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Abstract. We show ill-posedness of the Cauchy problem for the Dirac-Klein-

Gordon system in one spatial dimension with some indices of the Sobolev
spaces which the initial data belong to. By combining with the existing pa-

pers [10, 11], we define the entire range of those indices for well-posedness or
ill-posedness with the exception of one point. At this point, it is still unsolved

whether well-posedness holds or not with respect to Sobolev spaces. We intro-

duce one solvability for the problem of this point by giving the result of the
unique existence of solution in the corresponding Lebesgue spaces [16].

1. Introduction

We consider the Cauchy problem for the Dirac-Klein-Gordon system:

(1.1)

⎧⎪⎨⎪⎩
(iγ0∂t + γ1∂x)ψ +mψ = φψ,

(∂2
t − ∂2

x +M2)φ = ψ∗γ0ψ,

ψ(0, x) = ψ0(x), φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x),

where ψ =
( ψ1

ψ2

)
: R

1+1 → C
2 and φ : R

1+1 → R are unknown functions of

(t, x) ∈ R1+1, ψ0 =
( ψ0,1

ψ0,2

)
: R → C2 and φ0, φ1 : R → R are given functions of

x ∈ R, m and M are nonnegative constants, and γ0, γ1 are 2×2 Hermitian matrices

(1.2) γ0 =

(
1 0
0 −1

)
, γ1 =

(
0 −i
i 0

)
which satisfy the anticommutation relations which leads (iγ0∂t + γ1∂x)

2 = (−∂2
t +

∂2
x)I2, where I2 is the 2× 2 identity matrix, ψ∗ denotes the conjugate transpose of
ψ.

In this paper we are interested in well-posedness of this problem, mainly, with
respect to the Sobolev spaces:

(1.3) (ψ(t, ·), φ(t, ·), ∂tφ(t, ·)) ∈ Hs(R)×Hr(R) ×Hr−1(R), 0 ≤ t < T
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with some positive T . We consider defining the region (s, r) ∈ R2 for well-posedness
and for ill-posedness of this Cauchy problem. There are a lot of results on this
problem (see [4, 13, 6, 7, 2, 3, 14, 8, 15, 10] and references cited therein).
As the latest and best result for well-posedness, in [10] Nakanishi, Tsugawa and
the first author proved that (1.1) is well-posed in Hs(R) × Hr(R) × Hr−1(R) if
|s| ≤ r ≤ s + 1 and (s, r) �= (−1/2, 1/2). They also proved that (1.1) is ill-posed
if s > max(r, 0) or r > max(s + 1, 1/2). Subsequently, the authors [11] extended
the ill-posedness result with the additional range satisfying s < 0, r < 1/2 and
s+ r < 0. Therefore the following two lines in (s, r) ∈ R

2 have been left unsolved:

• s ≤ −1/2, r = 1/2,
• s = 0, r < 0.

The following is the main result in this paper.

Theorem 1. Let (s, r) ∈ R2 be on the either lines s < −1/2, r = 1/2 or s =
0, r < 0. Then the Cauchy problem (1.1) is ill-posed in Hs(R)×Hr(R)×Hr−1(R),
more precisely, the solution map of (1.1) is discontinuous.

Here we give several remarks on this theorem. In the proof, we will show ill-
posedness in Hs(R)×Hr(R)×Hr−1(R) with s = 0, r < 0, and independently with
s < min(−r, 0). The latter range includes the line s < −1/2, r = 1/2 which is
for Theorem 1. These two ill-posedness mean that the solution map of (1.1) from
Hs(R) ×Hr(R) ×Hr−1(R) to C(R;Hs(R) ×Hr(R) ×Hr−1(R)) is discontinuous.
Here we recall the previous work in [11] which showed an ill-posedness result for
the index s < min(−r, 0) and r < 1/2. We remove the condition r < 1/2 from the
earlier work [11] to have the current result in this paper. In [11] the authors did
apply a similar argument as in the paper by Bejenaru and Tao [1] in which the
well-posedness in Hs(R) ×Hr(R) ×Hr−1(R) with −1/2 < s = −r < 0 played an
important role for the proof. However, the same argument does not work to show ill-
posedness in Hs(R)×H1/2(R)×H−1/2(R) with s < −1/2 because well-posedness in
H−1/2(R)×H1/2(R)×H−1/2(R) has not been obtained, that is still open problem.
Therefore we need another technique. Iwabuchi and Ogawa [9] showed ill-posedness
in Hs(R2) with s ≤ −1 for the Schrödinger equation with quadratic nonlinearity in
two spatial dimension even in the situation well-posedness in H−1(R2) is unknown.
We apply thier technique, with some modification, to our problem. Indeed the
fact that the Klein-Gordon equation is a second order differential equation with
respect to t causes some difficulties to show well-posedness in the modulation space,
although the easier treatment for the first order differential equation (Schrödinger
equation) in the modulation spaces which was shown in [9]. We apply the argument
in [9] not so directly. Moreover we use the fact that the Dirac-Klein-Gordon system
can be reduced to the single Dirac equation with a potential if the initial data satisfy
some special conditions (see [4] and [13]). We consider ill-posedness for this single
Dirac equation. We extract the worst part of the Dirac equation with a potential,
which is easier than the Dirac-Klein-Gordon system. We also use this observation
to show that the Cauchy problem (1.1) is ill-posed on the line s = 0, r < 0.

