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Well posedness and asymptotic behavior of supercritical
reaction-diffusion equations with nonlinear boundary

conditions
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Abstract. We construct solutions of nonlinear reaction-diffusion equations
with nonlinear boundary conditions in spaces where the problem is supercrit-
ical and show the nonlinear balance required between the nonlinear terms in
order to obtain a dissipative system. Assuming this balance, the dynamics
of the solutions is the same that takes place in subcritical spaces since their
attractors coincide.
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1. Introduction

When one considers reaction diffusion problems with nonlinear boundary (flux)
conditions one typically faces problems in which, in a natural way, two different non-
linear mechanisms, of very different nature, compete. Namely, interior reaction and
boundary flux. In this context it is therefore a natural question to understand which
is the nonlinear balance between these two competing nonlinear mechanisms. From
the mathematical point of view a delicate technical problem is also to determine a
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large class of initial data for which the problem can be solved. Once this is done
the balance between the nonlinear terms will determine the subsequent behavior of
the solutions.

Let us consider the following problem

(1.1)

⎧⎪⎨
⎪⎩

ut −Δu + f(u) = 0 in Ω
∂u

∂�n
= g(u) on Γ

u(0) = u0

in a bounded domain Ω ⊂ R
N , N ≥ 1, with boundary Γ = ∂Ω. The prototype

nonlinearities we consider grow at infinity like

|f ′(s)| ∼ |s|p−1, |g′(s)| ∼ |s|q−1 as |s| → ∞, p, q > 1.

We now review some known results for (1.1). If we first consider the problem
of local existence of solutions, it turns out that for each choice of space of initial
data, there exist a maximal growth allowed in f and g. For example if we chose
u0 ∈ Lr(Ω) with 1 < r < ∞ then it is known that (1.1) is locally well posed
provided

(1.2) 1 < p ≤ pc = 1 +
2r

N
, 1 < q ≤ qc = 1 +

r

N

with q < qc = 1 + r, if N = 1. For initial data in Sobolev spaces W 1,r(Ω), one gets

(1.3) 1 < p ≤ pc = 1 +
2r

N − r
, 1 < q ≤ qc = 1 +

r

N − r
,

see [6]. The numbers pc and qc above are the so-called critical exponents. The
problem (1.1) is said to be subcritical if p < pc and q < qc, and critical otherwise.
See [17, 18, 8] for related results. On the other hand, it was proved in [2] that,
in general, supercritical problems i.e. either p > pc or q > qc, are ill posed. Notice
that critical exponents reflect the maximal growth allowed on the nonlinear terms,
but do not take into account the sign of f and g.

Once local existence of solutions is obtained, we can investigate the balance
between nonlinear terms and analyze the asymptotic behavior of solutions. For
this we will assume hereafter that
(1.4)
pcf |s|p−1−A0 ≤ f ′(s) ≤ pCf |s|p−1 +A1, qcg|s|q−1−B0 ≤ g′(s) ≤ qCg|s|q−1 +B1,

for some cf , cg, Cf , Cg > 0, A0, A1, B0, B1 > 0, 1 < p, q < ∞. These assumptions
imply that there is an actual competition in (1.1) between nonlinear terms. On one
hand, f has a dissipative character and tries to make solutions global and bounded.
On the other hand g has an explosive nature and tries to make solutions blow up
in finite time; see [9, 12].

In [12] (1.1) is studied in a subcritical H1(Ω) setting (with suitable critical
exponents pc = 1 + 4

N−2 and qc = 1 + 2
N−2 for this space). Assuming the nonlinear

balance condition

(1.5) p + 1 > 2q

and using a natural energy estimate involving the gradient of the solutions, it was
proved that (1.1) is dissipative and the asymptotic behavior of solutions is described
by a global compact attractor in H1(Ω) which typically has a precise geometrical
structure, since the problem has a gradient structure. Note that in this case the
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energy acts as a Lyapunov functional along solutions, which simplifies a lot the
dynamics.

On the other hand if p + 1 < 2q the problem is not dissipative and it was also
shown in [12] that there always exists solutions that blow up in finite time. The
case when p + 1 = 2q depends on the balance of the coefficients of the leading or
even lower order terms in f and g; see also [3].

In [5], (1.1) was studied in a subcritical regime and assuming a different linear-
type balance between nonlinear terms. However for (1.1) under assumptions (1.4)
and (1.5) no such linear balance holds.

In [10] the subcritical and critical problems in Lr(Ω) (i.e, 1 < p ≤ pc, 1 <
q ≤ qc) were considered. Again under the balance conditions (1.4) and (1.5) it was
shown that (1.1) is dissipative and has well defined asymptotic behavior in terms of
a global compact attractor. In the critical case a less conclusive result is obtained.
See Theorem 2.1 below for a precise statement. Notice that for the setting in Lr(Ω),
r 	= 2, the main difficulty is to obtain gradient estimates to obtain compactness of
solutions. In this case no natural energy seems to be available.

Sumarizing, if we assume (1.5) and define

(1.6) r0 = max
{

N

2
(p− 1), N(q − 1)

}
=

N

2
(p− 1)

then if r > r0 problem (1.1) is subcritical in Lr(Ω) while it is critical if r = r0, and
supercritical if 1 < r < r0 (notice that r0 > 1 if p > 1 + 2

N ). Thus if r ≥ r0, given
an initial data u0 ∈ Lr(Ω) we know that there exists a unique global solution of
problem (1.1) and moreover that there exists a global compact attractor.

In this paper we want to study the asymptotic behavior of solutions of (1.1)
in the case this problem is supercritical. Since, as mentioned above, in general
supercritical problems are ill posed, we must take a different approach than in the
references above.

For this we will assume (1.4), the nonlinear balance condition (1.5) and

1 < r < r0(p),

(hence in particular p > 1 + 2
N ) so that we are in the supercritical case for initial

data u0 ∈ Lr(Ω).
The main goal is to prove that in this case we still have global bounded solutions

and a global compact attractor for (1.1). Moreover we will show that this attractor
coincides with the one for r > r0. This will be possible precisely because of the
nonlinear balance (1.5) under which the dissipative character of f dominates the
explosive one of g.

This implies that under (1.5), given 1 < r < ∞ for any 1 ≤ p < ∞ problem
(1.1) is well posed and has a well defined compact attractor, independent of r.
Notice that a similar result was obtained in [14] for the case of Dirichlet boundary
conditions.

To accomplish that goal and since the problem is supercritical in Lr(Ω) for
1 < r < r0 we must construct suitable solutions of (1.1) for initial data in that space.
Then we need to obtain suitable strong estimates on the solutions which guarantee
enough compactness (or smoothing) to prove the existence of an attractor. These
estimates will show indeed that solutions of (1.1) enter into spaces in which the
problem is subcritical and then they are attracted to the attractor of the subcritical
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case. As mentioned before the main difficulty is to obtain gradient estimates on
the solutions.

Our last contribution is to show that within the global attractor there exist
extremal equilibria as in [13]. These equilibria have the property that the asymp-
totic behavior of any solutions lies below the maximal one and above the minimal
one. In particular any other equilibria lies in between these two. Also the maximal
equilibria is order stable from above and the minimal one is order stable from be-
low. Hence, they are the “caps” of the global attractor. So far such equilibria have
been shown to exists in problems like (1.1) but in which a suitable linear balance
as in [5] holds; see [13]. For (1.1) under assumptions (1.4) and (1.5) no such linear
balance holds and [13] does not apply.

The paper is organized as follows. In Section 2 we recall known results concern-
ing existence of solutions of (1.1) in subcritical or critical cases in Lr(Ω). Observe
that these results only take into account the growth of nonlinear terms and not
the signs of f and g. Then, assuming (1.4) and (1.5) we also recall the results
on the asymptotic behavior of solutions of (1.1) in subcritical or critical cases; see
Theorem 2.1 below.

Then in Section 3, assuming that (1.4) and (1.5) hold, we construct suitable
solutions of problem (1.1) starting at u0 ∈ Lr(Ω) for 1 < r < r0 with r0 as in
(1.6), so that the problem is supercritical in Lr(Ω). For this, we start by proving
the existence and uniqueness of solutions in Lr(Ω) for an approximated problem
in which we truncate the nonlinear term in the boundary in such a way that the
resulting problem is supercritical in the interior while subcritical on the boundary,
see Theorems 3.1 and 3.3. Since the supercritical nonlinear term has a good sign,
we will be able to obtain suitable uniform bounds for these solutions that will allow
us to construct a solution of (1.1) by some limiting process; see Propositions 3.5,
3.10 and 3.14 for the uniform bounds, Propositions 3.7 and 3.12 for the limiting
process, Definition 3.15 for the class of solutions of (1.1) we construct and Theorem
3.16 for their time continuity at t = 0. Observe we can only guarantee uniqueness
of solutions in the case of nonnegative initial data in (1.1), see Proposition 3.12 but
not for general sign changing solutions.

