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Abstract. We study a one dimensional dissipative transport equation with

nonlocal velocity and critical dissipation. We consider the Cauchy problem
for initial values with infinite energy. The control we shall use involves some

weighted Lebesgue or Sobolev spaces. More precisely, we consider the fam-
ily of weights given by wβ(x) = (1 + |x|2)−β/2 where β is a real parameter

in (0,1) and we treat the Cauchy problem for the cases θ0 ∈ H1/2(wβ) and

θ0 ∈ H1(wβ) for which we prove global existence results (under smallness

assumptions on the L∞ norm of θ0). The key step in the proof of our theo-
rems is based on the use of two new commutator estimates involving fractional

differential operators and the family of Muckenhoupt weights.
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Introduction

In this article, we are interested in the following 1D transport equation with
nonlocal velocity which has been introduced by Córdoba, Córdoba and Fontelos in
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[14] :

(Tα) :

{
∂tθ + θxHθ + νΛαθ = 0

θ(0, x) = θ0(x).

Here, H denotes the Hilbert transform, defined by

(0.1) Hθ ≡ 1

π
PV

∫
θ(y)

y − x
dy,

and the operator Λα is defined (in 1D) as follows

Λαθ ≡ (−Δ)α/2θ = CαP.V.

∫
R

θ(x) − θ(x − y)

|y|1+α
dy

where Cα > 0 is a positive constant which depends only on α and 0 < α < 2 is a
real parameter. Note that with this convention in 0.1, we have ∂xH = −Λ

This equation can be viewed as a toy model for several equations coming from
problems in fluid dynamics, in particular it models the 3D Euler equation written
in vorticity form (see e.g. [9], [1], [15], [29] where other 1D models for 3D Euler
equation are studied).

One can observe that this equation is a one dimensional model for the 2D
dissipative Surface-Quasi-Gesotrophic (SQG)α equation (see [10]) written in a non-
divergence form (see also [4], [5], [6], [27] where the divergence form equation is
studied). The 2D dissipative SQG equation reads as follows

(SQG)α :

{
∂tθ(x, t) + u(θ).∇θ + νΛαθ = 0

θ(0, x) = θ0(x),

where the velocity u(θ) = R⊥θ is given by the Riesz transforms R1θ and R2θ of θ
as

u(θ) = (−R2θ,R1θ) = (−∂x2
Λ−1θ, ∂x1

Λ−1θ).

Obviously the velocity u(θ) is divergence free. In 1D, we lose this divergence free
condition, while the analogue of the Riesz transforms is the Hilbert transform; one
gets the equation (Tα).

One can also see this equation as an analogue of the fractional Burgers equation
with the nonlocal velocity u(θ) = Hθ instead of u(θ) = θ. However, the nonlocal
character of the velocity makes the (Tα) equation more complicated to deal with
comparing to the fractional Burgers equations which is now quite well understood
(see [22], [7], [20]). Finally, let us mention that this equation also shares some sim-
ilarities with the Birkhoff-Rott equation which modelises the evolution of a vortex
patch, we refer to [14], [1] for more details regarding this analogy.

It is easy to guess that this kind of fractional transport equation admits an L∞

maximum principle (due to the diffusive character of −Λα and the presence of the
derivative θx in the advection term). For θ ∈ L∞, one thus may view θxHθ as a
term of order 1, while Λα is of order α; thus, one has to consider 3 cases depending
on the value of α, namely α ∈ (0, 1), α = 1 and α ∈ (1, 2). They are respectively
called supercritical, critical and sub-critical cases.
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The inviscid case (i.e. ν = 0) was first studied by Córdoba, Córdoba and
Fontelos in [14] where the authors proved that blow-up of regular solutions may
occur. They proved that there exists a family of smooth, compactly supported,
even and positive initial data for which the associated solution blows up in finite
time. By adapting the method used in [14] along with the use of new nonlocal
inequalities obtained in [13], Li and Rodrigo [26] proved that blow-up of smooth
solutions also holds in the viscous case, in the range α ∈ (0, 1/2). Using a different
method, Kiselev [20] was able to prove that singularities may appear in the case
α ∈ [0, 1/2) (where the case α = 0 conventionnally designs the inviscid case ν = 0).
In this latter range, that is α ∈ [0, 1/2), Silvestre and Vicol [32] gave four differents
proofs of the same results as [14], [26], [32], namely they proved the existence of
singularities for classical (C1) solutions starting from a well chosen class of initial
data. In [16], T. Do showed eventual regularization in the supercritical case and
global regularity for the slightly supercritical version of equation Tα, in the spirit
of what was done for the SQG equation in [31], [20]. One can also see the articles
[17] and [2] where local existence results are obtained in this regime. In the range
α ∈ [1/2, 1), the question about blow-up or global existence of regular solutions
remains open.

The critical and the sub-critical cases are well understood. Indeed, by adapting
methods introduced in [23], [3], [11], one recovers all the results known for the crit-
ical SQG equation, under an extra positiveness assumption on the initial data (see
[21]). The first global existence results are those of Córdoba, Córdoba and Fontelos
[14]. They obtained global existence results for non-negative data in H1 and H1/2

in the subcritical case and also in the critical case under a smallness assumption
of the L∞ norm of the initial data. In [17], Dong treated the critical case and
obtained the global well-posedness for data in Hs where s > 3/2− α and without
sign conditions on the initial data. In the critical case, Kiselev proved in [20] that

there exists a unique global smooth solution for all θ0 ∈ H1/2.

In this article, we will focus on the critical case (α = 1) and without loss of
generality we shall fix ν = 1. Futhermore, in contrast with [14] and [17], we shall
not assume that θ decays at infinity fast enough to ensure that ‖θ‖2 < +∞. It is
worth pointing out that, our solutions being of infinite energy, one cannot directly
use methods coming from L∞-critical case used for instance in [3]. However, in the
case of an infinite-energy data, one can still use energy estimates (in the spirit of
[14]) to prove global existence results provided that θ decreases only at a slow rate,
namely ∫

|θ(x, t)|2 dx

(1 + |x|2)β/2
< +∞

The weight we consider is therefore given by wβ(x) = (1 + |x|2)−β/2. Motivated by
the work done in [14], we will study the cases of small data in L∞ which belong

moreover to H1/2(wβ) or H1(wβ), although one can generalize to a higher regu-
larity class of initial data (we think that it should be even easier to treat). When

the initial data lies in H1/2(wβ) or H1(wβ) we prove global existence of weighted
Leray-Hopf type solutions but we require the L∞ norm of the initial data to be small
enough. As one may expect, in the subcritical case one can prove the existence of
global solutions without smallness assumption. This is done by the first author in
[24] using Littlewood-Paley theory along with a suitable commutators estimates.
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He also treated the supercritical case where he obtained local existence results for
arbitrary big initial data [24].

The construction of a solution is based on an energy method and amounts
to control some nontrivial commutators involving the weight wβ along with some
classical harmonic analysis tools such as the use of the Hardy-Littlewood maximal
function and Hedberg’s inequality for instance (see [18], [30]); such tools are mo-
tivated by the fact wβ is a Muckenhoupt weight. The new commutator estimates
can be used to prove existence of infinite energy solutions for other nonlinear trans-
port equations with fractional diffusion such as the 2D dissipative quasi-geostrophic
equation as well as the fractional porous media equation for instance.

