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Periodic solutions for a class of one-dimensional Boussinesq

systems
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Abstract. In this paper we show the local and global well-posedness for the

periodic Cauchy problem associated with a special class of 1D Boussinesq
systems that emerges in the study of the evolution of long water waves with

small amplitude in the presence of surface tension. By a variational approach,
we establish the existence of periodic travelling waves. We see that those

periodic solutions are characterized as critical points of some functional, for
which the existence of critical points follows as a consequence of the Arzela-

Ascoli Theorem and the fact that the action functional associated is coercive
and is (sequentially) weakly lower semi-continuous in an appropriate set.
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1. Introduction

It has been established that the evolution of 2D long water waves with small
amplitude is reduced to studying solutions (η, Φ) of the 1D-Boussinesq type system
(p = 1)

(1.1)

⎧⎨⎩
(
I − aμ∂2

x

)
ηt + ∂2

xΦ − bμ∂4
xΦ + ε∂x (η (∂xΦ)

p
) = 0,(

I − cμ∂2
x

)
Φt + η − dμ∂2

xη + ε
p+1

(∂xΦ)p+1 = 0,
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242 JOSÉ R. QUINTERO AND ALEX M. MONTES

where ε is the amplitude parameter (nonlinearity coefficient), μ is the long-wave
parameter (dispersion coefficient), constants a ≥ 0, c ≥ 0, b > 0, and d > 0 are
such that

a + c− (b + d) =
1

3
− σ,

where σ−1 is known as the Bond number (associated with the surface tension), and
p is a rational number of the form p = p1

p2
with (p1, p2) = 1 and p2 an odd number.

The variable Φ = Φ(x, t) represents the rescale nondimensional velocity potential
on the bottom z = 0, and the variable η = η(x, t) corresponds the rescaled free
surface elevation.

The model considered in this work is the 1D version of some Boussinesq system
obtained by J. Quintero and A. Montes in [19] in the case a = c = 1

2 , b = 2
3 , d = σ

(see also A. Montes, [10]) and by J. Quintero in [14] in the case a = c = 0, b =
1
6
, d = σ − 1

2
, which appear when looking at the evolution of long water waves

with small amplitude in the presence of surface tension. Among the results for the
two-dimensional version of the Boussinesq system (1.1), we want to mention [10],
[12], [14], [15], [18], [19]. For instance, in the cases a = 1

2 = c, b = 2
3 , d = σ and

a = c = 0, b = 1
6
, d = σ − 1

2
, well-posedness for the Cauchy problem for s ≥ 2 and

p ≥ 1 were obtained by J. Quintero and A. Montes in work in revision and by J.
Quintero in [15], respectively, and the existence results of solitons (finite energy
travelling wave solutions) were obtained by J. Quintero and A. Montes in [19] and
by J. Quintero in [14], respectively. An interesting review in the case of existence of
periodic 2D travelling waves for the full Euler equations (doubly periodic or periodic
in one direction) appears in the work of M. Groves [7]. Results for some models as
the generalized 2D-Benney-Luke equation or the KP equation in the periodic case
can be see in [11], [13], [16], [17], [21].

We notice that taking ψ = ∂xΦ, p = 1 and μ = 1, the Boussinesq system(1.1)
is related with the system considered by J. Bona, M. Chen and J. Saut (see [1], [2],
[3], [9])

(1.2)

⎧⎪⎪⎨⎪⎪⎩
(
I − d̃∂2

x

)
ηt + ∂x

(
I + ẽ∂2

x

)
ψ + ε∂x (ηψ) = 0,

(
I − b̃∂2

x

)
ψt + ∂x

(
I + ã∂2

x

)
η + ε

2∂x(ψ2) = 0,

where

ã + b̃ + ẽ + d̃ =
1

3
− σ,

with ã, ẽ < 0 and b̃, d̃ ≥ 0, in the case of non zero surface tension. In recent works,
M. Chen, N. Nguyen, and S. Sun in [5] and [6] established existence and orbital

stability of travelling solutions for the Boussinesq system (1.2) for σ > 1
3 , b̃ = d̃ > 0

and ãẽ = d̃2 in [5], and existence of travelling solutions for σ > 1
3
, b̃ = d̃ ≥ 0 in [6].

In this paper, we will establish the local well-posedness for the Cauchy problem
associated with the system (1.1) in the space Hs

k × Vs+1
k , where Hs

k = Hs
k(R) is

the usual Sobolev space of order s of k-periodic functions and Vs+1
k is defined by

the norm ‖ψ‖
V

s+1

k
= ‖ψ′‖Hs

k
. We also show global well-posedness for the Cauchy

problem in the energy space H1
k × V2

k when the initial date is small enough. We
will see as usual that local well-posedness for the Cauchy problem associated with
the system (1.1) follows by the Banach fixed point Theorem and appropriate linear
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and nonlinear estimates using different results, which are considered in two mayor
case: a) for a, c > 0, we will use a bilinear estimative obtained by D. Roumégoux in
[22]; b) for a = c = 0, we will use the well known estimates for Kato’s commutator
used successfully in the KdV and KP models (see the work by T. Kato and G.
Ponce [8]). The global existence for a = c follows from the local existence, the
conservation in time of the Hamiltonian, a Sobolev type inequality and the use of
energy estimates.

Even though there is not a connection with the Boussinesq system considered
in this work, we establish existence of periodic travelling wave solutions by following
the approach by H. Brezis and J. Mawhin (see [4]) in a recent work related with
the existence of periodic classical solutions for a differential equation

φ(u′)− g(x, u) = h(x),

where φ : (−a, a) → R is an increasing homeomorphism, g is a Charatéodory
function k-periodic with respect to x, 2π-periodic with respect to u, of mean value
zero on [0, k], and h ∈ Lloc(R) is k-periodic and has mean value zero. A special case
of this interesting model is the relativistic forced pendulum differential equation(

u′√
1− u2

)
+ A sin(u) = h(x).

The paper is organized as follows. In section 2, using semigroup estimates
and nonlinear estimates, we show a local existence and uniqueness result for the
Boussinesq system (1.1), via a standard fixed point argument. In section 3, from
a variational approach which involves the characterization of invariant sets under
the flow for the Boussinesq system (1.1), we obtain the global existence result for
initial data small enough, in the case a = c. In section 4, we will use the direct
method of the calculus of variations to prove the existence of k−periodic travelling
wave solutions following H. Brezis and J. Mawhin (see [4]). Throughout this work,
if not specified, we denote by K a generic constant varying line by line.