Then in Section 4 we use the strong smoothing estimates obtained in Section
3 to show that all solutions of (1.1), regularize into an space in which (1.1) is
subcritical and then the asymptotic behavior of solutions is described by the global
attractor in Theorem 2.1. We also show the existence of the extremal equilibria in
the attractor as discussed above; see Theorem 4.1. Note that the result in Section
4 improve the known result in Theorem 2.1 for the critical case r = r0.

2. Known results for the subcritical or critical cases

We recall now the results in [6] concerning existence of solutions in subcritical
or critical cases in Lr(Ω). These results only take into account the growth of
nonlinear terms and not the signs of f and g. Thus, we assume for the moment
that f, g ∈ C1(R) and satisfy

lim sup
|s|→∞

|f ′(s)|
|s|p−1

< ∞ and lim sup
|s|→∞

|g′(s)|
|s|q−1

< ∞
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and p, q satisfy (1.2), i.e.

p ≤ pc = 1 +
2r

N
, q ≤ qc = 1 +

r

N
, 1 < r < ∞.

We will also make use of some Bessel spaces1 in Lr(Ω) of fractional order 2θ, H2θ
r (Ω);

see [6, 1]. These spaces are Bessel spaces associated to Δ with Neumann boundary
conditions in Lr(Ω). Hence, if 2θ > 1 + 1

r these spaces incorporate Neumann
boundary conditions.

From [6], for each u0 ∈ Lr(Ω), there exist R = R(u0) > 0 and τ = τ(u0) > 0
such that for any u1 ∈ Lr(Ω) with ‖u1 − u0‖Lr(Ω) < R there exists a solution
of (1.1), with initial data u1, u(·; u1), in the sense that it is a continuous function
u : [0, τ0] → Lr(Ω) with u(0) = u1, such that u ∈ C([0, τ ];Lr(Ω))∩C((0, τ ];H2ε̄

r (Ω))
and supt∈(0,τ ] t

ε̄‖u(t)‖H2ε̄
r (Ω) < ∞, for some ε̄ > 0 and satisfies the variation of

constants formula

u(t; u1) = S(t)u1 +
∫ t

0

S(t− s)(−fΩ(u(s; u1)) + gΓ(u(s; u1)) ds, 0 ≤ t ≤ τ,

where S(t) is the semigroup generated by Δ with Neumann boundary conditions
in Lr(Ω), fΩ denotes the Nemitsky map of f acting on functions defined in Ω, and
gΓ the Nemitsky map of g acting on functions defined on Γ.

This is the so called ε−regular solution of (1.1) starting at u1 (see [4]). This
solution is unique in the class C([0, τ ];Lr(Ω)) ∩ C((0, τ ];H2ε̄

r (Ω)) and, by a boot-
strapping argument, it is classical for t > 0.

In addition, this solution satisfies, for some γ > ε and for all 0 < θ < γ,
(2.1)

u ∈ C((0, τ ];H2θ
r (Ω)), sup

t∈(0,τ ]

tθ‖u(t)‖H2θ
r (Ω) ≤ M(R, τ), tθ‖u(t)‖H2θ

r (Ω)
t→0+

−→ 0.

Moreover, if u1, v1 ∈ BLr(Ω)(u0, R) the following holds true for t ∈ (0, τ ], and
0 ≤ θ ≤ θ0 < γ,

(2.2) sup
t∈(0,τ ]

tθ‖u(t; u1)− u(t; v1)‖H2θ
r (Ω) ≤ C(θ0, τ)‖u1 − v1‖Lr(Ω).

Note that we can always take γ ≥ 1/2 which allows us to perform a bootstrap
argument to prove that solutions become classical for positive times.

If both of the nonlinearities are subcritical, i.e. p < pc and q < qc in (1.2), then
R can be taken arbitrarily large and so, the existence time can be taken uniform on
bounded sets of Lr(Ω). As a consequence, and following a standard prolongation
argument, when f and g are subcritical in Lr(Ω), if the solution exists up to a
maximal time T < ∞ then limt→T ‖u(t)‖Lr(Ω) = ∞. However, when f or g are
critical, if T < ∞ then we can only guarantee limt→T ‖u(t)‖Hδ

r (Ω) = ∞ for any
δ > 0. Therefore, in the subcritical case to prove global existence it is enough to

1We recall that the Bessel space of order s corresponds to the Sobolev space of order s
if s is an integer. If s is non-integer the Bessel space can be seen as the result of consider-
ing a non-integer order in the definition of the Sobolev spaces via Fourier transform. Namely,
Hs

p(RN ) = {f ∈ Lp(RN ) : F−1[(1 + |ξ|2)s/2Ff ] ∈ Lp(RN )} and for a domain Ω ⊂ R
N ,

Hs
p(Ω) is the space of restrictions of the elements in Hs

p(RN ) to Ω equipped with the norm

‖f‖Hs
p(Ω) := infg∈Hs

p(RN ){‖g‖Hs
p(RN ): g|Ω=f}. Bessel spaces can also been defined as those re-

sulting from the complex interpolation of two Sobolev spaces of integer order. See [16].
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obtain bounds on the Lr(Ω)–norm of the solution while in the critical case stronger
estimates must be obtained.

On the other hand, if we assume now (1.4), that is,

pcf |s|p−1 −A0 ≤ f ′(s) ≤ pCf |s|p−1 + A1

and
qcg|s|q−1 −B0 ≤ g′(s) ≤ qCg|s|q−1 + B1,

for s ∈ R and some cf , cg, Cf , Cg > 0, A0, A1, B0, B1 > 0, and (1.5), i.e.

p + 1 > 2q,

we can obtain information on the asymptotic behavior of the solutions of the prob-
lem.

The next result summarizes the results in [10]. Note that condition (1.5) implies
that the dissipative character of f dominates the explosive nature of g. As a result
of this nonlinear balance, (1.1) is dissipative as the next theorem shows.

Theorem 2.1. Assume that f and g satisfy (1.4) and (1.5) and define r0 as
in (1.6). Then we have,
i) Problem (1.1) is well-posed in Lr(Ω) for any r ≥ r0, and the solutions are globally
defined, and classical for t > 0.
ii) For r ≥ r0, there exists an absorbing ball in Lr(Ω) and the orbit of any bounded
set of Lr(Ω) is bounded in Lr(Ω), for t ≥ 0.

For r = r0, orbits of compact sets in Lr0(Ω) remain compact in Lr0(Ω).
iii) If r > r0, (1.1) has a compact global attractor A in Lr(Ω) which attracts bounded
sets of Lr(Ω).

For r = r0, there exists a maximal, compact, invariant and connected set A
in Lr0(Ω) which attracts a neighborhood of each initial data in Lr0(Ω) (and, in
particular, compact sets of Lr0(Ω)).

For r ≥ r0 the attractor can be described as the unstable set of the set of
equilibria of (1.1), E, which is nonempty; that is

A = Wu(E).

iv) For r ≥ r0, the attractor A belongs to Hα
s (Ω) and it attracts in the norm of

Hα
s (Ω) for any s ≥ 1 and 0 ≤ α < 1 + 1

s and in Cβ(Ω) for any 0 ≤ β < 1.
In particular, if r > r0 there is an absorbing set in Hα

s (Ω) and, for every ε > 0,
the orbit of bounded sets in Lr(Ω) is bounded in Hα

s (Ω) for t ≥ ε.

Observe that this result is proved in [10] using in a critical way the energy
estimate (2.3) below, which is the only estimate available in a non Hilbertian set-
ting. In [12], (1.1) is studied in a subcritical H1(Ω) setting (with suitable critical
exponents pc = 1 + 4

N−2 and qc = 1 + 2
N−2 for this space) using a different energy

estimate involving the gradient. For the setting in Lr(Ω), r 	= 2, the main difficulty
is to obtain gradient estimates to obtain compactness.

