≤ Ψ − 1 = 1

α2
Dα
Dt

(by (1.21)).
Integrating from T1 to t gives

α(X(a, t), t) ≥
2α(X(a, T1), T1)

2− Iα(X(a, T1), T1)(t − T1)
.

Hence α(X(a, t), t) → ∞ no later than T1 + 2/(Iα(X(a, T1), T1)). As f cannot
vanish for a ∈ Σ++(0) (third remark after Theorem 1.2), g(X(a, t), t)→∞ no later
than that time and hence the solution blows up in finite time, contradicting the
assumption that 1(a) does not happen. Our claim is proved and 1(c)i holds.

Suppose a ∈ Σ−−(0) and 1(a) and 1(b) do not happen. Then f remains pos-
itive along (X(a, t), t) (1(b)i does not happen). Hence α is continuous along the
trajectory (Prop. 3.2) and never vanishes (second remark after Theorem 1.2). Then
g never vanishes too and Ψ−1 is continuous along (X(a, t), t) (Prop. 3.2). Hence α
and Ψ− 1 remains negative along (X(a, t), t) (α never vanishes and 1(b)ii does not
happen). Hence lim supt→∞(Ψ(a, t)− 1) = S ≤ 0. Similar to the above paragraph,



EVOLUTION OF THE 2D BOUSSINESQ SYSTEM 345

if S < 0, α(X(a, t), t) → −∞ in finite time, implying that either g → −∞ (solution
blows up and 1(a) holds) or f → 0 (1(b)i holds), contradicting our assumption.
Hence S = 0 and 1(c)ii holds.

Suppose a ∈ Σ+−(0). Suppose 2(a) and 2(b) do not happen. Then α and hence
g does not vanish along the trajectory (2(b)i does not happen). Also f does not
vanish in this scenario (the third remark after the theorem). Hence Proposition 3.2
implies that α, α′ and Ψ are continuous along (X(a, t), t). Consequently α(X(a, t), t)
and Ψ(a, t) − 1 remain positive and negative respectively for all t ≥ 0. Hence
lim supt→∞(Ψ(a, t) − 1) = S ≤ 0. If S < 0, there is a T1 such that for t ≥ T1,
S/2 ≥ Ψ − 1 = 1

α2
Dα
Dt

. Integrating from T1 to t gives

α(X(a, t), t) ≤
2α(X(a, T1), T1)

2− Sα(X(a, T1), T1)(t− T1)
.

Hence α decreases at least at the rate 1/t and 2(c)i holds. In case S = 0, 2(c)iiA
holds.

Suppose that a ∈ Σ−+(0). If 2(a) and 2(b) do not hold, then similar to the last
paragraph, α, α′ and Ψ are continuous along (X(a, t), t) for all t ≥ 0. Hence α and
Ψ−1 stay negative and positive respectively. Consequently lim inft→∞(Ψ(a, t)−1) =
I ≥ 0. If I > 0, by (1.21), there is a T1 such that for t ≥ T1, I/2 ≤ Ψ− 1 = 1

α2
Dα
Dt

.
Integrating from T1 to t gives

α(X(a, t), t) ≥
2α(X(a, T1), T1)

2− Iα(X(a, T1), T1)(t − T1)
.

Hence |α| decreases at least at the rate 1/t and 2(c)i holds. In case I = 0, 2(c)iiB
holds. �

3. Smooth evolutions of various quantities along the trajectories

We first show that C([0, T ]; Hm(R2) × Hm(R2)) solutions of (1.1) are smooth
in time.

Proposition 3.1. Let ν, κ ≥ 0. Let (v, θ) ∈ C([0, T ]; Hm(R2)×Hm(R2)) with
m > 2 and T > 0 be a solution to (1.1). Then (v, θ) ∈ C1([0, T ]; Hm−2(R2) ×
Hm−2(R2)).

Proof. Let v, θ be as in the hypothesis and m > 2. For 0 ≤ s, t ≤ T , (1.1)3
gives

(3.1) θt(t)− θt(s) = [v(t)− v(s)] · ∇θ(t) + v(s) · ∇[θ(t)− θ(s)] + κ[Δθ(t)−Δθ(s)].