For the case (s, r) = (−1/2, 1/2), the worst interaction occurs in the nonlin-
ear part of the Klein-Gordon equation. Indeed, Nakanishi, Tsugawa and the first
author proved in [10] that an irregular flow map exists. Furthermore, the same
iteration argument as in [10] works for the reduced Dirac equation with initial data
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(ψ0, φ0, φ1) ∈ H
−1/2(R)×H1/2(R)×H−1/2(R). Accordingly, our argument is not

effective to consider ill-posedness at (−1/2, 1/2).
Even with Theorem 1, the one point (s, r) = (−1/2, 1/2) ∈ R2 is still open

for well-posed or not for the Cauchy problem (1.1) in the Sobolev spaces Hs(R) ×
Hr(R)×Hr−1(R). Shiota [16] reported an interesting result which corresponds to
the problem of this point. We have decided to introduce this theorem in this paper
because this is from Shiota’s Master’s Thesis written in Japanese and we thought
this will never be published anywhere else. We also introduce the proof of this
theorem in section 5.

Theorem 2 (Shiota [16]). For any initial data (ψ0, φ0, φ1) ∈ L
1(R)×L∞(R)×

L1(R), there exists a time local unique solution (ψ, φ) ∈ C([0, T ] : L1(R)×L∞(R))
to the Cauchy problem (1.1). Moreover the solution map is continuous.

We remark that L1(R)×L∞(R) has the same scale as H−1/2(R)×H1/2(R), in
the meanwhile, unfortunately it is difficult to compare those two well-posed results
since there is no inclusion relation between L1(R) andH−1/2(R), or between L∞(R)
and H1/2(R).

2. Preliminary

Here we introduce the work by Chadam and Glassey [4], and also Ozawa and
Yamauchi [13]. They found the following conservation law for the Dirac-Klein-
Gordon system (1.1):∫

R

|ψ1(t, x)− ψ2(t, x)|2dx =

∫
R

|ψ0,1(x)− ψ0,2(x)|2dx, t > 0.

Therefore if we set the initial data as follows

(2.1) ψ0,1 = ψ0,2,

then we have ψ1(t, x) = ψ2(t, x) for almost everywhere x ∈ R and any t > 0. On
the other hand, we calculate the nonlinear term of the Klein-Gordon equation in
(1.1) with the matrix in (1.2),

(2.2) ψ∗γ0ψ = |ψ1|
2 − |ψ2|

2,

and so we have (ψ∗γ0ψ)(t) = 0, t > 0 under the initial condition (2.1). We
denote by KM the evolution operator for the free Klein-Gordon system, that is
φ = KM [φ0, φ1] satisfies

(∂2
t − ∂

2
x +M2)φ = 0, φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x).

By using this, under the condition (2.1), (1.1) can be reduced to the following
inhomogeneous but linear equation with respect to unknown functions:

(2.3) (iγ0∂t + γ1∂x)ψ +mψ = KM [φ0, φ1]ψ, ψ(0, x) = ψ0(x).

We denote by Sm the evolution operator of the Dirac system. Then, (2.3) is equiv-
alent to

(2.4) ψ(t, x) = Sm(t)ψ0(x)− iγ0

∫ t

0

Sm(t− t′)(KM [φ0, φ1]ψ)(t′, x)dt′.