Also observe that the estimates in [10] leading to Theorem 2.1 are not known
to be uniform with respect to certain classes of nonlinear terms f and g. Should
this be true, some arguments below in Section 3 could be made simpler, see Remark
3.9.

Below we present some of the basic tools needed to prove Theorem 2.1, see
[10]. First we have the following Poincaré lemma.
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Lemma 2.2. There exists a constant c0(Ω) such that for any ϕ ∈ W 1,1(Ω)∥∥∥∥ϕ− 1
|Γ|

∫
Γ

ϕ

∥∥∥∥
L1(Ω)

≤ c0(Ω)‖∇ϕ‖L1(Ω).

Another key tool to prove Theorem 2.1 is the following estimate that holds for
any suitable smooth solution of (1.1). This result explains in a precise form the
nonlinear balance (1.5) between nonlinear terms in the problem (1.1). Note that
the result in [10] is adapted below to (1.1) with f and g satisfying (1.4) and (1.5).
We include the proof since it will be important in what follows.

Proposition 2.3. Let 1 < σ < ∞. For a sufficiently smooth solution of (1.1)
with f and g satisfying (1.4) and (1.5) we have

(2.3)
1
σ

d
dt
‖u(t)‖σ

Lσ(Ω) +
2(σ − 1)

σ2

∫
Ω

∣∣∣∇(
|u|σ/2

)∣∣∣2 + A

∫
Ω

|u|σ+p−1 ≤ B

with A depending on the constants appearing on (1.4) but not on σ and B > 0
depending also on σ.

Proof. For a sufficiently smooth solution of (1.1), multiplying (1.1) by |u|σ−2u
and integrating by parts, we get

1
σ

d
dt
‖u(t)‖σ

Lσ(Ω)+
4(σ − 1)

σ2

∫
Ω

∣∣∣∇(
|u|σ/2

)∣∣∣2+
∫

Ω

f(u)|u|σ−2u−
∫

Γ

g(u)|u|σ−2u = 0.

The last two terms can be rewritten as∫
Ω

(
f(u)|u|σ−2u− |Γ|

|Ω|g(u)|u|σ−2u

)
+
|Γ|
|Ω|

∫
Ω

(
g(u)|u|σ−2u− 1

|Γ|
∫

Γ

g(u)|u|σ−2u

)

and Lemma 2.2 gives, for some c(Ω)∣∣∣∣ |Γ||Ω|
∫

Ω

(
g(u)|u|σ−2u− 1

|Γ|
∫

Γ

g(u)|u|σ−2u

)∣∣∣∣ ≤ c(Ω)‖∇(g(u)|u|σ−2u)‖L1(Ω).

Taking derivatives and arranging terms, the right hand side above can be written
as

c(Ω)
∥∥∥∥
(

2
σ

g′(u)u +
2(σ − 1)

σ
g(u)

)
|u|σ/2−1

∣∣∣∇|u|σ/2
∣∣∣
∥∥∥∥

L1(Ω)

which can be bounded by

ε‖∇|u|σ/2‖2L2(Ω) +
c2(Ω)

4ε

∥∥∥∥
(

2
σ

g′(u)u +
2(σ − 1)

σ
g(u)

)
|u|σ/2−1

∥∥∥∥
2

L2(Ω)

for any ε > 0. Therefore, we get

(2.4)
1
σ

d
dt
‖u(t)‖σ

Lσ(Ω) +
(

4(σ − 1)
σ2

− ε

) ∫
Ω

∣∣∣∇(
|u|σ/2

)∣∣∣2 +
∫

Ω

Hσ(u)|u|σ−2 ≤ 0,

where

Hσ(u) = f(u)u− |Γ|
|Ω|g(u)u− c2(Ω)

εσ2
(g′(u)u + (σ − 1)g(u))2 .

From (1.4) we have

f(u)u ≥ D0|u|p+1 −D1, g(u)u ≤ D2|u|q+1 + D1

(g′(u)u + (σ − 1)g(u))2 ≤ 2(|g′(u)|2u2 + (σ − 1)2|g(u)|2) ≤ D3(|u|2q + 1)
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and so,

Hσ(u) ≥ D0|u|p+1 −D2
|Γ|
|Ω| |u|

q+1 −D3
c2(Ω)
εσ2

|u|2q −D4

for some D1, . . . , D4 > 0 where D0, D1, D2 do not depend on σ. Since p + 1 > 2q
then we have Hσ(u) ≥ D5|u|p+1 −D6 for some positive constants D5 < D0 which
depends only on p, q and the constants in (1.4) and D6 depends also in σ and ε.
From this we get

Hσ(u)|u|σ−2 ≥ A|u|σ+p−1 −B, u ∈ R

with A not depending on σ. Then taking ε = 2(σ−1)
σ2 in (2.4), we get (2.3). �

Also, we will use below the following Lemma.

Lemma 2.4. For any smooth enough function ϕ in Ω, we have, for any δ > 0

(2.5)
∫

Γ

|ϕ|r ≤ δ‖∇(|ϕ|r/2)‖2L2(Ω) + c(Ω, Γ, δ)‖ϕ‖r
Lr(Ω)

Proof. We know that for any δ > 0, there exists Cδ > 0 such that∫
Γ

|ξ|2 dx ≤ δ

∫
Ω

|∇ξ|2 dx + Cδ

∫
Ω

|ξ|2 dx

for any ξ ∈ H1(Ω). Taking ξ = |ϕ|r/2 we obtain (2.5). �

3. Existence in Lr(Ω), in the supercritical range 1 < r < r0

The goal of the section is to prove the existence of a solution of problem (1.1),
assumed (1.4) and (1.5), starting at u0 ∈ Lr(Ω) for 1 < r < r0 with r0 as in (1.6),
so that the problem is supercritical in Lr(Ω). For this, we start by proving the
existence of solutions in Lr(Ω) for an approximated problem in which we truncate
the nonlinear term in the boundary in such a way that the resulting problem is su-
percritical in the interior while subcritical on the boundary. Since the supercritical
nonlinear term has a good sign, later, suitable uniform bounds for these solutions
will allow us to construct a solution of (1.1).

3.1. A supercritical truncated problem. Notice that for f satisfying (1.4)
there exists L > 0 such that

(3.1) f ′(s) ≥ −L for all s ∈ R.

In fact, it is enough to take L = A0 with A0 from (1.4).
Also notice that we can construct functions {gK}K≥0 satisfying the following

properties (see Figure 1)
(1) sgK(s) is increasing in K, i. e., for any K2 > K1 > 0,

(3.2) sgK1(s) ≤ sgK2(s) ≤ sg(s), for all s ∈ R;

(2) gK is C1(R) and

(3.3) −B0 ≤ g′K(s) ≤ K, for all s ∈ R,

with B0 as in (1.4); and
(3) gK coincides with g in an interval IK = [aK , bK ] with

(3.4) aK → −∞, bK →∞ as K →∞.
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aK1 bK1
aK2 bK2

gK1

gK1

gK2

gK2

g

g

Figure 1. Example of the approximating functions gK . Here 0 <
K1 < K2.

Given K > 0 we consider the following truncated problem

(3.5)

⎧⎪⎨
⎪⎩

ut −Δu + f(u) = 0 in Ω
∂u

∂�n
= gK(u) on Γ

u(0) = u0

with initial data in Lr(Ω). Notice that the reaction terms in (3.5) satisfy (1.4) and
(1.5) with q = 1, (3.1), and

(3.6) sf(s) ≥ −|f(0)||s| − L|s|2, sgK(s) ≤ |g(0)||s|+ K|s|2 for all s ∈ R.

The next results show that (3.5) is globally well posed in Lr(Ω). Since (3.5)
is supercritical in Lr(Ω), 1 < r < r0, even local existence does not follow from
previous results in Section 2.

Theorem 3.1. Let K > 0, 1 < r < r0, and u0 ∈ Lr(Ω). Then there exists a
function vK , such that for every T > 0,

vK ∈ C([0, T ]; Lr(Ω)) ∩ Lr((0, T ); Lr(Γ)), vK(0) = u0,

and vK ∈ C([ε, T ]× Ω), for every ε > 0, with

|vK(t, x)| ≤ C(T, K) + t−
N
2r C(T, K)‖u0‖Lr(Ω), 0 < t ≤ T for all x ∈ Ω,

for some constant C(T, K) ≥ 0, which is a global solution of (3.5) in the sense that
for all t ≥ 0 it satisfies the variation of constants formula

vK(t) = S(t)u0 +
∫ t

0

S(t− s)
(−fΩ(vK(s)) + (gK)Γ(vK(s))

)
ds

where S(t) denotes the semigroup generated by Δ with Neumann boundary condi-
tions in Lr(Ω).

