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Semi-wavefront solutions in models of collective movements
with density-dependent diffusivity
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Abstract. This paper deals with a nonhomogeneous scalar parabolic equa-
tion with possibly degenerate diffusion term; the process has only one station-
ary state. The equation can be interpreted as modeling collective movements
(crowd dynamics, for instance). We show the existence of semi-wavefront so-
lutions for every wave speed; their properties are investigated. Proofs exploit
comparison-type techniques and are carried out in the case of one spatial vari-
able; the extension to the general case is straightforward.
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1. Introduction

This paper deals with the scalar parabolic equation

(1.1) ρt + f(ρ)x =
(
D(ρ)ρx

)
x

+ g(ρ), (x, t) ∈ R × [0, +∞),
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where f ∈ C1[0, ρ], f(0) = 0, g ∈ C[0, ρ] and D ∈ C1[0, ρ], for some ρ > 0; we
denote

h(ρ) = f ′(ρ).
The diffusion coefficient (or diffusivity) D is required to satisfy one of the following
assumptions, in increasing order of degeneracy at 0:

(D0) D(ρ) > 0 for ρ ∈ [0, ρ];
(D1) D(ρ) > 0 for ρ ∈ (0, ρ] and D(0) = 0, Ḋ(0) > 0;
(D2) D(ρ) > 0 for ρ ∈ (0, ρ] and D(0) = Ḋ(0) = 0.

We denoted by a dot the differentiation with respect to ρ. In the following, we
simply refer to condition (D) when we indifferently assume either (D0) or (D1) or
else (D2). About the forcing term g we require that it vanishes at ρ, namely,

(g) g(ρ) > 0 for ρ ∈ [0, ρ) and g(ρ) = 0.
The reaction-diffusion-convection equation (1.1), with D vanishing (as a power

function) at some points, models several physical and biological phenomena. We
refer to [15, 17, 24, 30, 31] for many applications and analytic results; however,
none of these papers seems to deal with a source term g satisfying (g) . The porous
media equation [31], where D(ρ) = mρm−1, does not enter in this framework if 1 <

m < 2, since in that case D(0) = 0 but Ḋ(0) = ∞; nevertheless, we shall provide
results later on also for this case. However, our main source of inspiration has
been the appearance of (1.1) with g = 0 in the framework of collective movements,
namely, traffic flows and crowd dynamics. We briefly account on this topic in the
following lines.

The simplest continuum (macroscopic) model for traffic flow is probably the
famous Lighthill-Whitham-Richards equation [21, 28]

(1.2) ρt +
(
ρv(ρ)

)
x

= 0.

It coincides with (1.1) if D = g = 0 and f(ρ) = ρv(ρ). Here, ρ ∈ [0, ρ] represents
a density, ρ being the maximal density; the function v(ρ) is an assigned speed,
which is usually assumed to be decreasing and satisfying v(ρ) = 0. Because of its
simplicity, equation (1.2) is also the starting point for modeling crowd dynamics;
we refer to [2, 3, 10, 29] for more information on these subjects.

Already Lighthill and Whitham [21] proposed to include a linear diffusion
term in (1.2) to avoid the appearance of shock waves; in this case, the diffusivity
D is constant and (D0) holds. We notice that the fundamental property of mass
conservation, which clearly holds for equation (1.2), is still valid in presence of a
further diffusion term [31, (3.43)]. In recent years, several authors discussed the
problem of choosing the “correct” diffusivity D. In particular, the paper [25] (see
also [26, 27]) considers the case

(1.3) D(ρ) = −ρ
(
Lv′(ρ) + τρ

(
v′(ρ)

)2
)

,

where L and τ are an anticipation distance and a relaxation time, respectively.
Consider v ∈ C2[0, ρ] and assume minρ∈[0,ρ] ρv′(ρ) > −L/τ , so that D(ρ) > 0 if
ρ ∈ (0, ρ]; if v′(0) �= 0 then (D1) holds, if v′(0) = 0 then (D2) holds. On the other
hand, (D) fails under the choice v(ρ) = min

{
v, C log(ρ/ρ)

}
, where v is the maximal

velocity and C > 0 a constant [25]: the problem is not only the loss of smoothness
of D, which is discontinuous, but also the fact that it identically vanishes in a right
neighborhood of 0. A thorough discussion on the possible choices of D is provided
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in [2] and leads to discard constant diffusivities; the case D(0) = D(ρ) = 0 is
motivated in [11], see also [4, 5]. The case when both h and D depend on x is
considered in [7].

Equation (1.1) also occurs in crowd dynamics, again in the case g = 0. It has
recently been proposed in [6] (see also [10, 32]) for

(1.4) v(ρ) = v

(
1 − e−γ

“
1
ρ− 1

ρ

”)
, D(ρ) = −δρv′(ρ), ρ ∈ [0, ρ].

Here, v and ρ have the same meaning as above, 0 < γ < ρ is obtained through
experimental data and δ > 0 represents the characteristic depth of the visual field
of pedestrians. In (1.4) we clearly think of v as a function defined in (0, ρ] and
extended to 0 in C∞ way. The choice (1.4) satisfies assumption (D2); notice that
D(ρ) �= 0. We emphasize that the exponential flatness of D at 0 due to (1.4) is far
from being common in applications; see however [31, §21.3].

In the framework of collective movements, the case when g does not vanish
identically seems to have been often neglected but it is important to model entries
or exits; we refer to [1] for traffic flows and [10] for pedestrian dynamics with zero
diffusivity. Usually such terms are localized in the space variables [1], but we chose
both to a have a diffuse forcing and keep the assumptions on g as simple as possible.
Assumption (g) could be meaningful, for instance, in the case of pedestrians moving
(or standing) along a long corridor (or street); if the number of side entries (cross
streets, respectively) reaching the corridor is large, one could drop a model with
many localized entries in favor of a model with a diffuse source term. Such a situa-
tion occurs, for instance, at the barriers of a subway exit; or where the platforms of
a railway station reach the main hall; or replacing the corridor with a beach where
the access is free. The assumption g(ρ) = 0 in (g) models the fact that there is
no room for further entries if the maximal density is reached. A simple example of
forcing term g satisfying (g) is g(ρ) = L · (ρ − ρ)α, for constants L > 0 and α > 0:
it plays a key role in Theorem 2.9.

In order to encompass all significative cases, in the last part of the paper we
also consider the case when the slope of D at 0 is infinity, as it is the case for the
above mentioned porous media equation if 1 < m < 2. More precisely, in that part
we assume D ∈ C[0, ρ] ∩ C1(0, ρ) and one of the following conditions:

(D̂0) D(ρ) > 0 for ρ ∈ [0, ρ] and Ḋ(0) = ±∞.
(D̂1) D(ρ) > 0 for ρ ∈ (0, ρ] and D(0) = 0, Ḋ(0) = ∞.

As for (D), we simply refer to (D̂) when we assume indifferently either (D̂0) or
(D̂1). We treat case (D) first and separately from case (D̂) to avoid the discussion
of several subcases at the same time; indeed, the techniques used for the former
case are analogous to those exploited for the latter.

In this paper we consider neither the case where D also vanishes at ρ nor, as
a consequence, the case where in addition it changes sign in the interval (0, ρ). In
the case g(0) = g(ρ) = 0, the former case was studied in [23], the latter in [22];
see also [13] for D changing sign two times. Indeed, the case when D changes
sign is mentioned in [25] and occurs in (1.3) for particular but meaningful choices
of v, L and τ ; moreover, it naturally arises by applying the expansion of [6] to
some velocity laws recently introduced in [8] to model panic phenomena in crowd
dynamics, see [29] for more information. The case when D depends on ρx has been
studied by many authors, see for instance [14].
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Several extensions of the results provided in this paper, namely, the case when
D(ρ) = 0 and g either satisfies (g) or can assume negative values, are contained in
[9]; here, we set up the main mathematical framework and only deal with the sim-
plest application. Nevertheless, most of our results are new and are not contained
in [13, 22, 23].

Now, we focus on the analytical aspects of the paper, that we believe are
interesting by their own. A traveling-wave solution of equation (1.1) is a solution
ρ(x, t) satisfying ρ(x, t) = ϕ(x − ct) for some wave profile ϕ(ξ) and constant speed
c. It is easy to see that ϕ(ξ) satisfies the equation

(1.5)
(
D(ϕ)ϕ ′

) ′ + (
c − h(ϕ)

)
ϕ ′ + g(ϕ) = 0

in some open interval I ⊆ R; we denoted by a prime the differentiation with respect
to ξ. Since (1.5) is an autonomous equation, every function ϕ(ξ − ξ0), that is
obtained from a traveling-wave solution by a shift of length ξ0, is again a traveling-
wave solution. Therefore, profiles can be unique only up to shifts. A traveling-wave
solution between two stationary states of (1.1), i.e. two zeros of g, which in addition
is monotonic, is usually known as a wavefront solution. For such sources g, equation
(1.1) usually supports wavefront solutions; we refer to [15, 16, 23] and references
therein for recent results on this topic.

In [12] it is considered the case when g only vanishes at one point (namely,
ρ = 0) and D, h, g are polynomials. By classical techniques in the phase plane,
the authors show the existence of global traveling wave solutions that decrease to
0, see Section 2. According to our assumption (g), also equation (1.1) has only
one stationary state (namely ρ = ρ) but the domain of g is the closed interval
[0, ρ]; hence, only semi-wavefront solutions, see Section 2, may exist, as already
showed in [15] in the special case h(ϕ) ≡ 0. Roughly speaking, the wave profiles of
such solutions are only defined in a half-line (−∞, 	) or (	, +∞) and tend to the
stationary state either at −∞ or to +∞; a suitable change of variable commutes
wave profiles of a type in those of the other type.

The aim of this paper is to extend some results of [15] to equation (1.1) when
h(ϕ) does not necessarily vanish identically, providing a unified treatment when
either (D) or (D̂) holds; moreover, we improve the results in [15] by fully character-
izing the slope of the wave profile when it reaches 0. In Theorem 2.7, which extends
[15, Theorem 6.1], we prove that equation (1.1) has semi-wavefront solutions both
with decreasing and with increasing profiles, for every wave speed c; moreover, such
solutions are of class C2 (see Remark 6.2) and are unique up to shifts. We also
explicitly compute the slope of the front when it reaches the value 0, see Theorem
2.7. In Theorem 2.9, which parallels [15, Theorem 6.2], we fully characterize the
semi-wavefront solutions of (1.1) that reach the value ρ only asymptotically: this
happens if and only if g satisfies condition (2.11). A last result concerns the juxta-
position of two semi-wavefront profiles to obtain a global traveling-wave solution;
while this procedure is succesfull for some dispersive equations [19], we show that
it is not effective in the current case.

The main technical tool to prove the above results is an order reduction of
equation (1.5). Indeed, due to the sign condition on the source term g, it is possible
to prove that every semi-wavefront solution has a wave profile ϕ(ξ) that is strictly
monotone in the region where 0 ≤ ϕ(ξ) < ρ, see Proposition 6.1; hence, it is
invertible there, with inverse function ξ = ξ(ϕ), ϕ ∈ [0, ρ). This allows us to reduce
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the second-order equation (1.5) to a first-order equation; indeed, a straightforward
computation shows that z(ϕ) := D(ϕ)ϕ ′

(
ξ(ϕ)

)
, ϕ ∈ (0, ρ), satisfies the singular

equation

(1.6) ż(ϕ) = h(ϕ) − c − D(ϕ)g(ϕ)
z(ϕ)

, ϕ ∈ (0, ρ).

The study of (1.6) requires an original technique that has been developed in [23] and
is based on comparison-type arguments, i.e., on the existence of upper- and lower-
solutions. The possible degenerate behavior of D imposes a quite sharp construction
of these solutions.

We mentioned above that assumption (D) fails if D ∈ C1[0, ρ] vanishes identi-
cally in [0, ρ1], for 0 < ρ1 < ρ, [25]. However, if D is strictly positive in (ρ1, ρ], then
our results apply and provide wave profiles connecting ρ1 with ρ. Moreover, our
results directly extend to scalar parabolic equations in several space dimensions; in
that case, the solutions are of the form ρ(x, t) = ϕ(x ·ν−ct), where ν ∈ R

n, |ν| = 1,
is a fixed vector and x ∈ R

n. Indeed, in such a case equation (1.5) becomes(
D(ϕ)ϕ ′

) ′ + (
c − h(ϕ) · ν)

ϕ ′ + g(ϕ) = 0,

which is analogous to (1.5).
The plan of the paper now follows. Section 2 contains the statements of the

main results; proofs are postponed to the following sections, in particular to Section
7. Section 3 shows some applications to the model for crowds dynamics introduced
above. Sections 4 to 8 deal with case (D). In Section 4 we prove some basic facts
about equation (1.6); the study of a first-order boundary value problem related to
that equation is completed in Section 5 while in Section 6 we show the equivalence
of (1.5) and (1.6). In the final Section 8 we discuss the problem of pasting semi-
wavefront profiles to obtain global traveling-wave solutions. Case (D̂) is studied in
Section 9.

