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Abstract. In this paper we study nonlinear problems for Ornstein-Uhlenbeck
operators

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd, d > 2,

where the matrix A ∈ RN,N is diagonalizable and has eigenvalues with positive
real part, the map f : RN → RN is sufficiently smooth and the matrix S ∈ Rd,d

in the unbounded drift term is skew-symmetric. Nonlinear problems of this
form appear as stationary equations for rotating waves in time-dependent re-
action diffusion systems. We prove under appropriate conditions that every
bounded classical solution v? of the nonlinear problem, which falls below a cer-
tain threshold at infinity, already decays exponentially in space, in the sense

that v? belongs to an exponentially weighted Sobolev space W 1,p
θ (Rd, RN ).

Several extensions of this basic result are presented: to complex-valued sys-
tems, to exponential decay in higher order Sobolev spaces and to pointwise
estimates. We also prove that every bounded classical solution v of the eigen-
value problem

A4v(x) + 〈Sx,∇v(x)〉+ Df(v?(x))v(x) = λv(x), x ∈ Rd, d > 2,

decays exponentially in space, provided Re λ lies to the right of the essential
spectrum. As an application we analyze spinning soliton solutions which occur
in the Ginzburg-Landau equation. Our results form the basis for investigating
nonlinear stability of rotating waves in higher space dimensions and truncations
to bounded domains.
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1. Introduction

In the present paper we study systems of reaction-diffusion equations

(1.1)
ut(x, t) = A4u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 2,

u(x, 0) = u0(x) , t = 0, x ∈ Rd,

where A ∈ RN,N is a diffusion matrix, f : RN → RN is a sufficiently smooth
nonlinearity, u0 : Rd → RN are the initial data and u : Rd × [0,∞) → RN denotes
a vector-valued solution.

We are mainly interested in rotating wave solutions of (1.1) which are of the
form

u?(x, t) = v?(e−tSx), t > 0, x ∈ Rd, d > 2(1.2)

with space-dependent profile v? : Rd → RN and skew-symmetric matrix S ∈ Rd,d.
The skew-symmetry of S implies that e−tS describes a rotation in Rd, and hence u?

is a solution rotating at constant velocity while maintaining its shape determined
by v?. The profile v? is called (exponentially) localized, if it tends (exponentially)
to some constant vector v∞ ∈ RN as |x| → ∞.

Transforming (1.1) via u(x, t) = v(e−tSx, t) into a co-rotating frame yields the
evolution equation

(1.3)
vt(x, t) =A4v(x, t) + 〈Sx,∇v(x, t)〉+ f(v(x, t)), t > 0, x ∈ Rd, d > 2,

v(x, 0) =u0(x) , t = 0, x ∈ Rd.

The diffusion and drift term are given by

A4v(x) := A

d∑
i=1

∂2

∂x2
i

v(x) and 〈Sx,∇v(x)〉 :=
d∑

i=1

d∑
j=1

SijxjDiv(x).(1.4)

The pattern v? itself appears as a stationary solution of (1.3), i.e. v? solves the
steady state problem

A4v?(x) + 〈Sx,∇v?(x)〉+ f(v?(x)) = 0, x ∈ Rd, d > 2.(1.5)

We may write (1.5) as [L0v?](x) + f(v?(x)) = 0 by introducing the Ornstein-
Uhlenbeck operator

[L0v] (x) := A4v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd.(1.6)

By the skew-symmetry of S we can write the drift term in terms of angular deriva-
tives as follows

〈Sx,∇v(x)〉 =
d−1∑
i=1

d∑
j=i+1

Sij

(
xj

∂

∂xi
− xi

∂

∂xj

)
v(x).(1.7)

The aim of this paper is to derive suitable conditions guaranteeing that every
localized rotating wave of (1.1) is already exponentially localized. More precisely,
the main theorem states the following: if the difference v? − v∞ of a rotating wave
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to its far field value falls below a certain threshold at infinity, then it decays ex-
ponentially in space. The decay is specified by showing that v? − v∞ belongs to
some exponentially weighted Sobolev space W 1,p

θ (Rd, RN ), 1 < p < ∞. Our key
assumption requires all eigenvalues of the Jacobian Df(v∞) to have negative real
part.

We extend this result to complex-valued systems and then apply it to prove
exponential decay of localized spinning solitons arising in the cubic-quintic complex
Ginzburg-Landau equation (QCGL), [14]. Figure 1(a) shows the real part of a
spinning soliton v? in two space dimensions, while Figure 1(b) shows the isosurfaces
of the real part of a spinning soliton in three space dimensions. Both of these ro-
tating waves are exponentially localized, as our results will show. Two nonlocalized
rotating waves are illustrated in Figure 1(c)-(d). Figure 1(c) shows the real part of
a spiral wave in two space dimensions and Figure 1(d) the isosurfaces of the real
part of an untwisted scroll wave. In Section 6 below we will discuss this example in
more detail.

(a) (b) (c) (d)

Figure 1. Rotating waves of QCGL (6.1). (a) Spinning solitons
for d = 2 with colorbar reaching from −1.6 (blue) to 1.6 (red), (b)
spinning soliton for d = 3 with isosurfaces at values −0.5 (blue)
and 0.5 (red), (c) spiral wave for d = 2 with colorbar reaching
from −1.7 (blue) to 1.7 (red), and (d) scroll wave for d = 3 with
isosurfaces at values −0.5 (blue) and 0.5 (red)

An important issue is to investigate nonlinear stability of rotating waves (more
precisely, stability with asymptotic phase) in reaction diffusion systems, see [5]. A
well known task is to derive nonlinear stability from linear stability of the linearized
operator

[Lv] (x) := [L0v] (x) + Df (v?(x)) v(x), x ∈ Rd.(1.8)

By linear stability (also called strong spectral stability) we mean that the essential
spectrum and the isolated eigenvalues of L lie strictly to the left of the imaginary
axis, except for those on the imaginary axis caused by Euclidean equivariance, [26,
Ch.9]. This requires to study isolated eigenvalues λ ∈ C of the problem

[(λI − L) v] (x) = 0, x ∈ Rd.(1.9)

A further aim of this paper is to prove that every bounded eigenfunction v of
the linearized operator L decays exponentially in space, provided the real parts of
the associated (isolated) eigenvalues λ lie to the right of the essential spectrum.
To be more precise, we show that for such values of λ, every bounded classical
solution v of the eigenvalue problem (1.9) belongs to some exponentially weighted
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Sobolev space W 1,p
θ (Rd, RN ) for some 1 < p < ∞. In particular, we prove that

the eigenfunction v(x) = 〈Sx,∇v?(x)〉 associated to the eigenvalue λ = 0 decays
exponentially in space.

A nonlinear stability result for two dimensional localized rotating patterns was
proved by Beyn and Lorenz in [5]. Their proof requires three essential assumptions:
The matrix Df(v∞) is stable, meaning that all its eigenvalues have a negative real
part. Moreover, strong spectral stability in the sense above is assumed. And finally,
the profile v? of the rotating wave and its derivatives up to order 2 decay to zero
at infinity. Their analysis shows that the decay of the rotating wave itself and the
spectrum of the linearization are both crucial for investigating nonlinear stability.
A corresponding result on nonlinear stability of nonlocalized rotating waves, such
as spiral waves and scroll waves, is still an open problem. The difficulty is related
to the fact that the essential spectrum touches the imaginary axis at infinitely
many points. The spectrum of the linearization at (nonlocalized) spiral waves is
well-known and has been extensively studied by Sandstede, Scheel and Fiedler in
[16, 31, 32].

For numerical computations it is essential to truncate the equations (1.1), (1.3)
and (1.9) to a bounded domain, so that standard approximations, e.g. with finite
elements, apply. The truncation error arising in this process, depends on the bound-
ary conditions. Assuming that a rotating wave is (exponentially) localized, we can
expect the truncation error to be (exponentially) small as well. For this reason,
the exponential decay of rotating waves plays a fundamental role when estimating
errors caused by approximations of rotating waves on bounded domains.

We consider our results on the decay of rotating waves for (1.1) on the whole
Rd as a first step in studying such truncation errors. Despite numerous numerical
simulations of spiral behavior on bounded domains, a rigorous analysis of the errors
caused by spatial truncation seems not to be available.

We emphasize that the results from Section 3-6 are extensions of the results
from the PhD thesis [26]. One major improvement refers to the fact that our main
result Theorem 2.8 avoids the additional assumption v? ∈ Lp(Rd, RN ) from [26,
Thm.1.8] by using ideas from the work [6].

2. Assumptions and main result

2.1. Assumptions and main result. Consider the steady state problem

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd, d > 2,(2.1)

with diffusion matrix A ∈ KN,N and a function f : KN → KN for K ∈ {R, C}.
Recall the Ornstein-Uhlenbeck operator from (1.6) with drift and diffusion term
specified in (1.4).

We define a rotating wave u? as follows:

Definition 2.1. A function u? : Rd × [0,∞) → KN is called a rotating wave
(or rotating pattern) if it has the form

u?(x, t) = v?(e−tS(x− x?)), x ∈ Rd, t ∈ [0,∞),(2.2)

with profile (or pattern) v? : Rd → KN , a skew-symmetric matrix 0 6= S ∈ Rd,d and
x? ∈ Rd. A rotating wave u? is called localized (exponentially localized with decay



SPATIAL DECAY OF ROTATING WAVES IN REACTION DIFFUSION SYSTEMS 195

rate η) if it satisfies

lim
|x|→∞

eη|x| |v?(x)− v∞| = 0 for some v∞ ∈ KN(2.3)

and for η = 0 (η > 0). It is called nonlocalized, if it is not localized in the sense
above.

The vector x? ∈ Rd can be considered as the center of rotation for d = 2 and
as the support vector of the axis of rotation for d = 3. In case d ∈ {2, 3}, S can be
considered as the angular velocity tensor associated to the angular velocity vector
ω ∈ R

d(d−1)
2 containing Sij , i = 1, . . . , d − 1, j = i + 1, . . . , d. Some examples of

rotating patterns are illustrated in Figure 1 and will be treated in Section 6 below.
In the following we will impose various restrictions on the matrix A:

Assumption 2.2. For A ∈ KN,N with K ∈ {R, C} and 1 < p < ∞ consider the
conditions

A is diagonalizable (over C),(A1)

Re σ(A) > 0,(A2)

Re 〈w,Aw〉 > βA ∀w ∈ KN , |w| = 1 for some βA > 0,(A3)

There exists γA > 0 such that for all z, w ∈ KN(A4)

|z|2Re 〈w,Aw〉+ (p− 2)Re 〈w, z〉Re 〈z,Aw〉 > γA|z|2|w|2,

A is invertible and µ1(A) >
|p− 2|

p
,(A5)

(to be read as A = a > 0 in case N = 1, K = R).

Assumption (A1) is a system condition and ensures that all results for scalar
equations can be extended to system cases. This condition is independent of (A2)-
(A5) and is used in [26, 27] to derive an explicit formula for the heat kernel of
L0. A typical case where (A1) holds, is a scalar complex-valued equation when
transformed into a real-valued system of dimension 2 . The positivity condition
(A2) guarantees that the diffusion part A4 is an elliptic operator. All eigenvalues
λ ∈ σ(A) of A lie in the open right half-plane {λ ∈ C | Re λ > 0}. Condition (A2)
guarantees that A−1 exists and that −A is a stable matrix. The strict accretivity
condition (A3) is more restrictive than (A2). In (A3) we use 〈u, v〉 := uT v to
denote the standard inner product on KN . Recall that condition (A2) is satisfied iff
there exists an inner product [·, ·] and some βA > 0 such that Re [w,Aw] > βA forall
w ∈ KN with [w,w] = 1. Condition (A3) ensures that the differential operator L0 is
closed on its (local) domain Dp

loc(L0), see Theorem 2.12 below. The Lp-dissipativity
condition (A4) is more restrictive than (A3) and imposes additional requirements
on the spectrum of A. This condition, which comes originally from [11, 12], is used
in [26, 29] to prove Lp-resolvent estimates for L0. A geometrical meaning of (A4)
can be given in terms of the antieigenvalues of the diffusion matrix A. In [26, 28], it
is proved that condition (A4) is equivalent to the Lp-antieigenvalue condition (A5).
Condition (A5) requires that the first antieigenvalue of A (see [17, 18]), defined by

µ1(A) := inf
w∈KN

w 6=0
Aw 6=0

Re 〈w,Aw〉
|w||Aw|

= inf
w∈KN

|w|=1
Aw 6=0

Re 〈w,Aw〉
|Aw|

,
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is bounded from below by a non-negative p-dependent constant. Condition (A5) is
also equivalent to the following p-dependent upper bound for the (real) angle of A
(cf. [17]),

ΦR(A) := cos−1 (µ1(A)) < cos−1

(
|p− 2|

p

)
∈
(
0,

π

2
]
, 1 < p < ∞.

Therefore, the first antieigenvalue µ1(A) can be considered as the cosine of the
maximal (real) turning angle of vectors mapped by the matrix A. Some special
cases in which the first antieigenvalue can be given explicitly are treated in [28].
We summarize the relationship of (A2)–(A5):

A invertible ⇐= (A2) ⇐= (A3) ⇐= (A4) ⇐⇒ (A5).(2.4)

We continue with the rotational condition (A6) and a smoothness condition
(A7),

Assumption 2.3. The matrix S ∈ Rd,d satisfies

S is skew-symmetric, i.e. S = −ST .(A6)

Assumption 2.4. The function f : RN → RN satisfies

f ∈ C2(RN , RN ).(A7)

Later on we apply our results to complex-valued nonlinearities of the form

(2.5) f : CN → CN , f(u) = g
(
|u|2
)
u,

where g : R → CN,N is a sufficiently smooth function. Such nonlinearities arise for
example in Ginzburg-Landau equations, Schrödinger equations, λ− ω systems and
many other equations from physical sciences, see Section 6. Note, that in this case,
the function f is not holomorphic in C, but its real-valued version in R2 satisfies
(A7) if g ∈ C2. For differentiable functions f : RN → RN we denote by Df the
Jacobian matrix in the real sense.

Assumption 2.5. For v∞ ∈ RN consider the following conditions:

f(v∞) = 0,(A8)

A,Df(v∞) ∈ RN,N are simultaneously diagonalizable (over C),(A9)

Re σ (Df(v∞)) < 0,(A10)

There exists β∞ > 0 such that for all w ∈ KN with |w| = 1(A11)

Re 〈w,−Df(v∞)w〉 > β∞.

The constant asymptotic state condition (A8) requires v∞ to be a steady state
of the nonlinear equation. The system condition (A9) is an extension of Assumption
(A1), and the coercivity condition (A11) is again more restrictive than the spectral
condition (A10).

Definition 2.6. A function v? : Rd → KN is called a classical solution of (2.1)
if

v? ∈ C2(Rd, KN )(2.6)

and v? solves (2.1) pointwise.



SPATIAL DECAY OF ROTATING WAVES IN REACTION DIFFUSION SYSTEMS 197

Later on, we will consider classical solutions v? which are even bounded, i.e.
v? ∈ Cb(Rd, KN ). For matrices C ∈ KN,N with spectrum σ(C) we denote by
ρ(C) := maxλ∈σ(C) |λ| its spectral radius and by s(C) := maxλ∈σ(C) Re λ its spectral
abscissa (or spectral bound). With this notation, we define the following constants
which appear in the linear theory from [26, 27, 29]:

(2.7)

amin :=
(
ρ
(
A−1

))−1
, amax := ρ(A), a0 := −s(−A),

a1 :=
(

a2
max

amina0

) d
2

, b0 := −s(Df(v∞)).

Recall the relations 0 < a0 ≤ βA and 0 < b0 ≤ β∞ to the coercivity constants
from (A3),(A11). Our main tool for investigating exponential decay in space are
exponentially weighted function spaces. For the choice of weight function we follow
[40, Def.3.1]:

Definition 2.7. (1) A function θ ∈ C(Rd, R) is called a weight function of
exponential growth rate η > 0 provided that

θ(x) > 0 ∀x ∈ Rd,(W1)

∃Cθ > 0 : θ(x + y) 6 Cθθ(x)eη|y| ∀x, y ∈ Rd.(W2)

(2) A weight function θ ∈ C(Rd, R) of exponential growth rate η > 0 is called radial
if

∃φ : [0,∞) → R : θ(x) = φ (|x|) ∀x ∈ Rd.(W3)

(3) A radial weight function θ ∈ C(Rd, R) of exponential growth rate η > 0 is called
nondecreasing (or monotonically increasing) provided that

θ(x) 6 θ(y) ∀x, y ∈ Rd with |x| 6 |y|.(W4)

Standard examples of radial weight functions are

θ1(x) = exp (µ|x|) and θ2(x) = cosh (µ|x|) ,

as well as their smooth analogs

θ3(x) = exp
(

µ

√
|x|2 + 1

)
and θ4(x) = cosh

(
µ

√
|x|2 + 1

)
,

for x ∈ Rd and µ ∈ R. Obviously, all these functions are radial weight functions of
exponential growth rate η = |µ| with Cθ = 1. Moreover, θ2, θ4 are nondecreasing
for any µ ∈ R and θ1, θ3 if µ > 0.

With every weight function of exponential growth rate we associate exponen-
tially weighted Lebesgue and Sobolev spaces

Lp
θ(R

d, KN ) :={u ∈ L1
loc(Rd, KN ) | ‖θu‖Lp < ∞},

W k,p
θ (Rd, KN ) :={u ∈ Lp

θ(R
d, KN ) | Dβu ∈ Lp

θ(R
d, KN ) ∀ |β| 6 k},

for every 1 6 p 6 ∞ and k ∈ N0.
With these preparations we can formulate the main result of our paper.