Moreover, vK ∈ C1((0,∞); C2(Ω)) and is a classical solution of (3.5) for t > 0.

Proof. We proceed in several steps.

Step 1. Approximate the initial data
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Notice that we can take some σ > r0, with r0 as in (1.6), and a sequence
un

0 ∈ Lσ(Ω) such that un
0 → u0 in Lr(Ω) as n →∞. Since (3.5) is now subcritical

in Lσ(Ω) we can consider the solutions of

(3.7)

⎧⎪⎨
⎪⎩

ut −Δu + f(u) = 0 in Ω
∂u

∂�n
= gK(u) on Γ

u(0) = un
0

as in Section 2, which we will denote by uK
n (t). Since f, gK satisfy (1.4) and (1.5)

with q = 1, by part i) in Theorem 2.1, these solutions are global and classical for
t > 0.

Denote vK
n,m(t) = uK

n (t) − uK
m(t). Subtracting equations for uK

n and uK
m and

multiplying by |vK
n,m(t)|r−2vK

n,m(t) we have

1
r

d
dt
‖vK

n,m(t)‖r
Lr + c‖∇|vK

n,m(t)|r/2‖2L2(Ω)

+
∫

Ω

[
f(uK

n (t))− f(uK
m(t))

] |vK
n,m(t)|r−2vK

n,m(t)

≤
∫

Γ

[
gK(uK

n (t))− gK(uK
m(t))

] |vK
n,m(t)|r−2vK

n,m(t).

Now, observe that from (3.1), (3.3)∫
Ω

[
f(uK

n )− f(uK
m)

] |vK
n,m|r−2vK

n,m ≥ −L‖vK
n,m‖r

Lr(Ω)

and ∫
Γ

[
gK(uK

n )− gK(uK
m)

] |vK
n,m|r−2vK

n,m ≤ K

∫
Γ

|vK
n,m|r.

Hence, from (2.5), for any δ > 0∫
Γ

[
gK(uK

n )− gK(uK
m)

] |vK
n,m|r−2vK

n,m ≤ δ‖∇(|vK
n,m|r/2)‖2L2(Ω)+c(K, δ)‖vK

n,m‖r
Lr(Ω).

Thus, with a suitable choice of δ we have

(3.8)
d
dt
‖vK

n,m(t)‖r
Lr(Ω) + c1‖∇(|vK

n,m(t)|r/2)‖2L2(Ω) ≤ C(K)‖vK
n,m(t)‖r

Lr(Ω).

Given T > 0, by Gronwall’s Lemma, from (3.8) we have that for any 0 ≤ t ≤ T ,

‖vK
n,m(t)‖r

Lr(Ω) + c1

∫ t

0

‖∇(|vK
n,m(s)|r/2)‖2L2(Ω) ds ≤ C(K, T )‖vK

n,m(0)‖r
Lr(Ω) → 0

as n, m →∞ and so, uK
n is a Cauchy sequence in C([0, T ];Lr(Ω)). Also using (2.5)∫ T

0

∫
Γ

|vK
n,m(t)|rdt ≤

∫ T

0

‖∇(|vK
n,m(t)|r/2)‖2L2(Ω)dt + c(Ω, Γ)

∫ T

0

‖vK
n,m(t)‖r

Lr(Ω)dt

≤ C(K, T )‖vK
n,m(0)‖r

Lr(Ω) → 0 as n, m →∞
and then uK

n is also a Cauchy sequence in Lr((0, T ); Lr(Γ)).
Hence, there exists vK ∈ C([0, T ];Lr(Ω)) ∩ Lr((0, T ); Lr(Γ)) such that

(3.9) sup
t∈[0,T ]

‖uK
n (t)− vK(t)‖Lr(Ω) → 0 as n →∞
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and

(3.10)
∫ T

0

∫
Γ

|uK
n (t, x)− vK(t, x)|r dxdt → 0 as n →∞.

In particular, uK
n (t, x) → vK(t, x) as n →∞ a.e. for (t, x) ∈ [0, T ]× Γ.

Also it is easy to see that vK does not depend on the sequence of initial data,
but only on u0 ∈ Lr(Ω).

Step 2. L∞-bound for the approaching sequence
Let us show now that the sequence uK

n (t) is uniformly bounded in L∞(Ω) with
respect to n, for 0 < ε ≤ t ≤ T .

For this, we will use the auxiliary problem

(3.11)

⎧⎪⎨
⎪⎩

Ut −ΔU = LU + A in Ω
∂U

∂�n
= KU + D on Γ

U(0) given in Lr(Ω)

with A = |f(0)| and D = |g(0)|. Denote by Un(t, x) the solution of (3.11) with
initial data |un

0 | and by U(t, x) the solution of (3.11) with initial data |u0|.
Now, using the variation of constants formula in (3.11)

Un(t) = Φ(t) + Un
h (t), U(t) = Φ(t) + Uh(t)

where Un
h (t), Uh(t) are the solutions of the homogeneous problem resulting from

taking A = D = 0 in (3.11) and initial data |un
0 | and |u0| respectively, i.e, the

solution of ⎧⎪⎨
⎪⎩

Ut −ΔU = LU in Ω
∂U

∂�n
= KU on Γ

U(0) = |un
0 | (or |u0|)

and Φ(t) is the unique solution of problem (3.11) with U(0) = 0 (which does not
depend on un

0 or u0), i.e,⎧⎪⎨
⎪⎩

Ut −ΔU = LU + A in Ω
∂U

∂�n
= KU + D on Γ

U(0) = 0.

Notice that the homogeneous problem above is a linear heat equation with
Robin boundary conditions. Therefore, standard regularity theory implies that
Un

h , Uh and Φ are classical for t > 0,

‖Un(t)‖L∞(Ω) ≤ C(T, K) + t−
N
2r C(T, K)‖un

0‖Lr(Ω), 0 < t ≤ T,

and
Un(t, x) → U(t, x) in Ck([ε, T ]× Ω) ∩ C([0, T ];Lr(Ω))

for any ε > 0, k ∈ N, since un
0 → u0 in Lr(Ω) as n →∞.

Also, Un
h (t) ≥ 0, Uh(t) ≥ 0 and Φ(t) ≥ 0 for all t ≥ 0 since A, D ≥ 0 and have

nonnegative initial data.
Observe now that Un(t, x) is a supersolution of problem (3.7) since f, gK satisfy

(3.6). Hence

|uK
n (t, x)| ≤ Un(t, x) ≤ C(T, K)+t−

N
2r C(T, K)‖un

0‖Lr(Ω), 0 < t ≤ T a.e. in Ω,
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and so ‖uK
n (t)‖L∞(Ω) ≤ C(ε, T, K, ‖un

0‖Lr(Ω)) for all n ≥ 1 and ε ≤ t ≤ T . Also
since uK

n is a classical solution and Un is also smooth we have that, up to the
boundary,
(3.12)
|uK

n (t, x)| ≤ Un(t, x) ≤ C(T, K)+t−
N
2r C(T, K)‖un

0‖Lr(Ω), 0 < t ≤ T for all x ∈ Ω.

Now, since un
0 → u0 in Lr(Ω) as n →∞ and using the convergence Un(t, x) →

U(t, x) and uK
n (t, x) → vK(t, x) obtained above, (3.9), (3.10), we get

(3.13)
|vK(t, x)| ≤ U(t, x) ≤ C(T, K) + t−

N
2r C(T, K)‖u0‖Lr(Ω), 0 < t ≤ T for all x ∈ Ω.

Notice that estimates (3.12) and (3.13) are valid up to the boundary.
Finally, observe that the bounds above and (3.9), (3.10) imply that for any

ε > 0 and any r ≤ s <∞,

(3.14) sup
t∈[ε,T ]

‖uK
n (t)− vK(t)‖Ls(Ω) → 0 as n →∞

and

(3.15)
∫ T

ε

∫
Γ

|uK
n (t, x)− vK(t, x)|s dxdt → 0 as n →∞.