We shall write Ψφ0,φ1
[ψ] for the right hand side of the equation (2.4), and show

below that this map is a contraction for a proof of the existence of solutions in
the scaled modulation spaces. After this, we investigate the norm inflation or the
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discontinuity of the solution maps with respect to those solutions in the Sobolev
spaces for Theorem 1. These arguments were used for ill-posedness for Schrödinger
equations ([9]) and the massless Chern-Simons-Dirac system ([11]).

We introduce the definition and some properties for modulation spaces. For
more information, see Feichtinger [5].

Definition 3. Let A be a dyadic number. Define the space MA(R) = (M0
2,1)A(R)

as the completion of C∞0 (R) with respect to the norm

‖f‖MA
=

∑
k∈Z

‖f̂‖L2([(k−1)A,(k+1)A]).

The following embeddings and bilinear estimate are well-known (see, for exam-
ple, [5, Section 6]).

Proposition 4. (1) H1/2+ε(R) ↪→MA(R) ∼A M1(R) ↪→ L2(R).
(2) There exists a constant C > 0 such that for f, g ∈MA

‖fg‖MA
≤ CA1/2‖f‖MA

‖g‖MA

holds.

We may say the modulation space is a Banach algebra from the property of
(2) in this proposition. This property will be useful for the proof of the contraction
mapping principle for our problem. Now we give the well-posedness for DKG (1.1)
in the modulation spaces under the special condition for the initial data (2.1).

Lemma 5. Let A ∈ 2Z. Then, the Cauchy problem (2.1)-(2.3) is locally in

time well-posed in MA(R), where the existence time T depends on the initial data

(φ0, φ1), but does not depend on the initial data ψ0.

We remark here, actually the Cauchy problem (2.1)-(2.3) is time globally well-
posed in MA(R) since, as we see (2.3), the problem consists of the linear equations
for ψ with the function KM [φ0, φ1] which is the definite (time global) solution
for the free Klein-Gordon system. We mean by T here an existence time for the
contraction mapping argument applying to this problem below.

Proof. We use the following notation in this paper: For a function u(t) : R →
X with some function space X for the variable x, and 1 ≤ p ≤ ∞,

‖u‖Lp

T
X =

(∫ T

0

‖u(t, ·)‖pXdt

) 1
p

.

We consider the restriction 0 < T < 1. From Definition 3, it is easy to have

‖KM [φ0, φ1]‖L∞

T
MA

≤ C(‖φ0‖MA
+ ‖φ1‖MA

), ‖Sm(t)F ‖L∞

T
MA

≤ C‖F ‖MA
.

From those and Proposition 4, we have

‖ψ‖L∞

T
MA

≤ ‖ψ0‖MA
+CT‖KM [φ0, φ1]ψ‖L∞

T
MA

≤ ‖ψ0‖+CTA1/2‖KM [φ0, φ1]‖L∞

T
MA
‖ψ‖L∞

T
MA

≤ ‖ψ0‖+CTA1/2(‖φ0‖MA
+ ‖φ1‖MA

)‖ψ‖L∞

T
MA

.

We can similarly estimate the difference as follows:

‖ψ − ψ′‖L∞

T
MA

≤ CT‖KM [φ0, φ1](ψ − ψ
′)‖L∞

T
MA

≤ CTA1/2(‖φ0‖MA
+ ‖φ1‖MA

)‖ψ − ψ′‖L∞

T
MA

.
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Let T satisfy the bound

(2.5) CTA1/2(‖φ0‖MA
+ ‖φ1‖MA

) < 1/4.

We define the iteration space XT :

XT := {ψ ∈ C([0, T ];MA(R)) : ‖ψ‖L∞

T
MA

≤ 2‖ψ0‖MA
}.

We have shown that the flow map Ψφ0,φ1
is a contraction mapping on XT for

(φ0, φ1) ∈MA(R)2. We obtain a fixed point of Ψφ0,φ1
which is a solution to (2.3).

Next, we show that Ψφ0,φ1
is continuous with respect to (φ0, φ1, ψ0) ∈MA(R)3.