2. Main results

This section contains the main results of the paper. First, we introduce the
notions of traveling-wave and semi-wavefront solutions to (1.1); assumptions (D)
and (g) are not needed in these definitions. We refer to [15] for more details.

Definition 2.1. Let I ⊆ R be an open interval, c ∈ R and ϕ : I → [0, ρ] such
that ϕ ∈ C(I), D(ϕ)ϕ ′ ∈ L1

loc(I) and

(2.1)
∫

I

{(
D

(
ϕ(ξ)

)
ϕ′(ξ) − f

(
ϕ(ξ)

)
+ cϕ(ξ)

)
ψ′(ξ) − g

(
ϕ(ξ)

)
ψ(ξ)

}
dξ = 0,

for every ψ ∈ C∞0 (I). Then, for all (x, t) with x − ct ∈ I, the function ρ(x, t) =
ϕ(x − ct) is said a traveling-wave solution of equation (1.1) with wave speed c and
wave profile ϕ. The traveling-wave solution is global if I = R.

If ϕ is a differentiable function, ϕ′ is absolutely continuous and (1.5) holds a.e.,
then clearly (2.1) holds. Such profiles, as well as the corresponding traveling-wave
solutions, are called classical. In this paper we always deal with classical profiles;
nevertheless, the above definition of weak solution is exploited in Section 8.

Of course, if ϕ(ξ) satisfies (2.1) (or (1.5) a.e. in I), then ρ(x, t) = ϕ(x − ct) is
a weak solution of (resp., solves a.e.) (1.1) in the corresponding subset of R

2.
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Now, we introduce semi-wavefront solutions for equation (1.1). With respect
to traveling-wave solutions, we essentially require that the wave profiles are defined
in a half-line and, as a consequence, tend to a stationary value either at +∞ or at
−∞.

Definition 2.2. Consider a traveling-wave solution ρ of equation (1.1) whose
wave profile ϕ is defined in (	, +∞), with 	 ∈ R; let �+ ∈ [0, ρ] be such that
g(�+) = 0. If ϕ is monotonic, non-constant and

ϕ(ξ) → �+ as ξ → +∞,

then ρ is said a semi-wavefront solution of (1.1) to �+.
Similarly, assume that ϕ is defined (−∞, 	) and let �− ∈ [0, ρ] be such that

g(�−) = 0. If ϕ is monotonic, non-constant and

ϕ(ξ) → �− as ξ → −∞,

then ρ is said a semi-wavefront solution of (1.1) from �−.
In both cases, a semi-wavefront solution is strict if it is not extendible to a

global traveling-wave solution.

For sake of precision, we point out that monotonic in the previous definition
is meant in the weak sense: if ξ1 < ξ2, then either ϕ(ξ1) ≤ ϕ(ξ2) or ϕ(ξ1) ≥
ϕ(ξ2). Above and in the following, wave profiles are always defined in their maximal
existence interval. Due to the regularity of D and g, we will show in the following
(see Theorem 2.7) that (1.1) always admits classical semi-wavefront solutions for
any c ∈ R.

For comparison with our results, we first provide a simple application of [15]
to equation (1.1) in the case g ≡ 0, namely:

(2.2) ρt + f(ρ)x =
(
D(ρ)ρx

)
x

, (x, t) ∈ R × [0, +∞).

We notice that any ρ̃ ∈ [0, ρ] is an equilibrium for equation (2.2); however, for
simplicity, we only focus on ρ.

Theorem 2.3. Assume condition (D); then we have the following results.

(i) If c < h(ρ) (c > h(ρ)), then equation (2.2) has a classical semi-wavefront
solution from ρ (resp., to ρ) with wave speed c;

(ii) if c = h(ρ), the same result holds if and only if for some 0 < δ ≤ ρ we have∫ ρ

ρ−s

[
h(σ) − h(ρ)

]
dσ > 0

(
resp.,

∫ ρ

ρ−s

[
h(σ) − h(ρ)

]
dσ < 0

)
, for 0 < s < δ;

(iii) if c > h(ρ) (c < h(ρ)), then equation (2.2) has no classical semi-wavefront
solution from ρ (resp., to ρ) with wave speed c.

Moreover, when the above semi-wavefront solutions exist they are unique up to shifts
and their wave profiles are of class C2 in (−∞, 	) or (	, +∞), respectively.

Condition (ii) in Theorem 2.3 is satisfied if f is strictly concave (resp., strictly
convex) in a neighborhood of ρ. For sake of completeness, in the case f is strictly
concave we rephrase [15, Theorem 9.1], which concerns wavefront solutions [15, p.
5].
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Proposition 2.4. Consider equation (2.2) under assumption (D), where f is
strictly concave; fix ρ− ∈ [0, ρ] and ρ+ ∈ [0, ρ], ρ− �= ρ+. Then, wavefront solutions
connecting ρ− with ρ+ exist if and only if ρ− < ρ+; in that case we have

c =
f(ρ+) − f(ρ−)

ρ+ − ρ−
.

If ρ− > 0, wavefront solutions are classical and strictly monotonic; if ρ− = 0,
wavefront solutions are still classical and strictly monotonic under (D0) but they are
weak under both (D1) or (D2). In the latter case, we have ϕ(ξ) = 0 for ξ ∈ (−∞, ξ0],
for some ξ0 ∈ R, with ϕ′(ξ+

0 ) > 0 under (D1) and ϕ(ξ+
0 ) = ∞ under (D2).

From now on we only deal with the full equation (1.1). For brevity we often
provide complete statements and proofs for semi-wavefront solutions from ρ; anal-
ogous results hold for semi-wavefront solutions to ρ. Two results on the existence
of semi-wavefront solutions follow.

Theorem 2.5. Assume (D) and (g). The existence of a strict semi-wavefront
solution from ρ of (1.1) with speed c is equivalent to the solvability, for the same c,
of the boundary-value problem

(2.3)

⎧⎪⎨
⎪⎩

ż = h(ϕ) − c − D(ϕ)g(ϕ)
z ,

z(ϕ) < 0, ϕ ∈ (0, ρ),
z(0 +) =: z0 ≤ 0, z(ρ−) = 0.

Since the first equation in (2.3) is singular and its right-hand side is not defined
at points ϕ0 where z(ϕ0) = 0, we used the limit notation z(ϕ±0 ) for such points. We
emphasize that z0 is not a datum in (2.3) but simply a shortcut for the real number
z( 0+). Moreover, the requirement z(ϕ) < 0 for ϕ ∈ (0, ρ) is always satisfied if
z0 < 0 and then it is needed only when z0 = 0. Solutions z to (2.3) are meant in
the sense z ∈ C0[0, ρ] ∩ C1(0, ρ).

The next theorem extends to the case z(0 +) < 0 an analogous result proved in
[23] in the case z( 0+) = 0 and under (D2).

Theorem 2.6. Assume (D) and (g). Then, problem (2.3) is uniquely solvable
for every c ∈ R. More precisely, in case (D0) we have z(0+) < 0 for every c; in
cases (D1) and (D2) there exists a real number c∗ satisfying the estimate

(2.4) 2
√

Ḋ(0)g(0) + h(0) ≤ c∗ ≤ 2

√
sup

s∈(0,ρ)

D(s)g(s)
s

+ max
ρ∈[0,ρ]

h(ρ),

such that z(0+) < 0 if c < c∗ and z(0+) = 0 if c ≥ c∗.

We notice that in case (D2) the inequalities in (2.4) reduce to

(2.5) h(0) ≤ c∗ ≤ 2

√
sup

s∈(0,ρ)

D(s)g(s)
s

+ max
ρ∈[0,ρ]

h(ρ).

Now, we provide our main results. The first one concerns the existence of
strict semi-wavefront solutions to (1.1), under assumptions (D) and (g); since wave
profiles are defined in their maximal existence interval, then ϕ(	) = 0; see Figure
1. For brevity, in cases (D1), (D2) and for c ≥ c∗, we introduce the notation

(2.6) r±(c) :=
h(0) − c ±

√
(h(0) − c)2 − 4Ḋ(0)g(0)

2
.
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Notice that the term under square root is positive because of (2.4); moreover,
r±(c) < 0.

Theorem 2.7 (Semi-wavefront solutions). Consider equation (1.1) under as-
sumptions (D) and (g). Then, the following holds.

(i) For every wave speed c ∈ R, equation (1.1) has a strict classical semi-wavefront
solution from ρ and a strict classical semi-wavefront solution to ρ. These solu-
tions are unique up to shifts and their wave profiles are of class C2 in (−∞, 	)
or (	, +∞), respectively.

(ii) Consider a semi-wavefront solution from ρ; then, about the slope of the profile
when it reaches 0, we have:

in case (D0): lim
ξ→�−

ϕ ′(ξ) ∈ (−∞, 0),(2.7)

in case (D1): lim
ξ→�−

ϕ ′(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∞ if c < c∗,
r−(c∗)
Ḋ(0)

if c = c∗,

r+(c)
Ḋ(0)

if c > c∗,

(2.8)

in case (D2): lim
ξ→�−

ϕ ′(ξ) =

⎧⎨
⎩

−∞ if c ≤ c∗,

− g(0)
c − h(0)

if c > c∗.(2.9)

(iii) Let ϕ1 and ϕ2 be two profiles corresponding to semi-wavefront solutions from
ρ with wave speeds c1 < c2, respectively; unless of a shift we can assume
	1 = 	2 =: 	. Then

(2.10) ϕ2(ξ) < ϕ1(ξ), for ξ ∈ (−∞, 	) with ϕ2(ξ) < ρ.

In cases (ii) and (iii) analogous results hold for semi-wave-front solutions to ρ.

�ξ

�ϕ

ρ

ϕ3

ϕ3

	3

�ϕ1

	1

�

ϕ2

	2

�

Figure 1. A strictly decreasing semi-wavefront solution ϕ1 from
ρ, a strictly increasing semi-wavefront solution ϕ2 to ρ, a non-
strictly decreasing semi-wavefront solution ϕ3 from ρ.

Remark 2.8. Theorem 2.7 states that under assumption (g) we have semi-
wavefront solutions of speed c for every value of c.

However, in the case g = 0 we only have such solutions for some values of c,
see Theorem 2.3: assuming for instance h ≡ 0, then semi-wavefront solutions from
ρ may only move to the left and semi-wavefront solutions to ρ may only move to
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the right. This is the effect of diffusion, which spreads the wave and then makes
the function t → ρ(x, t) decrease.

On the contrary, in the case when D ≡ 0, one expects that the presence of the
positive source term g makes the function t → ρ(x, t) increase; as a consequence,
semi-wavefront solutions from ρ should move to the right and semi-wavefront solu-
tions to ρ should move to the left.

In presence of both diffusion and source term, these opposite behaviors tune up
and lead to the existence of semi-wavefront solutions for every c. The reader can
convince her/himself of this tuning in the case h ≡ 0, D constant and g(ρ) = 1− ρ,
where explicit solutions are easily constructed.

As depicted in Figure 1, the wave profiles can reach the value ρ for a finite ξ0

and then assume identically the value ρ for ξ < ξ0 (or ξ > ξ0).
Let ρ be any semi-wavefront solution in Theorem 2.7 and ϕ its wave profile;

assume that ϕ is defined either in (−∞, 	) or in (	, +∞). Because of (g), the
value ϕ(	) is not an equilibrium of (1.1) (semi-wavefront solutions are strict) and,
as a consequence, the value ϕ(	) is not a constant solution of (1.1). This is a
striking difference with the applications considered in [15], where semi-wavefront
solutions, when they are considered for equations without source terms, have ϕ(	)
as a solution of the equation.

Definition 2.2 requires that semi-wavefront solutions possess monotonic wave
profiles; clearly, in the statement of Theorem 2.7 profiles from ρ are decreasing while
profiles to ρ are increasing. Our next result shows that non-strictly monotonic wave
profiles, such as ϕ3 in Figure 1, can be ruled out by requiring a growth condition
on the source term g in a neighborhood of ρ; indeed, such condition is sharp.

Theorem 2.9 (Characterization of strictly monotonic solutions). Consider
equation (1.1) under assumptions (D) and (g); let L > 0 and ρ1 ∈ [0, ρ) be two
constants.

(i) If

(2.11) g(ρ) ≤ L(ρ − ρ), ρ ∈ [ρ1, ρ],

then the wave profile ϕ of every semi-wavefront solution satisfies ϕ(ξ) < ρ
for every ξ in its domain.

(ii) If there is α ∈ (0, 1) such that

(2.12) g(ρ) ≥ L(ρ − ρ)α, ρ ∈ [ρ1, ρ],

then every wave profile ϕ of a semi-wavefront solution satisfies ϕ(ξ) ≡ ρ
on (−∞, ξ] (or on [ξ,+∞)), for some ξ in its domain.

In our last result we only require D ∈ C[0, ρ] ∩ C1(0, ρ) and assume (D̂);
this means that we allow D to have infinite slope at 0. The statement below is
analogous to those of Theorems 2.6 and 2.7; notice that under (D̂1) we formally
deduce c∗ = ∞ in (2.4), which would suggest the solvability of (2.3) for any c and,
moreover, z(0+) < 0. This is indeed the case. For brevity we only deal with the
case of profiles from ρ; the case of profiles to ρ is completely analogous.