Step 3. The limit is a solution of (3.5)
First, assume 0 < ε < t < T . Taking now φ ∈ H2

r′(Ω), with ∂φ
∂�n = 0 on Γ, where

r′ is the conjugate of r, i. e., 1
r + 1

r′ = 1, we have from (3.7)

d
dt

∫
Ω

uK
n φ +

∫
Ω

uK
n (−Δφ) +

∫
Ω

f(uK
n )φ =

∫
Γ

gK(uK
n )φ.

Now, using the uniform bounds in (3.12), (3.13) and the convergence in (3.14),
(3.15), and the growth of f , we have for any r ≤ s <∞,

f(uK
n ) → f(vK) in L∞((ε, T ); Ls(Ω))

and
gK(uK

n ) → gK(vK) in Ls((ε, T ); Ls(Γ)).
Hence, letting n →∞, we get

d
dt

∫
Ω

vKφ +
∫

Ω

vK(−Δφ) +
∫

Ω

f(vK)φ =
∫

Γ

gK(vK)φ

for ε ≤ t ≤ T .
Then, notice that this is enough to guarantee that vK satisfies (see [7])

vK(t) = S(t− ε)vK(ε) +
∫ t

ε

S(t− s)h(s) ds

where S(t) denotes the strongly continuous analytic semigroup generated by Δ in
Lr(Ω) with homogeneous Neumann boundary conditions, and

h = −fΩ(vK) + (gK)Γ(vK) ∈ L1([ε, T ];Lr(Ω)) + L1([ε, T ];Lr(Γ)).

Finally, taking ε → 0 and using the continuity of the linear semigroup S(t) and
vK(ε) → vK(0) = u0 in Lr(Ω) as ε → 0, we have that S(t − ε)vK(ε) → S(t)u0 in
Lr(Ω) as ε → 0 and then,

vK(t) = S(t)u0 +
∫ t

0

S(t− s)h(s) ds.
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Hence, vK is a global solution of (3.5) in Lr(Ω) in the sense of the variations of
constants formula.

Step 4. Further regularity
From (3.13), for any 1 < s ≤ ∞ and ε > 0, we have that vK(ε) ∈ Ls(Ω).

Taking s > r0 the problem (3.5) is subcritical in Ls(Ω). So, by part i) in Theorem
2.1, the unique solution of this problem starting at vK(ε), which is vK(t + ε), is
classical for t > 0. Thus, for t > ε, vK(t) coincides with the solutions in Section 2.

In particular, vK ∈ C([ε, T ]×Ω), for every ε > 0, and vK is a classical solution
for t > 0 and vK ∈ C((0, T ); C2(Ω)), for any T > 0. �

Remark 3.2. If f(0) = 0 = g(0) then Φ(t) = 0 and we can take C(T, K) = 0
in (3.13).

Now we turn into uniqueness of solutions of (3.5).

Theorem 3.3. Let 1 < r < r0 and T > 0 fixed. Given u0 ∈ Lr(Ω), there exists
a unique function

v ∈ C([0, T ];Lr(Ω)) ∩ C([ε, T ]× Ω)), v(0) = u0

for any ε > 0, satisfying, for every 0 < ε ≤ t ≤ T ,

(3.16) v(t) = S(t− ε)v(ε) +
∫ t

ε

S(t− s)
(− fΩ(v(s)) + (gK)Γ(v(s))

)
ds,

where S(t) denotes the semigroup generated by Δ with Neumann boundary condi-
tions in Lr(Ω).

In particular, the function vK(·) constructed in Theorem 3.1 is the unique func-
tion satisfying these conditions.

Proof. Let vK be the function constructed in Theorem 3.1 and let v be a
function such that v ∈ C([0, T ];Lr(Ω)), v(0) = u0, and for any ε > 0, v ∈
C([ε, T ];C(Ω)) and satisfies (3.16).

So, fixed ε > 0, v(ε) ∈ C(Ω) and then from (3.16) and the results in Section 2,
v satisfies the equation (3.5) in [ε, T ], with initial data v(ε), in a classical sense. In
particular v is smooth for t > 0.

Since both v and vK satisfy (3.5), arguing as in (3.8) we get, for 0 < ε ≤ t ≤ T ,

d
dt
‖vK(t)− v(t)‖r

Lr(Ω) + c1‖∇(|vK(t)− v(t)|r/2)‖2L2(Ω) ≤ C(K)‖vK(t)− v(t)‖r
Lr(Ω).

Then, by Gronwall’s Lemma, we have

‖vK(t)− v(t)‖r
Lr(Ω) ≤ C(K, T )‖vK(ε)− v(ε)‖r

Lr(Ω), 0 < ε ≤ t ≤ T.

Since v, vK ∈ C([0, T ];Lr(Ω)) and v(0) = vK(0) = u0, taking limits as ε → 0 we
have v ≡ vK on [0, T ]. �

Remark 3.4. Since the function v in the theorem is continuous at 0 in Lr(Ω),
we can take ε → 0 in (3.16), to obtain that v satisfies v(0) = u0 and

v(t) = S(t)u0 +
∫ t

0

S(t− s)
(− fΩ(v(s)) + (gK)Γ(v(s))

)
ds.

Conversely, if we know that the integral above makes sense, then a simple
algebraic manipulation implies that (3.16) holds true for any ε > 0.
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3.2. Uniform bounds in K for the truncated problem. In order to con-
struct a solution of problem (1.1), we are going to obtain uniform bounds in K for
the solutions of (3.5) constructed in Theorem 3.1, for positive times bounded away
from zero. Namely, we have

Proposition 3.5. Let 1 < r < r0 and u0 ∈ Lr(Ω). For any K > 0, the
solutions vK(·; u0) of (3.5) obtained in Theorem 3.1 satisfy

(3.17) ‖vK(t)‖Lr(Ω) ≤ max{‖u0‖Lr(Ω), (βr/γr)
1

r+p−1 }, t ≥ 0,

and for any σ > r,

(3.18) ‖vK(t)‖Lσ(Ω) ≤
(

βσ

γσ

) 1
σ+p−1

+
(

σ

γσ(p− 1)

) 1
p−1

t−
1

p−1 , t > 0

for some βσ, γσ > 0 depending on σ ≥ r but not in K or u0.
Finally, ∫ T

0

∫
Γ

|vK |r ≤ CT

and for every 0 < ε < T and σ > r

(3.19)
∫ T

ε

∫
Γ

|vK |σ ≤ CT + ‖vK(ε)‖σ
Lσ(Ω),

for some constants depending on σ ≥ r but not in K or u0.

Proof. Step 1. Uniform bounds in K in C([ε,∞); Lσ(Ω))
We show now that vK(t) are uniformly bounded, with respect to K, in Lσ(Ω)

for all 1 < σ < ∞.
From the regularity of vK in Theorem 3.1, multiplying the equation in (3.5) by

|vK |σ−2vK we have, see Proposition 2.3,
1
σ

d
dt
‖vK(t)‖σ

Lσ(Ω) + c‖∇|vK(t)|σ/2‖2L2(Ω) +
∫

Ω

f(vK(t))|vK(t)|σ−2vK(t)

=
∫

Γ

gK(vK(t))|vK(t)|σ−2vK(t).

Since sgK(s) ≤ sg(s) for all s ∈ R, see (3.2), we have
1
σ

d
dt
‖vK(t)‖σ

Lσ(Ω) + c‖∇|vK(t)|σ/2‖2L2(Ω) +
∫

Ω

f(vK(t))|vK(t)|σ−2vK(t)

≤
∫

Γ

g(vK(t))|vK(t)|σ−2vK(t).

Finally, proceeding as in (2.3) we have
(3.20)

1
σ

d
dt
‖vK(t)‖σ

Lσ(Ω) +
2(σ − 1)

σ2
‖∇(|vK(t)|σ/2)‖2L2(Ω) + A‖vK(t)‖σ+p−1

Lσ+p−1(Ω) ≤ B

with A depending on the constants appearing on (1.4) but not on σ, K or u0 and
B > 0 depending on σ but not in K or u0.

In particular, denoting y(t) = ‖vK(t)‖σ
Lσ(Ω) and dropping the gradient term

above, we get that y(t) satisfies the following differential inequality

ẏ(t) + γσy
σ+p−1

σ (t) ≤ βσ

for some βσ, γσ > 0 not depending on K or u0.
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If σ = r, since y(0) < ∞, we have (3.17). If σ > r, let z(t) be the solution of

ż + γσz
σ+p−1

σ = βσ

with limt→0+ z(t) = ∞. Then from [15], Lemma 5.12, Chapter 3, page 163, we
have

z(t) ≤
(

βσ

γσ

) σ
σ+p−1

+
1(

γσ
p−1

σ t
) σ

p−1
, t > 0.