Assume that

φ0,n → φ0, φ1,n → φ1, ψ0,n → ψ0 in MA(R),

and ψ0,n satisfies (2.1). Let ψn = Ψφ0,n,φ1,n
[ψ0,n], ψ = Ψφ0,φ1

[ψ0]. From (2.5) and
the estimates as above, we have

‖ψn‖L∞

T
MA

≤ 2‖ψ0,n‖ ≤ 4‖ψ0‖, ‖ψ‖L∞

T
MA

≤ 2‖ψ0‖

for sufficiently large n. Since the difference ψn − ψ satisfies

(iγ0∂t + γ1∂x +m)(ψn − ψ)

= KM [φ0,n, φ1,n](ψn − ψ) +KM [φ0,n − φ0, φ1,n − φ1]ψ, (ψn − ψ)(0, x)

= ψ0,n − ψ0,

it is similarly handled:

‖ψn − ψ‖L∞

T
MA

≤ ‖ψ0,n − ψ0‖MA
+CTA1/2

(
‖KM [φ0,n, φ1,n]‖L∞

T
MA
‖ψn − ψ‖L∞

T
MA

+‖KM [φ0,n − φ0, φ1,n − φ1]‖L∞

T
MA
‖ψ‖L∞

T
MA

)
≤ ‖ψ0,n − ψ0‖MA

+CTA1/2
(
(‖φ0‖MA

+ ‖φ1‖MA
)‖ψn − ψ‖L∞

T
MA

+2(‖φ0,n − φ0‖MA
+ ‖φ1,n − φ1‖MA

)‖ψ0‖MA
)

≤ ‖ψ0,n − ψ0‖MA
+

1

4
‖ψn − ψ‖L∞

T
MA

+ 2CTA1/2(‖φ0,n − φ0‖MA
+ ‖φ1,n − φ1‖MA

)‖ψ0‖MA
,

which leads to the following estimate.

‖ψn − ψ‖L∞

T
MA

≤
4

3

(
‖ψ0,n − ψ0‖MA

+ 2CTA1/2(‖φ0,n − φ0‖MA
+ ‖φ1,n− φ1‖MA

)‖ψ0‖MA

)
.

We therefore obtain the continuity of Ψφ0,φ1
with respect to ψ0, φ0, and φ1. �

Remark 6. From Lemma 5, we have the following expansion:

(2.6) ψ =

∞∑
k=1

ψ(k) in L∞T MA,

where ψ(1) := Sm(t)ψ0 and

ψ(k) := −iγ0

∫ t

0

Sm(t− t′)(KM [φ0, φ1]ψ
(k−1))(t′)dt′, k = 2, 3, . . . .

Here T satisfies the inequality (2.5) which is defined by ‖φ0‖MA
, ‖φ1‖MA

. The fact
that T does not depend on the initial data ψ0 will be important in the next section.



184 SHUJI MACHIHARA AND MAMORU OKAMOTO

We will treat the sequence of initial data ψ0,n whose norm of the Modulation space
goes to infinity ‖ψ0,n‖MA

→∞.

3. Proof of Theorem 1 with s < −
1

2
, r =

1

2

In this section we give a proof of ill-posedness for s < min(−r, 0) which includes
the line s < −1/2, r = 1/2 as we desired. We firstly consider the massless case
m = M = 0. By putting

u± := ψ1 ∓ ψ2,

we rewrite (2.3) as follows:

(∂t ± ∂x)u± = −iK0[φ0, φ1]u∓, u±(0, x) = u±,0(x).

From ψ1 = u++u−

2
, ψ2 = −u++u−

2
, we have

ψ∗γ0ψ = |ψ1|
2 − |ψ2|

2 =
1

4
(|u+ + u−|

2 − |u+ − u−|
2) = 
(u+u−).

Here, the condition (2.1) is equivalent to

ψ1 = ψ2 ⇐⇒ u+ + u− = −u+ + u− ⇐⇒ 
u+ = −i
u− ⇐⇒
u+ = 
u− = 0.

We rewrite 
u+ and 
u− by u+ and u− respectively, and (2.3) is equivalent to

(3.1) (∂t ± ∂x)u± = ∓K0[φ0, φ1]u∓.

We define by u
(k)
± the k-th iteration part:

u
(1)
± (t, x) := u±,0(x∓ t), u

(k)
± (t, x) := ∓

∫ t

0

(K0[φ0, φ1]u
(k−1)
∓ )(t′, x∓ (t − t′))dt′.

We take the initial data as follows

(3.2)
u+,0 = (logN)−1N−sF−1[χIN

], u−,0 = 0,

φ0 = (logN)−1N−rF−1[χIN
], φ1 = 0,

where IN := [−N − 1,−N + 1] ∪ [N − 1, N + 1]. A direct calculation shows

‖u+,0‖Hs ∼ ‖φ0‖Hr ∼ (logN)−1,

and they go to 0 as N →∞. We also have

‖u+,0‖M1
∼ (logN)−1N−s, ‖φ0‖M1

∼ (logN)−1N−r .