Theorem 2.8 (Exponential decay of v?). Let the assumptions (A4),
(A6)–(A9) and (A11) be satisfied for K = R and for some 1 < p < ∞. More-
over, let amax = ρ(A) denote the spectral radius of A, −a0 = s(−A) the spectral
bound of −A and −b0 = s(Df(v∞)) the spectral bound of Df(v∞). Further, let
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θ(x) = exp
(
µ
√
|x|2 + 1

)
denote a weight function for µ ∈ R. Then, for every

0 < ε < 1 there is a constant K1 = K1(A, f, v∞, d, p, ε) > 0 with the following
property: Every classical solution v? of

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(2.8)

such that

sup
|x|>R0

|v?(x)− v∞| 6 K1 for some R0 > 0,(2.9)

satisfies

v? − v∞ ∈ W 1,p
θ (Rd, RN )

for every exponential decay rate

0 6 µ 6 ε

√
a0b0

amaxp
.(2.10)

Roughly speaking, Theorem 2.8 states that every bounded classical solution v?

which is sufficiently close to the steady state v∞ at infinity, see (2.9), must decay
exponentially in space. The exponential decay is expressed by the fact, that v?−v∞
belongs to an exponentially weighted Sobolev space. Moreover, the theorem gives
an explicit bound for the exponential growth rate, that depends only on p, the
spectral radius of A, and the spectral abscissas of −A and Df(v∞). The role of ε
becomes clear upon noting that K1 → 0 as ε → 1 whereas K1 → K0

1 > 0 as ε → 0.
The stronger the exponential rate, the closer the solution v? has to approach v∞ at
infinity.

2.2. Outline of proof: Decomposition of linear differential operators.
In the following we explain the decomposition of differential operators that leads to
the proof of Theorem 2.8.
Far-Field Linearization. Consider the nonlinear problem

A4v?(x) + 〈Sx,∇v?(x)〉+ f(v?(x)) = 0, x ∈ Rd, d > 2.(2.11)

Let v∞ ∈ RN be the constant asymptotic state satisfying (A8) and let
f ∈ C1(RN , RN ). By the Mean Value Theorem we can write

f(v?(x)) = f(v∞)︸ ︷︷ ︸
=0

+
∫ 1

0

Df(v∞ + t(v?(x)− v∞))dt︸ ︷︷ ︸
=:a(x)

(v?(x)− v∞), x ∈ Rd.

From v? ∈ Cb(Rd, RN ) we deduce a ∈ Cb(Rd, RN,N ). Moreover, since the classical
solution v? solves (2.11) pointwise and v∞ ∈ RN is constant, the difference w? :=
v? − v∞ belongs to C2(Rd, RN ) ∩ Cb(Rd, RN ) and satisfies the linearized equation

[Lw?](x) = A4w?(x) + 〈Sx,∇w?(x)〉+ a(x)w?(x) = 0, x ∈ Rd.(2.12)

In order to study the behavior of solutions to (2.11) as |x| → ∞, we decompose the
variable coefficient a(x) in (2.12).
Decomposition of a. Let a(x) = Df(v∞) + Q(x) with Q defined by

Q(x) :=
∫ 1

0

Df (v∞ + tw?(x))−Df (v∞) dt, x ∈ Rd.
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This yields Q ∈ Cb(Rd, RN,N ) and (2.12) reads as

A4w?(x) + 〈Sx,∇w?(x)〉+ (Df(v∞) + Q(x))w?(x) = 0, x ∈ Rd.(2.13)

Decomposition of Q. Let Q(x) = Qs(x) + Qc(x), where Qs ∈ Cb(Rd, RN,N ) is
small w.r.t. ‖·‖∞ and Qc ∈ Cb(Rd, RN,N ) is compactly supported on Rd, see Figure
2. Then, we arrive at

A4w?(x) + 〈Sx,∇w?(x)〉+ (Df(v∞) + Qs(x) + Qc(x))w?(x) = 0(2.14)

for x ∈ Rd. If we omit the term Qs + Qc in (2.14), the equation (2.14) is called the
far-field linearization.

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

|Q(x)|

|Qs(x)|

|Qc(x)|

K1

R0

|x| = R

Figure 2. Decomposition of Q with data R0 and K1 from Theo-
rem 2.8

Perturbations of Ornstein-Uhlenbeck operator. In order to show exponential
decay for the solution v? of the nonlinear steady state problem (2.11), it is sufficient
to analyze solutions of the linear system (2.14). Abbreviating B∞ := −Df(v∞),
we will study the following linear differential operators:

(2.15)

Lcv = A4v + 〈Sx,∇v〉 −B∞v + Qs(x)v + Qc(x)v,

Lsv = A4v + 〈Sx,∇v〉 −B∞v + Qs(x)v,

L∞v = A4v + 〈Sx,∇v〉 −B∞v,

L0v = A4v + 〈Sx,∇v〉 .

Recall that the drift term 〈Sx,∇v(x)〉 , x ∈ Rd, in the Ornstein-Uhlenbeck operator
L0 has unbounded coefficients and cannot be considered as a lower order term.
Later on, it will be convenient to allow complex coefficients for the operators L0,
L∞, Ls and Lc. Therefore, we rewrite the assumptions (A9)–(A11) as follows:

Assumption 2.9. For B∞ ∈ KN,N consider the conditions

A,B∞ ∈ KN,N are simultaneously diagonalizable (over C), i.e.(A9B∞)

∃Y ∈ CN,N invertible : Y −1AY = ΛA and Y −1B∞Y = ΛB∞ ,

with ΛA = diag(λA
1 , . . . , λA

N ),ΛB∞ = diag(λB∞
1 , . . . , λB∞

N ) ∈ CN,N ,

Re σ(B∞) > 0,(A10B∞)
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There exists β∞ > 0 such that for all w ∈ KN with |w| = 1(A11B∞)

Re 〈w,B∞w〉 > β∞.

Similar comments as those following (A9)–(A11) apply. In addition to (2.7),
we need the constants

(2.16) b0 := −s(−B∞), κ := cond(Y ) (with Y from (A9B∞)),

where cond(Y ) := ‖Y −1‖‖Y ‖ denotes the condition number of Y .

2.3. Constant coefficient perturbations of Ornstein-Uhlenbeck oper-
ators. In the first step we review and collect results from [26, 27, 29, 28] for the
complex-valued Ornstein-Uhlenbeck operator L0 in Lp(Rd, CN ) and its constant
coefficient perturbation L∞.

Assuming (A2), (A6), (A9B∞) for K = C it is shown in [26, Thm.4.2-4.4], [27,
Thm.3.1] that the function H∞ : Rd × Rd × (0,∞) → CN,N defined by

H∞(x, ξ, t) = (4πtA)−
d
2 exp

(
−B∞t− (4tA)−1

∣∣etSx− ξ
∣∣2) ,(2.17)

is a heat kernel of the perturbed Ornstein-Uhlenbeck operator L∞ from (2.15). Un-
der the same assumptions it is proved in [27, Thm.5.3] that the family of mappings

[T∞(t)v] (x) :=

{∫
Rd H∞(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd,(2.18)

generates a strongly continuous semigroup T∞(t) : Lp(Rd, CN ) → Lp(Rd, CN ),
t > 0, for each 1 6 p < ∞, which satisfies the following estimate (see (2.7), (2.16)
for the constants)

‖T∞(t)v‖Lp 6 κa1e
−b0t ‖v‖Lp ∀ t > 0.(2.19)

The semigroup (T∞(t))t>0 is called the Ornstein-Uhlenbeck semigroup if
B∞ = 0. Otherwise, (T∞(t))t>0 is a perturbed Ornstein-Uhlenbeck semigroup.
The strong continuity of the semigroup justifies to introduce its infinitesimal gen-
erator Ap : Lp(Rd, CN ) ⊇ D(Ap) → Lp(Rd, CN ) via

D(Ap) :=
{

v ∈ Lp(Rd, CN ) | Apv := lim
t↓0

T∞(t)v − v

t
exists in Lp(Rd, CN )

}
.

An application of abstract semigroup theory yields the unique solvability of the
resolvent equation

(λI −Ap)v = g, for all g ∈ Lp(Rd, CN ), λ ∈ C, Re λ > −b0 = s(−B∞)(2.20)

in Lp(Rd, CN ) for 1 6 p < ∞, [26, Cor.6.7], [27, Cor.5.5]. Combining (2.18) with
the representation (λI −Ap)

−1
g =

∫∞
0

e−λsT∞(s)gds, then the solution v ∈ D(Ap)
of (2.20) satisfies

v = (λI −Ap)
−1

g =
∫ ∞

0

∫
Rd

e−λsH∞(·, ξ, s)g(ξ)dξds.(2.21)

The following a-priori estimate in exponentially weighted Lp-spaces is based on the
integral expression (2.21) and is taken from [27, Thm.5.7].
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Theorem 2.10 (Existence and uniqueness in weighted W 1,p-spaces). Let the
assumptions (A2), (A6) and (A9B∞) be satisfied for K = C, 1 6 p < ∞, and let
0 < ε < 1 and λ ∈ C with Re λ > −b0 be given. Moreover, let θ ∈ C(Rd, R) be a
radially nondecreasing weight function of exponential growth rate η > 0 with

0 6 η2 6 ε
a0(Re λ + b0)

a2
maxp

2
.

Then, for every g ∈ Lp
θ(Rd, CN ) there exists a unique solution v ∈ D(Ap) of the

resolvent equation

(λI −Ap)v = g, in Lp(Rd, CN ).

The solution satisfies v ∈ W 1,p
θ (Rd, CN ) and the following estimates

‖v‖Lp
θ

6
C0,ε

Re λ + b0
‖g‖Lp

θ
,(2.22)

‖Div‖Lp
θ

6
C1,ε

(Re λ + b0)
1
2
‖g‖Lp

θ
, i = 1, . . . , d,(2.23)

where the λ-independent constants C0,ε, C1,ε are given by

C0,ε =Cθκa1

(
Γ
(

d+1
2

)
Γ
(

d
2

) (πε)
1
2 (1− ε)−

d+1
2 + 2F1

(
d

2
, 1;

1
2
; ε
)) 1

p

,

C1,ε =Cθκ
a

d+1
d

1 π
1
2

a
1
2
min

(
Γ
(

d+1
2

)
Γ
(

d
2

) (1− ε)−
d+1
2 +

dε
1
2

π
1
2

2F1

(
d + 1

2
, 1;

3
2
; ε
)) 1

p

,

with constants a0, a1, amin, amax from (2.7), b0, κ from (2.16) and Cθ from (W2).

Remark 2.11. Above we used the hypergeometric function 2F1, see [25, 15.4].
Moreover, we modified the original constants from [27, Thm.5.7] by using 2F1 (a, b; b; z) =
(1 − z)−a from [25, (15.4.6)] and the Pfaff transformation 2F1 (a, b; c, z) = (1 −
z)−b

2F1

(
c− a, b; c; z

z−1

)
for z ∈ C \ [1,∞). Note that both quantities 2F1

(
d
2 , 1; 1

2 ; ε
)

and 2F1

(
d+1
2 , 1; 3

2 ; ε
)

behave like (1− ε)−
d+1
2 as ε → 1 ([25, (15.4.23)]), which then

also determines the behavior of the constants C0,ε and C1,ε.

So far, we neither have an explicit representation for the maximal domainD(Ap)
in terms of Sobolev spaces, nor do we have the relation between the generator Ap

and the differential operator L∞. For this purpose, one has to solve the identification
problem, which has been done in [29]. Assuming (A2), (A6) and (A9B∞) for K =
C, it is proved in [29, Thm.3.2] that the Schwartz space S(Rd, CN ) is a core of
the infinitesimal generator (Ap,D(Ap)) for any 1 6 p < ∞. Next, one considers
L∞ : Lp(Rd, CN ) ⊇ Dp

loc(L0) → Lp(Rd, CN ) on its domain

Dp
loc(L0) :=

{
v ∈ W 2,p

loc (Rd, CN ) ∩ Lp(Rd, CN ) | L0v ∈ Lp(Rd, CN )
}

.(2.24)

Under the assumption (A3) for K = C, it is shown in [29, Lem.4.1] that (L∞,Dp
loc(L0))

is a closed operator in Lp(Rd, CN ) for any 1 < p < ∞. Then the Lp-dissipativity
condition (A4) is the key assumption which leads to an energy estimate for the
resolvent with respect to the Lp-norm, see [29, Thm.4.4]. The same argument
reappears in Theorem 3.4 below which is an extension of [29, Thm.4.4]. As a di-
rect consequence, the operator L∞ is dissipative in Lp(Rd, CN ), provided β∞ from
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Assumption (A11B∞) satisfies β∞ 6 0, [29, Cor.4.6]. Combining these results one
can solve the identification problem for L∞ as follows (see [29, Thm.5.1]).

Theorem 2.12 (Maximal domain, local version). Let the assumptions (A4),
(A6) and (A9B∞) be satisfied for K = C and for some 1 < p < ∞, then

D(Ap) = Dp
loc(L0)

is the maximal domain of Ap, where Dp
loc(L0) is defined by (2.24). In particular,

Ap is the maximal realization of L∞ in Lp(Rd, CN ), i.e.

Apv = L∞v ∀ v ∈ D(Ap).

Theorem 2.12 shows that, if we restrict 1 < p < ∞ and replace (A2) by the
stronger assumption (A4) in Theorem 2.10, we can write L∞ and Dp

loc(L0) instead
of Ap and D(Ap). This will be crucial in the proof of Theorem 3.2 below. Moreover,
we stress again that it is this theorem into which the Lp-dissipativity condition (A4)
enters, see the comments following Assumption 2.2.

2.4. Bootstrapping and regularity. In Section 3 we study the variable co-
efficient operator

(2.25) [LQv] (x) = A4v(x) + 〈Sx,∇v(x)〉 −B∞v(x) + Q(x)v(x), x ∈ Rd,

and its resolvent equation

(λI − LQ) v = g, in Lp(Rd, CN )(2.26)

for 1 < p < ∞ and for different choices of Q ∈ L∞(Rd, CN,N ). In Section 3.1, we
first derive an existence and uniqueness result for the resolvent equation (2.26) in
Lp(Rd, CN ) for general Q (Theorem 3.1). The proof uses the standard bounded
perturbation theorem from abstract semigroup theory as well as Theorem 2.12. In
Section 3.2, we then analyze the resolvent equation (2.26) for perturbations Q = Qs

which are small w.r.t. ‖·‖L∞ . We prove that the unique solution of (2.26) in
Lp(Rd, CN ) decays exponentially if the inhomogeneity g does (Theorem 3.2). The
proof is based on a fixed point argument and uses the results from Theorem 3.1 and
Theorem 2.10. In Section 3.3, we study differential operators of the form

[LBv] (x) = A4v(x) + 〈Sx,∇v(x)〉 −B(x)v(x), x ∈ Rd,

where the matrix-valued function B ∈ L∞(Rd, CN,N ) satisfies

Re 〈w,B(x)w〉 > cB |w|2 ∀x ∈ Rd ∀w ∈ CN

for some constant cB ∈ R. We consider two different weight functions θ1, θ2 sat-
isfying θ1 ≤ Cθ2, so that Lp

θ2
(Rd, CN ) ⊆ Lp

θ1
(Rd, CN ), e.g. θ2 may grow while θ1

decays. Then we prove uniqueness of solutions v of (λI−LB)v = g in the large space
W 2,p

loc (Rd, CN ) ∩ Lp
θ1

(Rd, CN ) if g is in the small space Lp
θ2

(Rd, CN ), and we derive
resolvent estimates (Theorem 3.4). The proof generalizes the approach from [26,
Thm.5.13] to variable coefficient perturbations and weighted spaces. In Section 3.4
we study the resolvent equation (2.26) for asymptotically small variable coefficient
matrices Q. We prove that if |Q(x)| falls below a certain threshold at infinity, then
every solution v ∈ W 2,p

loc (Rd, CN ) ∩ Lp
θ1

(Rd, CN ) of (2.26) in Lp
loc(Rd, CN ) already

belongs to the small space W 1,p
θ2

(Rd, CN ) if g ∈ Lp
θ2

(Rd, CN ), and Re λ > −β∞
(Theorem 3.5). The idea of the proof is to decompose Q into Q = Qs + Qc,
where Qs ∈ L∞(Rd, CN ) is small w.r.t. ‖·‖L∞ and Qc is compactly supported on
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Rd. Then, Theorem 3.2 implies the existence of a solution in the smaller space
W 2,p

loc (Rd, CN ) ∩ Lp
θ2

(Rd, CN ) and Theorem 3.4 yields the uniqueness in the larger
space W 2,p

loc (Rd, CN ) ∩ Lp
θ1

(Rd, CN ). Note that Theorem 3.5 is the core theorem
which allows us to analyze exponential decay for both, solutions of the nonlinear
problem and solutions of the eigenvalue problem for L.

In Section 4 we prove spatial exponential decay for bounded solutions of the
nonlinear problem (2.11) by employing a bootstrapping argument to the linear
equation (2.12). Shifting the term with the compactly supported coefficient to
the right-hand side, we obtain an inhomogeneity which lies in any weighted Lp-
space. Applying the previous linear theory then provides exponential decay in space
provided the difference |v?(x)− v∞| falls below a certain threshold at infinity. In a
second step, assuming additional regularity of the nonlinearity f and the solution
v?, we show that the higher order derivatives also decay exponentially in space
(Corollary 4.1, Remark 4.2)
(2.27)

v? − v∞ ∈ W k,p
θ (Rd, RN ), if f ∈ Cmax{2,k−1}(RN , RN ), v? ∈ Ck+1(Rd, RN ).

This holds for k ∈ N and p > d
2 in case k > 3, where p is from (A4). In Section 4.3

we combine this result with Sobolev embeddings to deduce that v? − v∞ satisfies
exponentially weighted pointwise estimates (Corollary 4.3)

|Dα(v?(x)− v∞)| 6 C exp(−µ
√
|x|2 + 1) ∀x ∈ Rd, 0 6 µ 6 ε

√
a0b0

amaxp
(2.28)

and for every multi-index α ∈ Nd
0 with d < (k− |α|)p. In Section 4.4 we extend our

main result from Theorem 2.8, Corollary 4.1 and Corollary 4.3 to complex-valued
systems with f as in (2.5) (Corollary 4.5).