Theorem 2.10. Assume (D̂) and (g); then, problem (2.3) is uniquely solvable
for every c ∈ R and z(0+) < 0 for every c. In turn, equation (1.1) has a strict
classical semi-wavefront solution from ρ for every c; solutions are unique up to
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shifts and their wave profiles are of class C2 in (−∞, 	). Moreover,

(2.13) in case (D̂0): lim
ξ→�−

ϕ ′(ξ) ∈ (−∞, 0), in case (D̂1): lim
ξ→�−

ϕ ′(ξ) = −∞.

Results analogous to those stated in Theorem 2.7(iii) and Theorem 2.9 still
hold under assumption (D̂).

For simplicity, in the following sections we shorten the expression “ρ is a semi-
wavefront solution of (1.1) from ρ with wave profile ϕ” by writing “ϕ is a semi-
wavefront of (1.1) from ρ ” and so on.

3. An example

Consider the model of crowd dynamics discussed in the Introduction, namely

(3.1) ρt +
(
ρv(ρ)

)
x

=
(
D(ρ)ρx

)
x

.

We assume, as it is often usual in this modeling, that f(ρ) = ρv(ρ) is a strictly
concave function; in particular this assumption is satisfied if v and D are given by
(1.4). In such a case, h(ρ) = v(ρ) + ρv ′(ρ) and h(ρ) = −γv

ρ ; as in Theorem 2.3,
we only focus on ρ. If (D) holds, by Theorem 2.3 and the comment following it we
deduce that equation (3.1) has

(i) a semi-wavefront solution from ρ (to ρ) for every c ≤ h(ρ) (resp., c > h(ρ));
(ii) no semi-wavefront solution from ρ (to ρ) if c > h(ρ) (resp., c ≤ h(ρ)).

In all cases the corresponding profile ϕ is a solution in a half-line I of

(3.2)
(
D(ϕ)ϕ′

)′ + (
cϕ − ϕv(ϕ)

)′ = 0.

Moreover, by [15, Theorem 5.2] we have that ϕ(ξ) ∈ (0, ρ) for every ξ ∈ (−∞, 	).
Now, we show some additional results about (3.1).

Lemma 3.1. Let c ≤ h(ρ) and ϕ be a classical semi-wavefront profile from ρ
for (3.1). Then, there exists 	 ∈ R such that ϕ(ξ) → 0 as ξ → 	−; moreover,

(3.3) lim
ξ→�−

ϕ ′(ξ) =

{
λ < 0 if (D0) holds,
−∞ if (D1) or (D2) hold,

for some real number λ.

Proof. We integrate (3.2) in [ξ0, ξ] ⊂ I and find
(3.4)
D

(
ϕ(ξ)

)
ϕ′(ξ) − D

(
ϕ(ξ0)

)
ϕ′(ξ0) + c

[
ϕ(ξ) − ϕ(ξ0)

] − f
(
ϕ(ξ)

)
+ f

(
ϕ(ξ0)

)
= 0.

By (D) and the behavior of ϕ at −∞ we deduce that ϕ′ has finite limit at −∞; the
boundedness of ϕ implies that ϕ′(ξ0) → 0 as ξ0 → −∞. Therefore, if we pass to
the limit in (3.4) for ξ0 → −∞, we obtain

(3.5) D
(
ϕ(ξ)

)
ϕ′(ξ) =

(
ρ − ϕ(ξ)

) (
c − −f(ϕ(ξ)

ρ − ϕ(ξ)

)
, ξ ∈ I.

Denote I = (−∞, ξ1) for some ξ1. The case ξ1 = ∞ is excluded since every
global traveling wave solution of equation (3.1) is easily seen to be increasing by
Proposition 2.4; hence ξ1 is a real value. Moreover, when considering condition
(D), the strict concavity of f and the estimate c ≤ h(ρ), we can infer from (3.5)
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that ϕ ′ < 0 in I, so that limξ→ξ−1
ϕ(ξ) exists and it is necessarily 0; it implies that

ξ1 = 	. Finally, again from (3.5), we obtain that

(3.6) lim
ξ→�−

D
(
ϕ(ξ)

)
ϕ′(ξ) = lim

ξ→�−
c
[
ρ − ϕ(ξ)

]
+ f

(
ϕ(ξ)

)
= cρ ≤ f ′(ρ)ρ < 0

and claim (3.3) follows from (3.6). �
We notice that if D is given by (1.4), then (D2) holds and ϕ′(ξ) → −∞ as

ξ → 	− by Lemma 3.1.
Second, we discuss the problem of the global existence (in the weak sense)

of semi-wavefronts. This issue is crucial for the case g �= 0; the corresponding
discussion is postponed to Section 8. By Proposition 2.4, equation (3.1) admits
classical wavefront solutions, which are always increasing; their presence makes the
case of semi-wavefronts from ρ different from that of semi-wavefronts to ρ.

Lemma 3.2. If c /∈ (
h(ρ, 0)

]
, then no strict classical semi-wavefront profile from

or to ρ can be extended to R by 0 as a weak solution of (3.2).
If c ∈ (

h(ρ), 0
]
, then wavefront profiles exists. In this case, if c �= 0, they

are classical and strictly monotone; if c = 0, then the wavefront profile is weak,
ϕ(ξ) = 0 if ξ ∈ (−∞, ξ0] and ϕ′(ξ+

0 ) = ∞ for some ξ0 ∈ R.

Proof. We deal separately with the cases of semi-wavefronts from and to ρ.
Recall Theorem 2.3.

(i) Let ϕ be a classical semi-wavefront profile from ρ, with wave speed c, in the
half-line (−∞, 	); then we have c ≤ h(ρ). We claim that the extension ϕ̃ of
ϕ with 0 to [	,∞) is not a global (weak) solution of (3.2). Indeed, clearly
ϕ̃ is a solution in R \ {	}; by taking I = R in (2.1) and a test function ψ
with ψ(	) �= 0, it is easy to see that ϕ̃ is a weak solution of (3.2) if and only
if limξ→�− D

(
ϕ(ξ)

)
ϕ′(ξ) = 0. This condition is never satisfied because of

(3.6). This proves our claim.
(ii) Let ϕ be a classical semi-wavefront profile to ρ; hence c > h(ρ) = f ′(ρ).

If c ∈ (
f ′(ρ), 0

]
, then there is a unique ρ− ∈ [0, ρ) such that c = −f(ρ−)

ρ−ρ− .
By Proposition 2.4, equation (3.1) has a wavefront solution with speed c; by
uniqueness, the profile ϕ coincides with that wavefront and hence it is a global
traveling-wave solution.

If c > 0, then ϕ is a strict semi-wavefront solution to ρ, hence it is
defined in some half-line (	,∞); moreover, arguing as before we have that
limξ→�+ D

(
ϕ(ξ)

)
ϕ′(ξ) = cρ > 0, so, again, ϕ is not extendable in a weak

sense by 0.
�

Again for the same model, we now consider the case when g �= 0; more precisely
we focus on the case g(ρ) = L · (ρ − ρ). In the case D is given by (1.4), condition
(2.5) (see Theorem 2.6) can be written as

(3.7) v ≤ c∗ ≤ v + v∗,

where v∗ > 0 satisfies (v∗)2 = 4Lδv̄γρ−2
0 (ρ − ρ0) e−γ

“
1

ρ0
− 1

ρ

”
for ρ0 = γ/2 + ρ −√(

γ/2
)2 + ρ2.

Even if semi-wavefront solutions ρ(x, t) are important in several applications
[15], in the framework of collective movements their interest is limited by the fact
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that they are only defined in half-planes x − ct ≷ 	. However, while referring to
Section 8 for a discussion of the non-existence of global traveling-wave solutions,
we provide here a simple application. Consider the initial-boundary value problem

(3.8)

⎧⎪⎨
⎪⎩

ρt +
(
ρv(ρ)

)
x

=
(
D(ρ)ρx

)
x

+ g(ρ), x < 0, t > 0,
ρ(0, t) = ρb(t) t > 0,
ρ(x, 0) = ρ0(x) x < 0,

with 0 ≤ ρ0(x), ρb(t) ≤ ρ for every x < 0 and t > 0. Problem (3.8) models a
pedestrian motion in the half-line x < 0, with initial datum ρ0; pedestrians enter
either through the x axis with rate g or through the boundary x = 0 because of
the term ρb. By Theorem 2.7, we fix any c > 0, denote by ϕ the correspondng
semi-wavefront profile from ρ and shift it so that it is defined in I = (−∞, 	]
with 	 ≥ 0. Then, we define ρ(x, t) = ϕ(x − ct), for x < 0 and t > 0; this
definition makes sense because c > 0. The function ρ solves (3.8) in the special
case ρ0(x) := ϕ(x), ρb(t) = ϕ(−ct). In particular, according to Theorem 2.9, the
road is completely filled in finite (or infinite) time depending on the source term g.

4. Comparison-type techniques

In this section we prove some results on the comparison-type techniques that
we use in the following; we point out that the differentiability of D is not required
here. For c ∈ R, z0 �= 0, a ∈ [0, ρ) and b ∈ (0, ρ], we introduce the following initial -
and final -value problems corresponding to (1.6):
(4.1){

ż(ϕ) = h(ϕ) − c − D(ϕ)g(ϕ)
z(ϕ) , ϕ > a,

z(a) = z0,

{
ż(ϕ) = h(ϕ) − c − D(ϕ)g(ϕ)

z(ϕ) , ϕ < b,

z(b) = z0.

In the following, we slightly simplify the limit notation used in the Introduction
(see Theorem 2.5) for boundary values of solutions to singular equations as that in
(4.1): for instance, in the case z0 = 0 we briefly write z(a) = 0 instead of z(a+) = 0.
Analogously, we use the notation ż(0) for the right derivative of the function z at
0.

In Lemma 4.1 we discuss the existence and uniqueness of solutions to both
problems in (4.1) while in Lemma 4.3 we show that the existence of a strict lower-
or upper-solution for equation (1.6) determines an invariant region for the solutions
of either (4.1)1 or (4.1)2.

Lemma 4.1. Consider the problems in (4.1), for the above values of c, z0, a
and b.
(1) The initial-value problem (4.1)1 has a unique solution za(ϕ) defined in its

right maximal-existence interval [a, β). In particular, za(β) is a real value and
za(β) = 0 if β < ρ.

(2) The final-value problem (4.1)2 has a unique solution zb(ϕ) defined on all (0, b].

Proof. Denote by fc the right-hand side of equation (1.6); since fc is globally
continuous in its domain and locally Lipschitz-continuous in z, the uniqueness of the
solutions of both (4.1)1 and (4.1)2 is guaranteed and it only remains to investigate
their maximal-existence intervals.

The solutions of equation (1.6) never vanish in their domain because (1.6) is
singular when z = 0. Moreover, if z(ϕ) is a positive solution in some interval
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(a, b) ⊆ (0, ρ), then the negative function η(ϕ) = −z(ϕ) is a solution in (a, b) of

(4.2) η̇(ϕ) = −h(ϕ) + c − D(ϕ)g(ϕ)
η(ϕ)

.

Since (4.2) and (1.6) are completely analogous, we may restrict to the case z0 < 0,
see Figure 2. At last, assume that z(ϕ) is defined in some maximal-existence interval
(α, β). Since z(ϕ) < 0 in (α, β), the sign conditions in (D) and (g) imply that

(4.3) ż(ϕ) > h(ϕ) − c, in (α, β).

Then, the function z is bounded in (α, β). Now, we prove that both z(α) and z(β)
exist. Indeed, by multiplying by z equation (1.6) we obtain that

1
2

dz2(ϕ)
dϕ

=
(
h(ϕ) − c

)
z(ϕ) − D(ϕ)g(ϕ).

By integrating in [ϕ0, ϕ] ⊂ (α, β) we have

z2(ϕ0) = z2(ϕ) − 2
∫ ϕ

ϕ0

(h(σ) − c)z(σ) dσ + 2
∫ ϕ

ϕ0

D(σ)g(σ) dσ.

Since, moreover, z(ϕ) < 0 in (α, β), we deduce

z(ϕ0) = −
√

z2(ϕ) − 2
∫ ϕ

ϕ0

(h(σ) − c)z(σ) dσ + 2
∫ ϕ

ϕ0

D(σ)g(σ) dσ,

which implies the existence of z(α). The existence of z(β) is proved analogously.

�
ϕ

�z
a b

�

�

�
�

�
z0 z0

Figure 2. Solutions to the initial-value problem (4.1)1 (left-to-
right arrows) and to the final-value problem (4.1)2 (right-to-left
arrows); here, z0 < 0.

(1) We showed above that za(β) exists in R; if β < ρ, the continuation theorem for
solutions of an ordinary differential equation implies za(β) = 0.