2. Local periodic well-posedness

In this section we study the local well-posedness for the initial value problem

(2.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
I − aμ∂2

x

)
ηt + ∂2

x

(
I − bμ∂2

x

)
Φ + ε∂x (η (∂xΦ)p) = 0,(

I − cμ∂2
x

)
Φt + (I − dμ∂2

x)η + ε
p+1 (∂xΦ)

p+1
= 0,

(η(0, ·), Φ(0, ·)) = (η0, Φ0) ,

for a, c ≥ 0 and b, d > 0. First we define the appropriate spaces:

2.1. Notation. The L2−based Sobolev space of k-periodic functions is defined
as follow. Let C∞k denote the collection of all functions f : R → R which are C∞

and periodic with period k > 0. The collection (C∞k )
′

of all continuous linear

functionals from C∞k into R is the set of periodic distributions. If Υ ∈ (C∞k )
′

and φ ∈ C∞k , we denote the value of Υ at φ by 〈Υ, φ〉. If we define the functions
Θm(x) = exp(iπmx/k) for m ∈ Z and x ∈ R, then the Fourier transform of Υ is
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the function Υ̂ : Z → C defined by Υ̂(m) = 1
k 〈Υ, Θm〉, for all m ∈ Z. So, if Υ is a

periodic function with period k, we have

Υ̂(m) =
1

k

∫ k

0

Υ(x)e
−2πimx

k dx.

For s ∈ R, the Sobolev space of k-periodic functions of order s, denoted by Hs
k =

Hs
k(R) is the set of all f ∈ (C∞k )

′
such that (1 + m2)

s
2 f̂(m) ∈ l2(Z), with norm

‖f‖2Hs
k

= k

∞∑
m=−∞

(
1 + m2

)s |f̂(m)|2.

We note that Hs
k is a Hilbert space with respect to the inner product

〈f, g〉s = k

∞∑
m=−∞

(
1 + m2

)s
f̂(m)ĝ(m).

In the case s = 0, H0
k is a Hilbert space that is isometrically isomorphic to L2[0, k]

and

〈f, g〉0 =

∫ k

0

f(x)g(x)dx.

The space H0
k will be denoted by L2

k and its norm will be ‖·‖L2
k
. Note that Hs

k ⊂ L2
k

for any s ≥ 0. Finally, we define the space Vs
k as the closure of C∞k with respect to

the norm given by
‖f‖Vs

k
= ‖f ′‖Hs−1

k
.

Note that Vs
k is a Hilbert space with inner product

(f, g)Vs
k

= (f ′, g′)Hs−1

k
.

Moreover,

‖f‖2Vs
k

= k

∞∑
m=−∞

(
1 + m2

)s−1
m2|f̂(m)|2.

Now, note that we can define the operator L = I − lμ∂2
x via the Fourier series as

L̂f(m) =
(
1 + lμm2

)
f̂(m).

In particular, for any l > 0, the operator L is invertible with

L̂−1f(m) =
f̂(m)

1 + lμm2
.

2.2. Local well-posedness. It is easy to see, using the notation in previous
section, that the system (2.1) can be rewritten as

(2.2)

(
η
Φ

)
t

+ M

(
η
Φ

)
+ F

(
η
Φ

)
= 0,

where M is a linear operator and F corresponds to the nonlinear part,

M =

(
0 ∂2

xA−1B
C−1D 0

)
, F

(
η
Φ

)
= ε

(
∂xA−1 (η(∂xΦ)p)
1

p+1C−1 (∂xΦ)
p+1

)
,

with A = I − aμ∂2
x, B = I − bμ∂2

x, C = I − cμ∂2
x and D = I − dμ∂2

x.

If we consider the Sobolev type space X s
k = Hs

k × Vs+1
k with norm given by

‖(η, Φ)‖2X s
k

= ‖η‖2Hs
k

+ ‖Φ‖2
V

s+1

k

.
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Then we can show that,

Lemma 2.1. for s ∈ R, we have that M : X s
k −→ X s−1

k is a bounded linear
operator.

Proof. For (η, Φ) ∈ X s
k we have that

‖(∂2
xA−1B)Φ‖2

Hs−1

k

=

∞∑
m=−∞

m4
(
1 + m2

)s−1

(
1 + bμm2

)2
(1 + aμm2)2

|Φ̂(m)|2

≤ K1(a, b)

∞∑
m=−∞

(
1 + m2

)s
m2|Φ̂(m)|2

≤ K1(a, b)‖Φ‖2
V

s+1

k

.

In a similar way,

‖C−1Dη‖2Vs
k

=

∞∑
m=−∞

m2
(
1 + m2

)s−1

(
1 + dμm2

)2
(1 + cμm2)

2 |η̂(m)|2

≤ K2(c, d)
∞∑

m=−∞

(
1 + m2

)s |η̂(m)|2

≤ K2(c, d)‖η‖2Hs
k
.

From these two facts we conclude that

‖M(η, u)‖2
X

s−1

k

= ‖(∂2
xA−1B)Φ‖2

Hs−1

k

+ ‖C−1Dη‖2Vs
k

≤ K3

(
‖η‖2Hs

k
+ ‖Φ‖2

V
s+1

k

)
≤ K3‖(η, Φ)‖2X s

k
,

as claimed. �

In order to consider the initial value problem, we need to describe the semigroup
S(t) associated with the linear problem

(2.3)

(
η
Φ

)
t

+ M

(
η
Φ

)
= 0.

A simple calculation shows that the unique solution of the linear problem (2.3) with
the initial condition

(2.4) (η(0, ·), Φ(0, ·)) = (η0, Φ0) = Ψ0 ∈ X s
k ,

is given by

Ψ(t) = (η(t), Φ(t)) = S(t)Ψ0 ,

where S(t) is defined as

(2.5) ̂S(t)(Ψ))(m) =

⎛⎝cos (mρ(m)t) mϕ(m) sin(mρ(m)t)

− sin(mρ(m)t)
mϕ(m) cos (mρ(m)t)

⎞⎠ Ψ̂(m),

and the functions ϕ and ρ are given by

ϕ2(m) =

(
1 + bm2

) (
1 + cm2

)
(1 + am2)(1 + dm2)

, ρ2(m) =

(
1 + bm2

) (
1 + dm2

)
(1 + am2)(1 + cm2)

.
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It is convenient to set

Q(t)(η̂, Φ̂) =
(
Q1(t), Q2(t)

)
(η̂, Φ̂),

where [
Q1(t)(η̂, Φ̂)

]
(m) = cos (mρ(m)t) η̂(m) + mϕ(m) sin(|ξ|ρ(m)t)Φ̂(m),[

Q2(t)(η̂, Φ̂)
]
(m) = −sin (mρ(m)t) η̂(m)

mϕ(m)
+ cos (mρ(m)t) Φ̂(m).

Then we have that

S(t)(Ψ) =
(
F−1

[
Q1(t)(Ψ̂)

]
,F−1

[
Q2(t)(Ψ̂)

])
.

On the other hand, it is known that the Duhamel’s principle implies that if Ψ
is a solution of (2.2) with the initial condition (2.4), then this solution satisfies the
integral equation

(2.6) Ψ(t) = S(t)Ψ0 −
∫ t

0

S(t − τ )F (Ψ)(τ ) dτ.

Hereafter, we refer to a Ψ ∈ C([0, T ],X s
k) satisfying the integral equation (2.6)

as a mild solution for the initial value problem (2.1). Now, we will establish the
existence of mild solutions. For this, we use some linear and nonlinear estimates.
Let us start with the following result.