We claim that [v(t) − v(s)] · ∇θ(t) ∈ Hm−2(R2). To see this, suppose first that
m ∈ Z. Then the Sobolev Embedding Theorem gives v(t) − v(s) ∈ Cm−2(R2), and
∇θ(t) ∈ Hm−1(R2). By the Leibniz formula, our claim holds. If m /∈ Z, the Sobolev
Embedding Theorem gives v(t) − v(s) ∈ C [m−1](R2), and ∇θ(t) ∈ H [m−1](R2).

Hence from the Leibniz formula, [v(t) − v(s)] · ∇θ(t) ∈ H [m−1](R2) ↪→ Hm−2(R2).
This proves our claim. Similarly, v(s) · ∇[θ(t) − θ(s)] ∈ Hm−2(R2). Obviously,
Δθ(t) −Δθ(s) ∈ Hm−2(R2). It follows from (3.1) that θt(t) − θt(s) ∈ Hm−2(R2),
and

‖θt(t)− θt(s)‖Hm−2(R2) ≤ ‖[(v(t) − v(s)) · ∇]θ(t)‖Hm−2(R2)

+‖(v(s) · ∇)[θ(t) − θ(s)]‖Hm−2(R2) + κ‖Δθ(t) −Δθ(s)‖Hm−2 (R2).
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When m /∈ Z, further relax the first two ‖ · ‖Hm−2 norms on the right hand side
to ‖ · ‖H[m−1] norms. As (v, θ) ∈ C([0, T ]; Hm(R2) ×Hm(R2)), the right hand side
tends to 0 as s → t by the Leibniz formula. Hence θt ∈ C([0, T ]; Hm−2(R2)) and
θ ∈ C1([0, T ]; Hm−2(R2)).

For vt, project (1.1)2 to the space of divergence free vector fields to get

vt + Π(v · ∇v) = νΔv + Π(θe2),

where Π : Hk(R2) → Hk(R2) denote the continuous projection operator, k ≥ 0.
Then using a reasoning similar to that for θt, we get v ∈ C1([0, T ]; Hm−2(R2)). The
proposition is proved. �

We now show that the regularity requirement m > 4 guarantees the smooth
evolutions of various quantities along the trajectories. In Case I, the weaker re-
quirement m > 3 is sufficient for the continuity of f ′, α and Φ.

Proposition 3.2. Let m > 4 and (v, θ) ∈ C([0, T ]; Hm(R2) × Hm(R2)) ∩
C1([0, T ]; Hm−2(R2) × Hm−2(R2)) be a solution to (1.1). The following holds in
Case I, II and III. For a ∈ R

2, f is continuous along the trajectory (X(a, t), t) for
t ∈ [0, T ]. Moreover, f ′, α, α′ and Φ are continuous along the trajectory whenever
f(X(a, t), t) 	= 0. Ψ is continuous along the trajectory whenever g(X(a, t), t) 	= 0
or equivalently α(X(a, t), t) 	= 0. (In case I, m > 3 is sufficient for the continuity of
f ′, α and Φ. f is continuous when m > 1 in Case I and m > 2 in Case II and III.)

We break up the proof of Proposition 3.2 into four lemmas.

Lemma 3.3. (continuity of f ′, α and Φ in Case I) Let ν = 0. Let m > 3
and (v, θ) be be as in Proposition 3.2. Then over R

2 × [0, T ] \ {(x, t) : v(x, t) = 0},
D|v|/Dt, F and α1 = F/|v| are continuous. This implies the continuity in t ∈ [0, T ]
along (X(a, t), t) of |v|′, α1 and Φ1 = F/|v|2 if v 	= 0.