(2) Let (α, b] ⊆ (0, b] be the left maximal-existence interval of zb and assume by
contradiction that α > 0. Since zb(α) is a real value, then zb(α) = 0 and so zb is
continuously extendable to [α, b]. Consider now a sequence {ψn}n ⊂ (α, b] that
converges to α. By the mean value Theorem we find a sequence {ϕn}n ⊂ (a, b)
with ϕn ∈ (α, ψn) such that

(4.4)
z(ψn)
ψn − α

= ż(ϕn) < 0
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for all n ∈ N. If α > 0, from (1.6) we obtain that

lim
ϕ→α+

ż(ϕ) = lim
ϕ→α+

(
h(ϕ) − c − D(ϕ)g(ϕ)

z(ϕ)

)
= +∞,

in contradiction with (4.4). Hence, α = 0 and zb is defined on all (0, b].
�

According to Lemma 4.1, every solution z of (1.6) defined in (0, b) ⊆ (0, ρ] has
a continuous extension to [0, b), still denoted by z.

Now, we briefly recall the definitions of upper- and lower-solution for equation
(1.6).

Definition 4.2. Let J ⊆ [0, ρ] be an interval. A function ω ∈ C1(J) is a
lower-solution for equation (1.6) if

(4.5) ω̇(ϕ) ≤ h(ϕ) − c − D(ϕ)g(ϕ)
ω(ϕ)

, ϕ ∈ J.

Similarly, a function η ∈ C1(J) is an upper-solution for (1.6) if

(4.6) η̇(ϕ) ≥ h(ϕ) − c − D(ϕ)g(ϕ)
η(ϕ)

, ϕ ∈ J.

The function ω (resp. η) is a strict lower-solution (resp., upper-solution) if (4.5)
(resp., (4.6)) holds with strict inequality.

Now, we focus on the case z0 < 0 in (4.1) and keep in mind Lemma 4.1. The
existence of a strict lower- or upper-solution for equation (1.6) in either [a, β) ⊆
[0, ρ) or (0, b] ⊆ (0, ρ] determines an invariant region for the solutions of the initial -
and final -value problems in (4.1), respectively.

Lemma 4.3. Let I ⊆ [0, ρ]; consider a strict lower-solution ω and a strict
upper-solution η in I of (1.6), with ω(ϕ) < 0 and η(ϕ) < 0 in I. Moreover, fix
z0 < 0.
(1) If I = [a, b) and z is the solution of (4.1)1 defined in its maximal-existence

interval [a, β) ⊆ [a, b), then:
(1.i) if ω(a) ≤ z0, then ω(ϕ) < z(ϕ) for all ϕ ∈ (a, β);
(1.ii) if η(a) ≥ z0, then β = b and z(ϕ) < η(ϕ) for all ϕ ∈ (a, b).

(2) If I = (0, b] and z is the solution of (4.1)2, then:
(2.i) if ω(b) ≥ z0, then ω(ϕ) > z(ϕ) for all ϕ ∈ (0, b);
(2.ii) if η(b) ≤ z0, then η(ϕ) < z(ϕ) for all ϕ ∈ (0, b).

�
ϕ�

z
a b

�

�

�

η(a)
z0

ω(a)

η

z

ω

�
ϕ�

z
a b

	

	

	

ω(b)

z0

η(b)

ω

z

η

Figure 3. Lower- and upper-solutions of (4.1)1 (left) and (4.1)2 (right).
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Proof. For both problems in (4.1) we only prove case (i) since (ii) is similar;
see Figure 3.

First, we deal with (4.1)2. We claim that for some ε > 0 we have z(ϕ) < ω(ϕ)
for ϕ ∈ (b − ε, b). Indeed, this follows by a continuity argument if ω(b) > z0; if
ω(b) = z0, then ω̇(b) < ż(b), because ω(ϕ) is a strict lower-solution. This proves
the claim.

Now, assume that there exists ϕ0 ∈ (0, b) such that z(ϕ0) = ω(ϕ0); without
loss of generality we can assume

(4.7) z(ϕ) < ω(ϕ), ϕ ∈ (ϕ0, b).

As above, we obtain again that ω̇(ϕ0) < ż(ϕ0) and then z(ϕ) > ω(ϕ) in a right
neighborhood of ϕ0, in contradiction with (4.7).

Now, we deal with (4.1)1. If ω(0) < z0, then ω(ϕ) < z(ϕ) in a right neighbor-
hood of 0 by continuity. We reach the same conclusion if ω(0) = z0; indeed, ω is a
strict lower-solution and then ω̇(ϕ) < ż(ϕ) in a right neighborhood of 0. Assume
that there exists ϕ0 ∈ (0, b) in the domain of z such that ω(ϕ0) = z(ϕ0); then, we
easily get a contradiction as above. �

5. The first-order problem

In this section we first prove Theorem 2.6. Then, we show some properties of
the solutions of problem (2.3).

Proof of Theorem 2.6. We first deal with cases (D1) and (D2), leaving (D0) for
the end of the proof. The existence of c∗ and the case z(0) = 0 were considered
in [23, Theorem 2.2] under the further assumption g(0) = 0. Indeed, the same
result straightforwardly extends to cases (D1) and (D2) because D(0) = 0. This
proves the second part of the statement of the theorem. So, as far as existence is
concerned, it remains to consider the case

(5.1) c < c∗

and then z(0) < 0. The proof splits into three parts, the last one dealing with
uniqueness for c ∈ R.

(a) Non-existence for large negative z(0). This first part does not assume (5.1). We
prove that if z is a solution to (2.3), then necessarily z(0) must satisfy the lower
bound

(5.2) z(0) ≥ −1 − ρ(H + M),

for

(5.3) H := max
ϕ∈[0,ρ]

h(ϕ) − c, M := max
ϕ∈[0,ρ]

D(ϕ)g(ϕ).

Indeed, fix z0 such that

(5.4) z0 < −1 − ρ(H + M)

and consider the function

(5.5) η(ϕ) = −1 + z0

ρ
ϕ + z0,
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i.e. the line connecting (0, z0) to (ρ,−1); see Figure 4. We claim that η(ϕ) is a
strict upper-solution for (1.6) on all [0, ρ]. Indeed, since η(ϕ) ≤ −1 for ϕ ∈ [0, ρ],
we have that

D(ϕ)g(ϕ)
−η(ϕ)

=
D(ϕ)g(ϕ)
1+z0

ρ ϕ − z0

≤ D(ϕ)g(ϕ) ≤ M, ϕ ∈ [0, ρ].

Consequently, by (5.4) we have

η̇(ϕ) = −1 + z0

ρ
> H + M ≥ h(ϕ) − c − D(ϕ)g(ϕ)

η(ϕ)
, ϕ ∈ [0, ρ],

which proves the claim.
Denote by ẑc the solution of the equation in (2.3) satisfying ẑc(0) = z0, where z0

satisfies (5.4). By Lemma 4.1(1) we have that ẑc is unique; by Lemma 4.3(1.ii) that
ẑc is defined in [0, ρ] and ẑc(ϕ) < η(ϕ) for all ϕ ∈ (0, ρ). Then, ẑc(ρ) ≤ η(ρ) = −1
and, hence, ẑc is not a solution of (2.3).

(b) Existence in cases (D1) and (D2). We denote by zc∗(ϕ) the solution of (2.3)
corresponding to c∗; the existence of zc∗(ϕ) is guaranteed by the second part of the
statement of the theorem and in particular zc∗(ϕ) < 0 if ϕ ∈ (0, ρ). We also denote
with zn(ϕ) the solution of the problem

(5.6)

{
ż(ϕ) = h(ϕ) − c − D(ϕ)g(ϕ)

z(ϕ) , ϕ ∈ (0, ρ],
z(ρ) = − 1

n ,

for n ∈ N, which exists by Lemma 4.1(2). By Lemma 4.3(2.i) we have

(5.7) zn(ϕ) < zc∗(ϕ), ϕ ∈ (0, ρ]

and then

(5.8) zn(ϕ) < 0, ϕ ∈ (0, ρ].

�
ϕ�z

ρ

−1 −1

ẑc
z0

zn

z
�

− 1
n

zc∗















η

Figure 4. The solutions zc∗ , zn, z, ẑc and the upper-solution η;
here, z0 satisfies (5.4).

Let ẑc(ϕ) be the solution of the equation in (2.3) with ẑc(0) < −1− ρ(H + M)
that was already introduced in item (a). The uniqueness of solutions stated in
Lemma 4.1 implies, on the one hand, that ẑc(ϕ) < zn(ϕ) for all ϕ ∈ [0, ρ] and
n ∈ N; on the other hand, that the sequence {zn}n is increasing on (0, ρ]. Define

z(ϕ) := lim
n→∞ zn(ϕ), ϕ ∈ (0, ρ].
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By (5.7) we notice that

(5.9) z(ρ) = 0 and z(ϕ) < 0, ϕ ∈ (0, ρ).

We claim that z is the solution to (2.3) we are looking for. Indeed, by integrating
the equation in (2.3) in [ϕ, ϕ1] ⊂ (0, ρ), we obtain that

(5.10) zn(ϕ1) − zn(ϕ) =
∫ ϕ1

ϕ

(
h(σ) − c

)
dσ +

∫ ϕ1

ϕ

D(σ)g(σ)
−zn(σ)

dσ.

Since the sequence {
D(ϕ)g(ϕ)
−zn(ϕ)

}
n

is positive by (5.8) and increasing in (0, ρ), we can pass to the limit in (5.10) by
the monotone convergence Theorem and obtain

(5.11) z(ϕ1) − z(ϕ) =
∫ ϕ1

ϕ

(
h(σ) − c

)
dσ −

∫ ϕ1

ϕ

D(σ)g(σ)
z(σ)

dσ.

This implies that z(ϕ) is a solution of the equation in (2.3) on all (0, ρ); it also
satisfies z(ρ) = 0 and z(ϕ) < 0 on (0, ρ). By (5.9), the function

ϕ �−→
∫ ϕ1

ϕ

D(σ)g(σ)
z(σ)

dσ, ϕ ∈ (0, ρ),

is increasing. Then, identity (5.11) implies the existence of limϕ→0+z(ϕ) =: �; since
z(ϕ) < 0 if ϕ ∈ (0, ρ), we deduce that � ∈ {−∞} ∪ (−∞, 0]. The case � = 0
is excluded by the second part of the statement of the theorem because of (5.1);
moreover, we have ẑc(ϕ) < z1(ϕ) ≤ z(ϕ) for all ϕ ∈ (0, ρ) and then � is finite. In
conclusion, we have � ∈ (−∞, 0).

(c) Uniqueness in cases (D1) and (D2). Let c ∈ R and assume, by contradiction,
that problem (2.3) has two distinct solutions z1 and z2.

If (5.1) holds, we have zi(0) < 0, i = 1, 2, by the second part of the statement of
the theorem, and z1(0) �= z2(0) by the unique solvability of (4.1)1. We may assume
that z1(0) < z2(0), which yields z1(ϕ) < z2(ϕ) < 0 for all ϕ ∈ [0, ρ). Therefore

ż2(ϕ) − ż1(ϕ) =
D(ϕ)g(ϕ)
−z2(ϕ)

− D(ϕ)g(ϕ)
−z1(ϕ)

> 0, for all ϕ ∈ [0, ρ),

and then the function z2 − z1 is increasing in [0, ρ). As a consequence,

lim
ϕ→ρ−

(
z2(ϕ) − z1(ϕ)

) ≥ z2(0) − z1(0) > 0,

in contradiction with z1(ρ−) = z2(ρ−) = 0. Hence, the uniqueness if proved if
c < c∗.

If c ≥ c∗, let z2 be the solution satisfying z2(0+) = 0 and z1 another solution.
By the uniqueness contained in the second part of the statement of the theorem,
we have z1(0) < 0. Then, the arguments of the previous case apply and uniqueness
is proved also in this case.

(d) Existence and uniqueness in case (D0). Now, we are left with case (D0). Let
ĥ be the even extension of h to [−ρ, 0) and extend g to the same interval with a
continuous function ĝ satisfying ĝ(ρ) > 0 if ρ ∈ [−ρ, 0). We extend D to [−ρ, ρ] by
a function D̂ ∈ C1[−ρ, ρ] such that

D̂(−ρ) = ˙̂
D(−ρ) = 0, D̂(ρ) > 0, ρ ∈ (−ρ, 0).
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Then, instead of (2.3) we consider the auxiliary problem

(5.12)

⎧⎪⎨
⎪⎩

ż = ĥ(ϕ) − c − D̂(ϕ)ĝ(ϕ)
z ,

z(ϕ) < 0, ϕ ∈ (−ρ, ρ),
z(−ρ +) =: z0 ≤ 0, z(ρ) = 0.

Problem (5.12) has a unique solution ẑ for all c ∈ R; this follows by applying items
(b) and (c) in the interval [−ρ, ρ]. It is easy to show that the restriction z of ẑ to
[0, ρ] is a solution of problem (2.3) with z(0+) < 0. This shows that also problem
(2.3) is uniquely solvable for all c ∈ R. In conclusion, problem (2.3) is uniquely
solvable for all c ∈ R also under condition (D0). �

Now, we prove the monotonicity with respect to c of solutions to problem (2.3).

Lemma 5.1. Let z1 and z2 be solutions of problem (2.3) corresponding to c1

and c2, respectively. If c1 < c2, then we have that

(5.13) z1(ϕ) < z2(ϕ), ϕ ∈ (0, ρ).