The rest of the paper is organized into five sections. In the first section, we
state our main theorems. In the second section we recall some results concerning
the Muckenhoupt weights. In the third and fourth section, we respectively establish
a priori estimates and prove our main results. In the last section we revisit the
construction of regular enough solutions.

1. Main theorems

In the case of a weighted H1/2 data we have the following theorem,

Theorem 1.1. Let 0 < β < 1 and wβ(x) = (1 + x2)−β/2. There exists a

constant Cβ > 0 such that, whenever θ0 satisfies the conditions

• θ0 is bounded and small enough : |θ0| ≤ Cβ

•
∫
|θ0|2wβ(x) dx < ∞ and

∫
|Λ1/2θ0|2wβ(x) dx < ∞,

there exists a solution θ to equation T1 such that, for every T > 0, we have

• sup
0<t<T

∫
|θ(t, x)|2wβ(x) dx < ∞

• sup
0<t<T

∫
|Λ1/2θ(t, x)|2wβ(x) dx < ∞

•
∫ T

0

∫
|Λθ(t, x)|2wβ(x) dx dt < ∞

A similar result holds for higher regularity (weighted H1 data).

Theorem 1.2. Let 0 < β < 1 and wβ(x) = (1 + x2)−β/2. There exists Cβ > 0
such that, whenever θ0 satisfies the conditions

• θ0 is bounded and small enough : |θ0| ≤ Cβ

•
∫
|θ0|2wβ(x) dx < ∞ and

∫
|Λθ0|2wβ(x) dx < ∞,

there exists a solution θ to equation T1 such that, for every T > 0, we have

• sup
0<t<T

∫
|θ(t, x)|2wβ(x) dx < ∞

• sup
0<t<T

∫
|Λθ(t, x)|2wβ(x) dx < ∞
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•
∫ T

0

∫
|Λ3/2θ(t, x)|2wβ(x) dx dt < ∞

2. Preliminaries on the Muckenhoupt weights.

In this section, we briefly recall the tools and the notations we shall use through-
out the article. We first recall some basic facts and notations on weighted Lebesgue
or Sobolev spaces. A weight w is a positive and locally integrable function. A
measurable function θ on R belongs to the weighted Lebesgue spaces Lp(wdx) with
1 ≤ p <∞ if and only if

‖θ‖Lp(wdx) =

(∫
|θ(x)|p w(x) dx

)1/p

< ∞.

An important class of weights is the so-called Muckenhoupt class Ap for 1 < p < ∞.
A weight is said to be in the Ap class of Muckenhoupt (with p ∈ (1,∞)) if and only
if there exists a constant C(w, p) such that we have the reverse Hölder inequality

sup
r>0,x0∈R

(
1

2r

∫
[x0−r,x0+r]

w(x) dx

)(
1

2r

∫
[x0−r,x0+r]

w(x)−
1

p−1 dx

)p−1

≤ C(w, p).

In particular, if 0 < β < 1, then the weight wβ(x) = (1 + |x|2)−β/2 belongs to the
Ap class for all 1 < p < ∞.

Let us recall that the Hardy-Littlewood maximal function of a locally integrable
function f on R is defined by

Mf(x) = sup
r>0

1

2r

∫
[x−r,x+r]

|f(y)| dy.

We have the following other characterization of the Ap class [8], [28] : a weight
w belongs to Ap if and only if there exists a constant Cp,w such that for every
f ∈ Lp(w dx), we have

‖Mf(x)‖Lp(w dx) ≤ Cp,w‖f‖Lp(wdx).

Another important property of Muckenhoupt weights is that Calderón-Zygmund
type operators are bounded on Lp(w dx) when w ∈ Ap and 1 < p < ∞. We shall
use this property in the case of the Hilbert transform H and in the case of the
truncated Hilbert transform, defined by

(2.1) H#f(x) =
1

π
P.V.

∫
α(x− y)

x− y
f(y) dy

where α is an even, smooth and compactly supported function such that α(x) = 1 if
|x| < 1 and α(x) = 0 if |x| > 2. We refer for instance to [30] or [19] for more details.

We now recall the definition of the weighted Sobolev spaces H1(wdx) and

H1/2(wdx). The space H1(w dx) is defined by

f ∈ H1(wdx) ⇔ f ∈ L2(wdx) and ∂xf ∈ L2(wdx).

Note that, due to 0.1, we have

H∂x = Λ and HΛ = ∂x,
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we see that, when w ∈ A2, the semi-norm ‖∂xf‖L2(w dx) is equivalent to the semi-
norm ‖Λf‖L2(wdx). Therefore, when w ∈ A2, we have the following equivalence

f ∈ H1(wdx) ⇔ (1− ∂2
x)1/2f ∈ L2(wdx) ⇔ f ∈ L2(wdx) and Λf ∈ L2(wdx).

Analogously, we define the spaces H1/2(wdx) as

f ∈ H1/2(w dx)⇔ (1−∂2
x)1/4f ∈ L2(wdx) ⇔ f ∈ L2(wdx) and Λ1/2f ∈ L2(wdx).

The following useful property will be used several times (see [30], p.57). Fix
an integrable nonnegative and radially decreasing function φ such that its integral
over R is equal to 1. We set, φk(x) = k−1φ(xk−1) for all k > 0, then

(2.2) sup
k>0

|f ∗ φk(x)| ≤Mf(x).

In the sequel, we shall use Gagliardo-Nirenberg type inequalities in the weighted
setting. Let us first note that, provided f vanishes at infinity (in the sense that

lim
t→+∞ etΔf = 0 in S′), one may write

−f =

∫ ∞

0

etΔΔf dt.

where f 
→ etΔf is the heat kernel operator defined by etΔf = G(x, t)∗ f where ∗ is

the convolution with respect to the x variable and G(x, t) = (4πt)−1/2e−
x2

4t which
verifies the heat equation ∂tG(x, t) = ΔG(x, t).

Then, for all N ∈ N
∗ by writing 1 = ∂N−1

t ( tN−1

(N−1)!) and integrating by parts (N−1)

times, one obtain the following equality

−f =
1

(N − 1)!

∫ ∞

0

(−tΔ)NetΔf
dt

t
.

Then, for 0 < γ < δ < 2N , using the fact that the operator Λ2N−δ+γ is a convolution
operator with an integrable kernel which is dominated by an integrable radially
decreasing function, along with the inequality

sup
t
|ΛγetΔf | ≤ ct−γ/2Mf(x)

allow us to get

|Λγf(x)| ≤ C

∫ ∞

0

min(t−γ/2‖f‖∞, t
δ−γ
2 M(Λδf)(x))

dt

t

Then, we recover Hedberg’s inequality (see Hedberg [18])

(2.3) |Λγf(x)| ≤ Cγ,δ(M(Λδf)(x)))
γ
δ ‖f‖1−

γ
δ∞

Note that, if γ ∈ N
∗, one may replace Λγf(x) with ∂γ

xf(x). Using (2.3), one easily
deduce the following Gagliardo-Nirenberg type inequalities provided that the weight
w ∈ A3 (actually w ∈ A2 suffices for 2.4 and 2.5)

‖Λ1/2f‖L4(wdx) ≤ C‖f‖1/2
∞ ‖Λf‖1/2

L2(wdx)(2.4)

‖Λf‖L3(wdx) ≤ C‖f‖1/3
∞ ‖Λ3/2f‖2/3

L2(wdx)(2.5)

and

‖∂xf‖L3(wdx) ≤ C‖f‖1/3
∞ ‖Λ3/2f‖2/3

L2(wdx)(2.6)
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For instance, to prove 2.5, it suffices to set γ = 1 and δ = 3/2 in 2.3 and to raise to
the power 3 in both side, one obtain

|Λf |3 ≤ (M(Λ3/2f)(x))2‖f‖∞.