In Section 5 we study spatial exponential decay for solutions of the eigenvalue
problem

A4v(x) + 〈Sx,∇v(x)〉+ Df(v?(x))v(x) = λv(x), x ∈ Rd, d > 2.(2.29)

In Section 5.1 we show that every bounded classical solution v of (2.29) decays
exponentially in space, in the sense that v belongs to W 1,p

θ (Rd, RN ), provided that
its associated eigenvalue λ ∈ C satisfies Re λ > −β∞. In Section 5.2 we apply
our result from Section 5.1 to those eigenfunctions which belong to eigenvalues on
the imaginary axis. These eigenfunctions are due to equivariance with respect to
the action of the Euclidean group and can be calculated explicitly in terms of the
profile v?, see Theorem 5.4. In particular, this yields exponential decay of the
eigenfunction v(x) = 〈Sx,∇v?(x)〉 , x ∈ Rd associated with the eigenvalue λ = 0.
As in the nonlinear case we proceed with proving exponential decay of derivatives
of eigenfunctions, first in Sobolev spaces and then in a pointwise sense as in (2.28),
see Theorem 5.1.

In Section 6 we apply the theory to so called spinning solitons of the cubic-
quintic complex Ginzburg-Laundau equation (QCGL)

ut = α4u + u
(
δ + β|u|2 + γ|u|4

)
u,

where u : Rd × [0,∞) → C, d ∈ {2, 3} and α, β, γ, δ ∈ C with Re α > 0. We derive
suitable conditions on the parameters α, β, γ, δ ∈ C such that Theorem 2.10 and
Corollary 4.5 apply. In Section 6.1 we compute the profile and (angular) speed
of the spinning solitons. In Section 6.2 we compute spectra and eigenfunctions of
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the associated eigenvalue problem. In Section 6.3 we compare in a final step the
theoretical decay rates with numerical rates obtained from numerical data on a large
ball. It turns out that the theoretical bounds are surprisingly close to the values
found from numerical computations.

3. Variable coefficient complex Ornstein-Uhlenbeck operators

In this section we analyze the resolvent equation of the differential operator

(3.1) [LQv] (x) = A4v(x) + 〈Sx,∇v(x)〉 −B∞v(x) + Q(x)v(x), x ∈ Rd,

in Lp(Rd, CN ) for 1 < p < ∞ and for different choices of Q ∈ L∞(Rd, CN,N ).

3.1. Solvability and uniqueness of the resolvent equation. Let us as-
sume (A2), (A6) and (A9B∞) for K = C and let (Ap,D(Ap)) denote the generator
of the strongly continuous semigroup (T∞(t))t>0 from Section 2.3 on Lp(Rd, CN )
for some 1 6 p < ∞. Let us introduce the bounded operator

Qp : Lp(Rd, CN ) → Lp(Rd, CN ) with [Qpv] (x) := Q(x)v(x), x ∈ Rd.

Then the bounded perturbation theorem [15, III.1.3] implies that

Bp := Ap +Qp with D(Bp) := D(Ap)

generates a strongly continuous semigroup (TQ(t))t>0 in Lp(Rd, CN ) satisfying

‖TQ(t)v‖Lp 6 κa1e
(−b0+κa1‖Qp‖)t ‖v‖Lp 6 κa1e

(−b0+κa1‖Q‖L∞ )t ‖v‖Lp ∀ t > 0,

where we used (2.19) and the estimate ‖Qp‖ 6 ‖Q‖L∞ of the Lp-operator norm.
Then an application of [15, II.1.10] yields that the resolvent equation

(λI − Bp) v = g, in Lp(Rd, CN )(3.2)

for λ ∈ C with Re λ > −b0 + κa1 ‖Q‖L∞ and g ∈ Lp(Rd, CN ) admits a unique
solution v ∈ D(Ap) which satisfies the resolvent estimate

‖v‖Lp 6
κa1

Re λ− (−b0 + κa1 ‖Q‖L∞)
‖g‖Lp .

If we restrict 1 < p < ∞ and assume the stronger assumption (A4) (or equivalently
(A5)) instead of (A2), an application of Theorem 2.12 yields that
D(Bp) := D(Ap) = Dp

loc(L0) and Bpv := Apv + Qpv = L∞v + Qv = LQ for all
v ∈ D(Bp). Therefore we can write in the following LQ and Dp

loc(L0) instead of Bp

and D(Bp). Summarizing, we obtain the following result.

Theorem 3.1 (Existence and uniqueness in weighted Lp-spaces). Let the as-
sumptions (A4), (A6), (A9B∞) and Q ∈ L∞(Rd, CN,N ) be satisfied for K = C and
for some 1 < p < ∞. Moreover, with constants a1 from (2.7), b0, κ from (2.16),
let ω := −b0 + κa1 ‖Q‖L∞ and λ ∈ C with Re λ > ω be given. Then, for every
g ∈ Lp(Rd, CN ) the resolvent equation

(λI − LQ) v = g

admits a unique solution v ∈ Dp
loc(L0). Moreover, the following resolvent estimate

holds:

‖v‖Lp 6
κa1

Re λ− ω
‖g‖Lp .
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3.2. Exponential decay for small perturbations. In the following we use
the constants a0, a1, amax, amin from (2.7), b0, κ from (2.16) and C0,ε, C1,ε from
Theorem 2.10 without further reference.

Theorem 3.2 (Existence and uniqueness in weighted W 1,p-spaces). Let the
assumptions (A4), (A6), (A9B∞) and (A10B∞) be satisfied for K = C and for some
1 < p < ∞. Moreover, let 0 < ε < 1, θ ∈ C(Rd, R) be a radially nondecreasing
weight function of exponential growth rate

0 6 η 6 ε

√
a0b0

amaxp
,(3.3)

and let Qs ∈ L∞(Rd, CN,N ) satisfy

‖Qs‖L∞ 6
εb0

2
min

{
1

κa1
,

1
C0,ε

}
.(3.4)

Further, let λ ∈ C with Re λ > −(1− ε)b0 and g ∈ Lp
θ(Rd, CN ).

Then there exists a unique solution v ∈ Dp
loc(L0) of the resolvent equation

(λI − Ls)v = g, in Lp(Rd, CN ),

which satisfies v ∈ W 1,p
θ (Rd, CN ). Moreover, the following estimates hold:

‖v‖Lp
θ

6
2C0,ε

Re λ + b0
‖g‖Lp

θ
,(3.5)

‖Div‖Lp
θ

6
2C1,ε

(Re λ + b0)
1
2
‖g‖Lp

θ
, i = 1, . . . , d.(3.6)

Proof. Our proof proceeds in three steps.
1. Existence and uniqueness in Lp(Rd, CN ) (by Theorem 3.1): Since θ is nonde-

creasing we have g ∈ Lp
θ(Rd, CN ) ⊆ Lp(Rd, CN ), and due to Re λ > −(1 − ε)b0

and (3.4) we have

Re λ > −(1− ε)b0 > −b0 +
ε

2
b0 + κa1 ‖Qs‖L∞ > −b0 + κa1 ‖Qs‖L∞ .

Thus, an application of Theorem 3.1 implies that there exists a unique solution
v1 ∈ Dp

loc(L0) of (λI−Ls)v = g in Lp(Rd, CN ). In order to verify that v1 belongs
to W 1,p

θ (Rd, CN ) and satisfies the inequalities (3.5) and (3.6) we must analyze
(λI − Ls)v = g in Lp

θ(Rd, CN ).

2. Existence in Lp
θ(Rd, CN ) (by a fixed point argument): Our aim is to show that

the equation

v = (λI − L∞)−1
g + (λI − L∞)−1

Qsv =: Fv(3.7)

in Lp
θ(Rd, CN ) has a unique fixed point v2 ∈ Lp

θ(Rd, CN ) which even belongs
to Dp

loc(L0) and agrees with v1. For this purpose, consider in Lp(Rd, CN ) the
equation

(λI − L∞) u = g + Qsv, given v ∈ Lp
θ(R

d, CN ).(3.8)

First note, that the assumptions of Theorem 2.12 are satisfied. This allows us
to write L∞ and Dp

loc(L0) instead of Ap and D(Ap) in Theorem 2.10. Further,
Re λ > −(1− ε)b0 and equation (3.3) imply

0 6 η2 6 ε2 a0b0

a2
maxp

2
6 ε

a0(Re λ + b0)
a2
maxp

2
.
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Then Theorem 2.10 yields a unique solution u ∈ Dp
loc(L0) of (3.8) which satisfies

u ∈ Lp
θ(Rd, CN ). This shows that F maps Lp

θ(Rd, CN ) into itself and satisfies
Fv ∈ Dp

loc(L0) for every v ∈ Lp
θ(Rd, CN ). Applying (λI − L∞)−1 to both sides

in (3.8) shows u = Fv with F defined in (3.7). Moreover, Fv ∈ Dp
loc(L0) ∩

Lp
θ(Rd, CN ). The linear part of F is a contraction due to (2.22) and (3.4)∥∥∥(λI − L∞)−1

Qsv
∥∥∥

Lp
θ

6 q ‖v‖Lp
θ

∀ v ∈ Lp
θ(R

d, CN )

with Lipschitz constant

0 6 q :=
C0,ε

Re λ + b0
‖Qs‖L∞ 6

C0,ε

εb0
‖Qs‖L∞ 6

1
2

< 1.(3.9)

Consequently, F is a contraction in Lp
θ(Rd, CN ). Thus, F has a unique fixed

point v2 ∈ Lp
θ(Rd, CN ) satisfying v2 = Fv2 ∈ Dp

loc(L0). Since Lp
θ(Rd, CN ) ⊆

Lp(Rd, CN ), the equality Fv2 = v2 holds in Lp(Rd, CN ) as well, and applying
(λI − L∞) to both sides yields (λI − Ls)v2 = g in Lp(Rd, CN ). By the unique
solvability of this equation we conclude v := v1 = v2 ∈ Lp

θ(Rd, CN ).

3. Lp
θ- and W 1,p

θ -estimates (by contraction mapping principle and bootstrapping):
The Lp

θ-estimate follows from the contraction mapping principle and the esti-
mates (2.22), (3.9)

‖v‖Lp
θ

6
1

1− q
‖F0‖ 6

2C0,ε

Re λ + b0
‖g‖Lp

θ
.

Finally, the W 1,p
θ -estimate is proved by bootstrapping using the Lp

θ-estimate
(3.5), the smallness condition (3.4) and (2.23) for every i = 1, . . . , d

‖Div‖Lp
θ

6
C1,ε

(Re λ + b0)
1
2

(
‖g‖Lp

θ
+ ‖Qs‖L∞ ‖v‖Lp

θ

)
6

C1,ε

(Re λ + b0)
1
2

(1 + 2q) ‖g‖Lp
θ

6
2C1,ε

(Re λ + b0)
1
2
‖g‖Lp

θ
.

�

3.3. Exponentially weighted resolvent estimates for variable coeffi-
cient operators. Consider the differential operator

[LBv] (x) := A4v(x) + 〈Sx,∇v(x)〉 −B(x)v(x), x ∈ Rd.

The following Lemma 3.3 is crucial to derive energy estimates for LB in exponen-
tially weighted Lp-spaces, see Theorem 3.4 below. The result is proved in [29,
Lem.4.2], [26, Lem.5.12], it is a vector-valued and complex-valued version of [20,
Lem.2.1].

Lemma 3.3. Let the assumption (A3) be satisfied for K = C. Moreover, let
Ω ⊂ Rd be a bounded domain with a C2-boundary or Ω = Rd, 1 < p < ∞, v ∈
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W 2,p(Ω, CN ) ∩W 1,p
0 (Ω, CN ) and η ∈ C1

b (Ω, R) be nonnegative, then

−Re
∫

Ω

ηvT |v|p−2A4v >Re
∫

Ω

η|v|p−2
d∑

j=1

Djv
T
ADjv1{v 6=0}

+Re
∫

Ω

vT |v|p−2
d∑

j=1

DjηADjv

+(p− 2)Re
∫

Ω

η|v|p−4
d∑

j=1

Re
(
Djv

T
v
)

vT ADjv1{v 6=0}.

Some care has to be taken when using this estimate. By a slight abuse of
notation, the term |v|q1{v 6=0} in the integrands should be read for powers q < 0 as
follows [

|v|q1{v 6=0}
]
(x) =

{
|v(x)|q, |v(x)| > 0,

0, v(x) = 0.

The proof of Lemma 3.3 shows by using Lebesgue’s dominated convergence and
Fatou’s lemma that the integrals involving 1{v 6=0} exist for 1 < p < ∞, which is
nontrivial in case 1 < p < 2.

In the following theorem we prove resolvent estimates for LB in exponentially
weighted Lp-spaces. The theorem extends [26, Thm.5.13] to variable coefficient
perturbations of L0 and to weighted Lp-spaces. Later on, in Theorem 3.5 we apply
Theorem 3.4 to B(x) = B∞ −Qs(x), so that LB agrees with Ls from (2.15).

Theorem 3.4 (Resolvent estimates in weighted Lp-spaces). Let the assump-
tions (A4) and (A6) be satisfied for K = C and for some 1 < p < ∞. Moreover, let
B ∈ L∞(Rd, CN,N ) satisfy the strict accretivity condition

Re 〈w,B(x)w〉 > cB |w|2 ∀x ∈ Rd ∀w ∈ CN , for some cB ∈ R,(3.10)

let λ ∈ C with Re λ + cB > 0 be given, and let θ1, θ2 ∈ C(Rd, R) be positive weight
functions satisfying

θ1(x) = exp
(
−µ1

√
|x|2 + 1

)
with 0 6 |µ1| 6

√
(Re λ + cB)γA

d|A|2
,(3.11)

and

θ1(x) 6 Cθ2(x) ∀x ∈ Rd for some C > 0.(3.12)

Finally, let g ∈ Lp
θ2

(Rd, CN ) and let v ∈ W 2,p
loc (Rd, CN ) ∩ Lp

θ1
(Rd, CN ) be a solution

of

(λI − LB) v = g in Lp
loc(R

d, CN ).(3.13)

Then, v is the unique solution of (3.13) in W 2,p
loc (Rd, CN )∩Lp

θ1
(Rd, CN ) and satisfies

the estimate

(3.14) ‖v‖Lp
θ1

6
2C

1
p

Re λ + cB
‖g‖Lp

θ2
.

In addition, for 1 < p 6 2 the following gradient estimate holds

(3.15) ‖Div‖Lp
θ1

6
2C

1
p γ

− 1
2

A

(Re λ + cB)
1
2
‖g‖Lp

θ2
, i = 1, . . . , d,
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with C from (3.12), γA from (A4) and cB from (3.10).

Proof. Consider v ∈ W 2,p
loc (Rd, CN ) ∩ Lp

θ1
(Rd, CN ) which satisfies (3.13) for

some g ∈ Lp
θ2

(Rd, CN ). For n ∈ R with n > 0 let us define the cut-off functions

χn(x) = χ1

(x

n

)
, χ1 ∈ C∞

c (Rd, R), χ1(x) =


1 , |x| 6 1
∈ [0, 1], smooth , 1 < |x| < 2
0 , |x| > 2

.

(3.16)

1. We multiply (3.13) from left by χ2
nθ1v

T |v|p−2, n ∈ N, integrate over Rd and take
real parts,

(3.17)

Re
∫

Rd

χ2
nθ1 |v|p−2

vT g

=(Re λ)
∫

Rd

χ2
nθ1 |v|p − Re

∫
Rd

χ2
nθ1v

T |v|p−2
A4v

− Re
∫

Rd

χ2
nθ1v

T |v|p−2
d∑

j=1

(Sx)jDjv + Re
∫

Rd

χ2
nθ1v

T |v|p−2
Bv.

2. Let us rewrite the third term on the right-hand side by using the formula

Dj (|v|p) = p|v|p−2Re
(
Djv

T
v
)

and the following identity obtained from (A6) and integration by parts,

0 =
1
p

∫
Rd

χ2
nθ1

( d∑
j=1

Sjj

)
|v|p =

1
p

d∑
j=1

∫
Rd

χ2
nDj ((Sx)j) θ1 |v|p

=− 2
p

d∑
j=1

∫
Rd

χn(Djχn)(Sx)jθ1 |v|p −
d∑

j=1

∫
Rd

χ2
nθ1(Sx)jRe

(
Djv

T
v
)
|v|p−2

− 1
p

d∑
j=1

∫
Rd

χ2
n(Sx)j(Djθ1) |v|p

=− 2
p

∫
Rd

χnθ1 |v|p
d∑

j=1

(Djχn)(Sx)j − Re
∫

Rd

χ2
nθ1v

T |v|p−2
d∑

j=1

(Sx)jDjv

− 1
p

∫
Rd

χ2
n |v|

p
d∑

j=1

(Sx)j(Djθ1).

We insert this into (3.17) and apply Lemma 3.3 to the second term with Ω =
B2n(0), η = χ2

nθ1

Re
∫

Rd

χ2
nθ1 |v|p−2

vT g = (Re λ)
∫

Rd

χ2
nθ1 |v|p − Re

∫
Rd

χ2
nθ1v

T |v|p−2
A4v

+
2
p

∫
Rd

χnθ1 |v|p
d∑

j=1

(Djχn)(Sx)j +
1
p

∫
Rd

χ2
n |v|

p
d∑

j=1

(Djθ1)(Sx)j

+ Re
∫

Rd

χ2
nθ1v

T |v|p−2
Bv
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>(Re λ)
∫

Rd

χ2
nθ1 |v|p +

2
p

∫
Rd

χnθ1 |v|p
d∑

j=1

(Djχn)(Sx)j

+
1
p

∫
Rd

χ2
n |v|

p
d∑

j=1

(Djθ1)(Sx)j + Re
∫

Rd

2χnθ1v
T |v|p−2

d∑
j=1

DjχnADjv

+ Re
∫

Rd

χ2
nvT |v|p−2

d∑
j=1

(Djθ1)ADjv

+ (p− 2)Re
∫

Rd

χ2
nθ1 |v|p−4

d∑
j=1

Re
(
Djv

T
v
)

vT ADjv1{v 6=0}

+ Re
∫

Rd

χ2
nθ1 |v|p−2

d∑
j=1

Djv
T
ADjv1{v 6=0} + Re

∫
Rd

χ2
nθ1v

T |v|p−2
Bv.