Proof. Since c1 < c2, then z1 is a strict upper-solution on (0, ρ) of equation
(1.6) with c = c2. If there exists ϕ0 ∈ (0, ρ) such that z2(ϕ0) ≤ z1(ϕ0), then by
Lemma 4.3(1.ii) we deduce that z2(ϕ) < z1(ϕ) for ϕ ∈ (ϕ0, ρ). Hence,

ż2(ϕ) = h(ϕ) − c2 +
D(ϕ)g(ϕ)
−z2(ϕ)

< h(ϕ) − c1 +
D(ϕ)g(ϕ)
−z1(ϕ)

= ż1(ϕ), ϕ ∈ (ϕ0, ρ),

which contradicts z2(ρ−) = 0. �

We conclude this section with a result about the derivative żc(0) of the solutions
zc to (2.3), under conditions (D1) or (D2) and in the case c ≥ c∗. Indeed, in the
case c < c∗ or when (D0) holds, we have z(0) < 0 by Theorem 2.6; then z ∈ C1[0, 1)
and ż(0) = h(0) − c by (1.6).

The existence of the slope żc(0) was first proved in [23, Lemma 2.1] and the
values of żc(0) were obtained in [23, Theorem 1.1]. However, since in [23] the
assumption g(0) = 0 holds, those computations can cover only our case (D2). To
the best of our knowledge, the result of the following proposition in case (D1) is
new. Moreover, the proof of Proposition 5.2 unifies both cases (D1) and (D2); we
emphasize that it is completely different and simpler than that in [23] for the latter
case.

Proposition 5.2. Assume either (D1) or (D2) and let zc be the solution to
problem (2.3) for c ≥ c∗. Then, żc(0+) exists and

(5.14) żc(0+) =

{
r+(c) if c > c∗,
r−(c) if c = c∗.

In particular, under assumption (D2) we have

żc(0+) =

{
0 if c > c∗,
h(0) − c∗ if c = c∗.

Proof. Let c ≥ c∗ and assume, by contradiction, that żc(0+) does not exist.
We notice that neither żc(0+) = +∞ nor żc(0+) = −∞ are possible, the latter
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because of (4.3). By Theorem 2.6, we know that zc(0+) = zc∗(0+) = 0; hence,
there exist −∞ ≤ l < L ≤ 0 such that

(5.15) l =: lim inf
ϕ→0+

zc(ϕ)
ϕ

< lim sup
ϕ→0+

zc(ϕ)
ϕ

=: L ≤ 0.

Let γ ∈ (l, L) and consider a sequence {σn}n ⊂ (0, ρ) such that σn → 0, zc(σn)
σn

= γ
for every n and also

d

dϕ

(
zc(ϕ)

ϕ

)∣∣∣ϕ=σn

≥ 0.

Since

(5.16)
d

dϕ

(
zc(ϕ)

ϕ

)
=

1
ϕ

(
żc(ϕ) − zc(ϕ)

ϕ

)
,

we have

γ ≤ żc(σn) = h(σn) − c − D(σn)g(σn)
zc(σn)

= h(σn) − c − D(σn)g(σn)
γσn

, n ∈ N.

When n → ∞ we obtain

(5.17) h(0) − c − Ḋ(0)g(0)
γ

≥ γ.

In a similar way we can take a sequence {δn}n ⊂ (0, ρ) satisfying δn → 0, zc(δn)
δn

= γ
for every n and

d

dϕ

(
zc(ϕ)

ϕ

)∣∣∣ϕ=δn

≤ 0.

Since żc(δn) ≤ γ for all n by (5.16), we obtain

γ ≥ żc(δn) = h(δn) − c − D(δn)g(δn)
γδn

, n ∈ N.

Then, by passing to the limit,

(5.18) h(0) − c − Ḋ(0)g(0)
γ

≤ γ.

When combining (5.17) and (5.18) we obtain that γ is a root of the second-order
equation γ2 − (h(0) − c)γ + Ḋ(0)g(0) = 0. This is in contradiction with (5.15) or
because of the arbitrariness of γ; hence, żc(0+) exists for every c ≥ c∗ and satisfies

żc(0+) ∈ {
r−(c), r+(c)

}
.

We remark that, according to (2.4), the r.h.s. in the previous formula is always
defined in R. Now, we notice that the function ψ : [c∗, +∞) → R defined by

ψ(c) =
h(0) − c −

√
(h(0) − c)2 − 4Ḋ(0)g(0)

2
is strictly decreasing. So, if we assume that żc(0+) = r−(c) for some c > c∗, we
obtain that żc∗(0+) > żc(0+) both in the case żc∗(0+) = r−(c∗) and żc∗(0+) =
r+(c∗). It implies that zc∗ > zc in a right neighborhood of 0 in contradiction with
Lemma 5.1. Formula (5.14) is then proved if c > c∗.
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Now, assume c = c∗ and denote for short r∗− = r−(c∗), r∗+ = r+(c∗). If r∗− = r∗+,

by (2.4) we have that c∗ = h(0) + 2
√

Ḋ(0)g(0) and estimate (5.14) is satisfied. It
remains to consider the case r∗− < r∗+; again by (2.4) we have

(5.19) c∗ > h(0) + 2
√

Ḋ(0)g(0).

Let Δ > 0 be a positive value satisfying 0 < Δ < r∗+ − r∗−. We have r∗−
(
r∗− + Δ

)
>

r∗− · r∗+ = Ḋ(0)g(0) and hence

(5.20) −Ḋ(0)g(0)
r∗− + Δ

+
Ḋ(0)g(0)

r∗−
< Δ.

By (5.19) we can consider an increasing sequence {cn}n ⊂
(
h(0)+2

√
Ḋ(0)g(0), c∗

)
such that cn → c∗ as n → ∞; let {zn}n be the corresponding sequence of solutions
to problem (2.3) obtained in Theorem 2.6. Notice, in particular, that cn < c∗

implies

(5.21) zn(0) < 0, for all n ∈ N.

By Lemma 5.1 we have that {zn(ϕ)}n is an increasing sequence, for all ϕ ∈ (0, ρ),
and zn(ϕ) < zc∗(ϕ) in (0, ρ) for all n ∈ N. As in the proof of item (b) in Theorem
2.6, it is also possible to show that

(5.22) lim
n→∞ zn(ϕ) = zc∗(ϕ), ϕ ∈ [0, ρ].

Because of (5.20), we can introduce a positive value α such that

(5.23) −Ḋ(0)g(0)
r∗− + Δ

+
Ḋ(0)g(0)

r∗−
+ α < Δ.

By the continuity of the function k(ϕ, c) = h(ϕ) − c we can find σ1 > 0 and n ∈ N

such that

(5.24) h(ϕ) − cn < h(0) − c∗ +
α

2
, for ϕ ∈ (0, σ1) and n ≥ n.

Moreover, conditions (g) and either (D1) or (D2) allow to determine a value σ2 > 0
such that

(5.25) − g(ϕ)
r∗− + Δ

· D(ϕ)
ϕ

< −Ḋ(0)g(0)
r∗− + Δ

+
α

2
, ϕ ∈ (0, σ2).

Denote σ := min{σ1, σ2} and introduce the function η : [0, σ] → R defined by
η(ϕ) := (r∗− + Δ)ϕ. By (5.24) and (5.25) we have, for n ≥ n and ϕ ∈ (0, σ),

h(ϕ) − cn − D(ϕ)g(ϕ)
η(ϕ) = h(ϕ) − cn − g(ϕ)

r∗−+Δ · D(ϕ)
ϕ

< h(0) − c∗ + α
2 − Ḋ(0)g(0)

r∗−+Δ + α
2

= h(0) − c∗ − Ḋ(0)g(0)
r∗−

+ Ḋ(0)g(0)
r∗−

− Ḋ(0)g(0)
r∗−+Δ + α.

Notice that h(0)− c∗− Ḋ(0)g(0)
r∗−

= h(0)− c∗− r∗+ = r∗−. Hence, by (5.23) we obtain

h(ϕ) − cn − D(ϕ)g(ϕ)
η(ϕ)

< r∗− + Δ = η̇(ϕ),

which shows that η is a strict upper-solution of the equation in (2.3) with c = cn,
n ≥ n, on all (0, σ]. Since zn(0) < 0 = η(0) by (5.21), a continuity argument shows
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that there exists ψn ∈ (0, σ) such that zn(ϕ) < η(ϕ) in [0, ψn) for all n ≥ n. In the
remaining interval [ψn, σ] we can apply Lemma 4.3(1.ii); in conclusion we obtain
zn(ϕ) < η(ϕ) in [0, σ). Then,

zn(ϕ)
ϕ

<
η(ϕ)
ϕ

= r∗− + Δ, ϕ ∈ (0, σ), n ≥ n.

Finally, by estimate (5.22) we have that

zc∗(ϕ)
ϕ

≤ r∗− + Δ < r∗+, ϕ ∈ (0, σ).

We deduce that żc∗(0+) < r∗+; then, condition (5.14) holds and the proof is com-
plete. �

6. Semi-wavefronts via a first-order analysis

In this section we first show that semi-wavefronts of equation (1.1) are strictly
monotone. Then, by exploiting this result, we prove Theorem 2.5.

Here follows our first result: we recall that by Definition 2.2 a semi-wavefront
is necessarily valued in [0, ρ).

Proposition 6.1. Let ϕ be a semi-wavefront of (1.1) from (to) ρ. Then
ϕ ′(ξ) < 0 (ϕ ′(ξ) > 0, respectively) for all ξ in the domain of ϕ such that 0 <
ϕ(ξ) < ρ.

Proof. We only consider the case of a semi-wavefront ϕ from ρ; the other case
is analogous.

Let ϕ be defined on the half-line (−∞, 	), with 	 ∈ R; we assume that there
exists ξ0 ∈ (−∞, 	) with ϕ(ξ0) ∈ (0, ρ) such that ϕ ′(ξ0) = 0. We denote

T (ξ) := D
(
ϕ(ξ)

)
ϕ ′(ξ), ξ ∈ (−∞, 	).

We have that T (ξ0) = 0; by (1.5), condition (g) and the assumption ϕ(ξ0) < ρ, we
deduce T ′(ξ0) = −g(ϕ(ξ0)) < 0. Hence, we have that (ξ0 − ξ)T (ξ) > 0 for ξ �= ξ0

in a neighborhood of ξ0. By condition (D), it follows that ξ0 is a local maximum
point of ϕ. The boundary condition ϕ(−∞) = ρ then implies that there exists a
local minimum point ξ1 < ξ0 of ϕ, in contradiction with the previous discussion.
Hence ϕ(ξ) > 0 for ξ ∈ (−∞, 	) and ϕ ′(ξ) < 0 whenever 0 < ϕ(ξ) < ρ. �

Remark 6.2. Let ϕ(ξ) be a semi-wavefront for (1.1) from (to) ρ. Proposition
6.1 shows that there exists an interval I ⊆ (−∞, 	) (resp., I ⊆ (	, +∞)), such
that 0 < ϕ(ξ) < ρ for ξ ∈ I. By arguing on the smoothness of the terms in (1.5) it
is not difficult to show that ϕ ∈ C2(I).

Remark 6.3. Proposition 6.1 implies that every semi-wavefront ϕ(ξ) has in-
verse ξ = ξ(ϕ) defined on [0, ρ) and ξ(0) = 	. Moreover, if ϕ(ξ) is a wave profile
from ρ we have that either ξ(ρ−) = ξ0 ∈ R or, if ϕ is strictly monotonic, that
ξ(ρ−) = −∞; an analogous property holds if ϕ(ξ) is a wave profile to ρ.

To prove Theorem 2.5 we need the following lemma, which concerns the as-
ymptotic behavior of semi-wavefronts.

Lemma 6.4. Let ϕ be a semi-wavefront of (1.1) from ρ defined on the half-line
(−∞, 	). Then

(i) ϕ ′(ξ) → 0 as ξ → −∞;
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(ii) D
(
ϕ(ξ)

)
ϕ ′(ξ) → � as ξ → 	−, for some real value � ≤ 0.

Proof. First, we prove (i). By integrating (1.5) in [ξ0, ξ] ⊂ (−∞, 	) we obtain

D
(
ϕ(ξ0)

)
ϕ ′(ξ0) =

(6.1)

= D
(
ϕ(ξ)

)
ϕ ′(ξ) + c

(
ϕ(ξ) − ϕ(ξ0)

) − H
(
ϕ(ξ)

)
+ H

(
ϕ(ξ0)

)
+

∫ ξ

ξ0

g
(
ϕ(s)

)
ds,

(6.2)

where H(r) :=
∫ r

0
h(s) ds for r ∈ [0, ρ]. If ξ0 → −∞, then H

(
ϕ(ξ0)

) → H(ρ); in
addition, according to (g), the limit

(6.3) lim
ξ0→−∞

∫ ξ

ξ0

g
(
ϕ(s)

)
ds

exists. Since (6.1) is negative by Proposition 6.1(i), the limit (6.3) is surely a real
value. Hence, we proved the existence of

lim
ξ0→−∞

D
(
ϕ(ξ0)

)
ϕ ′(ξ0) =: λ ∈ R.