Lemma 2.2. Suppose s ∈ R. Then for all t ∈ R, S(t) is a bounded linear
operator from X s

k into X s
k . Moreover, there exists K1 > 0 such that for all t ∈ R,

‖S(t)(Ψ)‖X s
k
≤ K1‖Ψ‖X s

k
.

Proof. First note that there are constants (independent of m) c1, c2 > 0 such
that c1 ≤ ϕ2 ≤ c2. Then we have that∥∥∥F−1[Q1(t)(η̂, Φ̂)]

∥∥∥2

Hs
k

≤ K

∞∑
m=−∞

(
1 + m2

)s |cos(mρ(m)t)|2 |η̂(m)|2

+ K

∞∑
m=−∞

(
1 + m2

)s
m2|ϕ(m)|2| sin (mρ(m)t) |2|Φ̂(m)|2

≤ K

(
∞∑

m=−∞

(
1 + m2

)s |η̂(m)|2 + c2

∞∑
m=−∞

(
1 + m2

)s
m2|Φ̂(ξ)|2

)
≤ K

(
‖η‖2Hs

k
+ ‖Φ‖2

V
s+1

k

)
.
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In a similar fashion,∥∥∥F−1[Q2(t)(η̂, Φ̂)]
∥∥∥2
V

s+1

k

≤ K

∞∑
m=−∞

(1 + m2)s | sin (|m|ρ(m)t) |2
|ϕ(m)|2 |η̂(m)|2

+ K
∞∑

m=−∞

(1 + m2)sm2| cos(mρ(m)t)|2 |Φ̂(m)|2

≤ K

(
∞∑

m=−∞

(1 + m2)s|η̂(m)|2 +

∞∑
m=−∞

(
1 + m2

)s
m2|Φ̂(m)|2

)
≤ K

(
‖η‖2Hs

k
+ ‖Φ‖2

V
s+1

k

)
.

So, if Ψ = (η, Φ) we obtain that

‖S(t)Ψ‖2X s
k

= ‖S(t)(η, Φ)‖2X s
k

=
∥∥∥F−1[Q1(t)(η̂, Φ̂)]

∥∥∥2

Hs
k

+
∥∥∥F−1[Q2(t)(η̂, Φ̂)]

∥∥∥2

V
s+1

k

≤ K
(
‖η‖2Hs

k
+ ‖Φ‖2

V
s+1

k

)
≤ K‖(η, Φ)‖2X s

k

= K‖Ψ‖2X s
k
,

and S(t) have the required property. �

Next, we want to perform the estimates for nonlinear terms of system (2.2)
(Lemma 2.5), which will follow by an estimate obtained by D. Roumégoux (Lemma
3.1 in [22], with r = r′ = s ≥ 0) in the case a, c > 0 and the well known estimates
for the periodic commutator of Kato in the case a = c = 0.

Lemma 2.3. (D. Roumégoux, [22]) Let l > 0, s ≥ 0. Then there exists a
constant K(l) > 0 such that

‖L−1∂x(uv)‖Hs
k
≤ K(l)‖u‖Hs

k
‖v‖Hs

k
.

Now, let J =
(
I − ∂2

x

)1/2
be the operator defined by

Ĵf = (1 + m2)1/2f̂ ,

and let [ , ] be the commutator defined by

[Js, u] v = Js(uv) − uJsv.

Lemma 2.4. (T. Kato, [8]) Suppose s > 3
2 and t > 1

2 . Then there exists a
constant K > 0 such that

(1) ‖[Js, u]w‖L2
k
≤ K‖u‖Hs

k
‖w‖Hs−1

k
.

(2) ‖u∂xw‖L2
k
≤ K‖∂xu‖Ht

k
‖w‖L2

k
.

Next, we will establish the nonlinear estimates.

Lemma 2.5. Suppose a, c, p and s are such that
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(a) a, c > 0, p = 1, s ≥ 0, or

(b) a, c > 0, p > 1, s > 1
2 , or

(c) a = c = 0, p ≥ 1, s > 3
2 .

Then there are constants K2, K3 > 0 such that

(1) ‖F (Ψ)‖X s
k
≤ K2‖Ψ‖p+1

X s
k

.

(2) ‖F (Ψ)− F (Ψ1)‖X s
k
≤ K3‖Ψ −Ψ1‖X s

k

(‖Ψ‖X s
k

+ ‖Ψ1‖X s
k

)p
.

Proof. We write F = ε
(
F1,

1
p+1F2

)
where

F1(Ψ) = F1(η, Φ) = A−1∂x (η(∂xΦ)p) , F2(Ψ) = F2(η, Φ) = C−1 (∂xΦ)
p+1

.

First we assume that a, c > 0, p = 1 and s ≥ 0. Using the Lemma 2.3 we have that

‖F1(η, Φ)‖Hs
k

= ‖A−1∂x (η∂xΦ) ‖Hs
k

≤ K(a)‖η‖Hs
k
‖∂xΦ‖Hs

k

≤ K(a)‖η‖Hs
k
‖Φ‖

V
s+1

k

≤ K(a)
(
‖η‖2Hs

k
+ ‖Φ‖2

V
s+1

k

)
= K(a)‖(η, u)‖2X s

k
.

Similarly we have that

‖F2(η, Φ)‖
V

s+1

k
= ‖C−1 (∂xΦ)

2 ‖
V

s+1

k

= ‖C−1∂x (∂xΦ)
2 ‖Hs

k

≤ K(c)‖∂xΦ‖2Hs
k

≤ K(c)‖Φ‖2
V

s+1

k

≤ K(c)‖(η, Φ)‖2X s
k
.

In other words, we have established estimate (1). Now we prove estimate (2). In
fact,

‖F1(η, Φ)− F1(η1, Φ1)‖Hs
k

= ‖A−1∂x (η∂xΦ− η1∂xΦ1) ‖Hs
k

≤ ‖A−1∂x(η(∂xΦ− ∂xΦ1))‖Hs
k

+ ‖A−1∂x(η − η1)∂xΦ1‖Hs
k

≤ K(a)
(‖η‖Hs

k
‖∂xΦ − ∂xΦ1‖Hs

k
+ ‖η − η1‖Hs

k
‖∂xΦ1‖Hs

k

)
≤ K(a)

(‖η‖Hs
k

+ ‖∂xΦ1‖Hs
k

) (‖η − η1‖Hs
k

+ ‖∂xΦ− ∂xΦ1‖Hs
k

)
≤ K(a)

(
‖η‖Hs

k
+ ‖Φ1‖Vs+1

k

)(
‖η − η1‖Hs

k
+ ‖Φ−Φ1‖Vs+1

k

)
≤ K(a)

(‖(η, Φ)‖X s
k

+ ‖(η1, Φ1)‖X s
k

) ‖(η, Φ)− (η1, Φ1)‖X s
k
.
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In a similar fashion we have that

‖F2(η, Φ)− F2(η1, Φ1)‖Vs+1

k

= ‖C−1
(
(∂xΦ)2 − (∂xΦ1)

2
) ‖
V

s+1

k

= ‖C−1∂x

(
(∂xΦ)2 − (∂xΦ1)

2
) ‖Hs

k

= ‖C−1∂x ((∂xΦ + ∂xΦ1)(∂xΦ− ∂xΦ1)) ‖Hs
k

≤ K(c)‖∂xΦ + ∂xΦ1‖Hs
k
‖∂xΦ− ∂xΦ1‖Hs

k

≤ K(c)‖Φ + Φ1‖Vs+1

k
‖Φ− Φ1‖Vs+1

k

≤ K(c)
(‖(η, Φ)‖X s

k
+ ‖(η1, Φ1)‖X s

k

) ‖(η, Φ)− (η1, Φ1)‖X s
k
.