Now, 0 ≤ y(t) ≤ z(t) for all 0 < t and then we get, using aσ + bσ ≤ (a + b)σ for
a, b > 0,

‖vK(t; u0)‖Lσ(Ω) ≤
(

βσ

γσ

) 1
σ+p−1

+
(

σ

γσ(p− 1)

) 1
p−1 1

t
1

p−1
, t > 0.

Hence, we get (3.18). In particular, we obtain uniform estimates in Lσ(Ω) for
t ≥ ε > 0.

Step 2. Uniform bounds in Lσ([ε, T ];Lσ(Γ))
Integrating (3.20) we get for any 0 < ε < T ,

sup
ε≤t≤T

‖vK(t)‖σ
Lσ(Ω) + c1

∫ T

ε

∥∥∥∇|vK(s)|σ/2
∥∥∥2

L2(Ω)
ds(3.21)

+ c2

∫ T

ε

‖vK(s)‖σ+p−1
Lσ+p−1(Ω) ds ≤ c3T + ‖vK(ε)‖σ

Lσ(Ω)

for some constants depending on σ but not on K or u0. Hence, (2.5) and (3.21)
give,∫ T

ε

∫
Γ

|vK |σ ≤
∫ T

ε

‖∇(|vK |σ/2)‖2L2(Ω) + c

∫ T

ε

‖vK‖σ
Lσ(Ω) ≤ c3T + ‖vK(ε)‖σ

Lσ(Ω).

and we get (3.19). �
Remark 3.6. A careful analysis of the constants in (3.18), which can be traced

back to (3.20) and (2.3), shows that we can not pass to the limit as σ →∞ in (3.18).
Therefore with the result above we are not able to obtain L∞(Ω) estimates, uniform
in K.

Having such estimates is very important as we now show.

We now show that a uniform L∞(Ω)–bound for {vK}K is enough to ensure
that any limit of the family {vK}K of solutions of (3.5) is a classical solution of
(1.1) for positive times for which the variations of constant formula holds. We will
use this result later to construct a solution of (1.1). In fact we will show later that
such uniform L∞(Ω)–bound holds true.

Proposition 3.7. Let 1 < r < r0 and u0 ∈ Lr(Ω). Suppose that for any ε > 0
and T > 0 the solutions vK(·; u0) of (3.5) obtained in Theorem 3.1 satisfy

(3.22) ‖vK‖L∞([ε,T ]×Ω) ≤ C(ε, T )

for any K > 0, with C(ε, T ) not depending on K. Then, there exists a subsequence
of {vK}K , which we denote the same, such that

v = lim
K→∞

vK in Cloc((0,∞); Hα
σ (Ω)), v(0) = u0,

2Let y be a positive absolutely continuous function on (0,∞) which satisfies y′ + γyp ≤ δ,

with p > 1, γ > 0, δ ≥ 0. Then, for t ≥ 0, y(t) ≤ (δ/γ)1/p + (γ(p − 1)t)−1/(p−1).
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for any r ≤ σ and α < 1+ 1
σ . Moreover, for any such subsequence, the limit function

satisfies

(3.23) ‖v(t)‖Lr(Ω) ≤ max{‖u0‖Lr(Ω),

(
βr

γr

) 1
r+p−1

}, t ≥ 0,

and

(3.24) ‖v(t)‖Lσ(Ω) ≤
(

βσ

γσ

) 1
σ+p−1

+
(

σ

γσ(p− 1)

) 1
p−1

t−
1

p−1 , t > 0,

with βσ, γσ for σ ≥ r as in (3.18). Also, for any ε > 0

‖v(t)‖Hα
σ (Ω) ≤ C(ε) for all t ≥ ε,

with a bound independent of u0, for any σ > 1 and α < 1 + 1
σ . Furthermore v

satisfies the variation of constants formula

v(t) = S(t− ε)v(ε) +
∫ t

ε

S(t− s) (−fΩ(v(s)) + gΓ(v(s))) ds, t ≥ ε,

where S(t) denotes the strongly continuous analytic semigroup generated by Δ in
Lr(Ω) with homogeneous Neumann boundary conditions.

Proof. Observe that from the L∞(Ω) bounds, given ε > 0, there exists K0(ε)
such that for K ≥ K0(ε) we have gK(vK(t)) = g(vK(t)) for t ≥ ε, see (3.4). Then,
for t ≥ ε, vK(t) is actually a solution of (1.1) and this solutions lies, for t ≥ ε, in a
space in which (1.1) is subcritical.

Then Theorem 2.1 with initial data vK(ε), implies that, for K ≥ K0(ε),

‖vK(t)‖Hα
σ (Ω) ≤ C(ε) for all t ≥ 2ε

with a bound independent of K and u0, for any σ > 1 and α < 1 + 1
σ .

In particular, the bounds above for t = 2ε, imply that, by taking a subsequence
(which we will denote the same) if necessary we can assume that vK(2ε) converges
in Lσ(Ω) for some σ > r0. Hence v(2ε) = limK vK(2ε) in Lσ(Ω) with σ > r0.

Now, using again the bounds above, the fact that the functions f and g are
Lipschitz on bounded sets of R, and that vK , for K ≥ K0(ε), satisfies the variations
of constants formula

v(t) = S(t− 2ε)v(2ε) +
∫ t

2ε

S(t− s) (−fΩ(v(s)) + gΓ(v(s))) ds, t ≥ 2ε,

where S(t) denotes the strongly continuous analytic semigroup generated by Δ
in Lr(Ω) with homogeneous Neumann boundary conditions, we have that for any
T > 0 and α < 1 + 1

σ , there exists L(T ) such that for K1, K2 ≥ K0(ε), and
t ∈ [2ε, T ],

tα‖vK1(t)− vK2(t)‖H2α
σ (Ω) ≤ L(T )‖vK1(2ε)− vK2(2ε)‖Lσ(Ω)

as K1, K2 →∞ since the solutions of (1.1) depend continuously on the initial data,
see also (2.2).

Therefore, since ‖vK1(2ε) − vK2(2ε)‖Lσ(Ω) → 0, as K1, K2 → ∞, we obtain
convergence of vK in C([ε, T ]; Hα

σ (Ω))
Hence, taking εn → 0 and using a Cantor diagonal argument, we conclude that

there exists a subsequence, that we denote the same {vK}K , such that

v = lim
K→∞

vK in Cloc((0,∞); Hα
σ (Ω)), v(0) = u0
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for any r ≤ σ and α < 1 + 1
σ .

Moreover, from (3.17), (3.18) we get (3.23) and (3.24) . Also, and for any ε > 0

‖v(t)‖Hα
σ (Ω) ≤ C(ε) for all t ≥ ε

with a bound independent of u0, for any σ > 1 and α < 1 + 1
σ . Moreover, passing

to the limit in the variation of constants formula satisfied by vK , we get that v also
satisfies the variation of constants formula

v(t) = S(t− 2ε)v(2ε) +
∫ t

2ε

S(t− s)
(− fΩ(v(·)) + gΓ(v(·))) ds, t ≥ 2ε

for any ε > 0, where S(t) denotes the strongly continuous analytic semigroup
generated by Δ in Lr(Ω) with homogeneous Neumann boundary conditions. �

Remark 3.8. i) Note that as in Remark 3.4, if we knew that the limit function
v is continuous at t = 0 in Lr(Ω) then we could take ε → 0 in the variation of
constants formula. In fact, below we will prove a weaker form of continuity at t = 0
in Theorem 3.16
ii) Note that there might be many limit functions v in the argument in Proposition
3.7. However, for nonnegative solutions we will show below that the limit function
is unique; see Proposition 3.12.

Remark 3.9. Observe that one could be tempted to follow the following argu-
ment: From the bounds on vK in Lσ(Ω) in Proposition 3.5 for σ > r0, which are
uniform in t ≥ ε, K and u0, we use Theorem 2.1 in Lσ(Ω) where (1.1) is subcritical
and then we obtain the uniform bounds (3.22) in Proposition 3.7.

However the estimates in Theorem 2.1 are not known to be uniform with respect
to the nonlinear terms, which would be changing with K in the argument above.

Hence, to obtain the uniform bounds (3.22) in Proposition 3.7 we use some
comparison argument below.