Mutiplying this latter inequality by w and integrating with respect to x give

‖Λf‖3L3(wdx) ≤ ‖f‖∞‖M(Λ3/2f)(x)‖2L2(wdx) ≤ ‖f‖∞‖Λ3/2f‖2L2(wdx),

where, in the last inequality, we used the continuity of the maximal function M
on L2(wdx) because w ∈ A2. Therefore, inequality 2.5 follows by taking the power
1/3 in both sides. Then, observe that 2.6 is a direct consequence of 2.5. Indeed, we
have HΛf = −∂xf and due to w ∈ A3 one can use the continuity on L3(wdx) of H
to obtain the inequality

‖∂xf‖L3(wdx) = ‖HΛf‖L3(wdx) ≤ ‖Λf‖L3(wdx),

therefore we recover 2.6.

The space of positive smooth functions compactly supported in an open set Ω
will be denoted by D(Ω). We shall use the notation A � B if there exists constant
C > 0 depending only on controlled quantities such that A ≤ CB. We shall often
use the same notation to design a controlled constant although it is not the same
from a line to another. Note that we shall write indifferently ∂xθ or θx for the
derivative as well as ‖.‖p or ‖.‖Lp for the classical Lebesgue spaces.

3. Useful lemmas

In our future estimations, we will need to control the Lp norm of some nontrivial
commutators involving our weight wβ and the nonlocal operators Λ and Λ1/2. Also,
a control of Λw by cw will be needed. The aim of this section is to establish
all those nonlocal estimates involving w and Λ. Before starting the proofs of those
commutator estimates, we shall give some important remarks that will be helpful to
estimate singular integrals involving the weight w. When estimating commutators
involving the weight wβ(x) = (1 + x2)−β/2, we are lead to estimate quantities such
that wβ(x)−wβ(y). In order to estimate wβ(x)−wβ(y), we shall distinguish three
areas that we will call Δ1(x), Δ2(x) and Δ3(x). Those areas are defined as follows,

Δ1(x) = {y / |x− y| < 2}

Δ2(x) = {y / |x− y| ≥ 2} ∩ {y /|x− y| ≤ 1

2
max(|x|, |y|)}

Δ3(x) = {y / |x− y| ≥ 2} ∩ {y /|x− y| > 1

2
max(|x|, |y|)}.

Note that we have R = Δ1(x)∪Δ2(x)∪Δ3(x). In the sequel, we shall also use the
notation wβ(x) ≈ wβ(y) if there exists two positive constants c and C such that

c ≤ w(x)
w(y) ≤ C. In those different areas, we will need to use the following estimates :

• A straightforward computation gives that |∂xwβ(x)|+|∂2
xwβ(x)| ≤ Cwβ(x)

• On Δ1(x), we have that wβ(x) ≈ wβ(y) and moreover

|wβ(x) −wβ(y)| ≤ |x− y| sup
z∈[x,y]

|∂xwβ(z)| ≤ C|x− y|wβ(x)
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On the other hand, if α is an even, smooth and compactly supported
function such that α(x) = 1 if |x| < 1 and α(x) = 0 if |x| > 2, then

(3.1) |wβ(y) − wβ(x) + α(x− y)(x − y)∂xwβ(x)| ≤ C|x− y|2wβ(x)

• On Δ2(x), we shall only use that wβ(x) ≈ wβ(y)

• On Δ3(x), we have 1 ≤ wβ(x)−1 ≤ C|x−y|β and 1 ≤ wβ(y)−1 ≤ C|x−y|β

Remark 3.1. Obviously, similar estimates hold for γβ(x) = wβ(x)1/2. Indeed,
it suffices to replace wβ with γβ and β with β/2.

The purpose of the following subsections is to prove that we can indeed control
those commutators and that we have a nice bound for Λwβ.

3.1. Two commutator estimates involving the weight wβ. In the next
lemma, we obtain two commutator estimates that are crucial in the proof of the
energy inequality.

Lemma 3.2. Let wβ(x) = (1 + x2)−β/2, 0 < β < 1, then we have the two

following estimates

• Let p ≥ 2 be such that 3
2
−β(1− 1

p
) > 1, then the commutator 1

wβ
[Λ1/2, wβ]

is bounded from Lp(wβdx) to Lp(wβdx).
• Let 2 ≤ p < ∞, then the commutator 1√

wβ
[Λ,
√

wβ] is bounded from

Lp(wβdx) to Lp(wβdx).

Proof of lemma 3.2.

Let us prove the first commutator estimate. We first write

Λ1/2f(x) = c0

∫
f(x) − f(y)

|x− y|3/2
dy

so that

1

wβ(x)
[Λ1/2, wβ]f(x) = c0

1

wβ(x)
1

p

∫
wβ(x)− wβ(y)

wβ(x)1−
1

p wβ(y)
1

p |x− y|3/2
wβ(y)

1

p f(y) dy

Let us set

K(x, y) ≡ wβ(x) −wβ(y)

wβ(x)1−
1

p wβ(y)
1

p |x− y|3/2

On Δ1(x) we have

|K(x, y)| ≤ C
1

|x− y|1/2

On Δ2(x), since wβ(x) ≈ wβ(y), we get

|K(x, y)| ≤ C
1

|x− y|3/2

On Δ3(x), we have the following estimate

|K(x, y)| ≤ C
wβ(x)

1

p−1 + wβ(y)−
1

p

|x− y|3/2
≤ C ′

1

|x− y| 32−β(1− 1

p )
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Note that, for 0 < β < 1 we have 3
2 − β(1 − 1

p ) > 1 if p ≥ 2. Therefore, if we

introduce the function x 
→ Φ(x) as follows

Φ(x) ≡ min

(
1

|x|1/2
,

1

|x| 32−β(1− 1

p )

)
,

we find that Φ belongs to L1(R) and that∣∣∣∣ 1

wβ(x)
[Λ1/2, wβ]f(x)

∣∣∣∣ ≤ C
1

wβ(x)
1

p

∫
Φ(x− y)wβ(y)

1

p |f(y)| dy

The integral appearing in the right hand side is nothing but the convolution of

x 
→ Φ(x) ∈ L1(R) with x 
→ wβ(x)
1

p |f(x)| ∈ Lp(R). To finish the proof, we just
have to take the power p in both side then to integrate with respect to x and by
Young’s inequality for convolution, we get∫ ∣∣∣∣ 1

wβ(x)
[Λ1/2, wβ]f(x)

∣∣∣∣
p

wdx ≤ C

∫ ∣∣∣(Φ ∗ w
1/p
β f)(x)

∣∣∣p dx ≤ C‖Φ‖p
L1‖w1/p

β f‖p
Lp

and therefore, ∥∥∥∥ 1

wβ(x)
[Λ1/2, wβ]f(x)

∥∥∥∥
Lp(wβdx)

≤ C‖f‖Lp(wβdx)

Let us prove the second commutator estimate. Let us denote γβ =
√

wβ, recall that

Λf(x) =
1

π
lim
ε→0

∫
ε<|x−y|<1

ε

f(x) − f(y)

|x− y|2 dy

Therefore,

1√
wβ(x)