Then we conclude that

‖F (η, Φ)− F (η1, Φ1)‖X s
k

≤ K
(
‖F1(η, Φ)− F1(η1, Φ1)‖Hs

k
+ ‖F2(η, Φ)− F2(η1, Φ1)‖Vs+1

k

)
≤ K

(‖(η, Φ)‖X s
k

+ ‖(η1, Φ1)‖X s
k

) ‖(η, Φ)− (η1, Φ1)‖X s
k
.

Now we suppose that s > 1
2

and p > 1. Using the Lemma 2.3 and that Hs
k(R) is

an algebra we obtain that

‖F1(η, Φ)‖Hs
k

= ‖A−1∂x (η(∂xΦ)p) ‖Hs
k

≤ K(a)‖η(∂xΦ)p‖Hs
k

≤ K(a)‖η‖Hs
k
‖∂xΦ‖p

Hs
k

≤ K(a)‖η‖Hs
k
‖Φ‖p

V
s+1

k

≤ K(a)‖(η, Φ)‖p+1
X s

k
.

And also that

‖F2(η, u)‖
V

s+1

k
= ‖C−1 (∂xΦ)

p+1 ‖
V

s+1

k

= ‖C−1∂x (∂xΦ)
p+1 ‖Hs

k

≤ K(c)‖∂xΦ‖p+1
Hs

k

≤ K(c)‖Φ‖p+1

V
s+1

k

≤ K(c)‖(η, Φ)‖p+1
X s

k
.

Moreover, we see that

‖F1(η, Φ)− F1(η1, Φ1)‖Hs
k

≤ ‖A−1∂x (η ((∂xΦ)p − (∂xΦ1)
p)) ‖Hs

k
+ ‖A−1∂x ((η − η1)(∂xΦ1)

p) ‖Hs
k

≤ K(a)‖η‖Hs
k
‖(∂xΦ)p − (∂xΦ1)

p‖Hs
k

+ ‖η − η1‖Hs
k
‖∂xΦ1‖p

Hs
k
.

But a simple calculation shows that

‖(∂xΦ)p − (∂xΦ1)
p‖Hs

k
≤ K(p)‖∂xΦ− ∂xΦ1‖Hs

k

(‖∂xΦ‖Hs
k

+ ‖∂xΦ1‖Hs
k

)p−1

= K(p)‖Φ−Φ1‖Vs+1

k

(
‖Φ‖

V
s+1

k
+ ‖Φ1‖Vs+1

k

)p−1

.
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Then we have that

‖F1(η, Φ)− F1(η1, Φ1)‖X s
k

≤ K(a, c, p)‖(η, Φ)− (η1, Φ1)‖X s
k

(‖(η, Φ)‖X s
k

+ ‖(η1, Φ1)‖X s
k

)p
.

In a similar fashion we obtain the same estimate for ‖F2(η, Φ)−F2(η1, Φ1)‖X s
k

and
then (1) and (2) hold.

We assume now that a = c = 0, p ≥ 1 and s > 3
2 . In this case we notice that

A = C = I, i.e., the identity operator. First we will show that there exists K > 0
such that if v, ∂xw ∈ Hs

k, then

(2.7) ‖v∂xw‖Hs
k
≤ K‖v‖Hs

k
‖w‖Hs

k
.

In fact, from Lemma 2.4 we see that

‖v∂xw‖Hs
k

= ‖Js(v∂xw)‖L2
k

≤ ‖ [Js, v]∂xw ‖L2
k

+ ‖v∂xJsw‖L2
k

≤ K
(
‖v‖Hs

k
‖∂xw‖Hs−1

k
+ ‖∂xv‖Hs−1

k
‖Jsw‖L2

k

)
≤ K‖v‖Hs

k
‖w‖Hs

k
.

Then, using (2.7) and that Hs
k(R) is an algebra, we have that

‖F1(η, u)‖Hs
k
≤ K(p)

(‖∂xη(∂xΦ)p‖Hs
k

+ ‖η(∂xΦ)p−1∂2
xΦ‖Hs

k

)
≤ K(p)

(‖η‖Hs
k
‖(∂xΦ)p‖Hs

k
+ ‖∂xΦ‖Hs

k
‖η(∂xΦ)p−1‖Hs

k

)
≤ K(p)‖η‖Hs

k
‖∂xΦ‖p

Hs
k

≤ K(p)‖(η, Φ)‖p+1
X s

k
.

And also that

‖F2(η, Φ)‖
V

s+1

k
= K(p)‖(∂xΦ)p∂2

xΦ‖Hs
k

≤ K(p)‖(∂xΦ)p‖Hs
k
‖∂xΦ‖Hs

k

≤ K(p)‖∂xΦ‖p+1
Hs

k

≤ K(p)‖(η, Φ)‖p+1
X s

k
.

Thus, we conclude that there exists K > 0 such that

‖F (η, u)‖X s
k
≤ K‖(η, Φ)‖p+1

X s
k

.

In a similar way we obtain the part (2) and then the theorem follows. �

Next, we establish the local well-posedness for the system (2.1) in the space
X s

k . For this we will show the existence of a solution for the integral equation (2.6),
using the Banach fixed point Theorem.

Theorem 2.1. Let a, c, p and s be as in Lemma 2.5. Then for all (η0, Φ0) ∈ X s
k

there exists a time T > 0 which depends only on ‖(η0, Φ0)‖X s
k

such that the initial

value problem (2.1) has a unique solution (η, Φ) satisfying

(η, Φ) ∈ C ([0, T ],X s
k) ∩ C1

(
[0, T ],X s−1

k

)
.

Moreover, for all 0 < T ′ < T there exists a neighborhood V of (η0, Φ0) in X s
k

such that the correspondence (η̃0, Φ̃0) −→ (η̃(·), Φ̃(·)), that associates to (η̃0, Φ̃0)
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the solution (η̃(·), Φ̃(·)) of the problem (2.1) with initial condition (η̃0, Φ̃0) is a
Lipschitz mapping from V in C([0, T ′],X s

k ).

Proof. Given T > 0 we define the space Xs(T ) = C([0, T ],X s
k), equipped

with the norm defined by

‖Ψ‖Xs(T ) = max
t∈[0,T ]

‖Ψ(·, t)‖X s
k
.

It is easy to see that Xs(T ) is a Banach space. Let BR(T ) be the closed ball of
radius R centered at the origin in Xs(T ), i.e.

BR(T ) =
{
Ψ ∈ Xs(T ) : ‖Ψ‖Xs(T ) ≤ R

}
.