This implies that limξ0→−∞ ϕ ′(ξ0) = λ/D(ρ) and, since ϕ is bounded, we conclude
that λ = 0. This proves (i).

Now, we prove (ii). By (6.1)-(6.2), it is immediate to see that the limit of
D

(
ϕ(ξ)

)
ϕ ′(ξ) for ξ → 	− exists and it is a value in (−∞, 0]. The lemma is

completely proved. �
An analogous result can be easily proved if ϕ is a semi-wavefront to ρ. Now,

we can prove Theorem 2.5.

Proof of Theorem 2.5. Let ϕ be a semi-wavefront of (1.1) with speed c ∈ R from ρ;
by Remark 6.3 we denote by ξ(ϕ) its inverse function, which is defined at least for
ϕ ∈ [0, ρ). The function z(ϕ) = D(ϕ)ϕ ′

(
ξ(ϕ)

)
clearly satisfies the first equation in

(2.3) for the same c; moreover, z(ϕ) < 0 for ϕ ∈ (0, ρ) by Proposition 6.1, z(ρ) = 0
by Lemma 6.4(i) and z(0+) ≤ 0 by Lemma 6.4(ii). Therefore z satisfies problem
(2.3).

Conversely, let z(ϕ) be a solution of (2.3) for some c ∈ R and ϕ(ξ) the solution
of the initial-value problem

(6.4)

{
ϕ ′(ξ) = z(ϕ)

D(ϕ) ,

ϕ(0) = ρ
2 ,

in its maximal existence interval (α, 	); this means that ϕ satisfies

lim
ξ→α+

ϕ(ξ) = ρ, lim
ξ→�−

ϕ(ξ) = 0.

If there exists α̂ ∈ (α, 	) satisfying ϕ(α̂) = ρ, by condition (D) and (6.4) we deduce

lim
ξ→α̂+

ϕ ′(ξ) = lim
ϕ→ρ−

z(ϕ)
D(ϕ)

= 0.

Here, we used the assumption D(ρ) > 0, which is contained in (D). Hence, we can
continue ϕ(ξ) to the left of α̂ with ρ in a differentiable way; see what we pointed
out below the statement of Theorem 2.7. Therefore we can assume that α = −∞
and then ϕ(−∞) = ρ.
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To complete the proof we need to show that the semi-wavefront is strict, i.e.,
that 	 is finite; the proof depends on the values of c.

In case (D0), we always have z(0+) < 0 for all c; then, by (6.4), we obtain that

(6.5) lim
ξ→�−

ϕ ′(ξ) = lim
ϕ→0+

z(ϕ)
D(ϕ)

=
z(0+)
D(0)

< 0.

In particular, we have that 	 ∈ R and the slope of the semi-wavefront never equals
−∞. Then, we focus on cases (D1) and (D2).

(a) c < c∗. In this case Theorem 2.6 implies z(0) < 0; by (6.4) we deduce that, in
both cases (D1) and (D2),

(6.6) lim
ξ→�−

ϕ ′(ξ) = lim
ϕ→0+

z(ϕ)
D(ϕ)

= −∞,

and hence 	 ∈ R.

(b) c = c∗ > h(0). In case (D1), by definition of derivative we deduce as above that

lim
ξ→�−

ϕ′(ξ) =
r−(c∗)
Ḋ(0)

.

In case (D2) we have z(0) = 0 and ż(0) = h(0) − c∗ < 0 by Theorem 2.6 and
Proposition 5.2, respectively. Since Ḋ(0) = 0, we deduce again (6.6) and hence
	 ∈ R in both cases.

(c) c > c∗. In case (D1) we have

z(0) = 0 and ż(0) = r+(c).

Then,

lim
ξ→�−

ϕ′(ξ) =
r+(c)
Ḋ(0)

and so 	 is finite. In case (D2), Theorem 2.6 and Proposition 5.2 imply

(6.7) z(0) = 0 and ż(0) = 0.

The situation is more delicate than in the previous cases, since we need to construct
suitable lower- and upper-solutions of (1.6) in a sharp way.

Fix ε > 0 and denote

η(ϕ) := − g(0)
c − h(0) − εg(0)

D(ϕ).

Since g(0) > 0, the function η(ϕ) is defined and negative on all (0, ρ) for every
sufficiently small ε. Moreover, as ϕ → 0+ we have both η̇(ϕ) → 0, by Ḋ(0) in (D2),
and

h(ϕ) − c − D(ϕ)g(ϕ)
η(ϕ)

= h(ϕ) − c +
c − h(0) − εg(0)

g(0)
g(ϕ) → −εg(0) < 0.

Then, we can find σ ∈ (0, ρ] such that

η̇(ϕ) > h(ϕ) − c − D(ϕ)g(ϕ)
η(ϕ)

, for ϕ ∈ (0, σ],

i.e. η(ϕ) is a strict upper-solution for (1.6) on (0, σ].
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By (6.7) and the mean value Theorem, there is a sequence {ϕn}n ⊂ (0, ρ), with
ϕn → 0+, such that ż(ϕn) → 0; this implies that

(6.8)
D(ϕn)g(ϕn)

z(ϕn)
→ h(0) − c

when n → ∞. Consequently we have

lim
n→∞

η(ϕn)
z(ϕn)

= lim
n→∞− g(0)

c − h(0) − εg(0)
D(ϕn)
z(ϕn)

= − g(0)
c − h(0) − εg(0)

(
−c − h(0)

g(0)

)
=

c − h(0)
c − h(0) − εg(0)

> 1.

Hence, we can find σ̂ ∈ (0, σ] such that z(σ̂) > η(σ̂) and by Lemma 4.3(2.ii) we
conclude that z(ϕ) > η(ϕ) on all (0, σ̂). Then

(6.9)
D(ϕ)
z(ϕ)

<
D(ϕ)
η(ϕ)

= −c − h(0)
g(0)

+ ε, ϕ ∈ (0, σ̂).

We proceed in an analogous way with lower-solutions. Consider the function

ω(ϕ) := − g(0)
c − h(0) + εg(0)

D(ϕ),

which is defined and negative on all (0, ρ). For ϕ → 0+ we have that ω̇(ϕ) → 0 and

h(ϕ) − c − D(ϕ)g(ϕ)
ω(ϕ)

= h(ϕ) − c +
c − h(0) + εg(0)

g(0)
g(ϕ) → εg(0) > 0.

Then, we can find μ ∈ (0, ρ] such that

ω̇(ϕ) < h(ϕ) − c − D(ϕ)g(ϕ)
ω(ϕ)

, ϕ ∈ (0, μ],

i.e. ω(ϕ) is a strict lower-solution for the equation in (2.3) on (0, μ]. Moreover, if
(ϕn)n satisfies (6.8), we have that

lim
n→∞

ω(ϕn)
z(ϕn)

= lim
n→∞

(
− g(0)

c − h(0) + εg(0)
D(ϕn)
z(ϕn)

)

= − g(0)
c − h(0) + εg(0)

(
−c − h(0)

g(0)

)
=

c − h(0)
c − h(0) + εg(0)

< 1.

Hence we can find μ̂ ∈ (0, μ] such that z(μ̂) < ω(μ̂) and according to Lemma
4.3(2.i) we conclude that z(ϕ) < ω(ϕ) on all (0, μ̂). Then

(6.10)
D(ϕ)
z(ϕ)

>
D(ϕ)
ω(ϕ)

= −c − h(0)
g(0)

− ε, ϕ ∈ (0, μ̂).

By combining (6.9) with (6.10), and since ε is arbitrary, we conclude that

(6.11) lim
ϕ→0+

D(ϕ)
z(ϕ)

= −c − h(0)
g(0)

.

We notice that the limit in (6.11) is nontrivial since both D(0) = Ḋ(0) = 0 by (D2)
and z(0) = ż(0) = 0 by Theorem 2.6 and (6.7). Formula (6.11) implies that 	 is
finite also in this case and that ϕ ′(	−) = − g(0)

c−h(0) .

(d) c = c∗ = h(0). Because of (2.4), this case does not occur under (D1) but only
under (D2). For ε > 0 we denote ω(ϕ) := −D(ϕ)

ε for ϕ ∈ (0, ρ). Reasoning as in
(c), it is possible to find μ ∈ (0, ρ] such that ω(ϕ) is a strict lower-solution for the
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equation in (2.3) on (0, μ]. Moreover, by using the sequence {ϕn} that we exploited
to prove (6.8), we have

0 = lim
n→∞ ż(ϕn) = lim

n→∞

(
h(ϕn) − c∗ − D(ϕn)g(ϕn)

z(ϕn)

)
.

Since h is continuous with h(0) = c∗ and according to (g), we obtain

lim
n→∞

D(ϕn)
z(ϕn)

= 0.

It implies

z(ϕn) < −D(ϕn)
ε

= ω(ϕn),

for sufficiently large n. Since ϕn → 0+, it is then possible to find μ̂ ∈ (0, μ] satisfying
z(μ̂) < ω(μ̂). By Lemma 4.3(2.i), we conclude that z(ϕ) < ω(ϕ) for ϕ ∈ (0, μ̂] and
hence

−ε <
D(ϕ)
ω(ϕ)

<
D(ϕ)
z(ϕ)

< 0, ϕ ∈ (0, μ̂].

Consequently, we have

(6.12) lim
ϕ→0+

D(ϕ)
z(ϕ)

= 0.

Then, we have again 	 ∈ R and ϕ′(	−) = −∞. �

7. Proof of the main results

In this section we finally prove the theorems stated in Section 2.
Proof of Theorem 2.3. Consider the new equation

(7.1) ρt + f̄(ρ)x =
(
D̄(ρ)ρx

)
x

, (x, t) ∈ R × [0, +∞),

for f̄(ρ) = f(ρ − ρ) − f(ρ) and D̄(ρ) = D(ρ − ρ). Notice that

lim
s→0+

f̄(s)
s

= − lim
s→0+

h(ρ − s) = −h(ρ)

and define H(s) = −f̄(s) − h(ρ)s, for s ∈ [0, ρ]. So, we can apply [15, Theorem
5.1] and conclude that equation (7.1) has exactly one semi-wavefront (say ψ(ζ),
ζ ∈ (ω, +∞)) decreasing to 0 for c > −h(ρ), exactly one such solution for c = −h(ρ),
provided that H(s) > 0 for s in a right neighborhood of 0, and no such solutions for
c < −h(ρ). Since equation (7.1) can be equivalently written as ρt − h(ρ − ρ)ρx =(
D(ρ − ρ)ρx

)
x
, it is clear (see equation (1.5)) that the function ψ(ζ) is a solution

of (
D(ρ − ψ)ψ ′

) ′ + (
c + h(ρ − ψ)

)
ψ ′ = 0, ′ =

d

dζ
,

for ζ ∈ (ω, +∞). Let ξ := −ζ ∈ (−∞, 	) with 	 := −ω, and ϕ(ξ) =: ρ−ψ(ζ); the
function the ϕ(ξ) satisfies ϕ(ξ) → ρ as ξ → −∞ and also(

D(ϕ)ϕ ′
) ′ + (−c − h(ϕ)

)
ϕ ′ = 0, ξ ∈ (−∞, 	) with ′ =

d

dξ
.

We obtained that ϕ(ξ) is a semi-wavefront of (2.2) from ρ with wave speed −c and
also the converse is true, i.e. to every semi-wavefront of (2.2) there corresponds one
of (7.1). This proves the statements concerning the existence of semi-wavefronts
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from ρ as well as their uniqueness up to shifts. The results about semi-wavefronts
to ρ are easily deduced arguing as above or by a change of variables as in the proof
of Theorem 2.7. At last, the smoothness property follows by Remark 6.2. �

Proof of Theorem 2.7. The existence and uniqueness (up to shifts) of classical
semi-wavefronts from ρ is a direct consequence of Theorems 2.6 and 2.5.

Now, we show the existence of a unique (up to shifts) semi-wavefront to ρ for
every c ∈ R. Given c ∈ R, consider the semi-wavefront from ρ of the equation

(7.2) ρt − h(ρ)ρx =
(
D(ρ)ρx

)
x

+ g(ρ), (x, t) ∈ R × [0,∞),

with speed −c and profile ψ(ξ) satisfying ψ(0) = 0. As already remarked in the
Introduction, the profile ψ(ξ) is a solution of

(7.3)
(
D

(
ψ(ξ)

)
ψ ′(ξ)

) ′
+

(
−c + h

(
ψ(ξ)

))
ψ ′(ξ)+g

(
ψ(ξ)

)
= 0, ξ ∈ (−∞, 0).

We define ϕ(ξ) := ψ(−ξ) for ξ ∈ (0, +∞). We notice that ϕ ′(0+) > 0 by (2.7)–
(2.9) and that ϕ(ξ) → ρ as ξ → +∞. Moreover, for ξ ∈ (0, +∞) and ′ = d/dξ, we
have that(

D
(
ϕ(ξ)

)
ϕ ′(ξ)

) ′
= −

(
D

(
ψ(−ξ)

)
ψ ′(−ξ)

) ′
= −

(
−c + h

(
ψ(−ξ)

))
ψ ′(−ξ) − g

(
ψ(−ξ)

)

= −
(
c − h

(
ϕ(ξ)

))
ϕ ′(ξ) − g

(
ϕ(ξ)

)
.