Here ‖u+,0‖M1
goes to infinity as N → ∞ although it is not so troublesome as we

will see below. We see also ‖φ0‖M1
goes to 0.

We use the expression of K0[φ0, 0] to have

u
(2)
− (t, x) =

1

2

(∫ t

0

(φ0u+,0)(x+ t− 2t′)dt′ + φ0(x+ t)

∫ t

0

u+,0(x+ t− 2t′)dt′
)
.

Then we have its Fourier transform

F [u
(2)
− ](t, ξ)

=
1

2

(∫ t

0

ei(t−2t′)ξdt′F [φ0u+,0](ξ) +

∫
eit(ξ−η)

∫ t

0

ei(t−2t′)ηdt′φ̂0(ξ − η)û+,0(η)dη

)
=

1

2
eitξ

(
e−2itξ − 1

−2iξ
F [φ0u+,0](ξ) +

∫
e−2itη − 1

−2iη
φ̂0(ξ − η)û+,0(η)dη

)
.
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We estimate the each terms for t ≤ 1,∥∥∥∥〈ξ〉s e−2itξ − 1

−2iξ
F [φ0u+,0](ξ)

∥∥∥∥
L2

ξ
([−1,1])

� tN−(s+r)(logN)−2,∥∥∥∥〈ξ〉s ∫ e−2itη − 1

−2iη
φ̂0(ξ − η)û+,0(η)dη

∥∥∥∥
L2

ξ
([−1,1])

� N−1N−(s+r)(logN)−2.

Therefore we get

(3.3) ‖u
(2)
− (t, ·)‖Hs ≥ ‖〈·〉sF [u

(2)
− ](t, ·)‖L2([−1,1]) � (t−N−1)N−(s+r)(logN)−2

for tN ≥ 2.
We show the following by induction argument

(3.4) ‖u
(k)
± (t, ·)‖M1

≤ (Ct‖φ0‖M1
)k−1‖u+,0‖M1

, k = 1, 2, 3, . . .

This estimate with k = 1 is obvious. Assuming that (3.4) holds up to k − 1, we
have

‖u
(k)
± (t, ·)‖M1

≤

∫ t

0

‖K0[φ0, 0]u
(k−1)
∓ (t′, ·)‖M1

dt′

≤ C

∫ t

0

‖K0[φ0, 0](t′, ·)‖M1
‖u

(k−1)
∓ (t′, ·)‖M1

dt′

≤ (Ct‖φ0‖M1
)k−1‖u+,0‖M1

,

which concludes that (3.4) holds for any positive integer k.
Owing to (3.2) and (3.4),

‖u
(k)
± (t, ·)‖M1

≤ (CtN−r(logN)−1)k−1N−s(logN)−1.

We get for s ≤ 0

‖u
(k)
± (t, ·)‖Hs ≤ ‖〈·〉sF [u

(k)
± (t, ·)]‖L2 ≤ sup

ξ∈R

〈ξ〉s × ‖F [u
(k)
± (t, ·)]‖L2

≤ ‖u
(k)
± (t, ·)‖M1

≤ (CtN−r(logN)−1)k−1N−s(logN)−1.

Let T = 1. For r ≥ 0, from

(3.5) TN−r(logN)−1 � 1

and Lemma 5, the well-posedness in the modulation space M1(R) holds. Further-
more, by

∞∑
k=3

‖u
(k)
± ‖L∞

T
Hs ≤

∞∑
k=3

(CN−r(logN)−1)k−1N−s(logN)−1 ∼ N−s−2r(logN)−3,

(2.6) and (3.3) yield

‖u−‖L∞

T
Hs + ‖u+‖L∞

T
Hs ≥ ‖u

(2)
− ‖L∞

T
Hs − ‖u

(1)
+ ‖L∞

T
Hs −

∞∑
k=3

‖u
(k)
± ‖L∞

T
Hs

� N−(s+r)(logN)−2 − (logN)−1 −N−s−2r(logN)−3

∼ N−(s+r)(logN)−2,

which leads the norm inflation if s < 0, r ≥ 0, s+ r < 0.
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As we mentioned in Introduction, we may also apply the same argument above
to the problem in the range s < 0, r < 0, where we take r′ ∈ R satisfying s < −r′ <
0 and initial data

(3.6)
u+,0 = (logN)−1N−sF−1[χIN

], u−,0 = 0,

φ0 = (logN)−1N−r
′

F−1[χIN
], φ1 = 0.