For fixed Ψ0 = (η0, Φ0) ∈ X s
k , we define the map

Λ(Ψ(t)) = S(t)Ψ0 −
∫ t

0

S(t − τ )F (Ψ(τ )) dτ,

where Ψ = (η, φ) ∈ X(T ). We will show that the correspondence Ψ(t) �→ Λ(Ψ(t))
maps BR(T ) into itself and is a contraction if R and T are well chosen. In fact, if
t ∈ [0, T ] and Ψ ∈ BR(T ), then using Lemma 2.2 and statement (1) of Lemma 2.5
we have that

‖Λ(Ψ(t))‖X s
k
≤ K1

(
‖Ψ0‖X s

k
+ K2

∫ t

0

‖Ψ(τ )‖p+1
X s

k
dτ

)
≤ K1

(‖Ψ0‖X s
k

+ K2R
p+1T

)
.

Choosing R = 2K1‖Ψ0‖X s
k

and T > 0 such that

(2K1)
p+1K2‖Ψ0‖p

X s
k

T ≤ 1,

we obtain that

‖Λ(Ψ(t))‖X s
k
≤ K1 ‖Ψ0‖X s

k

(
1 + (2K1)

p+1K2‖Ψ0‖p
X s

k
T
)
≤ 2 K1‖Ψ0‖X s

k
= R.

So that Λ maps BR(T ) to itself. Let us prove that Ψ is a contraction. If Ψ, Ψ1 ∈
BR(T ), then by the definition of Ψ we have that

Λ(Ψ(t))− Λ(Ψ1(t)) = −
∫ t

0

S(t − τ )
[
F (Ψ(τ ))− F (Ψ1(τ ))

]
dτ.

Then using the statement (2) of Lemma 2.5 we see that for t ∈ [0, T ],

‖Λ(Ψ(t))− Λ(Ψ1(t))‖X s
k
≤ K1K3

∫ t

0

(‖Ψ(τ )‖X s
k

+ ‖Ψ1(τ )‖X s
k

)p ‖Ψ(τ )− Ψ1(τ )‖X s
k

dτ

≤ K1K3(2R)pT‖Ψ −Ψ1‖Xs(T )

≤ 4pKp+1
1 K3‖Ψ0‖p

X s
k

T‖Ψ− Ψ1‖Xs(T ).

We choose T enough small so that (2.2) holds and

α = 4pKp+1
1 K3‖Ψ0‖p

X s
k

T ≤ 1

2
.

So, we conclude that

‖Λ(Ψ)− Λ(Ψ1)‖Xs(T ) ≤ α‖Ψ−Ψ1‖Xs(T ).

Therefore Λ is a contraction, and so there exists a unique fixed point of Λ in BR(T ),
which is a solution of the integral equation (2.6). Now, if Ψ(t) ∈ C([0, T ],X s

k) is a
mild solution, obviously Ψ(0) = (η(0), Φ(0)) = (η0, Φ0). Moreover, differentiating
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the equation (2.6) with respect t there appears the relation (2.2). In other words,
Ψ(t) = (η(t), Φ(t)) is a local solution for the initial value problem (2.1). The
uniqueness and continuous dependence of the solution are obtained by standard
arguments. �

3. Global periodic well-posedness for a = c

In this section taking advantage of the conservation in time of the Hamiltonian
in the case a = c, we establish that any local solution in time of the system (1.1)
can be extended for any t > 0. We only sketch the proofs since the details can be
found in the proof of similar results for water wave models (see for example Section
3 in [15], for a 2D-dimensional version of (1.1)). The result will depends strongly
on the Hamiltonian structure given by

H(Ψ) = H(η, Φ)(3.1)

=
1

2

∫ k

0

(
η2 + dμ (∂xη)

2
+ (Φx)

2
+ bμ

(
∂2

xΦ
)2

+
2ε

p + 1
η (∂xΦ)

p+1

)
dx

=
1

2
(E(Ψ) + G(Ψ)) ,

where functional E (energy) and G are given by

E(Ψ) =

∫ k

0

(
η2 + dμ (∂xη)

2
+ (∂xΦ)

2
+ bμ

(
∂2

xΦ
)2)

dx,

G(Ψ) =
2ε

p + 1

∫ k

0

η (∂xΦ)p+1 dx.

It is not difficult to see that the system (1.1) can be expressed in the following
Hamiltonian form(

ηt

Φt

)
= JH′

(
η
Φ

)
, J =

(
0

(
I − cμ∂2

x

)−1

− (I − aμ∂2
x

)−1
0

)
.

Note that for a = c the operator J becomes skew symmetric

J =
(
I − aμ∂2

x

)−1
(

0 1
−1 0

)
.

In addition, we see directly that the functional H is well defined when η ∈ H1
k and

Φ ∈ V2
k . These conditions already characterize the natural space (energy space)

in which we consider the global well-posedness of the Cauchy problem and the
existence of periodic travelling wave solutions (see Section 4).

The global well-posedness follows by using a variational approach and the fact
that the energy

√
E is a norm in the space X 1

k , since for some constant K(b, d, μ) > 1,

(3.2) K(b, d, μ)−1‖Ψ‖2
X1

k
≤ E(Ψ) ≤ K(b, d, μ)‖Ψ‖2

X1
k
.

A clever analysis to obtain global solutions, as done in the 2D-dimensional case,
depends upon the variational characterization of the number δ0 defined by

δ0 = inf
{

sup
λ≥0

H(λΨ) : Ψ ∈ X 1
k \ {0}

}
= inf{sup

λ≥0
H(λΨ) : Ψ ∈ X 1

k , G(Ψ) < 0}.
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Lemma 3.1.

(3.3) δ0 =
p

2(p + 2)

(
2

p + 2

) 2
p

K
−

p+2

p

p ,

where Kp is defined as

(3.4) Kp = sup

{
G

2
p+2 (Ψ)

E(Ψ)
: Ψ ∈ X 1

k \ {0}
}

.

Moreover, we have the following Sobolev type inequality

(3.5) |G(Ψ)| 1
p+2 ≤ K

1
2
p

√
E(Ψ) ≤ K(b, d, μ)

1

2 K
1
2
p ‖Ψ‖X1

k
.

Before we go further, we consider the auxiliary functional H1(Ψ) = H′(Ψ)(Ψ),
which has can be expressed as

H1(Ψ) = E(Ψ) +

(
p + 2

2

)
G(Ψ).(3.6)

In particular, we have that

(3.7) H(Ψ) =

(
p

2(p + 2)

)
E(Ψ) +

(
1

p + 2

)
H1(Ψ).

We will see that the global existence result is a consequence that the set

A =
{
Ψ ∈ X 1

k : H(Ψ) < δ0, H1(Ψ) > 0
}

.

is invariant under the flow associated with the system (1.1). First we observe that
the HamiltonianH is conserved in time on solutions, meaning for classical solutions
that

(3.8) H(Ψ(t)) = H(Ψ(0)) < δ0,

Assume by continuity that there is t1 ∈ (0, T0) such thatH1(Ψ(t)) > 0 for 0 < t < t1
and

(3.9) H1(Ψ(t1)) = 0, Ψ(t1) = 0.