3. Subtracting the 2nd, 3rd, 4th and 5th term of the right hand side, yields the
upper bound

(Re λ)
∫

Rd

χ2
nθ1 |v|p + Re

∫
Rd

χ2
nθ1 |v|p−2

d∑
j=1

Djv
T
ADjv1{v 6=0}

+ (p− 2)Re
∫

Rd

χ2
nθ1 |v|p−4

d∑
j=1

Re
(
Djv

T
v
)

vT ADjv1{v 6=0}

+ Re
∫

Rd

χ2
nθ1v

T |v|p−2
Bv

6Re
∫

Rd

χ2
nθ1 |v|p−2

vT g − Re
∫

Rd

2χnθ1v
T |v|p−2

d∑
j=1

DjχnADjv

− 2
p

∫
Rd

χnθ1 |v|p
d∑

j=1

(Djχn)(Sx)j −
1
p

∫
Rd

χ2
n |v|

p
d∑

j=1

(Djθ1)(Sx)j

− Re
∫

Rd

χ2
nvT |v|p−2

d∑
j=1

(Djθ1)ADjv =: T1 + T2 + T3 + T4 + T5.

We estimate the terms successively. Using Re z 6 |z| and (3.12), Hölder’s in-
equality yields

T1 =
∫

Rd

χ2
nθ1 |v|p−2 Re

(
vT g

)
6
∫

Rd

χ2
nθ1 |v|p−1 |g|

6

(∫
Rd

(
χ

2(p−1)
p

n θ
p−1

p

1 |v|p−1

) p
p−1
) p−1

p (∫
Rd

(
χ

2
p
n θ

1
p

1 |g|
)p) 1

p

6C
1
p

(∫
Rd

χ2
nθ1 |v|p

) p−1
p
(∫

Rd

χ2
nθ2 |g|p

) 1
p

.
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For the 2nd term we use Hölder’s inequality with p = q = 2 and Young’s inequal-
ity with δ > 0

T2 62|A|
∫

Rd

χnθ1 |v|p−1
d∑

j=1

|Djχn| |Djv|

6
2|A| ‖χ1‖1,∞

n

d∑
j=1

∫
Rd

χnθ1 |Djv| |v|p−1

6
2|A| ‖χ1‖1,∞

n

d∑
j=1

(∫
Rd

χ2
nθ1 |Djv|2 |v|p−2 1{v 6=0}

) 1
2
(∫

Rd

θ1 |v|p
) 1

2

6
2|A| ‖χ1‖1,∞

n

[
δ

d∑
j=1

∫
Rd

χ2
nθ1 |Djv|2 |v|p−2 1{v 6=0} +

d

4δ

∫
Rd

θ1 |v|p
]
.

Here we used that for every x ∈ Rd and j = 1, . . . , d

|Djχn(x)| =
∣∣∣Dj

(
χ1

(x

n

))∣∣∣ 6 1
n

max
j=1,...,d

max
y∈Rd

|Djχ1(y)| =
‖χ1‖1,∞

n
.

For the 3rd term we use χn(x) = 0 for |x| > 2n and Djχn(x) = 0 for |x| 6 n to
obtain

T3 6
2
p

d∑
j=1

∫
Rd

χnθ1 |v|p |(Sx)j | |Djχn|

=
2
p

d∑
j=1

∫
n6|x|62n

χnθ1 |v|p |(Sx)j | |Djχn| 6
4d |S| ‖χ1‖1,∞

p

∫
n6|x|62n

θ1 |v|p .

For the last estimate note that χn(x) 6 1 and

|(Sx)j | |Djχn(x)| = 1
n
|(Sx)j |

∣∣∣(Djχ1)
(x

n

)∣∣∣ 6 1
n
|S||x|

∣∣∣(Djχ1)
(x

n

)∣∣∣
6
|S|
n

(
sup

n6|ξ|62n

|ξ|
)

max
j=1,...,d

max
y∈Rd

|Djχ1(y)| = 2 |S| ‖χ1‖1,∞ .

The 4th term vanishes, as follows from (3.11) and (A6),

T4 = −1
p

∫
Rd

χ2
n

−µ1√
|x|2 + 1

θ1 |v|p
d∑

j=1

xj(Sx)j = 0.

For the 5th term we use again Re z 6 |z|, Hölder’s inequality with p = q = 2 and
Young’s inequality with some ρ > 0, (3.11) and |µ1| 6 µ0 for some µ0 > 0 that
will be specified below

T5 6
∫

Rd

χ2
n |v|

p−1
d∑

j=1

∣∣∣∣∣ −µ1xj√
|x|2 + 1

∣∣∣∣∣ θ1|A| |Djv| 6 |µ1||A|
d∑

j=1

∫
Rd

χ2
nθ1 |v|p−1 |Djv|

6|µ1||A|
d∑

j=1

(∫
Rd

χ2
nθ1 |v|p−2 |Djv|2 1{v 6=0}

) 1
2
(∫

Rd

χ2
nθ1 |v|p

) 1
2

6
µ0|A|

4ρ

d∑
j=1

∫
Rd

χ2
nθ1 |v|p−2 |Djv|2 1{v 6=0} + µ0|A|ρd

∫
Rd

χ2
nθ1 |v|p .
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Summarizing, we arrive at the following estimate

(Re λ)
∫

Rd

χ2
nθ1 |v|p +

∫
Rd

χ2
nθ1 |v|p−2 Re 〈v,Bv〉+

∫
Rd

χ2
nθ1 |v|p−4 1{v 6=0}

×
d∑

j=1

[
|v|2 Re 〈Djv,ADjv〉+ (p− 2)Re 〈Djv, v〉Re 〈v,ADjv〉

]

6C
1
p

(∫
Rd

χ2
nθ1 |v|p

) p−1
p
(∫

Rd

χ2
nθ2 |g|p

) 1
p

+
2d|A| ‖χ1‖1,∞

4nδ

∫
Rd

θ1 |v|p

+2 ‖χ1‖1,∞

[
2d |S|

p

∫
n6|x|62n

θ1 |v|p +
|A|δ
n

d∑
j=1

∫
Rd

χ2
nθ1 |Djv|2 |v|p−2 1{v 6=0}

]

+
µ0|A|

4ρ

d∑
j=1

∫
Rd

χ2
nθ1 |v|p−2 |Djv|2 1{v 6=0} + µ0|A|ρd

∫
Rd

χ2
nθ1 |v|p .

4. The Lp-dissipativity assumption (A4) guarantees positivity of the term appearing
in brackets [· · · ] and (3.10) provides a lower bound for Re 〈v,Bv〉. Therefore,
putting the last 3 terms from the right-hand to the left-hand side in the last
inequality from step 3, we obtain(

γA −
µ0|A|

4ρ
−

2|A| ‖χ1‖1,∞ δ

n

) d∑
j=1

∫
Rd

χ2
nθ1 |Djv|2 |v|p−2 1{v 6=0}

+ (Re λ + cB − µ0|A|ρd)
∫

Rd

χ2
nθ1 |v|p

6C
1
p

(∫
Rd

χ2
nθ1 |v|p

) p−1
p
(∫

Rd

χ2
nθ2 |g|p

) 1
p

+
2d|A| ‖χ1‖1,∞

4nδ

∫
Rd

θ1 |v|p

+
4d |S| ‖χ1‖1,∞

p

∫
n6|x|62n

θ1 |v|p .

Now, we choose ρ =
√

Re λ+cB

4dγA
, µ0 =

√
(Re λ+cB)γA

d|A|2 so that

Re λ + cB − µ0|A|ρd =
Re λ + cB

2
and γA −

µ0|A|
4ρ

=
γA

2
.

Then our estimate reads

(3.18)

(
γA

2
−

2|A| ‖χ1‖1,∞ δ

n

) d∑
j=1

∫
Rd

χ2
nθ1 |Djv|2 |v|p−2 1{v 6=0}

+
Re λ + cB

2

∫
Rd

χ2
nθ1 |v|p

6C
1
p

(∫
Rd

χ2
nθ1 |v|p

) p−1
p
(∫

Rd

χ2
nθ2 |g|p

) 1
p

+
2d|A| ‖χ1‖1,∞

4nδ

∫
Rd

θ1 |v|p

+
4d |S| ‖χ1‖1,∞

p

∫
n6|x|62n

θ1 |v|p .

5. Let us choose δ > 0 such that γA

2 − 2|A| ‖χ1‖1,∞ δ > 0. Then we apply Fatou’s
Lemma to (3.18) and take the limit inferior n →∞. First observe that the terms
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χ2
nθ1|v|p and χ2

nθ1

(
γA

2 − 2|A|‖η‖1,∞δ

n

)
|Djv|2 |v|p−2 1{v 6=0} on the left-hand side

are positive functions in L1(Rd, R) and converge pointwise. The convergence of
the integrals on the right-hand side of (3.18) is justified by Lebesgue’s dominated
convergence theorem. We have the pointwise convergence χ2

nθ1|v|p → θ1|v|p,
χ2

nθ2|g|p → θ2|g|p, 1
nθ1|v|p → 0 and θ1 |v|p 1{n6|x|62n} → 0 for almost every x ∈

Rd as n → ∞. They are dominated by |χ2
nθ1|v|p| 6 θ1|v|p, |χ2

nθ2|g|p| 6 θ2|g|p,
1
nθ1|v|p 6 θ1|v|p, θ1 |v|p 1{n6|x|62n} 6 θ1|v|p, and the bounds belong to L1(Rd, R)
since
v ∈ Lp

θ1
(Rd, CN ) and g ∈ Lp

θ2
(Rd, CN ). Thus we arrive at

Re λ + cB

2
‖v‖p

Lp
θ1

6
Re λ + cB

2

∫
Rd

θ1 |v|p +
γA

2

d∑
j=1

∫
Rd

θ1 |Djv|2 |v|p−2 1{v 6=0}

6C
1
p

(∫
Rd

θ1 |v|p
) p−1

p
(∫

Rd

θ2 |g|p
) 1

p

= C
1
p ‖v‖p−1

Lp
θ1
‖g‖Lp

θ2
.

The Lp
θ1

–resolvent estimate (3.14) follows by dividing both sides by Re λ+cB

2 and
‖v‖p−1

Lp
θ1

.

6. The unique solvability of the resolvent equation (λI − LB)v = g in
W 2,p

loc (Rd, CN ) ∩ Lp
θ1

(Rd, CN ) clearly follows from the resolvent estimate (3.14).
From step 5 we obtain for every j = 1, . . . , N∫

Rd

θ1 |Djv|2 |v|p−2 1{v 6=0} 6
2C

1
p

γA
‖v‖p−1

Lp
θ1
‖g‖Lp

θ2
.

We take into account that |Djv| = |Djv|1{v 6=0} a.e. (see e.g. [41, Cor.2.1.8])
and use the Lp–resolvent estimate (3.14) to deduce from Hölder’s inequality for
1 < p 6 2

‖Djv‖p
Lp

θ1
=
∫

Rd

θ
p
2
1 |Djv|p |v|−

p(2−p)
2 1{v 6=0}θ

2−p
2

1 |v|
p(2−p)

2

6

(∫
Rd

θ1 |Djv|2 |v|p−2 1{v 6=0}

) p
2
(∫

Rd

θ1 |v|p
) 2−p

2

6

(
4C

2
p

(Re λ + cB)γA

) p
2

‖g‖p
Lp

θ2
.

�

3.4. Exponential decay for asymptotically small perturbations. In this
section we combine the results of Theorems 3.2 and 3.4 to obtain exponential a-
priori estimates of solutions to variable coefficient equations when the coefficients
become small at infinity.

Theorem 3.5 (A-priori estimates in weighted Lp-spaces). Let the assumptions
(A4), (A6), (A9B∞) and (A11B∞) be satisfied for K = C and some 1 < p < ∞.
Consider the radial weight functions

θj(x) = exp
(
µj

√
|x|2 + 1

)
, x ∈ Rd, j = 1, 2,(3.19)
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with µ1, µ2 ∈ R,

−

√
ε

γAβ∞
2d|A|2

6 µ1 6 0 6 µ2 6 ε

√
a0b0

amaxp
(3.20)

for some 0 < ε < 1. Moreover, let Q ∈ L∞(Rd, CN,N ) with

ess sup
|x|>R0

|Q(x)| 6 ε

2
min

{
b0

κa1
,

b0

C0,ε
, β∞

}
for some R0 > 0,(3.21)

let g ∈ Lp
θ2

(Rd, CN ), and let λ ∈ C with Re λ > −(1− ε)β∞ be given.
Then every solution v ∈ W 2,p

loc (Rd, CN ) ∩ Lp
θ1

(Rd, CN ) of the resolvent equation

(λI − LQ) v = g, in Lp
loc(R

d, CN )

satisfies v ∈ W 1,p
θ2

(Rd, CN ). Moreover, the following estimates hold:

‖v‖Lp
θ2

6
2C0,ε

Re λ + b0

(
C ‖v‖Lp

θ1
+ ‖g‖Lp

θ2

)
,(3.22)

‖Div‖Lp
θ2

6
2C1,ε

(Re λ + b0)
1
2

(
C ‖v‖Lp

θ1
+ ‖g‖Lp

θ2

)
, i = 1, . . . , d,(3.23)

with constants a0, a1, amax from (2.7), γA from (A4), b0, κ from (2.16), β∞ from
(A11B∞), C := exp((µ2−µ1)(4R2

0 +1)
1
2 ) ‖Q‖L∞ , and C0,ε, C1,ε from Theorem 2.10

(with Cθ = 1).

Remark 3.6. Note that the exponential decay rate µ2 in (3.20) depends on the
spectral data a0, b0, amax, while the growth rate θ1 allowing uniqueness, depends on
the norm and accretivity data γA, β∞, |A|.

Proof. The proof is structured as follows: First we decompose of Q into the
sum of Qs and Qc, where Qs is small according to (3.21) and Qc is compactly
supported on Rd (step 1). We then consider (λI−Ls)u = Qcv+g and prove existence
of a solution in the smaller space W 2,p

loc (Rd, CN )∩Lp
θ2

(Rd, CN ) by an application of
Theorem 3.2 (step 2) and uniqueness in the larger space W 2,p

loc (Rd, CN )∩Lp
θ1

(Rd, CN )
by an application of Theorem 3.4 (step 3).

1. Decomposition of Q: With the cut-off function χR0 from (3.16) and R0 from
(3.21) let us write

Q(x) = Qs(x) + Qc(x), Qs(x) := (1− χR0(x))Q(x), Qc(x) := χR0(x)Q(x).

Then Qc is compactly supported and Qs satisfies due to (3.21)

‖Qs‖L∞ 6 ‖1− χR0‖∞ ‖Q‖L∞(Rd\BR0 ,CN,N ) 6
ε

2
min

{
b0

κa1
,

b0

C0,ε
, β∞

}
.

Let v ∈ W 2,p
loc (Rd, CN )∩Lp

θ1
(Rd, CN ) be a solution of (λI − LQ) v = g with Re λ >

−(1 − ε)β∞ and g ∈ Lp
θ2

(Rd, CN ). Then v satisfies the equation (λI − Ls) v =
Qcv + g in Lp

loc(Rd, CN ). Therefore, we consider the problem

(λI − Ls) u = Qcv + g, in Lp
θ1

(Rd, CN ) and in Lp
θ2

(Rd, CN ).(3.24)



214 WOLF-JÜRGEN BEYN AND DENNY OTTEN

2. Existence in W 2,p
loc (Rd, CN ) ∩ Lp

θ2
(Rd, CN ): Let us apply Theorem 3.2 to (3.24)

with θ = θ2, η = |µ2| and Qcv + g instead of g. Note that Qcv + g belongs to
Lp

θ2
(Rd, CN ) since

‖Qcv + g‖Lp
θ2

6 ‖θ2Qcv‖Lp + ‖g‖Lp
θ2

6
∥∥θ2θ

−1
1

∥∥
L∞(B2R0 ,R)

‖Q‖L∞ ‖v‖Lp
θ1

+ ‖g‖Lp
θ2

= C ‖v‖Lp
θ1

+ ‖g‖Lp
θ2

,
(3.25)

with C := exp((µ2 − µ1)(4R2
0 + 1)

1
2 ) ‖Q‖L∞ . Further, (A10B∞) follows from

(A11B∞), β∞ 6 b0 and ε < 1 imply Re λ > −(1 − ε)b0 and θ2 is radially
nondecreasing since µ2 > 0. Theorem 3.2 yields that there exists a (unique)
u ∈ Dp

loc(L0) ⊂ W 2,p
loc (Rd, CN ) ∩ Lp(Rd, CN ) which solves (3.24) in Lp(Rd, CN ).

Moreover, Theorem 3.2 assures u ∈ W 1,p
θ2

(Rd, CN ) as well as the estimates (3.5)
and (3.6).

3. Uniqueness in W 2,p
loc (Rd, CN )∩Lp

θ1
(Rd, CN ): Consider (3.24) in Lp

θ1
(Rd, CN ). We

apply Theorem 3.4 with B(x) = B∞ − Qs(x) and Qcv + g instead of g. First,
B ∈ L∞(Rd, CN,N ) follows from B∞ ∈ CN,N and Qs ∈ L∞(Rd, CN,N ). Then,
strict accretivity (3.10) with cB =

(
1− ε

2

)
β∞ is a consequence of (A11B∞) and

‖Qs‖L∞ 6 εβ∞
2 ,

Re 〈w,B(x)w〉 > (β∞ − ‖Qs‖L∞) |w|2 >
(
1− ε

2

)
β∞|w|2 ∀w ∈ CN ∀x ∈ Rd.