[Λ,
√

wβ(x)]f =
1

πγβ(x)
lim
ε→0

∫
ε<|x−y|<1

ε

γβ(y) − γβ(x)

|x− y|2 f(y) dy

Then, as we did before, we split the integral into three pieces. In other to deal
with the integration in Δ1(x), we need to introduce a even, smooth and compactly
supported function α such that α(x) = 1 if |x| < 1 and α(x) = 0 if |x| > 2. By doing
so, we get an extra term which is nothing but the truncated Hilbert transform of f
(see 2.1) times another controlled term. More precisely, we write the commutators
as follows

1√
wβ(x)

[
Λ,

√
wβ(x)

]
f

=
1

πγβ(x)

∫
Δ1(x)

γβ(y) − γβ(x)− (y − x)α(x− y)∂xγβ(x)

|x− y|2 f(y) dy

− ∂xγβ(x)

γβ(x)
H#f(x) +

1

πγβ(x)

∫
Δ2(x)∪Δ3(x)

γβ(y) − γβ(x)

|x− y|2 f(y) dy

Then, observe that on Δ1(x) we have (see 3.1)

1

γβ(x)1−
2

p γβ(y)
2

p

|wβ(y) −wβ(x) + α(x− y)(x − y)∂xwβ(x)|
|x− y|2 ≤ C

On Δ2(x), we have

1

γβ(x)1−
2

p γβ(y)
2

p

|γβ(y) − γβ(x)|
|x− y|2 ≤ C

1

|x− y|2
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Here, we used the property that on Δ1(x) and Δ2(x) we have γβ(x) ≈ γβ(y) and

therefore γβ(x)1−
2

p γβ(y)
2

p ≈ γβ(x).

Finally, on Δ3(x) we use the fact that γβ(x) ≤ 1, γβ(x)−1 ≤ C|x− y|β/2. We also

have that γβ(y) ≤ 1, γβ(y)−1 ≤ C|x− y|β/2, therefore

1

γβ(x)1−
2

p γβ(y)
2

p

|γβ(y) − γβ(x)|
|x− y|2 ≤ C

γβ(x)
2

p−1 + γβ(y)−
2

p

|x− y|2

≤ C ′
1

|x− y|2−β max( 1

2
− 1

p , 1

p )

Now, let us introduce the function x 
→ Θ(x) as follows

Θ(x) ≡ min

(
1,

1

|x|2−β(1

2
− 1

p , 1

p )

)

Thus, we have proved that∣∣∣∣∣ 1√
wβ(x)

[Λ,
√

wβ(x)]f

∣∣∣∣∣ ≤ C
1

wβ(x)
1

p

∫
Θ(x− y)wβ(y)

1

p |f(y)| dy + C|H#f(x)|

Since 2 − β max(1
2 − 1

p , 1
p ) > 3

2 , then the function Θ is an integrable function on

R. Taking the power p in both side, multiplying by w and then integrating with
respect to x give the following∫

| 1√
wβ(x)

[Λ,
√

wβ(x)]f |p wβdx ≤ C

∫
(Θ ∗G)(x) dx + C ′

∫
|H#f(x)|p wβdx

where we set G(y) = wβ(y)1/p|f(y)|. Therefore, since Θ ∈ L1(R) and G ∈ Lp(R),
Young’s inequality for the convolution gives∥∥∥∥∥ 1√

w(x)
[Λ,

√
wβ(x)]f

∥∥∥∥∥
p

Lp(wβdx)

≤ C ′′
∫
|f(x)|p wβ dx

where, in the second part of the inequality, we have used that the truncated Hilbert
transform of f is a Calderón-Zygmund type operator and as such is bounded on
Lp(wβdx) ( by the Lp(wβdx) norm of f) since wβ ∈ Ap for all p ∈ [2,∞). This
concludes the proof of the second commutator estimate. �

3.2. Bounds for Λwβ. We have used in the previous subsection the bound
|∂xwβ(x)| ≤ Cwβ(x). A similar estimate holds for the nonlocal operator Λ :

Lemma 3.3. For all β ∈ (0, 1), we have |Λwβ(x)| ≤ Cwβ(x)

Proof of lemma 3.3. We need to estimate the following singular integral

Λwβ(x) =
P.V.

π

∫
wβ(x) −wβ(y)

|x− y|2 dy

To do so, we split the integral in three pieces

P.V.

π

∫
wβ(x)− wβ(y)

|x− y|2 dy =
P.V.

π

3∑
i=1

∫
Δi(x)

wβ(x)− wβ(y)

|x− y|2 dy ≡
3∑

i=1

Ii
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The domains of integrations Δi(x) with i = 1, 2, 3 are the same ones as those
introduced in the previous subsection. Using (3.1), we get the following estimate
for the integration in Δ1(x)

I1 ≤ P.V.

π

∫
Δ1(x)

|wβ(x) −wβ(y)|
|x− y|2 dy

≤ P.V.

π

∫
Δ1(x)

|wβ(y) −wβ(x) + α(x− y)(x − y)∂xwβ(x)|
|x− y|2 dy

≤ Cwβ(x)

For the integral over Δ2(x), we have

I2 ≤
P.V.

π

∫
Δ2(x)

|wβ(x)−wβ(y)|
|x− y|2 dy ≤ P.V.

π

∫
Δ2(x)

|wβ(x)|
|x− y|2 dy < Cwβ(x)

The last integral can be estimated as follows

P.V.

π

∫
Δ3(x)

|wβ(x)− wβ(y)|
|x− y|2 dy ≤ C

∫
Δ3(x)

|wβ(x)|
|x− y|2 dy + C

∫
Δ3(x)

1

|x− y|2+β
dy

≤ C ′wβ(x)

This concludes the proof of the lemma. �

4. A priori estimates in weighted Sobolev spaces

In order to prove the theorems, we approximate our initial data by data which
vanish at infinity, so that we may use the existence and regularity results obtained
in the last section (see section 6). For a solution θ in Hs, s = 0, 1/2 or 1, we
have obviously θ ∈ Hs(wβ dx). This will allow us to estimate the norm of θ in
Hs(wβ dx); we shall show that those estimates do not depend on the Hs(dx) norm
of θ0, but only on the norm of θ0 in Hs(wβ dx) and thus we shall be able to relax
the approximation.

In the sequel, we shall just write w instead of wβ for the sake of readibility.

4.1. Estimates for the L2(wdx) norm. In this subsection, we consider the
solution θ ∈ H1 associated to some initial value θ0 ∈ H1 and try to estimate its
L2(wdx) norm.

As usually, we multiply the transport equation by wθ and we integrate with
respect to the space variable. We obtain

1

2

d

dt

(∫
θ2w dx

)
=

∫
θ∂tθ w dx

= −
∫

θΛθ wdx−
∫

θHθ∂xθw dx.

When integrating by parts, we take into account the weight w and get

1

2

d

dt

(∫
θ2 dx

)
= −

∫
|Λ1/2θ|2 w dx− 1

2

∫
θ2 Λθ w dx

−
∫

Λ1/2θ[Λ1/2, w]θ dx +
1

2

∫
θ2Hθ ∂xw dx.
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Using lemma 3.2∫
Λ1/2θ

1

w
[Λ1/2, w]θw dx ≤ ‖Λ1/2θ‖L2(w dx)

∥∥∥∥ 1

w
[Λ1/2, w]θ

∥∥∥∥
L2(wdx)

≤ C‖Λ1/2θ‖L2(wdx)‖θ‖L2(wdx)

≤ 1

2

∫
|Λ1/2θ|2 w dx +

C2

2

∫
θ2 w dx.