Then, from (3.7), we have that

0 < E(Ψ(t1)) =
2(p + 2)

p
H(Ψ(t1))− 2

p
H1(Ψ(t1)) <

2(p + 2)

p
δ0.(3.10)

But from the Sobolev type inequality (3.5) we conclude that

|G(Ψ(t1))| ≤ K
p+2

2
p [E(Ψ(t1))]

p
2 E(Ψ(t1)) <

(
2

p + 2

)
E(Ψ(t1)),

which implies, by using (3.6), that we already have H1( Ψ(t1)) > 0; but this is a
contradiction. So, H1(Ψ(t)) > 0 for t ∈ (0, T0). Moreover for t ∈ (0, T0)

e(t) = sup
r∈[0,t]

E(Ψ(r)) <

(
2(p + 2)

p

)
δ0.

Theorem 3.1. Assume a = c ≥ 0 and p ≥ 1. Let Ψ0 = (η0, Φ0) ∈ X 1
k be such

that H(Ψ0) < δ0 and H1(Ψ0) > 0. Then there exists a unique global solution for
the initial value problem (2.1).
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Proof. In the case a = c > 0, we just use the invariance in time of the
Hamiltonian and the invariance of set A under the flow. In fact, if Ψ0 ∈ X 1

k , by
the local existence result, there is a maximal existence time T0 > 0 and a unique
solution Ψ ∈ C([0, T0),X 1

k ) of the initial value problem (2.1) with initial condition
Ψ(0, ·) = Ψ0. So,H(Ψ(t)) = H(Ψ0) < δ0. Moreover, we also have thatH1(Ψ(t)) > 0
and

E(Ψ(t)) ≤
(

2(p + 2)

p

)
H(Ψ0) <

(
2(p + 2)

p

)
δ0.

This implie from (3.2) that for t ∈ [0, T0),

‖Ψ(t)‖2X1
k
≤ K(b, d, μ)E(Ψ(t)) <

(
2(p + 2)

p

)
K(b, d, μ)δ0.

In other words, the solution Ψ is bounded in time on the space X 1
k and that for any

finite T0 < ∞ we are able to conclude that

lim
t→T−

0

∥∥Ψ(t)
∥∥2

X1
k

< ∞.

In the casoe a = c = 0, we are going to use a density argument. Let s0 > 3
2

be
fixed, then by there exists Ψ0,n ∈ X s0

k such that

Ψ0,n → Ψ0 in X 1
k , as n→∞.

From the local existence result, for each n ∈ Z+ there is T0,n > 0 and a unique
solution Ψn of the Cauchy problem for the Boussinesq system (1.1) with initial
condition Ψn(0, ·) = Ψ0,n. On the other hand, there exists n0 ∈ Z+ such that
H(Ψ0,n) < δ0 and H1(Ψ0,n) > 0 for n ≥ n0. Now, for n ≥ n0 we have that

H(Ψn) =

(
2(p + 2)

p

)
E (Ψn) +

(
1

p + 2

)
H1(Ψn) = H(Ψ0,n) < δ0.

From the invariant under the flow of the set A, we have that H1(Ψn) > 0 for n ≥ n0

. Then we also have that

E(Ψn) ≤
(

2(p + 2)

p

)
H(Ψ0,n) <

(
2(p + 2)

p

)
δ0.

Then using (3.2), we get for n ≥ n0 and t ∈ [0, T0,n) that

‖Ψn‖2X1
k
≤ KE(Ψn) <

(
2(p + 2)

p

)
Kδ0,

implying that {Ψn}k is bounded sequence in the space X 1
k and that for any finite

T0 < ∞ and n ≥ n0 we are able to conclude that

lim
t→T−

0

∥∥Ψn

∥∥2

X1
k

<∞.

In other words, for n ≥ n0 we have that Ψn can be extended in time. Now, since
{Ψn} is bounded sequence in X 1

k , we have for some subsequence (denoted the same)
that there is Ψ ∈ X 1

k such that Ψn ⇀ Ψ (weakly) in X 1
k , as n→∞. Moreover, it is

easy to see that Ψ ∈ C
(
[0,∞), X 1

k

)
is a weak solution of the Cauchy problem for

the system (1.1) satisfying Ψ(·, 0) = Ψ0. �

As a consequence of the previous result, we are able to establish that the Cauchy
problem associated with the Boussinesq system (1.1) has global solution in time for
initial data Ψ0 ∈ H1

k × V2 small enough such that Ψ0 = 0.
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Theorem 3.2. Let p ≥ 1. Then there exists δ > 0 such that for any Ψ0 =
(η0, Φ0) ∈ X 1

k with ‖Ψ0‖X1
k
≤ δ, the initial value problem (2.1) has a unique global

solution

Ψ ∈ C
(
[0,∞),X 1

k

) ∩ C1
(
[0,∞),X 0

k

)
.

Proof. If G(Ψ0) ≥ 0, then we have that H1(Ψ0) = E(Ψ0)+
(

p+2
2

)
G(Ψ0) > 0.

Now, If G(Ψ0) < 0, then we see from (3.2) that

H1(Ψ0) = E(Ψ0) +

(
p + 2

2

)
G(Ψ0)

≥ K−1(b, d, μ)

(
‖Ψ0‖2X1

k
+

(
p + 2

2

)
K(b, d, μ)G(Ψ0)

)
.

Thus, for ‖Ψ0‖2X1
k

sufficiently small we would have H1(Ψ0) > 0, since

G(Ψ0) = O
(
E(Ψ0)

p+2

2

)
= O

(
‖Ψ0‖p+2

X1
k

)
.

From (3.2), (3.1) and (3.5) we see that there exists K1(b, d, μ, ε, p) > 0 such that

H(Ψ0) ≤ K1(b, d, μ, ε, p)
(
1 + ‖Ψ0‖p

X1
k

)
‖Ψ0‖2X1

k
,

and from (3.2) we have that

E(Ψ0) ≤ K(b, d, μ)‖Ψ0‖2X1
k
.

Hence, we choose δ > 0 in a such way that

K1(b, d, μ, ε, p) (1 + δp) δ2 < δ0 and K(b, d, μ)δ2 <

(
2(p + 2)

p

)
δ0.

Let Ψ0 ∈ X 1
k be such that ‖Ψ0‖X1

k
≤ δ, then we see that H(Ψ0) < δ0. Moreover,

from the Sobolev type inequality (3.5) we obtain that

|G(Ψ0)| ≤ K
p+2

2
p

(E(Ψ0)
) p

2 E(Ψ0)

< K
p+2

2
p

(
2(p + 2)

p
δ0

)p

2

E(Ψ0)

<

(
p + 2

2

)
E(Ψ0).