Moreover, we have Re λ > − (1− ε) β∞ > −
(
1− ε

2

)
β∞ = −cB . The growth

bound in (3.11) is implied by (3.20) and Re λ + cB > ε
2β∞,

0 6 |µ1| 6

√
ε

β∞γA

2d|A|2
6

√
(Re λ + cB)γA

d|A|2
.

Finally, inequality (3.12) is obvious with C = 1, since µ1 6 0 6 µ2. Let u ∈
W 2,p

loc (Rd, CN )∩Lp
θ2

(Rd, CN ) ⊆ W 2,p
loc (Rd, CN )∩Lp

θ1
(Rd, CN ) denote the solution

from step 2 of the equation (λI − Ls) u = Qcv + g in Lp
loc(Rd, CN ). Since the

given v ∈ W 2,p
loc (Rd, CN ) ∩ Lp

θ1
(Rd, CN ) solves the same equation, the difference

w = u− v solves the homogeneous equation (λI −Lc)w = 0 in Lp
θ1

(Rd, CN ), and
Theorem 3.4 implies ‖w‖Lp

θ1
= 0. Therefore, we obtain v = u ∈ W 1,p

θ2
(Rd, CN ).

4. Lp
θ2

- and W 1,p
θ2

-estimates: The Lp
θ2

-estimate follows from (3.5) and (3.25)

‖v‖Lp
θ2

= ‖u‖Lp
θ2

6
2C0,ε

Re λ + b0
‖Qcv + g‖Lp

θ2
6

2C0,ε

Re λ + b0

(
C ‖v‖Lp

θ1
+ ‖g‖Lp

θ2

)
.

Analogously, the W 1,p
θ2

-estimate follows from (3.6) and (3.25).
�

4. Exponential decay of rotating nonlinear waves

4.1. Proof of main result.

Proof (of Theorem 2.8). The proof is structured as follows: First we de-
compose the nonlinearity f(v?(x)) and derive an equation LQw? = 0 solved by
w? = v? − v∞ (step 1). Then we apply Theorem 3.5 (step 2) and check its assump-
tions (steps 3,4).
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1. Let v? be a classical solution of (2.8) satisfying (2.9). Note that this implies
v? ∈ Cb(Rd, RN ). Using (A7) and (A8) we obtain from the mean value theorem

f(v?(x)) =f(v∞) + Df(v∞) (v?(x)− v∞)

+
∫ 1

0

(Df(v∞ + t(v?(x)− v∞))−Df(v∞)) dt (v?(x)− v∞)

=−B∞ (v?(x)− v∞) + Q(x) (v?(x)− v∞) , x ∈ Rd

with

B∞ := −Df(v∞), Q(x) :=
∫ 1

0

(Df(v∞ + t(v?(x)− v∞))−Df(v∞)) dt.(4.1)

For w? := v? − v∞, we have w? ∈ C2(Rd, RN ) ∩ Cb(Rd, RN ) and

0 =A4v?(x) + 〈Sx,∇v?(x)〉+ f(v?(x))

=A4 (v?(x)− v∞) + 〈Sx,∇ (v?(x)− v∞)〉
−B∞ (v?(x)− v∞) + Q(x) (v?(x)− v∞)

=A4w?(x) + 〈Sx,∇w?(x)〉 −B∞w?(x) + Q(x)w?(x)

= [LQw?] (x), x ∈ Rd.

2. Let us apply Theorem 3.5 with B∞, Q from (4.1), θ2 = θ, µ2 = µ, µ1 < 0, λ = 0
and g = 0. For this purpose, we have to check the assumptions: Assumptions
(A4) and (A6) are directly satisfied, (A9B∞) follows from (A9), and (A11B∞)
from (A11), using the relation B∞ = −Df(v∞). In the following let 0 < ε < 1
be fixed and let θ1, θ2 ∈ C(Rd, R) be given by (3.19) satisfying µ1 < 0 and
(3.20). First, note that w? ∈ W 2,p

loc (Rd, CN ) ∩ Lp
θ1

(Rd, CN ) follows from w? ∈
C2(Rd, RN ) ∩ Cb(Rd, RN ) and Cb(Rd, RN ) ⊂ Lp

θ1
(Rd, CN ) due to µ1 < 0. It

remains to verify that Q ∈ L∞(Rd, CN,N ) (step 3) and that (3.21) is satisfied.
3. Since w? ∈ Cb(Rd, RN ) we obtain

|v∞ + tw?(x)| 6 |v∞|+ t |w?(x)| 6 |v∞|+ ‖w?‖∞ =: R1

for every x ∈ Rd and 0 6 t 6 1. Due to (A7), we have f ∈ C1(RN , RN ) which
implies

|Q(x)| 6
∫ 1

0

|Df(v∞ + tw?(x))|+ |Df(v∞)| dt

6 sup
z∈BR1 (0)

|Df(z)|+ |Df(v∞)| < ∞

for all x ∈ Rd. We deduce Q ∈ Cb(Rd, RN,N ) ⊂ L∞(Rd, CN,N ) by taking the
suprema over x ∈ Rd.

4. We finally verify (3.21): Let us choose K1 = K1(A, f, v∞, d, p, ε) > 0 such that

K1

(
sup

z∈BK1 (v∞)

∣∣D2f(z)
∣∣) 6 ε min

{
b0

κa1
,

b0

C0,ε
, β∞

}
=: K(ε)(4.2)

is satisfied, with the constants C0,ε = C0,ε(A, d, p, ε, κ) from Theorem 2.10, b0 :=
−s(Df(v∞)) and a1 from (2.7), β∞ from (A11), and∣∣D2f(z)

∣∣ := ∥∥D2f(z)
∥∥
L(RN ,RN,N )

:= sup
v∈RN

|v|=1

∣∣D2f(z)v
∣∣ .
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Since f ∈ C2(RN , RN ) by (A7), inequalities (2.9) and (4.2) lead to

|Q(x)| =
∣∣∣∣∫ 1

0

Df(v∞ + tw?(x))−Df(v∞)dt

∣∣∣∣
=
∣∣∣∣∫ 1

0

∫ 1

0

D2f(v∞ + stw?(x))[tw?(x)]dsdt

∣∣∣∣
6
∫ 1

0

∫ 1

0

sup
|x|>R0

∣∣D2f(v∞ + st(v?(x)− v∞))
∣∣ ds · t sup

|x|>R0

|v?(x)− v∞| dt

6
K1

2

(
sup

z∈BK1 (v∞)

∣∣D2f(z)
∣∣) 6

ε

2
min

{
b0

κa1
,

b0

C0,ε
, β∞

}
for every |x| > R0. Taking the supremum over |x| > R0 yields condition (3.21).

This justifies to apply Theorem 3.5 which shows w? = v?−v∞ ∈ W 1,p
θ (Rd, RN ). �

4.2. Exponential decay of higher order derivatives. For estimating higher
order derivatives, recall the Sobolev embedding for 0 6 l 6 k,

(4.3) W k,p(Rd, RN ) ⊆ W l,q(Rd, RN ), if 1 < p < q 6 ∞,
d

p
− k 6

d

q
− l,

where at least one of the inequalities ’6’ is strict. Moreover, the embedding is
continuous, i.e.

∃Cp,q,k,l > 0 : ‖u‖W l,q(Rd) 6 Cp,q,k,l ‖u‖W k,p(Rd) ∀u ∈ W k,p(Rd).

For the Sobolev embedding we refer to [2, Thm.5.4], [24, Ch.6], [4, Ch.8] as general
reference, and to [35, Thm.3, Exer.24] for the compact version used in (4.3). For
the corresponding weighted spaces it is important to note that

(4.4) u ∈ W k,p
θ (Rd, RN ) =⇒ θDαu ∈ W k−|α|,p(Rd, RN ) for 0 6 |α| 6 k.

Here θ is chosen as in Theorem 2.8 for some 0 < ε < 1. By definition,
u ∈ W k,p

θ (Rd, RN ) implies Dαu ∈ W
k−|α|,p
θ (Rd, RN ) for every 0 6 |α| 6 k. Since θ

belongs to C∞(Rd, R) and satisfies
∥∥Dγθ

θ

∥∥
L∞

6 C(γ) for every γ ∈ Nd
0, we obtain

θDαu ∈ W k−|α|,p(Rd, RN ) from

‖θDαu‖p
W k−|α|,p =

∑
|β|6k−|α|

∥∥Dβ(θDαu)
∥∥p

Lp

=
∑

|β|6k−|α|

∥∥∥∥ ∑
|γ|6|β|

(
β

γ

)
(Dγθ)(Dα+β−γu)

∥∥∥∥p

Lp

6
∑

|β|6k−|α|

( ∑
|γ|6|β|

(
β

γ

)∥∥∥∥Dγθ

θ

∥∥∥∥
L∞

∥∥θDα+β−γu
∥∥

Lp

)p

6 C‖u‖p

W k,p
θ

.

Finally, recall the generalized Hölder’s inequality∥∥ ∏̀
j=1

uj

∥∥
Lp(Rd,R)

≤
∏̀
j=1

‖uj‖Lpj (Rd,R),(4.5)

for uj ∈ Lpj (Rd, R), 1 6 p, pj 6 ∞ and
∑`

j=1
1
pj

= 1
p .

The following corollary shows, that if we assume more regularity for the so-
lution v? of (2.8) in Theorem 2.8, i.e. v? ∈ C3(Rd, RN ), then v? even belongs to
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W 2,p
θ (Rd, RN ). The proof is based on the results of Theorem 2.8 and on a further

application of Theorem 3.5. For the proof it is crucial that we allow inhomogeneities
g in Theorem 3.5. The argument can be continued to higher order weighted Sobolev
spaces.

Corollary 4.1 (Exponential decay of v? with higher regularity). Let the as-
sumptions (A4), (A6)–(A9) and (A11) be satisfied for K = R and for some 1 < p <
∞. Moreover, let amax = ρ(A) denote the spectral radius of A, −a0 = s(−A) the
spectral bound of −A and −b0 = s(Df(v∞)) the spectral bound of Df(v∞). Further,
let θ(x) = exp

(
µ
√
|x|2 + 1

)
denote a weight function for some µ ∈ R. Then, for

every 0 < ε < 1 there is a constant K1 = K1(A, f, v∞, d, p, ε) > 0 with the following
property: Every classical solution v? of

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(4.6)

with v? ∈ C3(Rd, RN ) and

sup
|x|>R0

|v?(x)− v∞| 6 K1 for some R0 > 0(4.7)

satisfies

v? − v∞ ∈ W 2,p
θ (Rd, RN )

for every exponential decay rate

0 6 µ 6 ε

√
a0b0

amaxp
.

If additionally, p > d
2 , f ∈ Ck−1(RN , RN ), and v? ∈ Ck+1(Rd, RN ) for some k ∈ N

with k > 3, then v? even satisfies v? − v∞ ∈ W k,p
θ (Rd, RN ).

Proof. Let v? be a classical solution of (4.6) satisfying (4.7). Again this
implies v? ∈ Cb(Rd, RN ).

1. The additional regularity v? ∈ C3(Rd, RN ) allows us to apply Di = ∂
∂xi

to
equation (4.6)

0 = A4Div?(x) + 〈Sx,∇Div?(x)〉+ Df(v?(x))Div?(x) +
d∑

j=1

SjiDjv?, x ∈ Rd.

For w? := Div? ∈ C2(Rd, RN ) we obtain using Sii = 0,

0 =A4w?(x) + 〈Sx,∇w?(x)〉+ Df(v?(x))w?(x) +
d∑

j=1
j 6=i

SjiDjv?

= [LQw?] (x) + g(x), x ∈ Rd

with the settings

B∞ := −Df(v∞), Q(x) := Df(v?(x))−Df(v∞), g(x) :=
d∑

j=1
j 6=i

SjiDjv?.(4.8)
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2. We now apply Theorem 3.5 with B∞, Q, g from (4.8), θ2 = θ, µ2 = µ, µ1 < 0
and λ = 0. The assumptions (A4) and (A6) are directly satisfied while (A9B∞),
(A11B∞) follow from (A9), (A11). In the following let 0 < ε < 1 be fixed and
let θ1, θ2 ∈ C(Rd, R) be given by (3.19) satisfying µ1 < 0 6 µ2 and (3.20). The
relation w? ∈ W 2,p

loc (Rd, CN )∩Lp
θ1

(Rd, CN ) is a consequence of Theorem 2.8 which
implies Div? ∈ Lp

θ(Rd, RN ) ⊆ Lp
θ1

(Rd, RN ) since θ1 is decreasing. Moreover,
−LQw? = g holds in Lp

loc(Rd, CN ) by construction. Then, Q ∈ L∞(Rd, CN,N )
follows from (4.8) since v? is bounded, and we also have g ∈ Lp

θ(Rd, CN ) since
Theorem 2.8 shows v? ∈ W 1,p

θ (Rd, RN ) which leads to the estimate

‖g‖Lp
θ

6
d∑

j=1
j 6=i

|Sji| ‖Djv?‖Lp
θ

6 C.

3. We now verify condition (3.21): Let us choose K1 = K1(A, f, v∞, d, p, ε) > 0
such that (4.2) holds with K(ε)

2 instead of K(ε) on the right-hand side. Since
f ∈ C2(RN , RN ) by (A7), equations (2.9) and (4.2) imply for all |x| > R0

|Q(x)| = |Df(v?(x))−Df(v∞)|

6
∫ 1

0

∣∣D2f(v∞ + s (v?(x)− v∞)
∣∣ ds |v?(x)− v∞|

6K1

(
sup

z∈BK1 (v∞)

∣∣D2f(z)
∣∣) 6

ε

2
min

{
b0

κa1
,

b0

C0,ε
, β∞

}
.

Taking the supremum over |x| > R0 we have shown (3.21) with R0 from (2.9).
By applying Theorem 3.5 we obtain w? = Div? ∈ W 1,p

θ (Rd, RN ) for every i =
1, . . . , d, thus v? − v∞ ∈ W 2,p

θ (Rd, RN ).

4. For the final assertion we consider f ∈ Ck−1(RN , RN ) and v? ∈ Ck+1(Rd, RN )
for some k ∈ N with k > 3 and show v?− v∞ ∈ W k,p

θ (Rd, RN ) by induction with
respect to k. Let α ∈ Nd

0 be a multi-index of length |α| = k − 1 for some k > 3.
Applying Dα to (4.6) yields that w? := Dαv? satisfies

0 = [LQw?](x) + g(x), x ∈ Rd(4.9)

with B∞ and Q(x) as in (4.8), and g(x) := g1(x) + g2(x) defined by

g1(x) :=
d∑

i=1

d∑
j=1

ej6α

Sij

(
α

ej

)
Dα−ej+eiv?(x),

g2(x) :=
k−1∑
`=2

∑
π∈P`,k−1

(D`f)(v?(x))
[
D|π1|v?(x)hπ1 , . . . , D

|π`|v?(x)hπ`

]
.

(4.10)
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The first term g1 arises from the Leibniz rule applied to 〈Sx,∇v?(x)〉,

(4.11)

Dα(〈Sx,∇v?(x)〉) =
d∑

i=1

d∑
j=1

SijD
α(xjDiv?(x))

= 〈Sx,∇Dαv?(x)〉+
d∑

i=1

d∑
j=1

ej6α

Sij

(
α

ej

)
Dα−ej+eiv?(x)

= 〈Sx,∇Dαv?(x)〉+ g1(x).

The second term is obtained by applying Faá di Bruno’s formula for multivariate
calculus,

(4.12)

Dα(f(v?(x))) =
k−1∑
`=1

∑
π∈P`,k−1

(D`f)(v?(x))
[
D|π|v?(x)hπ

]

=Df(v?(x))Dαv?(x) +
k−1∑
`=2

∑
π∈P`,k−1

(D`f)(v?(x))
[
D|π|v?(x)hπ

]
=Df(v?(x))Dαv?(x) + g2(x), x ∈ Rd.

Here P`,k−1 denotes the set of all `-partitions of the set 〈k− 1〉 = {1, . . . , k− 1},
given by

P`,k−1 =
{

π = {π1, . . . , π`} ⊂ 2〈k−1〉 :
⋃̀
j=1

πj = 〈k − 1〉, πi ∩ πj = ∅ ∀i 6= j

}
.

Moreover, we used short-hands for multilinear terms

(h1, . . . , hk−1) = (e1, . . . , e1︸ ︷︷ ︸
α1

, . . . , ed, . . . , ed︸ ︷︷ ︸
αd

), ej j-th unit vector in Rd,(4.13)

hρ = (hρ1 , . . . hρν ) for index sets ρ = {ρ1, . . . ρν} ⊆ 〈k − 1〉,

[D|π|v?(x)hπ] = [D|π1|v?(x)hπ1 , . . . , D
|π`|v?(x)hπ`

], π = {π1, . . . , π`} ⊂ 2〈k−1〉.

For ` = 1 the only partition is π1 = {〈k − 1〉} and Df(v?)[Dk−1v?hπ1 ] agrees
with Df(v?)Dαv?. Below we show g ∈ Lp

θ(Rd, RN ). Then Theorem 3.5 applies
to (4.9) and yields w? = Dαv? ∈ W 1,p

θ (Rd, RN ) and thus our assertion v?−v∞ ∈
W k,p

θ (Rd, RN ).