Moreover, we have

1

2

∫
θ2Hθ ∂xw dx ≤ C‖θ‖∞

∫
|θ||Hθ|w dx

≤ C ′‖θ0‖∞‖θ‖2L2(wdx)

Thus, we find that

d

dt

(∫
θ2w dx

)
+

∫
|Λ1/2θ|2 w dx ≤ C(1 + ‖θ0‖∞)

∫
θ2 w dx−

∫
θ2Λθ w dx

If θ0 is nonnegative, then the maximum principle gives us that θ ≥ 0. Then, using
the pointwise Córdoba and Córdoba inequality [12] (valid for θ ≥ 0)

Λ(θ3) ≤ 3θ2Λθ

and using lemma 3.3, we get

1

2

∫
θ2∂xHθ w dx ≤ −1

6

∫
Λ(θ3) w dx = −1

6

∫
θ3Λw dx ≤ C‖θ0‖∞

∫
θ2w dx

Integrating in time s ∈ [0, T ] we conclude thanks to Gronwall’s lemma that we
have a global control of both ‖θ‖L∞([0,T ],L2(wdx)) and ‖Λ1/2θ‖L2([0,T ],L2(wdx)) by
‖θ0‖L2(wdx) and ‖θ0‖∞.

Remark 4.1. If no assumption is made on the sign of θ0, we just obtain
(4.1)
d

dt

(∫
θ2w dx

)
+

∫
|Λ1/2θ|2 w dx ≤ C(1+‖θ0‖∞)

∫
θ2 w dx+‖θ0‖∞

∫
|θΛθ|w dx,

which requires a control on ‖Λθ‖L2(wdx).

4.2. Estimates for the H1/2(wdx) norm. In this subsection, we consider
the evolution norm of θ in H1/2(wdx). We have

1

2

d

dt

(∫
|Λ1/2θ|2 wdx

)
=

∫
∂tθΛ

1/2(wΛ1/2θ)dx

= −
∫

ΛθΛ1/2(wΛ1/2θ)dx −
∫
Hθ∂xθΛ1/2(wΛ1/2θ) dx.

Then, we get the weight w outside from the differential terms

1

2

d

dt

(∫
|Λ1/2θ|2 wdx

)
= −

∫
|Λθ|2 wdx−

∫
Hθ∂xθΛθ wdx

+

∫
Λθ(wΛ1/2Λ1/2θ − Λ1/2(wΛ1/2θ)) dx

+

∫ (
wΛ1/2Λ1/2θ − Λ1/2(wΛ1/2θ)

)
Hθ∂xθ dx
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Finally, we distribute in the second term the weight w = γ2 equally into the ∂x and
the Λ term, we obtain

1

2

d

dt

(∫
|Λ1/2θ|2 wdx

)
= −

∫
|Λθ|2 wdx−

∫
Hθ∂x(γθ)Λ(γθ) dx

−
∫
HθγΛθ (γ∂xθ − ∂x(γθ)) dx

−
∫

∂x(γθ)Hθ(γΛθ − Λ(γθ)) dx

+

∫
Λθ(wΛθ − Λ1/2(wΛ1/2θ)) dx

+

∫
(wΛθ − Λ1/2(wΛ1/2θ))Hθ∂xθ dx

= −
∫
|Λθ|2 wdx + J1 + J2 + J3 + J4 + J5

Let us estimate J1. Using the H1-BMO duality, we write

J1 ≤ C ′1‖Hθ‖BMO‖∂x(γθ)Λ(γθ)‖H1

Now, we shall use the fact that if a function f ∈ L2 then the function g = fHf
belongs to the Hardy space H1 : indeed, we have

(4.2) 2H(fHf)(x) = (Hf(x))2 − f(x)2

so that fHf belongs to H1 and we have

‖fHf‖H1 = ‖fHf‖1 + ‖H
(
fHf

)
‖1 ≤ C‖f‖2L2

From formula (4.2), we get the following estimate

J1 � ‖θ0‖∞‖∂x(γθ)‖2L2 � ‖θ0‖∞
(
‖θ‖2L2(wdx) + ‖Λθ‖2L2(wdx)

)
.

To estimate J2, we use the fact that |∂xγ| < C ′2γ and that w ∈ A4, we obtain

J2 =

∫
Hθ γΛθ θ∂xγ dx �

∫ ∣∣∣w1/2Hθ w1/2Λθ θ
∣∣∣ dx

� C‖Hθ‖L2(wdx)‖Λθ‖L2(wdx)‖θ‖L∞ .

Therefore,
J2 � ‖θ0‖∞‖θ‖L2(wdx)‖Λθ‖L2(wdx).

In order to estimate J3, we take p1 and q1 with 2 < p1 < ∞ and 1
p1

+ 1
q1

= 1
2 and

using lemma 3.2 we obtain

J3 ≤ ‖∂x(γθ)‖2‖Hθ(γΛθ − Λ(γθ))‖2

� ‖∂x(γθ)‖2‖Hθ‖Lq1 (wdx)

∥∥∥∥1

γ
(γΛθ − Λ(γθ)

∥∥∥∥
Lp1 (wdx)

� ‖∂x(γθ)‖2‖θ‖Lq1(wdx)‖θ‖Lp1 (wdx)

Then, using

‖θ‖Lr(wdx) ≤ C‖θ‖1−
2

r∞ ‖θ‖
2

r

L2(wdx)

with r = p1 and r = q1, we find,

J3 � ‖θ0‖∞‖θ‖L2(wdx)

(
‖θ‖L2(wdx) + ‖Λθ‖L2(wdx)

)
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The estimation of J4 is easy, it suffices to use lemma 3.2

J4 ≤ ‖Λθ‖L2(wdx)

∥∥∥∥ 1

w
[Λ1/2, w]Λ1/2θ

∥∥∥∥
L2(wdx)

≤ C4‖Λθ‖L2(wdx)‖Λ1/2θ‖L2(wdx)

It remains to estimate J5. We first write 1 = w1/2w−1/2 and use Cauchy-Schwarz
inequality. Then, we use Hölder’s inequality with 1

p + 1
q = 1

2 . We take p and q with

2 < p < 4, and we assume p to be close enough to 2 to grant that 3
2 − β(1− 1

p ) > 1

so that we may apply lemma 3.2. Therefore, we get

J5 ≤ ‖w1/2∂xθ‖L2

∥∥∥w−1/2Hθ[Λ1/2, w]Λ1/2θ
∥∥∥

L2

� ‖∂xθ‖L2(wdx)‖Hθ‖Lq(wdx)

∥∥∥∥ 1

w
[Λ1/2, w]Λ1/2θ

∥∥∥∥
Lp(wdx)

� ‖∂xθ‖L2(wdx)‖θ‖Lq(wdx)‖Λ1/2θ‖Lp(wdx)

Moreover, using the following weighted Gagliardo-Nirenberg inequality (see inequal-
ity 2.4)

‖Λ1/2θ‖L4(wdx) � ‖θ‖1/2
∞ ‖Λθ‖1/2

L2(wdx),

we get

‖Λ1/2θ‖Lp(wdx) ≤ ‖Λ1/2θ‖2−
4

p

L4(wdx)‖Λ1/2θ‖
4

p−1

L2(wdx)

� ‖θ0‖
1− 2

p∞ ‖Λθ‖1−
2

p

L2(wdx)‖Λ1/2θ‖
4

p−1

L2(wdx).