Proof. If m > 3, v, vt, vxi
∈ C([0, T ]; Hm−2(R2)) ↪→ C(R2 × [0, T ]; R2) by

the Sobolev embedding theorem. Consequently over R
2 × [0, T ] \ {v = 0}, |v|t =

(v/|v|) · vt, |v|xi
= (v/|v|) · vxi

and hence D|v|
Dt

= |v|t + (v · ∇)|v| are continuous.
For the continuity of F and α1, the hypothesis m > 3 together with the Sobolev
embedding theorem gives the continuity of θe2 , vt, v, ∇v and thus (v · ∇)v. Then
∇p is continuous by (1.1)2. It follows that Dξp and ξ2θ are continuous if v 	= 0.
Hence F and α are continuous if v is non-zero. Restricting to (X(a, t), t), we get
the continuity of |v|′, α1 and Φ1 along the trajectory when v 	= 0. �

Lemma 3.4. (continuity of α′ and Ψ in Case I) Let ν = 0. Let m > 4 and
(v, θ) be as in Proposition 3.2. Then DF/Dt is continuous on R

2× [0, T ] \ {v = 0}.
This implies the continuity in t ∈ [0, T ] along (X(a, t), t) of F ′ and α′1 = (|v|F ′ −
F |v|′)/|v|2 (if v 	= 0) and Ψ1 = F ′|v|/F 2 (if F 	= 0).

Proof. Step 1. To show that DF
Dt

= D
Dt

(−Dξp)+ D
Dt

(ξ2θ) is space-time continuous,
we will show that its two summands are. The first summand can be expanded to

(3.2)
D

Dt
(Dξp) =

(
v

|v|

)
t

· ∇p +
v

|v|
· ∇pt + (v · ∇)

(
v

|v|
· ∇p

)
and we will show that every term on the right hand side is continuous when |v| 	= 0.
Step 2. In this step, we show that the term v

|v|
· ∇pt in (3.2) is continuous when

|v| 	= 0. It is relatively complicate because of the presence of ∇pt. We first show
that ∇pt is continuous. By the Sobolev embedding theorem, it suffices to show that
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∇pt ∈ C([0, T ]; H2(R2)). For this, we will write ∇pt, ∇
2pt and ∇3pt as singular

integrals and invoke the theory of singular integral operators to show that they are
in C([0, T ]; L2(R2)).

We first show that ∇2pt and ∇3pt are in C([0, T ]; L2(R2)). Take the divergence
of (1.1)2 to get

(3.3) −Δp =

2∑
i,j=1

vi
xj

vj
xi
− θx2 .

Differentiate with respect to t to get

(3.4) −Δpt =

2∑
i,j=1

[vi
xjtv

j
xi

+ vi
xj

vj
xit

]− θx2t := f.

We claim that f ∈ C([0, T ]; H1(R2)). To see this, suppose first that m ∈ Z. Then

vi
xj
∈ C([0, T ]; Hm−1(R2)) ↪→ C([0, T ]; Cm−3(R2)), vj

xit ∈ C([0, T ]; Hm−3(R2)) and

the Leibniz formula gives vi
xj

vj
xit

∈ C([0, T ]; Hm−3(R2)) ↪→ C([0, T ]; H1(R2)) as

m > 4. If m /∈ Z, vi
xj
∈ C([0, T ]; Hm−1(R2)) ↪→ C([0, T ]; C [m−2](R2)), vj

xit
∈

C([0, T ]; Hm−3(R2)) and the Leibniz formula gives vi
xj

vj
xit
∈ C([0, T ]; H [m−3](R2)) ↪→

C([0, T ]; H1(R2)). Obviously, θx2t ∈ C([0, T ]; H1(R2)). Our claim is proved. From
(3.4), pt(x, t) = −(2π)−1

∫
R2 log |x− y|f(y, t)dy. Hence

(3.5) ∇pt(x, t) =
−1

2π

∫
R2

(x1 − y1, x2 − y2)
�

|x− y|2
f(y, t)dy.

Then the components of ∇2pt(x, t) are

(3.6)

{
∂2

xi
pt(x, t) = −1

2π

∫
R2

[
1

|x−y|2 −
2(xi−yi)

2

|x−y|4

]
f(y, t)dy, i = 1, 2,

∂x1∂x2pt(x, t) = 1
π

∫
R2

(x1−y1)(x2−y2)
|x−y|4 f(y, t)dy,

and those of ∇3pt(x, t) are
(3.7)

∂2
xi

∂xk
pt(x, t) =

−1

2π

∫
R2

[
1

|x− y|2
−

2(xi − yi)
2

|x− y|4

]
(∂xk

f)(y, t)dy, i, k = 1, 2.