Then from (3.6) we have that H1(Ψ0) > 0 and the conclusion follows from the
previous lemma. �

4. Existence of periodic travelling waves via the Arzela-Ascoli Theorem

In this section we will establish the existence of periodic travelling waves for
the 1D-Boussinesq system with a = c ≥ 0, b, d > 0 and wave speed ω satisfying
0 < |ω| < ω0, where ω0 = min

{
1, d

a , b
a

}
for a = 0 and ω0 = 1 for a = 0. We

will see that periodic travelling waves are characterized as critical points of some
functional, for which the existence of critical points follows as a consequence of the
Arzela-Ascoli Theorem, the coerciveness of action functional and the fact that the
action functional is (sequentially) weakly lower semi-continuous in an appropriate
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subset. By a travelling wave solution we shall mean a solution (η, Φ) of (1.1) of the
form

η(t, x) =
1

ε1/p
u

(
x− ωt√

μ

)
, Φ(t, x) =

√
μ

ε1/p
v

(
x− ωt√

μ

)
.

It is straightforward to see that the travelling wave profile (u, v) should satisfy the
system

(4.1)

⎧⎨⎩
bv′′′′ − v

′′

+ ω (u′ − au′′′)− [u (v′)
p ]′

= 0,

u− du′′ − ω (v′ − av′′′) + 1
p+1

(v′)
p+1

= 0.

We note that the existence of k-periodic travelling waves for the system (1.1) is a
consequence of a variational approach in the sense that periodic solutions (u, v) of
the system (4.1) are critical points of the action functional Jω,k given by

Jω,k(u, v) = Ik(u, v) + G1,k(u, v) + G2,k(u, v),

where the functionals Ik, G1,k, and G2,k are defined by

Ik(u, v) =

∫ k

0

[
u2 + d(u′)2 + (v′)2 + b(v′′)2

]
dξ,

G1,k(u, v) = −2ω

∫ k

0

(uv′ + au′v′′) dξ,

G2,k(u, v) =
2

p + 1

∫ k

0

u(v′)p+1 dξ,

Hereafter, we will say that weak solutions for (4.1) are critical points of the func-
tional Jω,k. A direct computation shows for Σk = Ik + G1,k that〈

J ′ω,k(v), v
〉

= 2Ik(v) + 2G1,k(v) + (p + 2)G2,k(v)

= 2Σk(v) + (p + 2)G2,k(v)

= 2Jω,k(v) + pG2, k(v).(4.2)

Moreover, on any critical point w, we have that

Jω,k(v) =

(
p

p + 2

)
Σk(v),(4.3)

Jω,k(v) = −
(p

2

)
G2,k(v),(4.4)

Σk(v) = −
(

p + 2

2

)
G2,k(v).(4.5)

We see that the appropriate space to look for k-periodic travelling waves is Xk :=
H1

k × Vk, where H1
k = H1

k(R) is the space of functions k-periodic ψ ∈ L2
k(R) such

that ψ′ ∈ L2
k(R), and the space Vk as the closure of the C∞k (R) (periodic C∞

functions of period k) with respect to the norm given by

‖ϕ‖2Vk
:=

∫ k

0

[
(ϕ′)2 + (ϕ′′)2

]
dξ.
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Note that Vk and Xk are Hilbert spaces with inner products given respectively by

(u, v)H1
k
(R) = (u, v)L2

k
(R) + (u′, v′)L2

k
(R),

(u, v)Vk
= (u′, v′)H1

k
(R),

(u, v)Xk
= (u, v)H1

k
(R) + (u, v)Vk

.

In particular,

‖(u, v)‖2Xk
= ‖(u, v)‖2H1

k
(R) + ‖(u, v)‖2Vk

.

It is easy to see that the functionals Ik, G1,k and G2,k are smooth maps from Xk

to R. For instance, if f ∈ H1
k has mean zero in [0, k], then for q ≥ 1 we have that

|f(ξ)| ≤ C(k)‖f ′‖L2
k
, ‖f‖L

q

k
≤ C(k)‖f‖H1

k
.

On the other hand, from Cauchy and Young inequalities, we get that

|G1,k(u, v)| ≤ (2 + a)|ω|
∫ k

0

(|u|2 + |u′|2 + |v′|2 + |v′′|2) dξ(4.6)

≤ |ω|C(k, a)‖(u, v)‖2Xk
,

|G2,k(u, v)| ≤ 2

p + 1

(∫ k

0

|u|2 dξ

)1
2
(∫ k

0

|v′|2(p+1) dξ

) 1
2

(4.7)

≤ 2

p + 1
‖(u, v)‖p+2

Xk
,

since v′ ∈ H1
k has trivially mean zero on [0, k]. Now, from (4.6), (4.7) and for

0 < |ω| < ω0, with ω0 = min
{
1, d

a , b
a

}
for a = 0 and ω0 = 1 for a = 0, we have that∫ k

0

{
(1− |ω|)u2 + (d− a|ω|) (u′)2 + (1− |ω|)(v′)2 + (b− a|ω|)2 (v′′)2

}
dξ

≤ Σk(u, v)

and∫ k

0

{
(1 + |ω|)u2 + (d + a|ω|) (u′)2 + (1 + |ω|)(v′)2 + (b + a|ω|)2 (v′′)2

}
dξ

≥ Σk(u, v),

which imply that
√

Σk is like a norm in Xk, since there is some positive constant
C1(ω, a, b, d) > 1 such that

(4.8) C−1
1 ‖(u, v)‖2Xk

≤ Σk(u, v) ≤ C1‖(u, v)‖2Xk
.

Lemma 4.1. Assume that the sequence (un, vn)n ⊂ Xk converges weakly in Xk

to (u0, v0) ∈ Xk. If (v′n)n converges uniformly to v′0 on [0, k], we have that

(4.9) lim inf
n→∞

Jc,k(un, vn) ≥ Jc,k(u0, v0).

Proof. Recall that Jc,k = Σk + G2,k. Now, since Σk is like a norm in Xk, so
is convex. More exactly, for λ ∈ (0, 1) and v, w ∈ Xk we have that

(4.10) Σk(un, vn) ≥ Σk(λ(u0, v0)) + Σ′k(λ(u0, v0))(un − λu0, vn − λv0).
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On the other hand, we have that

Σ′k(u, v)((z, w))

= 2

∫ k

0

(uz + du′z′ + v′w′ + bv′′w′′ − ω(v′z + uw′)− a(u′w′′ + v′′z′)) dξ.

From previous remark, we have that

Σ′k(λ(u0, v0))((un − λu0, vn − λv0))

= 2λ

∫ k

0

[
u0(un − λu0) + du′0(u

′
n − λu′0) + v′(v′n − λv′0) + bv′′(v′′n − λv′′0 )

− ω (v′0(un − λu0) + u0(v
′
n − λv′0)) − a(u′0(v

′′
n − λv′′0 ) + v′′0 (u′n − λu′0))

]
dξ.

Note using that the sequences (un)n and (v′n)n converge weakly in H1
k to u0 and

v′0 in H1
k, we conclude have that

lim
n→∞

Σ′k(λ(u0, v0))((un − λu0, vn − λv0)) = 2λ(1− λ)Σk(u0, v0).