Then, since

‖θ‖Lq(wdx) ≤ ‖θ0‖
2

p∞‖θ‖
1− 2

p

L2(wdx)
,

we get

J5 � ‖θ0‖L∞‖θ‖
1− 2

p

L2(wdx)‖Λθ‖2−
2

p

L2(wdx)‖Λ1/2θ‖
4

p−1

L2(wdx).

Using the fact that

‖Λ1/2θ‖
4

p−1

L2(wdx) ≤ ‖θ‖
2

p− 1

2

L2(wdx)‖Λθ‖
2

p− 1

2

L2(wdx),

we obtain

J5 ≤ C5‖θ0‖L∞‖θ‖1/2
L2(wdx)‖Λθ‖3/2

L2(wdx).

Using Young’s inequality, we finally find that there exists constants C6 > 0 and
C7 > 0 (where C7 depends on ‖θ0‖∞), such that

d

dt

∫
|Λ1/2θ|2 wdx ≤(C6‖θ0‖∞ − 1)

∫
|Λθ|2 wdx

+ C7

(∫
θ2 wdx +

∫
|Λ1/2θ|2 wdx

)
.

(4.3)

Combining (4.1) and (4.3), we finally obtain

d

dt

(∫
|θ|2 + |Λ1/2θ|2 wdx

)
≤(C8‖θ0‖∞ − 1)

∫
|Λθ|2 wdx

+ C9

(∫
θ2 wdx +

∫
|Λ1/2θ|2 wdx

)(4.4)
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By Gronwall’s lemma, we conclude that we have a control of ‖θ‖L∞L2(wdx), of

‖Λ1/2θ‖L∞L2(wdx) and of ‖Λθ‖L2L2(wdx) by ‖θ0‖∞, ‖θ0‖L2(wdx) and ‖Λ1/2θ0‖L2(wdx)

(if ‖θ0‖∞ < 1
C8

, where C8 > 0 is a constant depending only on β).

4.3. Estimates for the H1(wdx) norm. In this subsection, we estimate the
norm of θ in H1(wdx).

In order to study the evolution of the H1(wdx) norm of θ, we shall study
the evolution of the semi-norm ‖∂xθ‖L2(wdx) instead of ‖Λθ‖L2(wdx) since they are
equivalent (see Remark 2). Therefore, we write

1

2

d

dt

(∫
|∂xθ|2 wdx

)
= −

∫
∂tθ ∂x(w∂xθ) dx

=

∫
(∂xθ)2 Hθ ∂xw dx +

∫
∂xθ Δθ Hθ w dx

+

∫
Λθ ∂xθ ∂xw dx +

∫
ΛθΔθ w dx

The last term which come from the linear part of the equation can be rewritten as∫
ΛθΔθ w dx = −

∫
ΛθΛ2θ w dx = −

∫
Λ3/2θ[Λ1/2, w]Λθ−

∫
|Λ3/2θ|2 w dx

Moreover, an integration by parts gives

1

2

∫
(∂xθ)2 Hθ ∂xw dx = −

∫
∂xθ Δθ Hθ w dx− 1

2

∫
(∂xθ)2 Λθ w dx

So that, we get

1

2

d

dt

(∫
|∂xθ|2 wdx

)

= −
∫
|Λ3/2θ|2 w dx−

∫
Λ3/2θ[Λ1/2, w]Λθ− 1

2

∫
(∂xθ)2Λθ w dx

+
1

2

∫
(∂xθ)2 Hθ ∂xw dx +

∫
∂xθΛθ ∂xw dx

= −
∫
|Λ3/2θ|2 w dx + J1 + J2 + J3 + J4

To estimate J1 we write

J1 = −
∫

w(x)Λ3/2θ
1

w(x)
[Λ1/2, w]Λθ dx ≤ ‖Λ3/2θ‖L2(wdx)‖

1

w(x)
[Λ1/2, w]Λθ‖L2(wdx)

Therefore, using the second part of 3.2, we conclude that

J1 ≤ C1‖Λ3/2θ‖L2(wdx)‖Λθ‖L2(wdx)

For J2, using Holder’s inequality together with the fact that wβ ∈ A3 allows us to
get

J2 = −1

2

∫
(∂xθ)2Λθ w dx = −1

2

∫
w

1

3 ∂xθ w
1

3 ∂xθ w
1

3H∂xθ dx ≤ C‖∂xθ‖3L3(wdx)

Then, using the following weighted Gagliardo-Nirenberg inequality

‖∂xθ‖L3(wdx) ≤ C2‖θ‖1/3
∞ ‖Λ3/2θ‖2/3

L2(wdx)
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we get

J2 ≤ C2‖θ‖∞‖Λ3/2θ‖2L2(wdx)

The estimation of J3 and J4 are quite similar to the estimation of J2. Indeed, we
have

J3 ≤ C ′3

∫
(∂xθ)2 |Hθ| w dx ≤ C3‖∂xθ‖2L3(wdx)‖θ‖L3(wdx)

Then, using the interpolation inequality

‖θ‖L3(wdx) ≤ ‖θ‖1/3
∞ ‖θ‖2/3

L2(wdx),

together with the Gagliardo-Nirenberg inequality previously recalled, we get

J3 ≤ C3‖θ‖∞‖Λ3/2θ‖4/3
L2(wdx)‖θ‖

2/3
L2(wdx)

For J4, we write

J4 ≤ C ′4

∫
w

1

2 |∂xθ| w
1

2 |H∂xθ| dx ≤ C4‖∂xθ‖2L2(wdx)

Therefore, by the maximum principle for the L∞ norm and Young’s inequality, we
get

1

2

d

dt

(∫
|∂xθ|2 wdx

)
≤ (C2‖θ0‖∞ − 1)

∫
|Λ3/2θ|2 w dx

+ C1‖Λ3/2θ‖2L2(wdx)‖θ‖L2(wdx) + C4‖∂xθ‖2L2(wdx)

+ C3‖θ‖∞‖Λ3/2θ‖4/3
L2(wdx)‖θ‖

2/3
L2(wdx)

≤ (C ′2‖θ0‖∞ − 1)

∫
|Λ3/2θ|2 wdx

+C5

(
‖θ‖2L2(wdx) + ‖∂xθ‖2L2(wdx)

)
,

where the constant C5 depends on ‖θ0‖∞. Then, integrating in time s ∈ [0, T ] gives

‖θ(T, .)‖2H1(wdx) ≤ (C ′2‖θ0‖∞ − 1)

∫ T

0

‖Λ3/2θ‖2L2(wdx) ds

+ C5

∫ T

0

‖θ(s, .)‖2H1(wdx) ds(4.5)

Therefore, Grönwall’s lemma allows us to conclude that we have a global control
of ‖∂xθ‖L∞L2(wdx) and ‖Λ3/2θ‖L2L2(wdx) by ‖θ0‖∞ and ‖θ0‖H1(wdx), provided that

‖θ0‖∞ < 1
C′

2

. Note that C ′2 > 0 is a constant that depends only on β.