Hence the function ϕ satisfies (1.5) on all (0, +∞) and then it is a semi-wavefront
of (1.1) to ρ.

About uniqueness, we argue conversely: starting from a semi-wavefront to ρ
of (1.1) and reasoning as before, we obtain a semi-wavefront from ρ of (7.2) with
opposite speed and with −h replacing h. Therefore, up to shifts, equation (1.1) has
exactly one semi-wavefront to ρ for every wave speed.

The smoothness of the semi-wavefronts follows by Remark 6.2; formulas (2.7)–
(2.9) follow by (6.5), (6.6), (6.11) and (6.12).

At last, we are left with the proof of (2.10). We claim that

(7.4) lim
ξ→�−

(
ϕ ′1(ξ) − ϕ ′2(ξ)

) ∈ [−∞, 0).

Let us briefly show how (7.4) implies (2.10). Formula (7.4) implies ϕ ′1 < ϕ ′2 in a
left neighborhood I of 	; by applying the Mean Value Theorem to ϕ1 − ϕ2, we
get estimate (2.10) in I. Assume by contradiction that there exists ξ ∈ (−∞, 	)
satisfying ϕ1(ξ) = ϕ2(ξ) =: ϕ ∈ (0, ρ); without loss of generality we can suppose

(7.5) ϕ2(ξ) < ϕ1(ξ), for ξ ∈ (ξ, 	).

By Lemma 5.1 we get

D(ϕ)ϕ ′1(ξ) = D(ϕ)ϕ ′1
(
ξ1(ϕ)

)
= z1(ϕ) < z2(ϕ) = D(ϕ)ϕ ′2

(
ξ2(ϕ)

)
= D(ϕ)ϕ ′2(ξ),

where ξ1 and ξ2 denote the inverse functions of ϕ1, ϕ2, respectively, see Remark
6.3. We deduce that ϕ ′1(ξ) < ϕ ′2(ξ), which contradicts (7.5). This would prove
(2.10).

The proof of (7.4) is split into four parts, see the proof of Theorem 2.5.
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(a) Assume (D0). The definition of z(ϕ) implies that

lim
ξ→�−

(
ϕ ′1(ξ) − ϕ ′2(ξ)

)
= lim

ϕ→0+

z1(ϕ) − z2(ϕ)
D(ϕ)

=
z1(0) − z2(0)

D(0)
.

By estimate (5.13) and Theorem 2.6 we get z1(0) ≤ z2(0) < 0. If z1(0) = z2(0),
then ż1(0) = h(0)−c1− D(0)g(0)

z1(0)
> h(0)−c2 = ż2(0)− D(0)g(0)

z2(0)
, in contradiction

with (5.13). Hence, z1(0) < z2(0) and (7.4) holds.
(b) Assume (D1) or (D2), with c1 < c∗. By Theorem 2.6 we have z1(0) < 0.

If c2 ≤ c∗, by arguing as in case (a), we conclude that

lim
ξ→�−

(
ϕ ′1(ξ) − ϕ ′2(ξ)

)
= lim

ϕ→0+

z1(ϕ) − z2(ϕ)
D(ϕ)

= −∞.

If c2 > c∗, then by (2.8) or (2.9) (in case (D1) or (D2), respectively) we
have that ϕ ′2(ξ) has a finite limit when ξ → 	− and then

lim
ξ→�−

(
ϕ ′1(ξ) − ϕ ′2(ξ)

)
= lim

ϕ→0+

z1(ϕ)
D(ϕ)

− lim
ξ→�−

ϕ ′2(ξ) = −∞.

(c) Assume (D1), with c1 ≥ c∗. By (2.6), recall that r−(c∗) < r+(c∗) and also that
r+(c) is increasing for c ≥ c∗. Then, according to (2.8), we get

lim
ξ→�−

(
ϕ ′1(ξ) − ϕ ′2(ξ)

)
=

⎧⎪⎨
⎪⎩

r−(c∗)−r+(c2)

Ḋ(0)
< 0, if c1 = c∗,

r+(c1)−r+(c2)

Ḋ(0)
< 0, if c1 > c∗.

(d) Assume (D2), with c1 ≥ c∗. The estimate (2.4) implies that c1 ≥ h(0); hence,
from (2.9) we have

lim
ξ→�−

(
ϕ ′1(ξ) − ϕ ′2(ξ)

)
=

⎧⎨
⎩

−∞, if c1 = c∗,
g(0)

(c1−h(0))(c2−h(0)) (c1 − c2) < 0, if c1 > c∗.

This completes the proof of (7.4) and then of Theorem 2.7. �

Proof of Theorem 2.9. We prove the result only in the case of semi-wavefronts
from ρ; the same conclusions can be easily drawn for semi-wavefronts to ρ with the
change of variables exploited in the proof of Theorem 2.7. Moreover, we assume
without any loss of generality that ρ1 = 0 both in (2.11) and (2.12): if ρ1 > 0, it is
sufficient either to increase L in (2.11) or decrease it in (2.12) to a new constant L
such that both (2.11) and (2.12) hold in [0, ρ] with L replaced by L.

Let ϕ be a semi-wavefront in (−∞, 	) with speed c. Denote by z(ϕ), ϕ ∈ [0, ρ],
the solution of (2.3) with the same wave speed c provided by Theorem 2.6. Let
ξ(ϕ) be the inverse function of ϕ, see Remark 6.3, and denote

(7.6) ξ := lim
ϕ→ρ−

ξ(ϕ).

Case (i). For n ∈ N and a > 0, we denote ηn(ϕ) := a(ϕ − ρ) − 1
n , ϕ ∈ [0, ρ].

First, we show that it is possible to find a, independently from n, such that ηn is
a strict upper-solution of (1.6) on [0, ρ) for all n. Indeed, by (2.11) (with ρ1 = 0),
we have that

(7.7) h(ϕ) − c − D(ϕ)g(ϕ)
ηn(ϕ)

≤ H + K
L(ρ − ϕ)

a(ρ − ϕ) + 1
n

,
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where H was defined in (5.3) and K := maxϕ∈[0,ρ] D(ϕ). The function

ϕ �−→ L(ρ − ϕ)
a(ρ − ϕ) + 1

n

, ϕ ∈ [0, ρ],

is strictly decreasing and then, by (7.7),

h(ϕ) − c − D(ϕ)g(ϕ)
ηn(ϕ)

≤ H +
KLρ

aρ + 1
n

< H +
KL

a
.

We have that H + KL
a < a if we choose

(7.8) a >
H +

√
H2 + 4KL

2
.

With this choice, the function ηn is a strict upper-solution of (1.6) in [0, ρ) for all
n. This proves our claim.

Moreover, since z(ρ−) = 0 > − 1
n = ηn(ρ), we can find ϕ̂n ∈ (0, ρ) satisfying

z(ϕ) > ηn(ϕ) for ϕ ∈ [ϕ̂n, ρ]. If we apply Lemma 4.3(2.ii) in the remaining interval
[0, ϕ̂n) we conclude that

(7.9) z(ϕ) > ηn(ϕ), for all ϕ ∈ (0, ρ] and n ∈ N.

Since D(ρ) > 0 by (D), then δ := minϕ∈[ρ/2,ρ] D(ϕ) > 0; as a consequence, by (7.6)
we have that

ξ − ξ

(
ρ

2

)
=

∫ ρ

ρ
2

ξ ′(ϕ) dϕ =
∫ ρ

ρ
2

1
ϕ ′(ξ(ϕ))

dϕ =
∫ ρ

ρ
2

D(ϕ)
z(ϕ)

dϕ

<

∫ ρ

ρ
2

D(ϕ)
ηn(ϕ)

dϕ < δ

∫ ρ

ρ
2

1
a(ϕ − ρ) − 1

n

dϕ =
δ

a
ln

2
naρ + 2

.

If we pass to the limit for n → ∞ in the above lines, we see that the right-hand
side tends to −∞; hence, ξ = −∞.

Case (ii). The proof is similar to that of Case (i) but the choice of a lower-
solution (instead of an upper-solution) is more tricky. More precisely, we define
h := minϕ∈[ρ/2,ρ]

(
h(ϕ) − c

)
, fix a value β ∈ (α+1

2 , 1) and take k > 0 satisfying

(7.10)
δL

k
− kβ

(
ρ

2

)2β−(α+1)

> 0,

where δ is defined as in case (i). For every n ∈ N with ρ
2 < ρ− 1

n , we introduce the
function ωn(ϕ) : [ρ

2 , ρ] → R defined by

ωn(ϕ) =

{
−k(ρ − 1

n − ϕ)β ϕ ∈ [ρ
2 , ρ − 1

n ],
0 ϕ ∈ (ρ − 1

n , ρ].

We claim that

(7.11) ωn(ϕ) ≥ z(ϕ), ϕ ∈ [ρ/2, ρ].

Indeed, since z(ϕ) < 0 in the interval (0, ρ), by a continuity argument we can find
ψn ∈ (ρ

2 , ρ − 1
n ) such that ωn(ϕ) ≥ z(ϕ) on [ψn, ρ]. If we show that ωn is a strict

lower-solution of (1.6) on [ρ
2 , ψn], then we can apply Lemma 4.3(2.i) in the interval

(ρ
2 , ψn] and prove (7.11).
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According to (2.12) (with ρ1 = 0), we obtain, for ϕ ∈ [ρ
2 , ψn],

h(ϕ) − c − D(ϕ)g(ϕ)
ωn(ϕ)

= h(ϕ) − c +
D(ϕ)g(ϕ)

k(ρ − 1
n − ϕ)β

≥ h +
δL(ρ − ϕ)α

k(ρ − 1
n − ϕ)β

= h +
δL(ρ − ϕ)α

k(ρ − 1
n − ϕ)α

· 1
(ρ − 1

n − ϕ)β−α

≥ h +
δL

k

1
(ρ − 1

n − ϕ)β−α
.(7.12)

Now, we introduce the function ηn : [ρ
2 , ψn] → R defined by

ηn(ϕ) = h +
δL

k

1
(ρ − 1

n − ϕ)β−α
− ω̇n(ϕ)

and notice that ρ − 1
n − ϕ < ρ

2 for ϕ ∈ [ρ
2 , ρ − 1

n ]; we deduce, for ϕ ∈ [ρ
2 , ψn],

δL

k
− kβ

(
ρ − 1

n
− ϕ

)2β−(1+α)

>
δL

k
− kβ

(
ρ

2

)2β−(1+α)

,(7.13)

1
(ρ − 1

n − ϕ)β−α
>

1(
ρ
2

)β−α
.(7.14)

By means of the definition of ωn and (7.13), (7.14), (7.10), we have that, for ϕ ∈
[ρ
2 , ψn],

ηn(ϕ) = h +
δL

k

1
(ρ − 1

n − ϕ)β−α
− kβ

(ρ − 1
n − ϕ)1−β

= h +
1

(ρ − 1
n − ϕ)β−α

[
δL

k
− kβ

(
ρ − 1

n
− ϕ

)2β−(1+α)
]

> h +
1(

ρ
2

)β−α

[
δL

k
− kβ

(
ρ

2

)2β−(1+α)
]

> 0,

if k is sufficiently small. Hence,

h +
δL

k

1
(ρ − 1

n − ϕ)β−α
> ω̇n(ϕ), ϕ ∈

[
ρ

2
, ψn

]
.

Then, by (7.12), ωn is a strict lower-solution of (1.6) on (ρ
2 , ψn] and (7.11) is proved.

The sequence {ωn}n is monotone and

lim
n→∞ωn(ϕ) = −k(ρ − ϕ)β := ω(ϕ), ϕ ∈ [ρ/2, ρ].

By (7.11) we have ω(ϕ) ≥ z(ϕ) for ϕ ∈ [ρ
2 , ρ] and, as in Case (i), by (7.6) we get

ξ − ξ(
ρ

2
) =

∫ ρ

ρ
2

ξ ′(ϕ) dϕ =
∫ ρ

ρ
2

1
ϕ ′(ξ(ϕ))

dϕ =
∫ ρ

ρ
2

D(ϕ)
z(ϕ)

dϕ

≥
∫ ρ

ρ
2

D(ϕ)
ω(ϕ)

dϕ ≥ −K

k

∫ ρ

ρ
2

1
(ρ − ϕ)β

dϕ = − K

k(1 − β)

(
ρ

2

)1−β

,

where K was defined below (7.7). Therefore ξ ∈ R and so ϕ(ξ) ≡ ρ for ξ ≤ ξ. �



326 ANDREA CORLI AND LUISA MALAGUTI

8. On the existence of global traveling-wave solutions

As we noticed in Section 3, the existence of a semi-wavefront solution is a
notable theoretical result but global solutions can be more interesting in some
applications. The existence of semi-wavefront profiles for any c ∈ R is a motivation
to the following construction. An analogous procedure is well known and fully
characterized for some dispersive equations [18, 19, 20].