3.3. Positive solutions. We show now that in the case of dealing with posi-
tive solutions, we have the bounds (3.22). Moreover in this case we can pass to the
limit in K (and not only in a subsequence) and obtain a unique solution of problem
(1.1) for which the conclusions of Proposition 3.7 holds.

The tools we use here will also be used to obtain uniform bounds for general
sign changing solutions of the problem as we will show in Section 3.4.

Assume that f(0) ≤ 0 and g(0) ≥ 0 so that if 0 ≤ u0 ∈ Ls(Ω) with s > r0 then
the solutions of (1.1) and (3.5) are nonnegative for all times, see Appendix A in [5].
Recall that when s > r0 both problems (1.1) and (3.5) are subcritical in Ls(Ω).

The following result shows in particular that the bounds (3.22) in Proposition
3.7 hold true.

Proposition 3.10. Assume f(0) ≤ 0 and g(0) ≥ 0. Then we have
i) For any 1 < r < r0 and 0 ≤ u0 ∈ Lr(Ω) the solution vK(·; u0) of (3.5) given in
Theorem 3.1 is nonnegative for all times.
ii) For any ε > 0, vK(t; u0) is bounded in L∞(Ω), uniformly in t ≥ ε, K and
u0 ∈ Lr(Ω).

Proof. To prove part i) note that it is enough to take un
0 ≥ 0 in (3.7) and

then uK
n (t) ≥ 0 for all t ≥ 0, which, by the convergence in Theorem 3.1, implies

vK(t) ≥ 0 for all t ≥ 0.
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Now, to prove part ii), from (3.18) we have that for any ε > 0, vK(ε) belongs
to a bounded set in Lσ(Ω) which is independent of K and u0. Taking σ > r0 and
using that gK(s) ≤ g(s) for s ≥ 0, see (3.2), we have that

0 ≤ vK(t + ε) ≤ u(t; vK(ε)), t ≥ 0

where u(t; vK(ε)) denotes the solution of (1.1) with initial data vK(ε) ∈ Lσ(Ω),
σ > r0.

Therefore the dissipativity results in Section 2, see Theorem 2.1, imply that
u(t; vK(ε)) is bounded in L∞(Ω) uniformly in t ≥ ε, K and u0, and so is vK(t) for
t ≥ 2ε.

Since vK(t) is smooth up to the boundary of Ω for t > 0, then it is also bounded
in L∞(Γ) uniformly for t ≥ 2ε, K and u0. �

Remark 3.11. If f(0) ≥ 0 and g(0) ≤ 0, a similar argument gives the bounds
on non-positive solutions, that is for initial data u0 ∈ Lr(Ω) with u0 ≤ 0. In fact
now gK(s) ≥ g(s) for s ≤ 0, and we have that

0 ≥ vK(t + ε) ≥ u(t; vK(ε)), t ≥ 0

where u(t; vK(ε)) denotes the solution of (1.1) with initial data vK(ε).

Now using Proposition 3.7 and the fact that the solutions vK are nonnegative,
we can pass to the limit as K →∞. Note that below the full family vK converges
and not only a subsequence.

Proposition 3.12. Assume f(0) ≤ 0, g(0) ≥ 0, 1 < r < r0 and 0 ≤ u0 ∈
Lr(Ω). Then for the solutions vK(·; u0) of (3.5) given in Theorem 3.1, the limit

v = lim
K→∞

vK

exists where v ≥ 0 is as in Proposition 3.7.

Proof. From Proposition 3.10 the functions vK are nonnegative and from
(3.2) gK(s) is increasing in K for s ≥ 0. Then it is not difficult to see that for fixed
n ∈ N the solutions in (3.7) are nonnegative and increasing in K. Therefore the
functions vK in Theorem 3.1 are increasing in K.

Using this and part ii) in Proposition 3.12 we have that the limit

0 ≤ v(t, x) = lim
K→∞

vK(t, x) exists pointwise a.e. in (0, T )× Ω,

and then v coincides with the function v in Proposition 3.7 and the full family vK

converges and not only a subsequence. �

Remark 3.13. If f(0) ≥ 0 and g(0) ≤ 0, a similar argument allows us to pass
to the limit on non-positive solutions, that is for initial data u0 ∈ Lr(Ω) with u0 ≤ 0
(now vK is decreasing as K →∞).

3.4. L∞ bounds for sign changing solutions. Now we use the arguments
in the former subsection to obtain the uniform estimates (3.22) for general sign
changing solutions vK(·; u0) of (3.5) given in Theorem 3.1.

Proposition 3.14. Let 1 < r < r0 and u0 ∈ Lr(Ω). Then for any ε > 0,
vK(t; u0) is bounded in L∞(Ω), uniformly in t ≥ ε, K and u0 ∈ Lr(Ω).

Therefore the uniform bounds (3.22) hold and the conclusions of Proposition
3.7 apply.
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Proof. From the assumptions on f and g it is clear that we can construct
C1(R) functions f−, g+ satisfying (1.4), g+(0) ≥ 0 and gK(s) ≤ g+(s) for all s ∈ R

and K > 0 and f−(0) ≤ 0 and f(s) ≥ f−(s) for all s ∈ R.
Now, from (3.18) we have that for any ε > 0, vK(ε) belongs to a bounded

set in Lσ(Ω) which is independent of K and u0. Then we take σ > r0 and let
0 ≤ U(t; vK(ε)) be the solution of the following problem⎧⎪⎨

⎪⎩
Ut −ΔU + f−(U) = 0 in Ω

∂U

∂�n
= g+(U) on Γ

U(0) = |vK(ε)| ∈ Lσ(Ω).

Then the comparison principle for subcritical problems, see Appendix A in [5],
implies that

vK(t + ε) ≤ U(t; vK(ε)), t ≥ 0.

Analogously, we can construct C1(R) functions f+, g− satisfying (1.4), g−(0) ≤
0 and g−(s) ≤ gK(s) for all s ∈ R and K > 0 and f+(0) ≥ 0 and f+(s) ≤ f(s) for
all s ∈ R.

Then let W (t;−|vK(ε)|) ≤ 0 be the solution of the problem⎧⎪⎨
⎪⎩

Wt −ΔW + f+(W ) = 0 in Ω
∂W

∂�n
= g−(W ) on Γ

W (0) = −|vK(ε)| ∈ Lσ(Ω)

see Remark 3.11.
Again, the comparison principle for subcritical problems implies

W (t;−|vK(ε)|) ≤ vK(t + ε) ≤ U(t; |vK(ε)|), t ≥ 0.

Therefore the dissipativity results in Section 2, see Theorem 2.1, imply that
W (t;−|vK(ε)|) and U(t; |vK(ε)|) are bounded in L∞(Ω) uniformly in t ≥ ε, K and
u0, and so is vK(t) for t ≥ 2ε.

Since vK(t) is smooth up to the boundary of Ω for t > 0, then it is also bounded
in L∞(Γ) uniformly for t ≥ 2ε, K and u0. �

Observe that the results in Propositions 3.7 and 3.14 allows us to define solu-
tions of (1.1) as follows.

Definition 3.15. For 1 < r < r0 and u0 ∈ Lr(Ω) a solution of (1.1) that we
denote u(t; u0) is any of the limit functions v in Proposition 3.7.

Note in case of nonnegative solutions, from Proposition 3.12, such solution is
unique and the same holds for negative solutions, see Remark 3.13.

3.5. Continuity at t = 0. In this section we prove that any solution of (1.1)
as in Definition 3.15 attains its initial data u0 ∈ Lr(Ω), in compact subsets of Ω
but in a slightly weaker norm. In fact we have

Theorem 3.16. For 1 < r < r0 and u0 ∈ Lr(Ω) any solution u(t; u0), of (1.1)
as in Definition 3.15 satisfies for any 1 ≤ α < r

u(t; u0) → u0 as t → 0, in Lα
loc(Ω).
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Proof. Let Ω1 be a smooth open subset such that Ω1 ⊂ Ω and let ϕ ∈ D(Ω)
such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Ω1 and Ω0 = supp(ϕ) satisfies Ω1 ⊂ Ω0 and Ω0 ⊂ Ω.

Denote then zK = vKϕ which satisfies

(3.25)

⎧⎨
⎩

zt −Δz = −f(vK)ϕ− 2∇vK∇ϕ− vKΔϕ in Ω0

z = 0 on ∂Ω0

z(0) = u0ϕ ∈ Lr(Ω0).