Notice that the kernels of the singular integrals in (3.6) and (3.7) are of the form
Ω(z)/|z|2, with Ω(z) = 1 − (2z2

i /|z|2) or z1z2/|z|
2. As we have just shown that

f, ∂xk
f ∈ C([0, T ]; L2(R2)), the theory of singular integral operators gives

∇2pt,∇
3pt ∈ C([0, T ]; L2(R2))

(see for instance [14, p. 269, Corollary 4.2.6]).
We claim that ∇pt also belongs to C([0, T ]; L2(R2)). To see this, write ∇pt as

a singular integral as follows (c.f. [4, p. 994]). Rewrite (3.3) as −Δp = (v1v1
x1

+

v2v1
x2

)x1 + (v1v2
x1

+ v2v2
x2

)x2 − θx2 . Hence

−Δpt = (v1v1
x1

+ v2v1
x2

)tx1 + (v1v2
x1

+ v2v2
x2

)tx2 − θtx2 .
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Solve the Poisson equation and integrate by parts to get

pt(x, t)

=
−1

2π

∫
R2

log |x− y|[(v1v1
x1

+ v2v1
x2

)tx1 + (v1v2
x1

+ v2v2
x2

)tx2 − θtx2 ](y, t)dy

= −
1

2π

∫
R2

x1 − y1

|x− y|2
(v1v1

x1
+ v2v1

x2
)t(y, t)dy

−
1

2π

∫
R2

x2 − y2

|x− y|2
[(v1v2

x1
+ v2v2

x2
)t − θt](y, t)dy.(3.8)

Differentiating with respect to x1 gives

∂x1pt(x, t) =
−1

2π

∫
R2

[
1

|x− y|2
−

2(x1 − y1)
2

|x− y|4

]
(v1v1

x1
+ v2v1

x2
)t(y, t)dy

+
1

π

∫
R2

(x1 − y1)(x2 − y2)

|x− y|4
[(v1v2

x1
+ v2v2

x2
)t − θt](y, t)dy(3.9)

and we have a similar expression for ∂x2pt. Again it is straight forward to see that
(v1v1

x1
+ v2v1

x2
)t, (v1v2

x1
+ v2v2

x2
)t and θt are in C([0, T ]; L2(R2)). Hence the theory

of singular integral operators ([14, p. 269, Corollary 4.2.6]) again gives ∇pt ∈
C([0, T ]; L2(R2)). In summary, ∇pt ∈ C([0, T ]; H2(R2)) ↪→ C(R2 × [0, T ]; R2). As
v is continuous, (v/|v|) · ∇pt is continuous if |v| 	= 0.
Step 3. We now show that the first and third term on the right hand side of (3.2)
are space-time continuous when |v| 	= 0. The continuity of the first term (v/|v|) ·∇p
follows from the that of ∇p (see the proof of Lemma 3.3). To see that the third
term

(3.10) (v · ∇)

(
v

|v|
· ∇p

)
=

∑
i,j

[
vjvi

|v|
pxixj

+ vjpxi
∂xj

(
vi

|v|

)]

is continuous when v 	= 0, we look at pxixj
. Write (1.1)2 as

pxi
= −vi

t −
∑

k

vkvi
xk

+ νvxixi
+ θδi2 , i = 1, 2

and differentiate with respect to xj to get

(3.11) pxixj
= −vi

xj t −
∑

k

vkvi
xkxj

−
∑

k

vk
xj

vi
xk

+ νvxixixj
+ θxj

δi2, i, j = 1, 2.