5. Proof of the theorems

5.1. The truncated initial data. We shall approximate θ0 by θ0,R = θ0(x)ψ( x
R

),
where ψ satisfies the following assumptions :

• ψ ∈ D(R)
• 0 ≤ ψ ≤ 1
• ψ(x) = 1 for x ∈ [−1, 1] and = 0 for |x| ≥ 2

This approximation neither alters the non-negativity of the data, nor increases
its L∞ norm. We have obviously the strong convergence, when R → +∞, of θ0,R

to θ0 in Hs(w dx) if θ0 ∈ Hs(w dx) and s = 0 or s = 1. The only difficult case is
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s = 1/2. This could be dealt with through an interpolation argument. But we shall
give a direct proof that

lim
R→+∞

‖Λ1/2(θ0 − θ0,R)‖L2(w dx) = 0.

As we have the strong convergence of ψRΛ1/2θ0 to Λ1/2θ0 in L2(w dx), we must
estimate the norm of the commutator [Λ1/2, ψR]θ0 in L2(w dx), where we write
ψR(x) = ψ( x

R
). We just write∣∣∣[Λ1/2, ψR]θ0

∣∣∣ ≤ C

∫ |ψR(x) − ψR(y)|
|x− y|3/2

|θ0(y)| dy

with

|ψR(x)− ψR(y)|
|x− y|3/2

≤ min

( ‖∂xψ‖∞
R|x− y|1/2

,
2‖ψ‖∞
|x− y|3/2

)
=

1

R3/2
K(

x − y

R
)

where the kernel K is integrable, nonnegative and radially decreasing; thus, from
inequality (2.2), we find that∣∣∣[Λ1/2, ψR]θ0

∣∣∣ ≤ ‖K‖1R−1/2Mθ0

which gives

‖[Λ1/2, ψR]θ0‖L2(w dx) ≤ CR−1/2‖θ0‖L2(w dx).

5.2. Proof of theorem 1.1. We consider the sequence θ0,N , N ∈ N and

N ≥ 1. We have the convergence of θ0,N to θ0 in H1/2(w dx). Moreover, if ‖θ0‖∞
is small enough we know that we have a solution θN of our transport equation T
with initial value θ0,N . Using the a priori estimates of the previous section, we
get (uniformly with respect to N) that the sequence θN is bounded in the space

L∞([0, T ], H1/2(wdx)) and L2([0, T ], H1(wdx)) for every T ∈ (0,∞). Now, let
ψ(x, t) ∈ D((0,∞]×R), then ψθN is bounded in L2([0, T ], H1). Moreover, we have

∂t(ψθN ) = θN∂tψ + ψ∂tθN = (I) + (II)

Obviously, (I) is bounded in L2([0, T ], L2). For (II), we write

ψ∂tθN = −ψ∂xθNHθN − ψΛθN = −ψ∂x(θNHθN ) + ψθN ΛθN − ψΛθN

Since θN is bounded in L2([0, T ], L2(w dx)) then by the continuity of the Hilbert
transform on L2, the sequence HθN is bounded in L2([0, T ], L2(w dx)) therefore,
since θN is bounded in L∞([0, T ], L∞), we get that ψ∂x(θNHθN ) (=∂x(ψθNHθN )−
(∂xψ)θNHθN ) is bounded in L2([0, T ], H−1). Therefore, since ψ(1 − θN )ΛθN is
bounded in L2([0, T ], L2)) we conclude that ∂t(ψθN ) is bounded in L2([0, T ], H−1).
By Rellich compactness theorem [25], there exists a subsequence θNk and a function
θ such that

θNk −−−−−−→
Nk→+∞

θ strongly in L2
loc((0,∞)× R),

Futhermore, since the sequence θNk is bounded in spaces whose dual space are
separable Banach spaces, we get the two following *-weak convergences, for all
T <∞

θNk −−−−−−→
Nk→+∞

θ *-weakly in L∞([0, T ], H1/2(wdx)),

and,

θNk −−−−−−→
Nk→+∞

θ *-weakly in L2([0, T ], H1(wdx)),
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It remains to check that θ is a solution of the transport equation T . Let Φ be a
compactly supported smooth function, we need to prove the equality∫ ∫

t>0

θ ∂tΦ dx dt =

∫ ∫
t>0

Φ (Hθ∂xθ + Λθ) dx dt−
∫

Φ(0, x)θ0(x) dx.

To prove this equality, it suffices to prove that we can pass to the weak limit in the
following equality∫ ∫

t>0

θNk ∂tΨ dx dt =

∫ ∫
t>0

Ψ(HθNk ∂xθNk + ΛθNk ) dx dt−
∫

Ψ(0, x)θNk ,0(x) dx.

The *-weak convergence of θNk toward θ in L∞((0, T ), L2)) implies the convergence
in D′([0, T ]×R) and therefore

∂tθNk −−−−−−→
Nk→+∞

∂tθ in D′([0, T ]× R).

Moreover, since ΛθNk is a (uniformly) bounded sequence on L2([0,∞]×R) therefore
we also have convergence in the sense of distribution

ΛθNk −−−−−→
nk→+∞

Λθ in D′([0, T ]×R).

It remains to treat the nonlinear term, we rewrite it as∫ ∫
t>0

ΨHθNk ∂xθNk dx dt = −
∫ ∫

t>0

θNkHθNk ∂xΨ−
∫ ∫

t>0

ΨθNk ∂xHθNk dt dx.

Using the strong convergence of θNk on L2
loc((0,∞) × R) and the *-weak conver-

gence of HθNk in L2([0, T ], L2), we conclude that the products θNkHθNk converge
weakly in L1

loc((0,∞) × R) toward θHθ. For the second term, we also use the
strong L2

loc((0,∞)× R) convergence of θNk and the weak convergence of ∂xHθ on
L2((0,∞)× R), we conclude that the product converges in L1

loc((0,∞)× R). �

5.3. Proof of theorem 1.2. The proof of Theorem 1.2 is similar to the proof
of Theorem 1.1, using a priori estimates on the H1(w dx) norm instead of the
H1/2(w dx) norm.

5.4. The case of data in L2(dx) or L2(wdx). When θ0 ∈ L2 ∩ L∞ and is
non-negative, we have a priori estimates on the L2 norm of θ that involves only
‖θ0‖2 and ‖θ0‖∞, but this is not sufficient to grant existence of the solution θ, as
we have not enough regularity to control the nonlinear term Hθ∂xθ.

Indeed, we have a control of Hθ in L2H1/2 and of ∂xθ in L2H−1/2. But to pass
to the limit in our use of the Rellich theorem, we should have (local) strong conver-
gence of θηk to θ in L2H1/2 while we may establish only the *-weak convergence.

This can be seen as follows : if θn is a bounded sequence in L2H1/2 that converge
locally strongly in L2L2 to a limit θ and if Hθn∂xθn converges in D′, we write

Hθn∂xθn =∂x(θnHθn) − θn∂xHθn

=∂x(θnHθn) + θnΛθn

=∂x(θnHθn) +
1

2
Λ(θ2

n) + C

∫
(θn(t, x)− θn(t, y))2

|x− y|2 dy.
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While we have the convergence in D′ of ∂x(θnHθn)+ 1
2Λ(θ2

n) to ∂x(θHθ) + 1
2Λ(θ2),

we can only write

lim
n→+∞

∫
(θn(t, x)− θn(t, y))2

|x− y|2 dy =

∫
(θ(t, x) − θ(t, y))2

|x− y|2 dy + μ,

where μ is a non-negative measure.