Now denote hK(t) = −f(vK)ϕ− 2∇vK∇ϕ− vKΔϕ = hK
1 (t) + hK

2 (t) + hK
3 (t)

and note that from (3.17) we have, for any T > 0, hK
3 ∈ L∞([0, T ];Lr(Ω0)), while

hK
2 ∈ L∞([0, T ]; H−1,r(Ω0)) with norms bounded independent of K.

On the other hand, observe that for any α ≥ 1 such that αp > r if we take
σ > αp then we can write

1
αp

=
θ

σ
+

1− θ

r
, θ ∈ (0, 1).

Then from (3.17) and (3.18) and by interpolation we get, using (1.4),

‖f(vK)‖Lα(Ω) ≤ C
(
1 + ‖vK‖p

Lαp(Ω)

) ≤ C
(
1 + ‖vK‖pθ

Lσ(Ω)‖vK‖p(1−θ)
Lr(Ω)

)
.

Hence for some C independent of K and for 0 < t < T ,

‖f(vK)‖Lα(Ω) ≤ C

(
1 +

1

t
pθ

p−1

)
= C

(
1 +

1
tp′θ

)
.

Therefore, if θp′ < 1 we have

hK
1 ∈ L1([0, T ];Lα(Ω0))

with norms bounded independent of K.
Now we show that we can chose α and σ as above. In fact, we have 1

αp =
θ
(

1
σ − 1

r

)
+ 1

r which, using that σ > r, we write as

p′

r
− p′

αp
= θp′

(
1
r
− 1

σ

)
.

Hence the condition θp′ < 1 can be met provided

0 <
1
σ

<
p′

αp
− p′ − 1

r
=

1
p− 1

(
1
α
− 1

r

)

since p′

p = p′ − 1 = 1
p−1 . Note that in particular this implies that α < r.

On the other hand, using the conditions α ≥ 1, αp > r and σ > αp, we are
bound to chose α, σ such that

0 <
1
σ

< min
{

1
p− 1

(
1
α
− 1

r

)
,

1
αp

}
, max

{
r

p
, 1

}
< α < r.

Hence for any α < r there exists such σ.
Now the variations of constants formula for (3.25) gives

zK(t) = SD(t)u0ϕ +
∫ t

0

SD(t− s)hK(s) ds

where SD(t) denotes the strongly continuous analytic semigroup generated by Δ
with homogeneous Dirichlet boundary conditions.

Now we use that hK = hK
1 + hK

2 + hK
3 and denote z1, z2 and z3 the corre-

sponding three terms resulting in the integral term above. Then results on linear
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equations, see e.g. Theorem 4 in [11], give that z2, z3 ∈ C([0, T ];Lr(Ω0)) and
z1 ∈ C([0, T ];Lα(Ω0)) with norms bounded independent of K, zi(0) = 0 and

sup{‖z1(t)‖Lα(Ω0), ‖z2(t)‖Lr(Ω0), ‖z3(t)‖Lr(Ω0), t ∈ [0, T ]} ≤ C(T )

with C(T ) independent of K and C(T ) → 0 as T → 0.
Finally as SD(t)u0ϕ → u0ϕ in Lr(Ω0) as t → 0, we get that for any ε > 0 there

exist δ > 0, independent of K, such that

‖zK(t)− u0ϕ‖Lα(Ω0) ≤ ε, t ∈ (0, δ].

In particular, restricting to Ω1, we get that any ε > 0 there exist δ > 0, independent
of K, such that

‖vK(t)− u0‖Lα(Ω1) ≤ ε, t ∈ (0, δ],

which reflects the local equicontinuity at t = 0 of the family vK .
Therefore, passing to the limit along any subsequence as in Proposition 3.7, we

get that any solution of (1.1) as in Definition 3.15 satisfies

‖v(t)− u0‖Lα(Ω1) ≤ ε, t ∈ (0, δ]

and the result is proved. �

4. Asymptotic behavior

Due to the strong smoothing properties obtained above we can actually show
now that all solutions of (1.1) as in Definition 3.15 regularize into a space in which
(1.1) is subcritical and then the asymptotic behaviour of solutions is described by
the global attractor in Theorem 2.1.

In fact, given a bounded set B of initial data in 1 < r < r0, from Propositions
3.14 and 3.7 we have that all solutions as in Definition 3.15 starting at B are
uniformly bounded in Lσ(Ω) at any time t ≥ ε, for any 1 < σ < ∞. Then, for
σ > r0, problem (1.1) is subcritical and we can use Theorem 2.1.

The following result summarises the results concerning the asymptotic be-
haviour of solutions of properties (1.1) for initial data in Lr(Ω) in the supercritical
range 1 < r < r0.

Theorem 4.1. Under the assumptions (1.4) and (1.5), for 1 < r < r0 we have:
i) There exists a compact invariant set A ⊂ Cβ(Ω) ∩ Hα

s (Ω) ⊂ Lr(Ω), for any
0 ≤ β < 1, s ≥ 1 and 0 ≤ α < 1 + 1

s , attracting the solutions as in Definition 3.15
starting in bounded sets of Lr(Ω) in the norm of Cβ(Ω) or Hα

s (Ω).
In particular, there exists an absorbing set in Cβ(Ω) ∩ Hα

s (Ω). Also A =
Wu(E), that is, the unstable set of the set of equilibria of (1.1), E, which is
nonempty. Hence A is independent of r and coincides with the set in Theorem
2.1.
ii) There exist two extremal equilibria ϕm ≤ ϕM for problem (1.1) such that
ϕm, ϕM ∈ A. Hence any stationary solution ϕ of (1.1) satisfies

ϕm(x) ≤ ϕ(x) ≤ ϕM(x), x ∈ Ω.

Furthermore,

ϕm(x) ≤ lim inf
t→∞ u(t, x; u0) ≤ lim sup

t→∞
u(t, x; u0) ≤ ϕM(x)

uniformly in x ∈ Ω and for u0 in bounded sets of Lr(Ω).
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The maximal equilibrium is (order-)stable from above and the minimal one from
below.

Proof. Note that in Propositions 3.12 and 3.14 the bounds on the functions
vK are independent of t ≥ ε, K and u0 ∈ Lr(Ω). Hence the bounds on v(t; u0), as
in Proposition 3.7 are also independent of t ≥ ε and u0 ∈ Lr(Ω). Then for t ≥ ε
all solutions of (1.1) starting at a bounded set of initial data B ⊂ Lr(Ω) enter a
bounded set in Lσ(Ω) for σ > r0. Thus, part i) follows from Theorem 2.1.

Now for part ii) note that from i) we have an absorbing set in L∞(Ω) for all
solutions of (1.1). In particular, for some M > 0 the ordered interval of functions
in Ω such that −M ≤ h(x) ≤ M for all x ∈ Ω in an absorbing interval. Hence we
can use Theorem 1.1 in [13] get the existence of two extremal equilibria ϕm, ϕM ∈
Lr(Ω). The maximal equilibrium is (order-)stable from above and the minimal one
from below. See also Corollary 3.11 in [13]. �

Remark 4.2.
i) In particular note that for r = r0, A attracts bounded sets of Lr0(Ω) and therefore
Theorem 4.1 improves the results in Theorem 2.1 for this critical space.
ii) Restricting only to nonnegative solutions, we have uniqueness for (1.1) as in
Proposition 3.12. Using that solutions are smooth after positive time, Theorem
4.5 in [13] allows a more detailed description of the asymptotic behavior of such
solutions.
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[2] J. Arrieta and A. Rodŕıguez-Bernal. Non well posedness of parabolic equations with super-
critical nonlinearities. Commun. Contemp. Math. 6, no. 5 (2004), 733–764.

[3] J. M. Arrieta. On boundedness of solutions of reaction-diffusion equations with nonlinear
boundary conditions. Proc. Amer. Math. Soc. 136, no. 1 (2008), 151–160 (electronic).

[4] J. M. Arrieta and A. N. Carvalho. Abstract parabolic problems with critical nonlinearities
and applications to Navier-Stokes and heat equations. Trans. Amer. Math. Soc. 352, no. 1
(2000), 285–310.

[5] J. M. Arrieta, A. N. Carvalho, and A. R. Bernal. Attractors of parabolic problems with
nonlinear boundary conditions. Uniform bounds. Comm. Partial Differential Equations 25,
no. 1-2 (2000), 1–37.
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