5. To verify g ∈ Lp
θ(Rd, RN ), consider first g1. By the first part of the Corollary

(base case k = 3) and by the induction hyperthesis (induction step k > 3) we
have v? − v∞ ∈ W k−1,p

θ (Rd, RN ). The indices γ := α − ej + ei with |α| = k − 1
and ej 6 α satisfy |γ| = k − 1, hence Dα−ej+eiv? ∈ Lp

θ(Rd, RN ), and we deduce
g1 ∈ Lp

θ(Rd, RN ).
Next we consider g2. We show θg2 ∈ Lp(Rd, RN ) by using the generalized

Hölder’s inequality (4.5) with pj := k−1
|πj | p and uj := θ

∣∣D|πj |v?hπj

∣∣ for j =

1, . . . , `. Note that
∑`

j=1
1
pj

= 1
p since

∑`
j=1 |πj | = k − 1. We obtain∥∥∥θ(D`f)(v?)

[
D|π1|v?hπ1 , . . . , D

|π`|v?hπ`

]∥∥∥
Lp
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6
∥∥(D`f)(v?)

∥∥
L∞

∥∥∥ ∏̀
j=1

θ
1
j

∣∣∣D|πj |v?hπj

∣∣∣ ∥∥∥
Lp

6
∥∥(D`f)(v?)

∥∥
L∞

∏̀
j=1

∥∥∥θ 1
j D|πj |v?hπj

∥∥∥
Lpj

6
∥∥(D`f)(v?)

∥∥
L∞

∏̀
j=1

∥∥∥θD|πj |v?hπj

∥∥∥
Lpj

,

where we used θ(x) > 1 and θ
1
j (x) 6 θ(x). Note that v? ∈ Cb(Rd, RN ), f ∈

Ck−1(RN , RN ) and ` 6 k−1 imply the total derivative (D`f)(v?) to be bounded
on Rd. It remains to verify that θD|πj |v?hπj ∈ Lpj (Rd, RN ): From v? − v∞ ∈
W k−1,p

θ (Rd, RN ), (4.4) we infer θDγ(v? − v∞) ∈ W k−1−|γ|,p(Rd, RN ) for all 0 6
|γ| 6 k − 1. Using 1 6 |πj | 6 k − 2 this proves the first assertion in

θD|πj |v?hπj ∈ W k−1−|πj |,p(Rd, RN ) ⊂ Lpj (Rd, RN ).

The second assertion ’⊂’ follows from the Sobolev embedding (4.3), provided
that 1 < p < pj < ∞ and d

p − (k− 1− |πj |) 6 d
pj

. The first inequality is implied
by 1 6 |πj | 6 k − 2,

1 < p <
k − 1
k − 2

p 6
k − 1
|πj |

p = pj < ∞,

while the second is implied by our assumptions p > d
2 and k > 3,

d

p
− d

pj
=

d

p

(
1− |πj |

k − 1
)

6 2
(
1− |πj |

k − 1
)

6 (k − 1)
(
1− |πj |

k − 1
)

= k − 1− |πj |.

�

Remark 4.2 (Higher regularity of the profile v?). Collecting the results of
Theorem 2.8 and Corollary 4.1, we obtain

f ∈ Cmax{2,k−1}(RN , RN ), v? ∈ Ck+1(Rd, RN ) =⇒ v? − v∞ ∈ W k,p
θ (Rd, RN )

for any k ∈ N, provided that 1 < p < ∞ from (A4) satisfies p > d
2 if k > 3.

4.3. Pointwise exponential decay. For the pointwise estimates we use the
embedding in L∞. The particular choice q = ∞ and l = 0 in (4.4) leads to

W k,p(Rd) ⊆ L∞(Rd), k > 0, 1 < p < ∞, d < kp(4.14)

and to the inequality

‖u‖L∞(Rd) 6 Cp,∞,k,0 ‖u‖W k,p(Rd) ∀u ∈ W k,p(Rd).(4.15)

Corollary 4.3 (Pointwise exponentially decaying estimates). Let the assump-
tions of Corollary 4.1 be satisfied. Moreover, let f ∈ Cmax{2,k−1}(RN , RN ), v? ∈
Ck+1(Rd, RN ) for some k ∈ N and let p > d

2 if k > 3. Then the function
v? − v∞ ∈ W k,p

θ (Rd, RN ) satisfies the following estimate

|Dα (v?(x)− v∞)| 6 C exp
(
−µ
√
|x|2 + 1

)
∀x ∈ Rd(4.16)

for every exponential decay rate 0 6 µ 6 ε
√

a0b0
amaxp and for every multi-index α ∈ Nd

0

satisfying d < (k − |α|)p.
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Proof. The proof follows from (4.4) and the Sobolev embedding (4.14). �

Remark 4.4. In case of d ∈ {2, 3} and p = 2 it is sufficient to choose k = 4 to
obtain pointwise estimates for Dαv? of order 0 6 |α| 6 2. This requires to assume
f ∈ C3(RN , RN ) and v? ∈ C5(Rd, RN ). Note that the authors of [5] consider the
case d = p = 2 and assume f ∈ C4(RN , RN ) for their stability analysis of rotating
patterns. Our results show that f ∈ C3(RN , RN ) is sufficient to guarantee [5, Ass.1]
which, therefore, can be omitted.

4.4. Application to complex-valued systems. The next corollary extends
the results from Theorem 2.8, Corollary 4.1 and Corollary 4.3 to complex-valued
systems of type (2.5) which appear in several applications.

Corollary 4.5 (Exponential decay of v? for K = C). Let the assumptions
(A4) and (A6) be satisfied for K = C and for some 1 < p < ∞. Moreover, let
g : R → CN,N satisfy the following properties

g ∈ C2(R, CN,N ),(A7g)

A, g(0) ∈ CN,N are simultaneously diagonalizable (over C),(A9g)

There exists β∞ > 0 such that for all w ∈ CN with |w| = 1(A11g)

Re 〈w,−g(0)w〉 > β∞,

and define

f : CN → CN , f(u) = g
(
|u|2
)
u.(4.17)

Further, let amax = ρ(A) denote the spectral radius of A, −a0 = s(−A) the spectral
bound of −A, −b0 = s(g(0)) the spectral bound of g(0) and let
θ(x) = exp

(
µ
√
|x|2 + 1

)
a weight function with µ ∈ R. Then, for every 0 < ε < 1

there is a constant K1 = K1(A, g, d, p, ε) > 0 with the following property: Every
classical solution v? ∈ Ck(Rd, CN ) of

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(4.18)

such that g ∈ Cmax{2,k−1}(R, CN,N ) for some k ∈ N, p > d
2 if k > 3, and

sup
|x|>R0

|v?(x)| 6 K1 for some R0 > 0,(4.19)

satisfies

v? ∈ W k,p
θ (Rd, CN )

for every exponential decay rate

0 6 µ 6 ε

√
a0b0

amaxp
.

Moreover, v? satisfies the following pointwise estimate

|Dαv?(x)| 6 C exp
(
−µ
√
|x|2 + 1

)
∀x ∈ Rd

for every exponential decay rate 0 6 µ 6 ε
√

a0b0
amaxp and for every multi-index α ∈ Nd

0

satisfying d < (k − |α|)p.
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Proof. We transform the N -dimensional complex-valued system (4.18) into
the 2N -dimensional real-valued system

A4v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,(4.20)

For this purpose, we decompose A = A1 + iA2 with A1, A2 ∈ RN,N , v = v1 + iv2

with v1, v2 : Rd → RN , f1, f2 : R2N → RN with f1(u1, u2) = Re f(u1 + iu2),
f2(u1, u2) = Imf(u1 + iu2), g = g1 + ig2 with g1, g2 : R → RN,N . Moreover, we
define A ∈ R2N,2N , v ∈ R2N and f : R2N → R2N by

A :=
(

A1 −A2

A2 A1

)
, v :=

(
v1

v2

)
, f(v) :=

(
f1(v)
f2(v)

)
=
(

g1(|v|2) −g2(|v|2)
g2(|v|2) g1(|v|2)

)
v.

Let us apply Theorem 2.8 to the 2N -dimensional problem (4.20) and check its
assumptions. First, we collect the following relations of A and A:

λ ∈ σ(A) ⇐⇒ λ, λ ∈ σ(A),(4.21)

Y −1AY = ΛA ⇐⇒
(

iY Y
Y −iY

)−1

A
(

iY Y
Y −iY

)
=
(

ΛA 0
0 ΛA

)
,(4.22)

Re 〈v,Av〉 = 〈v,Av〉 , |v| = |v| , |Av| = |Av| .(4.23)

Since A satisfies (A4) for some 1 < p < ∞ and K = C, we deduce from (4.23),
that A satisfies (A4) for the same 1 < p < ∞ and K = R. In particular, we
have γA = γA in (A4). Note that if A satisfies (A1), (A2), (A3) for K = C then
A satisfies (A1), (A2), (A3) for K = R, as follows from (4.22), (4.21), (4.23).
Assumption (A6) is not affected by the transformation. From (A7g) we deduce
that f ∈ C2(R2N , R2N ), so that assumption (A7) is satisfied for K = R. Obviously,
f(v∞) = 0 holds for v∞ = 0 ∈ R2N , so that condition (A8) is satisfied. Since A and
g(0) are simultaneously diagonalizable (over C), cf. (A9g), we deduce from (4.22)
that A and

Df(0) =
(

g1(0) −g2(0)
g2(0) g1(0)

)
are simultaneously diagonalizable (over C). This proves assumption (A9) for K = R.
Finally, (A11g) implies (A11) with β∞ given by (A11g). Every classical solution v?

of (4.18) satisfying v? ∈ Cb(Rd, CN ) and (4.19) leads to a classical solution

v? :=
(

Re v?

Imv?

)
of (4.20) satisfying v? ∈ Cb(Rd, R2N ) and (4.19). Summarizing, Theorem 2.8 yields
v? ∈ W 1,p

θ (Rd, R2N ), and thus v? ∈ W 1,p
θ (Rd, CN ). �

In Section 6 we will apply this result to the cubic-quintic complex Ginzburg-
Landau equation which is of the form (4.17). Other examples fitting into this class
include the Schrödinger and the Gross-Pitaevskii equation.

5. Exponential decay of eigenfunctions

Consider the eigenvalue problem

A4v(x) + 〈Sx,∇v(x)〉+ Df(v?(x))v(x) = λv(x), x ∈ Rd, d > 2.(5.1)

We are interested in classical solutions (λ, v) of (5.1), i.e. λ ∈ C and v ∈
C2(Rd, CN ) solves (5.1) pointwise (cf. Definition 2.6).
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5.1. Sobolev and pointwise estimates of eigenfunctions. The following
theorem states that every classical solution v of the eigenvalue problem (5.1) de-
cays exponentially in space, provided its associated (isolated) eigenvalue λ satisfies
Re λ > −β∞. The proof is similar to those of Theorem 2.8 and Corollary 4.1, but
now it is crucial that Theorem 3.5 can be employed for cases where λ 6= 0, g 6= 0
and K = C.

Theorem 5.1 (Exponential decay of eigenfunctions). (1) Let the assumptions
(A4), (A6)–(A9) and (A11) be satisfied for K = R and for some 1 < p < ∞.
Moreover, let amax = ρ(A) denote the spectral radius of A, −a0 = s(−A) the
spectral bound of −A, −b0 = s(Df(v∞)) the spectral bound of Df(v∞) and let β∞
be from (A11). Further, let

θj(x) = exp
(
µj

√
|x|2 + 1

)
, x ∈ Rd, j = 1, 2

denote a weight function for µ1, µ2 ∈ R. Then, for every 0 < ε < 1 there is a
constant K1 = K1(A, f, v∞, d, p, ε) > 0 such that for every classical solution v? of
(2.8) satisfying (2.9) the following property holds: Every classical solution v of the
eigenvalue problem

A4v(x) + 〈Sx,∇v(x)〉+ Df(v?(x))v(x) = λv(x), x ∈ Rd,(5.2)

with λ ∈ C and Re λ > −(1−ε)β∞, such that v ∈ Lp
θ1

(Rd, CN ) for some exponential
growth rate

−

√
ε

γAβ∞
2d|A|2

6 µ1 6 0,(5.3)

satisfies

v ∈ W 1,p
θ2

(Rd, CN )

for every exponential decay rate

0 6 µ2 6 ε

√
a0b0

amaxp
.(5.4)

(2) If additionally, p > d
2 , f ∈ Ck(RN , RN ), v? ∈ Ck+1(Rd, RN ) and

v ∈ Ck+1(Rd, CN ) for some k ∈ N with k > 2, then v ∈ W k,p
θ (Rd, CN ) holds.

Moreover, v satisfies the pointwise estimate

|Dαv(x)| 6 C exp
(
−µ2

√
|x|2 + 1

)
, x ∈ Rd(5.5)

for every exponential decay rate 0 6 µ2 6 ε
√

a0b0
amaxp and for every multi-index α ∈ Nd

0

satisfying d < (k − |α|)p.
Remark 5.2. In case of d ∈ {2, 3} and p = 2 it is sufficient to choose k = 5

to obtain pointwise estimates for v of order 0 6 |α| 6 2. This requires to assume
f ∈ C5(RN , RN ), v? ∈ C6(Rd, RN ) and v ∈ C6(Rd, CN ). Moreover, note that the
space Lp

θ1
(Rd, CN ) does not only allow bounded but even exponentially growing

eigenfunctions.

Proof. (1) Let v? be a classical solution of (2.8) satisfying (2.9) and let v be
a classical solution of (5.2) satisfying v ∈ Lp

θ1
(Rd, CN ) with θ1 from (3.19) and µ1

such that (5.3). Then v satisfies

0 =λv(x)− (A4v(x) + 〈Sx,∇v(x)〉 −B∞v(x) + Q(x)v(x))
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=[(λI − LQ) v](x), x ∈ Rd

with B∞ := −Df(v∞) and Q(x) := Df(v?(x)) − Df(v∞) as in (4.8). Now, v ∈
W 1,p

θ2
(Rd, CN ) follows from Theorem 3.5 with µ1 < 0, g = 0 and λ ∈ C with

Re λ > −(1 − ε)β∞ . Note, that the assumptions of Theorem 3.5 are satisfied as
shown in the proof of Corollary 4.1.

(2) Assuming more smoothness for f, v, v?, we prove v ∈ W k,p
θ2

(Rd, CN ) by
induction on k. Let α ∈ Nd

0 be a multi-index of length |α| = k − 1. Similar to
the proof of Corollary 4.1, an application of Dα to (5.2) yields an inhomogenous
equation for w := Dαv,

[(λI − LQ)w](x) = g(x), x ∈ Rd(5.6)

with matrices B∞ and Q(x) as in (4.8), λ ∈ C with Re λ > −(1 − ε)β∞, and
g(x) := g1(x) + g2(x) where

g1 :=
d∑

i=1

d∑
j=1

ej6α

Sij

(
α

ej

)
Dα−ej+eiv,

g2 :=
∑
β6α
|β|>1

(
α

β

) |β|∑
`=1

∑
π∈P`,|β|

(D`+1f)(v?)
[
D|π1|v?hπ1 , . . . , D

|π`|v?hπ`
, Dα−βv

]
.

In this expression, the multilinear argument h is defined as in (4.13) with α replaced
by β. Below we prove g1, g2 ∈ Lp

θ2
(Rd, CN ), so that Theorem 3.5 implies w = Dαv ∈

W 1,p
θ2

(Rd, CN ) and therefore, v ∈ W k,p
θ2

(Rd, CN ).
First we consider g1: By the first part of this Corollary (base case k = 2) and by
the induction hyperthesis (induction step k > 2) we have v ∈ W k−1,p

θ2
(Rd, CN ).

As in the proof of Corollary 4.1, we then deduce g1 ∈ Lp
θ2

(Rd, RN ). Finally, we
show g2 ∈ Lp

θ2
(Rd, RN ) by applying Hölder’s inequality (4.5) with pj := k

|πj |p and

uj := θ
1
j

2

∣∣D|πj |v?hπj

∣∣ for j = 1, . . . , `, p`+1 := k
k−|β|p and u`+1 :=

∣∣Dα−βv
∣∣. Note

that
∑`+1

j=1
1
pj

= 1
p follows from

∑`
j=1 |πj | = |β|. We obtain∥∥∥θ2(D`+1f)(v?)

[
D|π1|v?hπ1 , . . . , D

|π`|v?hπ`
, Dα−βv

]∥∥∥
Lp

6
∥∥(D`+1f)(v?)

∥∥
L∞

∥∥∥ ∣∣Dα−βv
∣∣ ∏̀

j=1

θ
1
j

2

∣∣∣D|πj |v?hπj

∣∣∣ ∥∥∥
Lp

6
∥∥(D`+1f)(v?)

∥∥
L∞

∥∥Dα−βv
∥∥

Lp`+1

∏̀
j=1

∥∥∥∥θ 1
j

2 D|πj |v?hπj

∥∥∥∥
Lpj

6
∥∥(D`+1f)(v?)

∥∥
L∞

∥∥Dα−βv
∥∥

Lp`+1

∏̀
j=1

∥∥∥θ2D
|πj |v?hπj

∥∥∥
Lpj

since θ2(x) > 1 and j > 1 imply θ
1
j

2 (x) 6 θ2(x). Note that v? ∈ Cb(Rd, RN ),
f ∈ Ck(RN , RN ) and ` 6 |β| 6 |α| = k − 1 imply the boundedness of (D`+1f)(v?).
As in the proof of Corollary 4.1, both θ2D

|πj |v?hπj ∈ Lpj (Rd, RN ) and θ2D
α−βv ∈

Lp`+1(Rd, CN ) follow from the Sobolev embedding (4.3): Since f ∈ Ck−1(RN , RN )
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and v? ∈ Ck+1(Rd, RN ), Corollary 4.1 implies that
v?−v∞ ∈ W k,p

θ2
(Rd, RN ), therefore θ2D

|πj |v?hπj ∈ W k−|πj |,p(Rd, RN ). The Sobolev
embedding (4.3) shows

θ2D
|πj |v?hπj ∈ W k−|πj |,p(Rd, RN ) ⊆ Lpj (Rd, RN ) ∀ 1 6 |πj | 6 |β|,

provided that 1 < p < pj < ∞ and d
p − (k − |πj |) 6 d

pj
. These conditions are

obviously satisfied, since p > d
2 , 1 6 |πj | 6 k − 1. Next, since v ∈ W k−1,p

θ2
(Rd, CN ),

(4.4) implies θ2D
γv ∈ W k−1−|γ|,p(Rd, CN ) for all 0 6 |γ| 6 k − 1. For γ = α − β

with |α| = k − 1 and β 6 α we have k − 1 − |γ| = |β| and therefore, the Sobolev
embedding (4.3) implies

θ2D
α−βv ∈ W |β|,p(Rd, RN ) ⊂ Lp`+1(Rd, RN ),

provided that 1 < p < p`+1 < ∞ and d
p − |β| 6

d
p`+1

. These conditions are satisfied
by the same arguments as above. This concludes the proof of g2 ∈ Lp

θ2
(Rd, RN ).