Then we have

‖φ0‖Hr ∼ N r−r′ (logN)−1,

and the norm of the solution diverges.
We next consider the massive case m > 0 or M > 0. By Lemma 5 and

M1(R) ↪→ L2(R) ↪→ Hs(R), the difference of the solutions between massive and
massless cases is small (see, for example, [12]). It shows that the norm inflation for
the massive case, which concludes the proof.

4. Proof of Theorem 1 with s = 0, r < 0

We only consider the massless case because the difference of the solutions be-
tween massive and massless cases is small by a similar argument as in §3. We take
the following initial data:

(4.1)
u+,0 = δF−1[χ[−1,1]], u−,0 = 0,

φ0,N = δF−1[χ[−N−1,−N+1]∪[N−1,N+1]], φ1 = 0.

Let (u±,N , φN) be the solution to (3.1) with this initial data. A direct calculation
shows

‖u+,0‖L2 ∼ δ, ‖φ0,N‖L2 ∼ δ, ‖φ0,N‖Hr ∼ δN r,

which yields φ0,N → 0 in Hr(R) as N →∞ if r < 0. Let (u±, φ) be the solution to
(3.1) with (u+,0, 0, 0, 0). We may write those by

u+(t, x) = u+,0(x− t), u−(t, x) = φ(t, x) = 0.

We will study the difference of those two solutions (u±,N , φN) and (u±, φ). We
have the following condition for the initial data

‖u±,N(0, ·)− u±(0, ·)‖L2 = 0, ‖φN(0, ·)− φ(0, ·)‖Hr ∼ δN r .(4.2)

By setting

u
(1)
+ (t, x) = u+(t, x) = u0(x− t), u

(1)
− (t, x) = u

(2)
+,N(t, x) = 0,

u
(2)
−,N (t, x) =

∫ t

0

(φNu
(1)
+ )(t′, x+ (t− t′))dt′,

and v±,N = u±,N − u
(1)
± − u

(2)
±,N , we have

(∂t ± ∂x)v±,N = ∓φN(u∓,N − u
(1)
∓ ) = ∓φNv∓,N ∓ φNu

(2)
∓,N , v±,N(0, ·) = 0.

We follow the argument in [10, §2.5]. There they wrote the variables α = t +
x, β = t− x and used the smooth cut-off function χT (α, β) which is supported on
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|α|+ |β| ≤ T . In a similar way to [10, (2.82)], we estimate

‖χT (α, β)v+,N‖L2
β
L∞

α

� ‖χ2T (α, β)(φNχT (α, β)v−,N + φNχT (α, β)u
(2)
−,N)‖L2

β
L1

α

� ‖χ2T (α, β)φN‖L2
αL

2
β
(‖χT (α, β)v−,N‖L∞

β
L2

α
+ ‖χT (α, β)u

(2)
−,N‖L∞

β
L2

α
)

� δT 1/2(‖χT (α, β)v−,N‖L2
αL

∞

β
+ ‖χ2T (α, β)φN‖L2

αL
2
β
‖χ2T (α, β)u

(1)
+ ‖L2

β
L∞

α
)

� δT 1/2(‖χT (α, β)v−,N‖L2
αL

∞

β
+ T 1/2δ2).

The estimate for the opposite sign follows in the same manner, and then the sum
of them satisfies the following, for sufficiently small δT 1/2,

‖χT (α, β)v+,N‖L2
β
L∞

α
+ ‖χT (α, β)v−,N‖L2

αL
∞

β
� Tδ3.

We use the boundedness for (t, x) norm by (α, β) norm (see (2.84) in [10]) as

(4.3) ‖v+,N‖L∞

T
L2

x
+ ‖v−,N‖L∞

T
L2

x
� ‖v+,N‖L2

β
L∞

α
+ ‖v−,N‖L2

αL
∞

β
� Tδ3.