In other words, we have that

lim inf
n→∞

Σk(un, vn) ≥ Σk(λ(u0, v0)) + 2λ(1− λ)Σk(u0, v0) = λ(2 − λ)Σk(u0, v0),

which implies after taking λ→ 1− that

(4.11) lim inf
n→∞

Σk(un, vn) ≥ Σk(u0, v0).

Now, we need to observe that

G2,k(un, vn) =
2

p + 1

(∫ k

0

un

(
(v′n)

p+1 − (v′0)
p+1
)

dξ +

∫ k

0

un (v′0)
p+1

dξ

)
.

Since we know that (v′n)
p+1

, (v′0)
p+1 ∈ L2 [0, k], we conclude that

lim
n→∞

∫ k

0

un (v′0)
p+1

dξ =

∫ k

0

u0 (v′0)
p+1

dξ.

Moreover, using the uniform convergence of (v′n)n to v′0 we also have that∣∣∣∣∣
∫ k

0

un

(
(v′n)

p+1 − (v′0)
p+1
)

dξ

∣∣∣∣∣
≤ C(p)

∫ k

0

|un| (|v′n|+ |v′0|)p |v′n − v′0| dξ

≤ C1(p) sup
[0,k]

|v′n − v′0|‖un‖L2

(‖v′n‖p
L2p + ‖v′0‖p

L2p

)
≤ C1(p) sup

[0,k]

|v′n − v′0|‖un‖H1
k

(‖vn‖p
Vk

+ ‖v0‖p
Vk

)
.

which means, after recalling that the sequence (un, vn)n is bounded, that

lim
n→∞

G2,k(un, vn) =
2

p + 1

∫ k

0

u0 (v′0)
p+1

dξ = G2,k(u0, v0).

As a consequence of previous remarks, we conclude that

lim inf
n→∞

Jω,k(un, vn) = lim inf
n→∞

(Σk(un, vn) + G2,k(un, vn)) ≥ Jω,k(u0, v0).

�
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We must recall that H1
k is the space of absolutely continuous functions u which

are k-periodic and such that u′ ∈ L2
loc(R). For α > 0, we consider the weakly closed

subset of Xk

Xk,α = {(ψ, ϕ) ∈ Xk : |ϕ′(ξ)| ≤ α, a. e. ξ ∈ R}
Lemma 4.2. 1.- There are positive constants C1 and C2 such that for any

Φ ∈ Xk, we have that

(4.12) Jω,k(Φ) ≥ C1‖Φ‖2Xk
−C2‖Φ‖p+2

Xk
.

2.- There exits α0 > 0 such that for 0 < α < α0 the functional Jω,k is coercive on
Xk,α. More exactly, there is C3 > 0 such that for Φ ∈ Xk,α,

(4.13) Jω,k(Φ) ≥ C3‖Φ‖2Xk
.

Proof. 1.- From inequalities (4.7) and (4.8), there are positive constants C1

and C2 such that

Jω,k(Φ) = Σk(Φ) + G2,k(Φ) ≥ C−1
1 ‖Φ‖2Xk

−C2‖Φ‖p+2
Xk

.

2.- Let (ψ, ϕ) ∈ Xk,α. Then |ϕ′(ξ)| ≤ α for a. e. ξ ∈ R.

|G2,k(ψ, ϕ)| ≤ 2

p + 1

∫ k

0

|ψ| |ϕ′|p+1
dξ ≤ 2αp

p + 1

∫ k

0

|ψ| |ϕ′| dξ ≤ αpC(p)‖(ψ, ϕ)‖2Xk
.

So, using inequality (4.8) and previous one, we have that

Jω,k(ψ, ϕ) ≥ 1

C1
‖(ψ, ϕ)‖2Xk

− αpC(p)‖(ψ, ϕ)‖2Xk
=

(
1

C1
− αpC(p)

)
‖(ψ, ϕ)‖2Xk

,

as desired. �

Our goal now is to show the existence of a non trivial critical point for Jω,k.
The result will be a direct consequence of the coerciveness of Jω,k and that Jω,k is
(sequentially) weakly lower semi-continuous on Xk,α for 0 < α < α0. We will use
the following result,

Theorem 4.1. ([23]). Let X be a Hilbert space and let M ⊂ X be a weakly
closed subset of X. Suppose that E : M → R ∪ {+∞} is coercive and that is (se-
quentially) weakly lower semi-continuous on M with respect to X, that is, suppose
the following conditions are fulfilled:

(1) E(u) →∞, as ‖u‖ → ∞, with u ∈M .
(2) For any u ∈ M , any sequence (un)n in M such that un ⇀ u (weakly) in

X there holds:

E(u) ≤ lim inf
n→∞

E(un).

Then E is bounded below on M and attains its minimum in M .

Now, we are ready to establish the existence of a periodic travelling characterize
as a critical point of the functional Jω,k.

Theorem 4.2. For 0 < α < α0, Jω,k has a minimum over Xk,α.

Proof. We will verify that Jω,k satisfies the hypotheses in previous Theorem.
Now, it is straightforward to check that Xk,α is weakly closed subset of Xk. In fact,
let (ψ, ϕ)n ⊂ Xk,α be a sequence that converges weakly to (ψ0, ϕ0). Then we have
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that the sequence (ψ, ϕ)n is bounded in Xk. Now, since ϕ′n ∈ H1
k has mean zero on

[0, k], we know that

|ϕ′n(x)− ϕ′n(y)| ≤
∫ x

y

|ϕ′′n(r)| dr ≤ |x− y| 12 ‖(ψn, ϕn)‖Xk
≤ M |x− y| 12 .

From Arzela-Ascoli Theorem we have for some subsequence (denoted equal) that
(ϕ′n)n converges uniformly to ϕ′0 on [0, k], since we have that |ϕ′n(ξ)| ≤ α for a. e.
ξ ∈ R and for all n ∈ N. From this fact and the uniform convergence of (ϕ′n)n, we
conclude that |ϕ′0(ξ)| ≤ α for a. e. ξ ∈ R. In other words, ϕ0 ∈ Xk,α, meaning
that Xk,α is weakly closed subset of Xk. Now note that the coerciveness property of
Jω,k and condition (1) are obtained using the inequality (4.13) in previous lemma.
We need now to verify condition (2). Let (ψ0, ϕ0) ∈ Xk,α and let (ψ, ϕ)n ⊂ Xk

such that (ψ, ϕ)n ⇀ (ψ0, ϕ0) (weakly) in Xk,α. This sequence (ψ, ϕ)n is bounded
Xk and the same type of arguments show that (ϕ′n)n converges uniformly to ϕ′0 on
[0, k] (up to a subsequence), so by Lemma 4.1 we conclude that

lim inf
n→∞

Jω,k(ψn, ϕn) ≥ Jω,k(ψ0, ϕ0).

On the other hand, by Lemma 4.2 part (2), we have condition (2) in Theorem 4.1.
Then, from Theorem 4.1 we conclude that Jω,k attains a minimum over Xk,α. �
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Departamento de Matemáticas, Universidad del Valle, A.A. 25360, Cali-Colombia

E-mail address : jose.quintero@correounivalle.edu.co
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