Finally, the pointwise estimates follow when combining our previous Sobolev
estimates with (4.4) and the embedding (4.14), in a similar manner as in Corollary
4.3 �

Remark 5.3 (Higher regularity of the eigenfunction v). Collecting the results
of Theorem 5.1 and Remark 4.2, we obtain

f ∈ Cmax{2,k}, v?, v ∈ Ck+1 =⇒ v? − v∞, v ∈ W k,p
θ2

for any k ∈ N, provided that 1 < p < ∞ from (A4) satisfies p > d
2 if k > 2. We also

recall the role of the parameter ε in the exponential estimates. Theorem 5.1 shows
that every eigenfunction associated to an eigenvalue λ with
Re λ > −β∞ decays exponentially in space. Usually, one expects this behavior even
for Re λ > −b0. The rate of decay is controlled by ε ∈ (0, 1). If
Re λ > −(1+ε)β∞ is close to −β∞ we may take ε close to 0 and obtain a small rate
µ2 of decay according to (5.4). On the other hand, if λ is close to the imaginary
axis we may take ε close to 1 and obtain a higher rate of decay.

5.2. Eigenfunctions belonging to eigenvalues on the imaginary axis.
Some classical solutions of the eigenvalue problem (5.1) are due to equivariance of
the underlying equations and can be expressed in terms of the rotating wave itself.
The following result proved in [26, Thm.9.4], specifies these eigenfunctions.

Theorem 5.4 (Point spectrum on the imaginary axis). Let S ∈ Rd,d be skew-
symmetric and let U ∈ Cd,d denote the unitary matrix satisfying ΛS = ŪT SU
with ΛS = diag(λS

1 , . . . , λS
d ) and eigenvalues λS

1 , . . . , λS
d of S. Moreover, let v? ∈

C3(Rd, RN ) be a classical solution of (2.8), then v : Rd → CN given by

v(x) =
〈
Crotx + Ctra,∇v?(x)

〉
=

d−1∑
i=1

d∑
j=i+1

Crot
ij (xjDi − xiDj)v?(x) +

d∑
l=1

Ctra
l Dlv?(x)

(5.7)

is a classical solution of the eigenvalue problem (5.1) if Crot ∈ Cd,d, Ctra ∈ Cd

either satisfy

λ = −λS
l , Crot = 0, Ctra = Uel
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for some l = 1, . . . , d, or

λ = −(λS
n + λS

m), Crot = U(Inm − Imn)UT , Ctra = 0

for some n = 1, . . . , d − 1 and m = n + 1, . . . , d. Here Inm ∈ Rd,d denotes the
matrix having the entries 1 at the n-th row and m-th column and 0 otherwise. All
the eigenvalues above lie on the imaginary axis.

A direct consequence of Theorem 5.1 and Theorem 5.4 is that the eigenfunc-
tions v from (5.7) belong to W 1,p

θ2
(Rd, CN ) and decay exponentially in space, [26,

Thm.9.8].

Corollary 5.5 (Exponential decay of eigenfunctions for eigenvalues on iR).
Let all assumptions of the statements (1) and (2) of Theorem 5.1 be satisfied. Then
the classical solution

v(x) =
〈
Crotx + Ctra,∇v?(x)

〉
, x ∈ Rd

of the eigenvalue problem (5.2) with λ, Crot and Ctra from Theorem 5.4 lies in
W k,p

θ2
(Rd, CN ) for every exponential decay rate (5.4). Moreover, the function v ∈

W k,p
θ2

(Rd, CN ) satisfies the pointwise estimate (5.5).

Proof. In order to apply Theorem 5.1 to v(x) = 〈Crotx + Ctra,∇v?(x)〉, we
observe that the map x 7→ 〈Crotx + Ctra,∇v?(x)〉 is of class Ck+1 since v? ∈
Ck+2(Rd, RN ). In particular, β∞ > 0 allows to deal with eigenvalues λ ∈ iR. �

Remark 5.6. Later on, we numerically approximate the spectrum of the lin-
earization L for (2.12). For this purpose we decompose the Lp-spectrum σ(L) of L
into the disjoint union of point spectrum σpoint(L) and essential spectrum σess(L)

σ(L) = σpoint(L) ∪ σess(L).(5.8)

The point spectrum of L is affected by the symmetries of the group action and
contains the eigenvalues described in Theorem 5.4. In particular, it contains the
spectrum of S and the sum of its different eigenvalues, i.e.

σpart
point(L) := σ(S) ∪ {λ1 + λ2 | λ1, λ2 ∈ σ(S), λ1 6= λ2}. ⊆ σpoint(L)(5.9)

The associated eigenfunctions are explictly known, see (5.7), and they are expo-
nentially localized as shown in Corollary 5.5. In general, σpoint(L) contains further
eigenvalues. Neither these additional eigenvalues nor their associated eigenfunctions
can usually be determined explicitly. The essential spectrum of L depends on the
asymptotic behavior of the wave at infinity. Under the same assumptions as in
Theorem 2.8 one derives a dispersion relation for rotating waves, see [26, Sec.9.5],

det

(
λIN + ω2A−Df(v∞) + i

m∑
l=1

nlσlIN

)
= 0 for some ω ∈ R, nl ∈ Z(5.10)

which then yields information about the essential spectrum

σpart
ess (L) := {λ ∈ C | λ satisfies (5.10)} ⊆ σess(L).(5.11)

Here, S has the (d − 2m)–fold eigenvalue 0 and nontrivial eigenvalues ±iσl, l =
1, . . . ,m on the imaginary axis. For more details we refer to the examples in Section
6 and to [26, Ch.9,10].
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6. Rotating waves in reaction diffusion systems:
The cubic-quintic complex Ginzburg-Landau equation

Consider the cubic-quintic complex Ginzburg-Landau equation (QCGL), [19]

ut = α4u + u
(
δ + β |u|2 + γ |u|4

)
(6.1)

where u : Rd × [0,∞) → C, d ∈ {2, 3}, α, β, γ, δ ∈ C with Re α > 0 and f : C → C
given by

f(u) := u
(
δ + β |u|2 + γ |u|4

)
.(6.2)

The real-valued version of (6.1) reads as follows

ut = A4u + f(u) with A :=
(

α1 −α2

α2 α1

)
, u =

(
u1

u2

)
(6.3)

and f : R2 → R2 given by

f
(

u1

u2

)
:=
(

(u1δ1 − u2δ2) + (u1β1 − u2β2) |u|2 + (u1γ1 − u2γ2) |u|4
(u1δ2 + u2δ1) + (u1β2 + u2β1) |u|2 + (u1γ2 + u2γ1) |u|4

)
,(6.4)

where |u|2 = u2
1 + u2

2, u = u1 + iu2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2,
δ = δ1 + iδ2.

This equation describes different aspects of signal propagation in heart tissue,
superconductivity, superfluidity, nonlinear optical systems, see [23], photonics, plas-
mas, physics of lasers, Bose-Einstein condensation, liquid crystals, fluid dynamics,
chemical waves, quantum field theory, granular media and is used in the study of
hydrodynamic instabilities, see [21]. It shows a variety of coherent structures like
stable and unstable pulses, fronts, sources and sinks in 1D, see [3, 36, 38, 39],
vortex solitons, see [13], spinning solitons, see [14], dissipative ring solitons, see
[33], rotating spiral waves, propagating clusters, see [30], and exploding dissipative
solitons, see [34] in 2D as well as scroll waves and spinning solitons in 3D, see [22].

We are interested in exponentially localized rotating wave solutions
u? : Rd × [0,∞) → C of (6.1) and u? : Rd × [0,∞) → R2 of (6.3). Note that,
given some skew-symmetric S ∈ Rd,d and some vector x? ∈ Rd, the function
u?(x, t) = v?(e−tS(x − x?)) with v? : Rd → C is a rotating wave of (6.1) if and

only if u?(x, t) = v?(e−tS(x−x?)) is a rotating wave of (6.3), where u? =
(

Re u?

Imu?

)
and v? =

(
Re v?

Imv?

)
. We are going to show that v? (and v?) are exponentially lo-

calized by applying Theorem 2.8 and Corollaries 4.1, 4.3 to the real-valued system
(6.3) and Corollary 4.5 to the complex equation (6.1).

First, consider the assumptions (A1)–(A11) for K = R: With A from (6.3) and
f from (6.4), Assumption (A1) is satisfied for every α ∈ C, since

Y −1AY = ΛA, ΛA =
(

α 0
0 α

)
, Y =

(
i 1
1 i

)
, Y −1 =

1
2

(
−i 1
1 −i

)
.(6.5)

Assumption (A2) follows from Re α > 0, since σ(A) = {α, α}. Assumption (A3)
holds with βA = Re α if Re α > 0, since Re 〈w,Aw〉 = Re α for w ∈ R2 with |w| = 1.
Condition (A5), which is equivalent to (A4), requires α 6= 0 and Re α

|α| = µ1(A) >
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|p−2|
p . The latter condition is equivalent to

|arg α| < arctan
(

2
√

p− 1
|p− 2|

)
for some 1 < p < ∞,

or alternatively to

pmin :=
2|α|

|α|+ Re α
< p <

2|α|
|α| − Re α

=: pmax.(6.6)

The condition (A6) is satisfied with S ∈ Rd,d given by

S =
(

0 S12

−S12 0

)
and S =

 0 S12 S13

−S12 0 S23

−S13 −S23 0

(6.7)

for d = 2 and d = 3, respectively. Below we specify the entries S12, S13, S23 ∈
R and the point x? ∈ Rd, that will be the center of rotation if d = 2 and a
support vector of the axis of rotation if d = 3, cf. (2.2). All this information come
actually from a simulation. First we simulate the original system for some time.
Then we switch to the freezing method, which yields the profile v?, its center of
rotation, and its rotational velocities. For more details on the computation, see
[26, Sec.10.3]. Some general theory and applications of the freezing method may be
found in [7, 8, 9, 10, 37]. Note that in case d = 2 we have a clockwise rotation, if
S12 > 0, and a counter clockwise rotation, if S12 < 0. Assumption (A7) is obviously
satisfied, even with f ∈ C∞(R2, R2), since every component of f is a polynomial.
With v∞ = (0, 0)T , the assumption (A8) is satisfied, and for this choice we have

Df(v∞) =
(

δ1 −δ2

δ2 δ1

)
.

Assumption (A9) holds for the same transformation matrix Y as in (6.5). The
condition Re δ < 0 implies both, Assumption (A10) and Assumption (A11) with
β∞ = −Re δ.

Next we consider assumptions (A7g), (A9g) and (A11g): Writing f as f(u) =
g(|u|2)u with

g : R → C, g(v) = δ + βv + γv2,

Assumption (A7g) is obivously satisfied and we even have g ∈ C∞(R, C). Assump-
tion (A9g) is satisfied with g(0) = δ for every α, δ ∈ C and assumption (A11g) with
β∞ = −Re δ if Re δ < 0. The assumptions (A1)–(A5) for A = α ∈ C lead to the
same requirements as in the real-valued case.

Our discussion shows that if we assume

Re α > 0, Re δ < 0, pmin =
2|α|

|α|+ Re α
< p <

2|α|
|α| − Re α

= pmax,(6.8)

we can apply Theorem 2.8, Corollary 4.1 and Corollary 4.3 to the real-valued system
(6.3), and Corollary 4.5 to the complex-valued equation (6.1). In both cases, the
bound for the rate of the exponential decay reads

0 6 µ 6 ε
ν

p
, for ν =

√
Re α (−Re δ)

|α|
and some 0 < ε < 1,(6.9)

since a0 = Re α, b0 = −Re δ and amax = |α|.
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6.1. Spinning solitons. For the parameter values from [14], given by

α =
1
2

+
1
2
i, β =

5
2

+ i, γ = −1− 1
10

i, δ = −1
2
,(6.10)

equation (6.1) exhibits so called spinning soliton solutions for space dimensions
d = 2 and d = 3, see Figure 3. The parameter values (6.10) satisfy the requirements
from (6.8), and therefore our assumptions (A1)–(A11) for every p with

1.1716 ≈ 4
2 +

√
2

= pmin < p < pmax =
4

2−
√

2
≈ 6.8284,(6.11)

e.g. for p = 2, 3, 4, 5, 6. Therefore, the solitons (and their derivatives) are exponen-
tially localized in the sense of Theorem 2.8 and Corollary 4.1, i.e. v? belongs to
W 2,p

θ (Rd, R2) for p ∈ (pmin, pmax) and for the weight function

θ(x) = exp
(
µ
√
|x|2 + 1

)
with exponential decay rate

0 6 µ 6
ε√
2p

.(6.12)

Corollary 4.1 implies that v? even belongs to W k,p
θ (Rd, R2) for every k > 0, provided

d = 2, p ∈ (pmin, pmax) or d = 3, p ∈ [ 32 , pmax) since f ∈ C∞(R2, R2). Moreover,
Corollary 4.3 shows that the solitons satisy the pointwise estimates (4.16). In
Section 6.3 we will compare this with the rate of decay measured from numerical
experiments.

Next, we discuss the numerical results from Figure 3 and explain how to com-
pute the profile and velocities numerically. For all numerical computations including
the eigenvalue computations we used Comsol Multiphysics 5.2, [1].

Figure 3(a) shows the spinning soliton in R2 as the solution of (6.1) on a circular
disk of radius R = 20 centered at the origin at time t = 150. For the computation we
used continuous piecewise linear finite elements with maximal stepsize 4x = 0.25,
the BDF method of order 2 with absolute tolerance atol = 10−5, relative tolerance
rtol = 10−3 and maximal stepsize 4t = 0.1, homogeneous Neumann boundary
conditions and initial data

u2D
0 (x1, x2) =

1
5

(x1 + ix2) exp
(
−x2

1 + x2
2

49

)
, x2

1 + x2
2 ≤ R2.

Figure 3(b) shows isosurfaces of the spinning soliton in R3 obtained from
the solution of (6.1) on a cube [−10, 10]3 at time t = 100. For the compu-
tation we used continuous piecewise linear finite elements with maximal stepsize
4x = 0.8, the BDF method of order 2 with absolute tolerance atol = 10−4, rela-
tive tolerance rtol = 10−2 and maximal stepsize 4t = 0.1, homogeneous Neumann
boundary conditions and (discontinuous) initial data

u3D
0 (x1, x2, x3) = u2D

0 (x1, x2) for |x3| < 9 and 0 otherwise.

Using these solutions as initial data, the freezing method from [7, 8] provides
an approximate rotating wave with profile w? in the following format

(6.13) u?(x, t) = w?(exp(−tS)(x− tE(tS)τ)), x ∈ Rd, t ∈ R,

where S ∈ Rd,d is skew symmetric, τ ∈ range(S) ⊂ Rd and E is the analytic
function E(z) =

∑∞
j=1

zj−1

j! satisfying E(z)z = exp(z) − 1, z ∈ C. In order to put
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(a)

(b)

Figure 3. Spinning soliton of QCGL (6.1) for d = 2 (a) and d = 3
(b) with real part (left), imaginary part (middle) and absolute value
(right). The colorbar in (a) reaches from −1.6 (blue) to 1.6 (red).
The isosurfaces in (b) have values −0.5 (blue), 0.5 (red) and 0.5
(green).

this into the standard form (2.2) used in our theory, we determine the position
vector x? ∈ Rd by solving

(6.14) Sx? + τ = 0.

Then we may write

exp(−tS)(x− tE(tS)τ) = exp(−tS)(x + E(tS)(tS)x?)

= exp(−tS)(x− x?) + x?,

so that (6.13) turns into

(6.15) u?(x, t) = w?(exp(−tS)(x− x?) + x?) = v?(exp(−tS)(x− x?)).

Thus the numerical profile w? is a slightly shifted version of the profile v? used for
the theory. In practice, we solve (6.14) directly for d = 2 and by rank-deficient least
squares for d = 3, see [26, Ex.10.8] for details.
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Using for d = 2 the data at time t = 400, one obtains the following values for
S12, τ and the center of rotation x2D

? of the spinning soliton

S12 = 1.0286, τ =
(
−0.0054
−0.0071

)
,

x2D
? := −S−1τ =

1
S12

(
τ2

−τ1

)
=
(
−0.0069
0.0052

)
.

(6.16)

The rotating wave u? : R2 × [0,∞) → R2 satisfies

u?(x, t) = w?

(
e−tS(x− x2D

? ) + x2D
?

)
= v?

(
e−tS(x− x2D

? )
)
.

In case d = 3 at time t = 500 the rotational velocities S12, S13, S23 and the
translational vector τ of the spinning soliton are found to beS12

S13

S23

 =

 0.6888
−0.0043
−0.0043

 , τ =

 0.0023
−0.0415
0.0005

 .(6.17)

The axis of rotation is {x3D
? + rx3D

rot , r ∈ R} with support vector x3D
? and the

direction x3D
rot spanning the null space of S, is given by

x3D
rot :=

 S23

−S13

S12

 =

−0.0043
0.0043
0.6888

 ,

x3D
? :=

1
S2

12 + S2
13 + S2

23

 S12τ2 + S13τ3

−S12τ1 + S23τ3

−S13τ1 − S23τ2

 =

−0.0602
−0.0033
−0.0004

 .