We claim that
∑

k vkvi
xkxj

∈ C([0, T ]; Hm−3(R2)). To see this, notice that vi
xkxj

∈

C([0, T ]; Hm−2), while the Sobolev embedding theorem implies that

vk ∈ C([0, T ]; Cm−2)

when m ∈ Z and vk ∈ C([0, T ; C [m−1]) when m /∈ Z. In any case our claim follows
from the Leibniz rule. Next we assert that

∑
k vk

xj
vi

xk
∈ C([0, T ]; Hm−3(R2)). To see

this, notice that vi
xk
∈ C([0, T ]; Hm−1). By Sobolev, vk

xj
is in C([0, T ]; Cm−3) when

m ∈ Z and C([0, T ; C [m−2]) when m /∈ Z. In any case vk
xj

vi
xk
∈ C([0, T ]; Hm−3)

by the Leibniz formula and our assertion holds. The other terms vi
xjt, νvxixixj

and θxi
δi2 in (3.11) are obviously in C([0, T ]; Hm−3). Then from (3.11), pxixj

is in

C([0, T ]; Hm−3) and hence space-time continuous. The continuity of the third term
on the right hand side of (3.2) when v 	= 0 follows from (3.10).
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In summary, Step 2 and 3 show that D
Dt

(Dξp) is space-time continuous when
v 	= 0.
Step 4. Using the Sobolev embedding theorem and the Leibniz formula as in the
reasonings above, it is straight forward to see that D

Dt
(ξ2θ) = (∂t + v · ∇)(v2θ/|v|)

is space-time continuous when v 	= 0.
In conclusion, DF/Dt is continuous when v 	= 0. Combining this with the con-

tinuity of D|v|/Dt and F from Lemma 3.3 and restricting to (X(a, t), t), we get the
continuity of F (X(a, t), t)′, α1(X(a, t), t)′ and Ψ1(a, t) in t whenever v(X(a, t), t) 	=
0. The lemma is proved. �

Lemma 3.5. (continuity of f ′, α, α′, Φ and Ψ in Case II) Let ν = 0. Let
m > 4 and (v, θ) be as in Proposition 3.2. Then ω, θx1 and Dθx1/Dt are space-time
continuous, and the same is true for D|ω|/Dt if ω 	= 0. This implies the continuity
in t ∈ [0, T ] along (X(a, t), t) of |ω|′, α2 = sgn(ω)θx1/|ω|, α′2 = [ω(θx1 )

′−θx1ω
′]/ω2

and Φ2 = α2/|ω| if ω 	= 0, and that of Ψ2 = θ′x1
ω/θ2

x1
if θx1 	= 0.

Proof. As m > 4, v, ∇θx1 and θx1t are in C([0, T ]; Hm−3(R2)) and hence
space-time continuous by the Sobolev embedding theorem. Therefore Dθx1/Dt
is continuous on R

2 × [0, T ]. Next ω, ωxi
, ωt ∈ C([0, T ]; Hm−3(R2)) ↪→ C(R2 ×

[0, T ]; R). Consequently, when ω 	= 0, |ω|t = sgn(ω)ωt, |ω|xi
= sgn(ω)ωxi

and hence
D|ω|/Dt are space-time continuous. The rest of the lemma follows. �

Lemma 3.6. (continuity of f ′, α, α′, Φ and Ψ in Case III) Let κ = 0. Let
m > 4 and (v, θ) be as in Proposition 3.2. Then D|∇θ|/Dt and α3 = −η · Sη are
space-time continuous when ∇θ 	= 0. This implies the continuity in t ∈ [0, T ] along
(X(a, t), t) of |∇θ|′, α3 = −η · Sη, α′3 = (−η · Sη)′ and Φ3 = α3/|∇θ| if ∇θ 	= 0,
and that of Ψ3 = (−η ·S∇θ)′|∇θ|/(η ·S∇θ)2 if η ·S∇θ 	= 0 (or equivalently α3 	= 0).

Proof. The hypothesis m > 4 ensures that v, ∇v, ∇2v, vt, S, St, ∇S, ∇θ, ∇2θ
and∇θt are in C([0, T ]; Hm−3(R2)) and hence continuous by the Sobolev embedding
theorem. It follows that ∂t|∇θ| = η · ∇θt, ∂xi

|∇θ| = η · ∇θxi
and hence D|∇θ|/Dt

are continuous when ∇θ 	= 0. The same information also gives the continuity of
α3 when ∇θ 	= 0. The rest of the lemma follows from the formulas for α′3, Φ3 and
Ψ3. �
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