On the other hand, by the expression

u
(2)
−,N(t, x) =

1

2

(∫ t

0

(φ0,Nu+,0)(x+ t− 2t′)dt′ + φ0,N(x + t)

∫ t

0

u+,0(x+ t − 2t′)dt′
)
,

we get

F [u
(2)
−,N ](t, ξ)

=
1

2

(∫ t

0

ei(t−2t′)ξdt′F [φ0,Nu+,0](ξ)

+

∫
eit(ξ−η)

∫ t

0

ei(t−2t′)ηdt′φ̂0,N(ξ − η)û+,0(η)dη

)
=

1

2
eitξ

(
e−2itξ − 1

−2iξ
F [φ0,Nu+,0](ξ) +

∫
e−2itη − 1

−2iη
φ̂0,N(ξ − η)û+,0(η)dη

)
.

From (4.1), we have for 0 < t ≤ T ≤ 1

|F [u
(2)
−,N ](t, ξ)|

≥
1

2

(∣∣∣∣∫ e−2itη − 1

−2iη
φ̂0,N(ξ − η)û+,0(η)dη

∣∣∣∣ − ∣∣∣∣e−2itξ − 1

−2iξ
F [φ0,Nu+,0](ξ)

∣∣∣∣)
� tδ2

(
χ[N−1,N+1](ξ)−

1

N
χ[−N−2,−N+2]∪[N−2,N+2](ξ)

)
,

which yields

(4.4) ‖u
(2)
−,N(t, ·)‖L2 ≥ ‖F [u

(2)
−,N ](t, ·)‖L2([N−1,N+1]) � tδ2(1−N−1) � tδ2.

Now we estimate for

u±,N − u± = v±,N + u
(2)
±,N

by using (4.3) and (4.4) as follows

‖u−,N(t, ·)− u−(t, ·)‖L2 ≥ ‖u
(2)
−,N(t, ·)‖L2 − ‖v−,N‖L∞

t L2 ≥ C1tδ
2 − C2tδ

3.
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Here with small δ > 0, we may say that the right hand side is positive, that is
C1tδ

2 − C2tδ
3 > 0, for any positive t > 0. This means the discontinuity of the

solution map: L2(R)×Hr(R)×Hr−1(R) → C([0, T ] : L2(R)×Hr(R)×Hr−1(R))
for any T > 0.

5. Well-posedness result in (ψ, φ) ∈ L1(R) × L∞(R)

In this section, we prove Theorem 2 which implies well-posedness of (1.1) in
L1(R)× L∞(R). This result was derived by Shiota [16]. We set u± := ψ1 ∓ ψ2 as
we did in the former sections. We consider the Dirac-Klein-Gordon system in the
following form:

(5.1)

⎧⎪⎨⎪⎩
(∂t ± ∂x)u± = i(m− φ)u∓,

(∂2
t − ∂2

x +M2)φ = 2
(u+ū−),

u±(0, x) = u±,0(x), φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x).

We follow the argument in [10, §2.5] here again, using the variables α = t +
x, β = t− x and the smooth cut-off function χT (α, β). We assume the initial data
condition u±,0 ∈ L1(R), φ0 ∈ L∞(R), φ1 ∈ L

1(R). Then we show the existence of
the following unique solution for (5.1):

u± ∈ C([0, T ] : L1(R)), φ ∈ C([0, T ] : L∞(R)),

χ[0,T ](t)u+ ∈ L
1
βL
∞
α , χ[0,T ](t)u− ∈ L

1
αL

∞
β , χ[0,T ](t)φ ∈ L

∞
β L

∞
α .

We remark that the smooth cut-off χ[0,T ](t) means the cut-off with respect to the
both finite time 0 < t < T and finite space |x − a| � T for each a ∈ R from
the finite speed of propagation. Therefore we may treat the solutions as functions
restricted on the local domain |α|+ |β| � T . We estimate on the integral equation
corresponding to (5.1) in those spaces. We define the following complete metric
space:

(5.2) X = X(T,M1 ,M2) = {‖u+‖L1
β
L∞

α
+ ‖u−‖L1

αL
∞

β
≤M1, ‖φ‖L∞

α L
∞

β
≤M2}

where we set M1 = 2(‖u+,0‖L1+‖u−,0‖L1),M2 = 2(‖φ0‖L∞+‖φ1‖L1). Here we may
think M1 is sufficiently small from the restriction on the local domain |x− a| � T

for a ∈ R if we take T > 0 small. We show the following map Ψ(u±, φ) = (u	±, φ
	)

is a contraction on X:

u	±(t, x) = u±,0(x ∓ t) + i

∫ t

0

(mu∓ − φu∓)(t′, x∓ (t− t′))dt′,

φ	(t, x) = KM [φ0, φ1] + 2

∫ t

0

WM (t− t′)
(u+ū−)(t′, x)dt′

where WM denotes the evolution operator of the Klein-Gordon equation with mass
M ≥ 0. We estimate