As above, the rotating wave u? : R3 × [0,∞) → R2 satisfies

u?(x, t) = w?

(
e−tS(x− x3D

? ) + x3D
?

)
= v?

(
e−tS(x− x3D

? )
)
.

The periods of rotation for the spinning solitons in R2 and R3 are determined
by

T 2D =
2π

|S12|
= 6.1085 and T 3D =

2π∣∣∣√S2
12 + S2

13 + S2
23

∣∣∣ = 9.1216.

6.2. Spectrum and eigenfunctions at spinning solitons. Consider the
eigenvalue problem for the real-valued version of the QCGL-equation

Lv(x) = A4v(x) + 〈Sx,∇v(x)〉+ Df (v?(x))v(x) = λv(x), x ∈ Rd,(6.18)

where d ∈ {2, 3}, v : Rd → C2, A ∈ R2,2 is from (6.3), f : R2 → R2 from (6.4) and
S ∈ Rd,d from (6.7).

Recall from Section 6.1 that the Ginzburg-Landau equation (6.3) exhibits spin-
ning soliton solutions for space dimensions d = 2 and d = 3 and for the parameter
values from (6.10).

Below we approximate solutions (λ,v) of the eigenvalue problem (6.18) and
apply Theorem 5.1 and Corollary 5.5 to (6.18). Instead of (6.18) we solve the
eigenvalue problem

A4w(x) + 〈S(x− x?),∇w(x)〉+ Df (w?(x))w(x) = λw(x), x ∈ Rd,(6.19)
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with d ∈ {2, 3}, S ∈ Rd,d and τ ∈ Rd from (6.16) and (6.17). Note that (6.19)
is just the shifted version of (6.18) where w(x) = v(x − x?), x ∈ Rd. Hence the
eigenvalues are the same.

We use the following values

v∞ =
(

0
0

)
, σ (Df(v∞)) =

{
δ, δ̄
}

=
{
−1

2

}
,

b0 = −s (Df(v∞)) = −Re δ =
1
2
.

(6.20)

The spectrum of S ∈ Rd,d is given by

d = 2 : σ(S) = {±σ1i} , σ1 = S12 = 1.0286,(6.21)

d = 3 : σ(S) = {0,±σ1i} , σ1 =
√

S2
12 + S2

13 + S2
23 = 0.6888.(6.22)

For the solution of the eigenvalue problem (6.19) we use in both cases, d = 2 and
d = 3, continuous piecewise linear finite elements with maximal stepsize 4x = 0.25
(if d = 2) and 4x = 0.8 (if d = 3), homogeneous Neumann boundary conditions
and the following parameters for the eigenvalue solver

neigs = 800, σ = −1, etol = 10−7,(6.23)

i.e. we approximate neigs = 800 eigenvalues that are located nearest to σ = −1 and
satisfy the eigenvalue tolerance etol = 10−7. As above, the profile w? and the pair
(S, x?) in (6.19) are obtained from simulating the freezing system until t = 400 for
d = 2 and until t = 500 for d = 3. With the data from the last time instance we
then solve the eigenvalue problem (6.19).
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Figure 4. Numerical spectra of QCGL (6.1) linearized about a
spinning soliton for d = 2 (a), and d = 3 (b).

Figure 4 shows the numerical approximation σapprox(L) of the spectrum σ(L) =
σpoint(L) ∪ σess(L) of L obtained by linearizing about the spinning soliton v? for
d = 2 (a), and d = 3 (b). Let us discuss the numerical spectra in more detail and
compare them with our theoretical results:
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a) Essential spectrum: We replace v? in L by its limiting value zero and find a
dispersion relation (5.10), leading to

σpart
ess (L) =

{
λ = −ω2α1 + δ1 + i

(
∓ω2α2 ± δ2 − nσ1

)
| ω ∈ R, n ∈ Z

}
(6.24)

with σ1 from (6.21) for d = 2 and from (6.22) for d = 3, cf. Remark 5.6 and [26,
Thm.9.10]. Recall the inclusion σpart

ess (L) ⊆ σess(L) and taking the parameter values
(6.10) into account, (6.24) reads as

σpart
ess (L) =

{
λ = −1

2
(ω2 + 1) + i

(
∓1

2
ω2 − nσ1

)
| ω ∈ R, n ∈ Z

}
⊆ σess(L).

In both cases the part σpart
ess (L) of the essential spectrum forms a zig-zag-structure

that can be considered as the union of infinitely many copies of cones. The tips
of the cones − 1

2 − inσ1, n ∈ Z lie on the line δ1 + iR = − 1
2 + iR. Therefore,

the distance between two neighboring tips equals σ1. The gap between the whole
essential spectrum and the imaginary axis equals b0 = 1

2 , since Re σess(L) 6 −b0 =
Re δ = − 1

2 . The inclusion σpart
ess (L) ⊆ σess(L) is proved in [27, Thm.9.10] for the

Lp-spectrum of L. We believe that even equality holds, i.e. σpart
ess (L) = σess(L), but

this has not been proved so far.
Let us now consider the numerical results: The red dots in Figure 4 represent

the approximation σapprox
ess (L) of the essential spectrum σess(L). They approximate

the collection of cones in the essential spectrum. As expected, the tips are approxi-
matively located on − 1

2 + iR, indicated by the black dashed line. Our results show
that the distance between two neighboring tips of the cones agrees with σ1 from
(6.21) for d = 2 and from (6.22) for d = 3. In particular, the approximation suggests
that we have equality in (6.24). The case d = 2 has been also treated in [5, Sec.8].
b) Point spectrum: From Theorem 5.4 and Remark 5.6 we have the relation

σpart
point(L) = {0,±iσ1} ⊆ σpoint(L)(6.25)

with σ1 from (6.21) for d = 2 and (6.22) for d = 3 (cf. [26, Thm.9.4] for more
details). The eigenvalues 0,±iσ1 are located on the imaginary axis and have (at
least) algebraic multiplicities 1 for d = 2 and 2 for d = 3, respectively, see Theorem
5.4. The numerical results below suggest that we do not have equality in (6.25),
i.e. in general there are further isolated eigenvalues which have to be determined
numerically.

Let us now consider the associated numerical results: The blue circles and
the blue plus signs in Figure 4 represent an approximation σapprox

point (L) of the point
spectrum σpoint(L). The approximate eigenvalues 0,±iσ1 are visualized by blue
circles. The plus signs indicate further isolated eigenvalues which belong to the
point spectrum, but cannot be determined explicitly. In case d = 2, there are
11 additional complex-conjugate pairs of isolated eigenvalues, of which 8 pairs are
located to the right of the vertical black dashed line − 1

2 + iR and 3 pairs to the
left in between the zig-zags. We emphasize that these three pairs are not numerical
artifacts but are robust to spatial mesh refinement and to increase of spatial domain.
Similarly, in case d = 3, we find 12 additonal complex-conjugate pairs of isolated
eigenvalues, of which 11 pairs are located to the right of the vertical line − 1

2 + iR
and 1 pair to the left in between the zig-zags. Numerical values of the isolated
eigenvalues are given in Table 1 below.
c) Eigenfunctions: The eigenfunctions associated to eigenvalues from the essen-
tial spectrum are explicitly known and bounded but never localized, i.e. they do not
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Figure 5. Real parts of eigenfunctions of 2D-QCGL (6.1) for a
spinning soliton.

Figure 6. Isosurfaces of real parts of eigenfunctions of 3D-QCGL
(6.1) for a spinning soliton.

decay in space, see [26, Thm.7.9 and 9.10]. In contrast to this, all eigenfunctions
associated to eigenvalues from the point spectrum, in particular those on the imag-
inary axis, are exponentially localized. For eigenvalues λ with Re λ > −β∞ = − 1

2
this follows from our theory. To be more precise, let us introduce angular derivatives
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by

D(1,2) := x2D1 − x1D2, D(1,3) := x3D1 − x1D3, D(2,3) := x3D2 − x2D3.

Then Theorem 5.4 yields eigenfunctions associated to eigenvalues from σpart
point(L) as

follows

(6.26)
λ1 = 0, v1 = D(1,2)v?,

λ2,3 = ±iσ1, v2,3 = D1v? ± iD2v?

for d = 2, see [26, Ex.9.6], and by

(6.27)

λ1 = 0, v1 = S12D
(1,2)v? + S13D

(1,3)v? + S23D
(2,3)v?,

λ2 = 0, v2 = S23D1v? − S13D2v? + S12D3v?,

λ3,4 = ±iσ1, v3,4 = (σ1S13 ± iS12S23)D1v?

+ (σ1S23 ± iS12S13)D2v?

± i(S2
13 + S2

23)D3v?,

λ5,6 = ±iσ1, v5,6 = −(S2
13 + S2

23)D
(1,2)v?

− (−S12S13 ± iσ1S23)D(1,3)v?

+ (S12S23 ± iσ1S13)D(2,3)v?

for d = 3, see [26, Ex.9.7]. We next study the asymptotic behavior of eigenfunctions
with eigenvalues in σpoint(L). As shown in the previous section, Theorem 5.1 and
Corollary 5.5 imply that all eigenfunctions with eigenvalues Re λ > − 1

2 are expo-
nentially localized, in the Lp- and in the pointwise sense. The maximal exponential
rate of decay for the eigenfunctions will depend on λ as we will see in Section 6.3
below. Note that Theorem 5.1 does not apply to eigenvalues satisfying Re λ 6 − 1

2 .
Let us now discuss the numerical results: In Figure 4, there are some isolated

eigenvalues labeled by a green square. Their eigenfunctions are visualized in Fig-
ure 5 for d = 2 and in Figure 6 for d = 3. Both pictures show the real parts of
the first component of the associated eigenfunction w : Rd → C2. The first two
eigenfunctions in Figure 5 are approximations of v1,v2 from (6.26). Their corre-
sponding eigenvalues approximate λ1, λ2 from (6.26), as specified in the title of the
figure. Similarly, the first four eigenfunctions in Figure 6 approximate v1,v2,v3,v5

from (6.27). Their associated eigenvalues are approximations of λ1, λ2, λ3, λ5 from
(6.27) and again specified in the title. Note that the first eigenfunction in Fig-
ure 5 and in Figure 6 agrees with a slightly shifted version of the rotational term
v1(x) = 〈Sx,∇v?(x)〉 which arises in the rotating wave equation (1.5). The eigen-
functions 3−10 from Figure 5 and 5−14 from Figure 6 belong to the eigenvalues in
green boxes carrying a plus sign and satisfying Re λ > − 1

2 . They are ordered with
decaying real parts. All eigenfunctions with eigenvalues satisfying Re λ > − 1

2 seem
to decay exponentially, as expected by Theorem 5.1. The last three eigenfunctions
in Figure 5 and the last eigenfunction in Figure 6 show those eigenfunctions whose
eigenvalues are marked by a green box but satisfy Re λ 6 − 1

2 . In this case Theorem
5.1 is not applicable. However, even these eigenfunctions seem to have exponential
decay in space. Finally, we note that we found further isolated eigenvalues inside
the zig-zag structure, see Figure 4(b), the eigenfunctions of which seem to decay
exponentially in space as well.
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6.3. Rate of exponential decay for spinning solitons and their eigen-
functions. Let us consider the rates of exponential decay for spinning solitons and
their associated eigenfunctions in more detail. For this purpose we compare theoret-
ical decay rates (short: TDR), guaranteed by Theorem 2.8 and 5.1, with numerical
decay rates (short: NDR) computed from our numerical results by linear regression.
a) Decay rates of spinning solitons: The maximal rate of exponential decay for
the profiles of the spinning solitons, which one obtains from Corollary 4.3, is given
by, cf. (6.9), (6.6),

0 6 µ 6
εν

p
<

ν

p
=: µpro(p) <

ν

max
{
pmin, d

2

} =: µpro
max.(6.28)

Taking the parameter values (6.10) into account, (6.28) implies the following upper
bounds for the theoretical decay rates

µpro(p) =
1√
2p

≈ 0.7071
p

, µpro
max =

{√
2+1
4 ≈ 0.6036 , d=2,

√
2

3 ≈ 0.4714 , d=3.

We compare this with the numerical exponential decay rates for the profile:

(a) (b)

Figure 7. Numerical exponential decay rate of the spinning soli-
ton profiles for d = 2 (a) and d = 3 (b) arising in the QCGL (6.3).
The black line indicates the level 0.5 use for the isosurfaces in Fig-
ure 3(b).

Figure 7 shows the absolute value of the spinning soliton profile along a straight
line in radial direction, for d = 2 in (a) and d = 3 in (b). To be more precise, Figure
7 (a) shows the function

[0, 20] → R, r 7→ log10

∣∣∣w?

(
r cos

π

2
, r sin

π

2

)∣∣∣(6.29)

in case of d = 2. Similarly, Figure 7 (b) shows the function

[0, 10
√

3] → R, r 7→ log10

∣∣∣∣w?

(
r√
3
,

r√
3
,

r√
3

)∣∣∣∣(6.30)

in case of d = 3. The functions are almost linear at least in the regions enclosed
by the black dashed lines, which are [5, 13] for d = 2 and [5, 9] for d = 3. In case
d = 2 the observed NDR is slightly below the TDR. This is attributed to the fact
that the NDR is affected by the size of the bounded domain and by the choice of



SPATIAL DECAY OF ROTATING WAVES IN REACTION DIFFUSION SYSTEMS 237

boundary conditions. Summarizing, this indicates that the heat kernel estimates
from [26, 27], which form the origin of these decay rates, are quite accurate.
b) Decay rates of eigenfunctions: The maximal rate of exponential decay for
the eigenfunctions, obtained from Theorem 5.1, will now depend on λ, since

Re λ > −(1− ε)β∞ = −(1− ε)(−Re δ) ⇐⇒ ε 6
Re λ− Re δ

−Re δ
=: ε(λ).

This gives us the bounds

0 6
εν

p
6

ε(λ)ν
p

=: µeig(p, λ) <
ε(λ)ν

max
{
pmin, d

2

} =: µeig
max(λ).(6.31)

With parameter values (6.10) the bounds (6.31) lead to

µeig(p, λ) =
2
(
Re λ + 1

2

)
√

2p
, µeig

max(λ) =
√

2 + 1
2

(
Re λ +

1
2

)
.

This shows, that the decay rate is maximal for eigenvalues on the imaginary axis and
decreases linearly to 0 as Re λ approaches − 1

2 , cf. Figure 4. Recall, that Theorem
5.1 does not apply for Re λ 6 − 1

2 . For the isolated eigenvalues labeled by a green
square in Figure 4, the TDR’s µeig

max(λ) of the associated eigenfunctions are given
in the third columns of Table 1. We compare with the numerical exponential decay
rates for the eigenfunctions:

(a) (b)

Figure 8. Numerical rate of exponential decay of the eigenfunc-
tions for d = 2 (a) and d = 3 (b) of (6.19) linearized at a spinning
soliton.

Figure 8 shows the absolute value of the eigenfunctions along the lines from (6.29)
and (6.30) with w instead of w?. The eigenfunctions are associated to the eigen-
values in green boxes in Figure 4. The color of the graphs vary with Re λ of the
associated eigenvalue. Varying Re λ from 0 to − 1

2 , the graphs change color from
blue to red. A red graph indicates that Re λ is near − 1

2 and that the TDR is small.
Finally, a black graph indicates an eigenvalue Re λ 6 − 1

2 , in which case we do not
have a TDR. All eigenfunctions are approximately linear in the regions enclosed
by the black dashed lines, which are again [5, 13] for d = 2, and [5, 9] for d = 3.
Moreover, we observe that the decay rate of the eigenfunctions decreases when the
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eigenvalue moves to the left of the imaginary axis. We note that even those eigen-
functions the eigenvalues of which satisfy Re λ 6 − 1

2 , have exponential decay. Once
more, we used linear regression on 1000 radially equispaced points to estimate the
NDR. The numerical values are collected in the second columns of Table 1. Again
the TDR’s are surprisingly close to the NDR’s with difference increasing towards
Re λ = − 1

2 .

eigenvalue NDR TDR
5.29 · 10−15 0.5713 0.6036

−0.00002± 1.0270i 0.5730 0.6035
−0.17509± 1.8183i 0.5001 0.3922
−0.17695± 0.3340i 0.4815 0.3900
−0.19882± 1.6205i 0.4139 0.3636
−0.21211± 2.7050i 0.4652 0.3475
−0.22794± 2.2695i 0.5155 0.3284
−0.26402± 1.0624i 0.5355 0.2849
−0.31017± 3.5224i 0.4044 0.2291
−0.46659± 4.2742i 0.2984 0.0403
−0.54131± 2.8166i 0.2972 —
−0.60226± 0.6492i 0.3982 —
−0.67248± 3.6064i 0.3889 —

eigenvalue NDR TDR
8.999 · 10−15 0.5387 0.4714

−5.6162 · 10−4 0.5478 0.4714
0.00110± 0.68827i 0.5507 0.4714
0.00248± 0.6874i 0.5398 0.4714

−0.06622± 1.0112i 0.4899 0.4090
−0.07747± 1.5274i 0.5355 0.3984
−0.22334± 1.1593i 0.4756 0.2608
−0.26467± 0.1193i 0.4785 0.2219
−0.30232± 1.9457i 0.4649 0.1864
−0.43957± 2.3248i 0.3595 0.0570
−0.44063± 1.5128i 0.3310 0.0560
−0.47366± 1.3552i 0.4781 0.0248
−0.48294± 0.9163i 0.4145 0.0161
−0.48506± 0.0991i 0.2126 0.0141
−0.49015± 0.2535i 0.3307 0.0093
−0.55519± 1.1222i 0.3581 —

Table 1. Numerical (NDR) and theoretical (TDR) exponential
decay rates of QCGL (6.1) for the eigenfunctions of the linearization
at a spinning soliton for d = 2 (left) and d = 3 (right).
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