We fix a wave speed c and 	 ∈ R. Theorem 2.7, together with a shift argument,
provides us of a semi-wavefront solution ρ1 from ρ with wave profile ϕ1 and a semi-
wavefront solution ρ2 to ρ with wave profile ϕ2, both of them with the same speed
c and satisfying ϕ1(	) = ϕ2(	) = 0. Such wave profiles are unique by the same
theorem. We define, see Figure 5,

(8.1) ϕ(ξ) =

{
ϕ1(ξ) if ξ ≤ 	,
ϕ2(ξ) if ξ > 	.

�ξ

�ϕ

ρ

ϕ1 ϕ2

ϕ(ξ)

	

Figure 5. Pasting two wave profiles ϕ1 and ϕ2 to get a global
profile ϕ.

Clearly ϕ is a classical solution for ξ �= 	; however, because of the discontinuity
of ϕ′ at 	, notice that the pasting (8.1) has possibly a meaning only if the pasting
occurs at the point (	, 0) in the (ξ, ϕ)-plane and under (D1) or (D2). Indeed, either
in the case (D0) or in the case of a pasting at a point (ξ0, ρ0), with ξ0 ∈ R and
ρ0 ∈ (0, ρ], the term D(ϕ)ϕ′ produces a Dirac mass at ξ0 because D(ρ0) > 0; this
does not make ϕ a (weak) solution to (1.5).

We denote by c∗1 the threshold introduced in Theorem 2.6 for profiles from ρ.
By the proof of Theorem 2.7, we deduce that ϕ2(ξ) = ϕ̃1(−ξ), where ϕ̃1 is the
profile from ρ corresponding to speed −c and flux −f . If we denote by c∗2 the
threshold analogous to c∗1 but for profiles to ρ, then c∗2 satisfies (2.4) with −c and
−h replacing c and h, respectively.

Proposition 8.1. Assume either (D1) or (D2) and let ϕ be as in (8.1). Then
ϕ is a solution to (1.5) if and only if c ∈ [c∗1,−c∗2].

Proof. In order to prove that ϕ is a weak solution to (1.5) we must verify
Definition 2.1 when I = R; indeed, we only have to focus on a neighborhood of
the pasting point 	. Therefore, let ψ ∈ C∞0 (R) with ψ(	) �= 0; without loss of
generality we can assume that ψ(	) = 1. We split the integral

(8.2)
∫

R

{(
D

(
ϕ(ξ)

)
ϕ′(ξ) − f

(
ϕ(ξ)

)
+ cϕ(ξ)

)
ψ′(ξ) − g

(
ϕ(ξ)

)
ψ(ξ)

}
dξ
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into two parts, integrating separately in (−∞, 	) and in (	,∞).
A simple integration by parts shows that∫ �

−∞

{(
D(ϕ)ϕ′ − f(ϕ) + cϕ

)
ψ′ − g(ϕ)ψ

}
dξ = lim

ξ→�−
D

(
ϕ1(ξ)

)
ϕ′1(ξ)

= lim
ϕ→0−

z1(ϕ).

By Theorem 2.5 we conclude∫ �

−∞

{(
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ′ − g (ϕ) ψ

}
dξ =

{
0 if c ≥ c∗1,

z1(0) < 0 if c < c∗1.

Now, we consider the integration in (	,∞). We argue as above but also recall the
proof of Theorem 2.7, see what we pointed out just above the statement of this
proposition. We deduce∫ ∞

�

{(
D (ϕ) ϕ′ − f (ϕ) + cϕ

)
ψ′ − g (ϕ) ψ

}
dξ =

{
0 if − c ≥ c∗2,

−z2(0) < 0 if − c < c∗2.

Therefore, the integral (8.2) vanishes if and only if c∗1 ≤ c ≤ −c∗2. �

From the proof of the above proposition and (2.8), (2.9), we deduce that, in
case (D1), the condition c ∈ [c∗1,−c∗2] is equivalent to require that both ϕ′1(	

−) and
ϕ′2(	

+) are real numbers.
The thresholds c∗1 and c∗2 have not an explicit expression but are estimated in

(2.4). In order that there exists c in the range [c∗1,−c∗2] we need that c∗1 + c∗2 ≤ 0.
However, by (2.4) we see that

c∗1 + c∗2 ≥ 4
√

Ḋ(0)g(0) ≥ 0,

which shows that the reverse inequality holds. This leaves open only the eventuality

(8.3) condition (D2) holds and c∗1 = −c∗2.

In this case we are led to the unique choice c = c∗1 = −c∗2. As we noted above, we
cannot establish whether the case c∗1 = −c∗2 can occur. Apart from this (possible)
case, the construction in (8.1) never leads to a solution of (2.1). In other words and
apart from case (8.3): for any fixed c, if a semi-wavefront profile has finite slope
when it reaches zero, then the other one has infinite slope. This is equivalent to say
that D(ϕ)ϕ′ is discontinuous at 	 and then its derivative produces a Dirac mass
at that point.

A comparison with the special dispersive equations considered in [19] is inter-
esting. With reference to the Camassa-Holmes equation, the third-order equation
for the profile is reduced to a second-order equation, which is somewhat analogous
to (1.5) with D(ϕ) = 2(ϕ− c). For the corresponding profile, it is possible to prove
that 2(ϕ− c)ϕ′ ∈ W 1,1

loc (R), i.e. 2(ϕ− c)ϕ′ is absolutely continuous [18, Lemma 5];
this makes possible the pasting.

9. Diffusion with infinite slope at 0

In this last section we only require D ∈ C[0, ρ] ∩ C1(0, ρ) and assume (D̂).
This means that we allow D to have infinite slope at 0; the differentiability of D
at ρ plays no role in the discussion below. Most of the previous results still hold
under (D̂): indeed, the comparison-type techniques in Section 4 only depend on
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the continuity of D and this is also the case for Lemma 6.4, while Proposition 6.1
simply involves the values of Ḋ in the open interval (0, ρ). As a consequence, we
only need to focus on problem (2.3) and the equivalence discussed in Theorem 2.5.
Proof of Theorem 2.10. Fix c ∈ R. The proof depends on the properties of D.

I. Assume condition (D̂0). In this case it is possible to find real values a1, a2 and
strictly positive numbers b1, b2 in such a way that, if we denote Di(ϕ) =: aiϕ+bi for
i = 1, 2, then D1(ϕ) < D(ϕ) < D2(ϕ) for ϕ ∈ [0, ρ]. Problem (2.3), when replacing
D with D1 and D2, is uniquely solvable by Theorem 2.6, because condition (D0)
holds for both D1 and D2. Let z1 and z2 be these solutions, respectively; see
Figure 6(a). In particular, Theorem 2.6 implies z1(0) < 0. Notice that z1 is a strict
lower-solution and z2 is a strict upper-solution of (1.6) on [0, ρ); we claim that

(9.1) z1(ϕ) > z2(ϕ), ϕ ∈ [0, ρ).

Indeed, since D1 < D2 in [0, ρ] we deduce that z1 is a strict lower-solution of

(9.2) ż(ϕ) = h(ϕ) − c − D2(ϕ)g(ϕ)
z(ϕ)

, ϕ ∈ [0, ρ).

Let γ(ϕ) be the solution of (9.2) satisfying γ(0) = z1(0) and assume that γ is defined
in [0, β), with β ≤ ρ. By Lemma 4.3(1.i) we have γ(ϕ) > z1(ϕ) for ϕ ∈ (0, β).
Notice that

γ̇(ϕ) − ż1(ϕ) = g(ϕ)
[

D2(ϕ)
−γ(ϕ)

− D1(ϕ)
−z1(ϕ)

]
> 0, ϕ ∈ [0, β),

which makes impossible the case β = ρ. Hence β < ρ and this implies z2(0) < z1(0).
Moreover, if there exists ϕ0 ∈ (0, ρ) such that z1(ϕ0) = z2(ϕ0), we deduce as above
z2(ϕ̂) = 0 for some ϕ̂ < ρ, i.e., a contradiction. Claim (9.1) is then proved.

Since z1(ρ) = 0, we can find an increasing sequence {ψn} ⊂ (0, ρ), which
converges to ρ and such that {z1(ψn)} is also increasing. Denote with ζn the
solution of final-value problem{

ż(ϕ) = h(ϕ) − c − D(ϕ)g(ϕ)
z(ϕ) , ϕ < ψn,

z(ψn) = z1(ψn).

By means of Lemma 4.1(2), the solution ζn is unique and it is defined on (0, ψn].
Furthermore, the sequence

{
ζn(ϕ)

}
n

is increasing for all ϕ and, by Lemma 4.3(2),
it satisfies z2(ϕ) < ζn(ϕ) < z1(ϕ) for ϕ ∈ (0, ψn). Since ζn is bounded away from
0, we can extend it to 0 by continuity. We define

z(ϕ) = lim
n→∞ ζn(ϕ), ϕ ∈ [0, ρ).

As in the proof of Theorem 2.6(b), we can prove that z(ϕ) is the required solution
of problem (2.3) with z(0) ≤ z1(0) < 0.

II. Assume condition (D̂1). The proof splits into three parts.
(a) Existence of a lower-solution. We show that there exist ϕ0 ∈ (0, ρ) and a
strict lower-solution ω : [0, ϕ0] → R for (1.6), such that ω(ϕ) < 0 for ϕ ∈ [0, ϕ0)
and ω(ϕ0) = 0. This means that

(9.3) ω̇ < h(ϕ) − c − D(ϕ)g(ϕ)
ω(ϕ)

, ϕ ∈ (0, ϕ0).
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Figure 6. (a): Case (D̂0). The lower-solution z1, the upper-
solution z2 and the solution z. (b): Case (D̂1). The solutions
zα, z1, z2, the upper-solution η and the lower-solution ω; here,
z0 < −1 satisfies (5.4).

Let 0 < M < N be two constants such that h(ϕ) − c > −M for ϕ ∈ [0, ρ]. By (g)
and (D̂1) there is ε > 0 such that D(ϕ)g(ϕ) > N2ϕ

4 for ϕ ∈ (0, ε]. Therefore we
shall prove (9.3) if we find ϕ0 and ω solving

(9.4) ω̇ = −M − N2ϕ

4ω(ϕ)
, ϕ ∈ (0, ϕ0).

It is not easy to solve directly this equation; so, we exploit the second-order equation
which corresponds to it, in the same way that (1.5) corresponds to (1.6).

Consider the equation u′′ + Mu′ + N2

4 u = 0 and the solution

ϕ(t) = εe−
Mt
2

(
cos(αt) +

M

2α
sin(αt)

)
, α =

√
N2 − M2

2
.

We denote t = 1
α

[
arctg(− 2α

M ) + π
]

and notice that

ϕ′(t) = −εe−
Mt
2

(
M2

4α
+ α

)
sin(αt), t ∈ R.

We have that ϕ(0) = ε and ϕ(t) = 0, ϕ(t) is positive and decreasing in [0, t),
ϕ′(0) = 0. Hence, the function ϕ is invertible and we denote by t = t(ϕ), ϕ ∈ [0, ε],
its inverse function. If we define ω(ϕ) := ϕ′

(
t(ϕ)

)
for ϕ ∈ [0, ε] and ϕ0 := ε, see

Figure 6(b), then it is not difficult to show that ω(ϕ) is a solution of (9.4). Our
claim is proved.

(b) Solution of problem (2.3). Consider the linear function η(ϕ) defined in (5.5)
with z0 < ϕ′(t), see Figure 6. We showed in the proof of Theorem 2.6, part (a),
that η(ϕ) is a strict upper-solution of (1.6) in [0, ρ]; the proof does not depend on
Ḋ(0). By Lemma 4.3(1.ii), the solution z1 of the initial-value problem{

ż = h(ϕ) − c − D(ϕ)g(ϕ)
z(ϕ) ,

z(0) = η(0),
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satisfies z1(ϕ) < η(ϕ) for ϕ ∈ (0, ρ). In particular z1(ρ) ≤ −1. Similarly, by Lemma
4.3(1.i), the solution z2 of the initial-value problem{

ż = h(ϕ) − c − D(ϕ)g(ϕ)
z(ϕ) ,

z(0) = ω(0),

with ω(ϕ) defined in step (a), satisfies z2(ϕ) > ω(ϕ) for ϕ ∈ (0, ϕ1), where [0, ϕ1)
is the maximal-existence interval of z2. This implies that [0, ϕ1) ⊂ [0, c1).

Now, consider the family zα of solutions of (1.6) with zα(0) = α, for α ∈
[z1(0), z2(0)], and apply a shooting argument. It is not difficult to find α ∈(
z1(0), z2(0)

)
such that the corresponding function zα is a solution of problem

(2.3), hence with zα(0) < z2(0) < 0.

(c) Uniqueness. The reasoning in the proof of Theorem 2.6(c) applies also here.

III. The equivalence between semi-wavefront solutions ϕ and solutions z of (2.3)
can be proved as in Theorem 2.5. In particular, with reference to that proof, in
case (D̂0) inequality (6.5) still holds, while in case (D̂1) we are in case (a) because
z(0) < 0 for every c. This proves (2.13). �

We also point out that the negative results of Section 8, concerning the impos-
sibility of pasting semi-wavefronts, still hold under (D̂).
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