‖χT (α, β)u	+‖L1
β
L∞

α
� ‖u+,0‖L1 + ‖χ2T (α, β)(mu− − φu−)‖L1

β
L1

α

� ‖u+,0‖L1 + ‖u−‖L1
αL

1
β

+ ‖φ‖L∞

α L∞

β
‖u−‖L1

αL
1
β

� ‖u+,0‖L1 + T (‖u−‖L1
αL

∞

β
+ ‖φ‖L∞

α L∞

β
‖u−‖L1

αL
∞

β
).

Similarly

‖χT (α, β)u	−‖L1
αL

∞

β
� ‖u−,0‖L1 + T (‖u+‖L1

β
L∞

α
+ ‖φ‖L∞

α L
∞

β
‖u+‖L1

β
L∞

α
).
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Therefore

‖χT (α, β)u	+‖L1
β
L∞

α
+ ‖χT (α, β)u	−‖L1

αL
∞

β
≤
M1

2
+CT (M1 +M1M2) ≤M1

for sufficiently small T > 0. We estimate

‖χT (α, β)φ	‖L∞

β
L∞

α
� ‖φ0‖L∞ + ‖φ1‖L1 + ‖χ2T (α, β)u+u−‖L1

β
L1

α

� ‖φ0‖L∞ + ‖φ1‖L1 + ‖u+‖L1
β
L∞

α
‖u−‖L1

αL
∞

β

≤
M2

2
+ CM2

1 ≤M2

for sufficiently small M1. This conclude the contraction mapping principle and we
obtain the unique solution.

Next, we show that the solutions (u+, u−, φ) ∈ C([0, T ] : L1(R) × L1(R) ×
L∞(R)) above depend continuously on the initial data (u+,0, u0,−, φ0, φ1) ∈ L

1(R)×
L1(R)× L∞(R) × L1(R). Assume that

u+,0,n → u+,0, u−,0,n → u−,0 in L1, φ0,n → φ0 in L∞, φ1,n → φ1 in L1.

We write the corresponding solutions (u+,n, u−,n, φn) and (u+, u−, φ). We have the
uniform boundedness with respect to n = 1, 2, . . .

‖u+,n‖L1
β
L∞

α
+ ‖u−,n‖L1

αL
∞

β
≤M1, ‖φn‖L∞

α L
∞

β
≤M2.

Then we estimate the difference

‖χT (α, β)(u+,n − u+)‖L1
β
L∞

α

� ‖u+,0,n − u+,0‖L1 + T (‖u−,n − u−‖L1
αL

∞

β
+ ‖φn‖L∞

α L
∞

β
‖u−,n − u−‖L1

αL
∞

β

+ ‖φn − φ‖L∞

α L
∞

β
‖u−‖L1

αL
∞

β
)

� ‖u+,0,n − u+,0‖L1 + T (‖u−,n − u−‖L1
αL

∞

β
+ ‖φn − φ‖L∞

α L∞

β
).

Similarly

‖χT (α, β)(u−,n − u−)‖L1
αL

∞

β
� ‖u−,0,n− u−,0‖L1

+ T (‖u+,n − u+‖L1
β
L∞

α
+ ‖φn − φ‖L∞

α L∞

β
),

‖χT (α, β)(φn − φ)‖L∞

α L∞

β
� ‖φ0,n− φ0‖L∞ + ‖φ1,n − φ1‖L1

+ T (‖u−,n − u−‖L1
αL

∞

β
+ ‖u+,n − u+‖L1

β
L∞

α
).

Therefore we have for sufficiently small T > 0,

‖χT (α, β)(u+,n − u+)‖L1
β
L∞

α

+ ‖χT (α, β)(u−,n − u−)‖L1
αL

∞

β
+ ‖χT (α, β)(φn − φ)‖L∞

α L∞

β

� ‖u+,0,n − u+,0‖L1 + ‖u−,0,n − u−,0‖L1 + ‖φ0,n − φ0‖L∞ + ‖φ1,n − φ1‖L1 .

This conclude that the solutions in L1
βL
∞
α × L1

αL
∞
β × L∞β L

∞
α depend continuously

on the initial data. We use (4.3) to show that the map is also continuous for the
solution in C([0, T ] : L1(R)× L1(R)× L∞(R)).
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