6. The construction of regular enough solutions revisited

The global existence results of Córdoba, Córdoba and Fontelos in [14] and of
Dong in [17] correspond to Theorems 1.1 to 1.2 in the case β = 0 : they are mainly
based on the maximum principle (if θ0 is bounded, then θ remains bounded and if
θ0 is non-negative, θ remains non-negative) along with the use of some useful iden-
tities or inequalities involving the nonlocal operators Λ and H. We do not know
whether our solutions become smooth (this is known in the case β = 0 for Theorem
1.1, this is proved by Kiselev [20]). Another interesting question is whether we have
eventual regularity in the sense of [31] for our solutions.

In this section, for conveniency, we sketch a complete proof of Theorems 1.1
and 1.2 in the case β = 0, under a smallness assumption on ‖θ0‖∞ (although this
latter case is treated in [14], we shall give a slightly different proof for the a pri-

ori estimates). Before starting the a priori estimates, one has to deal with the
existence issue, namely, proving the existence of at least one solution. This step
is rather important for this model since for instance one can derive a nice energy
estimate for the L2 (resp weighted L2) norm (see [14], resp see section 4.1) whereas
the existence of such a solution is not clear in both cases (see section 6.2). Since we
aim at proving global existence results and not only a priori estimates, we need to
give a proof of the existence of regular enough solutions. This is done in six steps
and is based on classical arguments.

First step : regularizations of the equation and of the data

We use a nonnegative smooth compactly supported function ϕ (with
∫

ϕ(x) dx =
1) and for positive parameters ε, η we consider the parabolic approximation of equa-
tion (T1) :

(T ε,η
1 ) :

⎧⎨
⎩

∂tθ + θxHθ + νΛθ = εΔθ

θ(0, x) = θ0 ∗ ϕη(x). (with ϕη(x) ≡ 1

η
ϕ(

x

η
) )

Recall that Δθ = ∂2
xθ, then we can rewrite the problem into an integral form as

follows

θ = eεtΔ(θ0 ∗ ϕη)−
∫ t

0

eε(t−s)Δ(θxHθ + νΛθ) ds.

We may solve this equation in C([0, Tε,η], H3)∩L2((0, Tε,η), H4), for some small
enough time Tε,η. Indeed, we have, for T > 0 and for a constant Cε independent of

T , for all γ0 ∈ H3, u, v ∈ C([0, T ], H3) ∩ L2((0, T ), Ḣ4) and w ∈ L2([0, T ], H2) :

• sup
0<t<T

‖eεtΔγ0‖H3 ≤ ‖γ0‖H3 and ‖ΔeεtΔθ0‖L2((0,T ),L2) ≤ Cε‖θ0‖H3

•
∫ t

0

eε(t−s)Δw ds ∈ C([0, T ], H3) ∩L2([0, T ], H4)
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• sup
0<t<T

∥∥∥∥
∫ t

0

eε(t−s)Δw ds

∥∥∥∥
2

≤ CεT
1/2‖w‖L2H2

• sup
0<t<T

∥∥∥∥∂3
x

∫ t

0

eε(t−s)Δw ds

∥∥∥∥
2

≤ Cε‖w‖L2H2

•
∥∥∥Δ

∫ t

0
eε(t−s)Δw ds

∥∥∥
L2((0,T ),L2)

≤ Cε‖w‖L2H2

• ‖Λu‖L2H2 ≤ CT 1/2‖u‖L∞H3

• ‖uxHv‖L2H2 ≤ CT 1/2‖u‖L∞H3‖v‖L∞H3

Thus, using Picard’s iterative scheme, we find a solution

θ = eεtΔγ0 −
∫ t

0

eε(t−s)Δ(θxHθ + νΛθ) ds

on an interval [0, Tε,η], where Tε,η depends only on ε and ‖γ0‖2. If ‖θ‖H3 remains
bounded, we may bootstrap the estimates to get an extension to a larger interval.
Thus, if T ∗ε,η is the maximal existence time, we must have

T ∗ε,η < +∞ ⇒ sup
0<t<T∗ε,η

‖θε,η(t, .)‖H3 = +∞.

The strategy is then to have a criterion on θ0 to ensure that T ∗ε,η = +∞ for
every ε > 0 and to get uniform controls on the solutions θε,η to allow to get a limit
when ε and η go to 0.
Second step : applying the maximum principle

This point is classical. If θ is the solution of equation (T ε,η), we define M(t) =
sup
x∈R3

θ(t, x) and m(t) = inf
x∈R3

θ(t, x). For t = t0, if M(t0) > 0 then the supremum

is attained at some point x0, and we have ∂tθ(t0, x0) ≤ 0, since Λθ(t0 , x0) ≥ 0,
Δθ(t0, x0) ≤ 0 and ∂xθ(t0, x0) = 0 (recall that θ(t0 , .) is C2); now, we have, for

t < t0,
θ(t,x0)−θ(t0,x0)

t−t0
≥ M(t)−M(t0)

t−t0
so that lim sup

t→t−
0

M(t)−M(t0)

t− t0
≤ 0. We see that

this is enough to get that M is non-inecreasing on the set {t / M(t) > 0}, and thus
to get M(t) ≤ M(0); a similar argument gives m(t) ≥ m(0). This gives us that
‖θ‖∞ ≤ ‖θ0 ∗ ϕη‖∞ ≤ ‖θ0‖∞ and, if θ0 ≥ 0, then θ(x, t) ≥ 0 for all t > 0.

Third step : global existence for the regularized problem

In order to show that the H3 norm of a solution θ to equation (T ε,η) does not
blow up, we now compute ∂t(‖θ‖22 + ‖∂3

xθ‖22). As ∂3
xθ belongs (locally in time on
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[0, T ∗ε,η)) to L2([0, T ∗ε,η), H
1) and ∂t∂

3
xθ to L2H−1, therefore we may write

∂t(‖θ‖22 + ‖∂3
xθ‖22) =2

∫
∂tθ(θ − ∂6

xθ) dx

= − 2‖Λ1/2θ‖22 − 2‖Λ7/2θ‖22 − 2ε‖∂xθ‖22 − 2ε‖∂4
xθ‖22

− 2

∫
θHθ∂xθ dx + 2

∫
∂3

xθ∂3
x(Hθ∂xθ) dx

= − 2‖Λ1/2θ‖22 − 2‖Λ7/2θ‖22 − 2ε‖∂xθ‖22 − 2ε‖∂4
xθ‖22

− 2

∫
θHθ∂xθ dx + 2

∫
∂3

xθ∂3
x(Hθ) ∂xθ dx

+ 6

∫
∂3

xθ∂2
x(Hθ) ∂2

xθ dx + 5

∫
∂3

xθ∂x(Hθ) ∂3
xθ dx

≤ − 2‖Λ1/2θ‖22 − 2‖Λ7/2θ‖22 − 2ε‖∂xθ‖22 − 2ε‖∂4
xθ‖22

+ 2‖θ‖∞‖θ‖2‖∂xθ‖2 + (2‖∂xθ‖7 + 5‖H∂xθ‖7)‖∂3
xθ‖27/3

+ 6‖∂2
xθ‖23‖H∂2

xθ‖3
We then use the boundedness of the Hilbert transform on L3 and L7 and the
Gagliardo–Nirenberg inequalities

‖∂2
xθ‖3 ≤ ‖θ‖1/3

∞ ‖∂3
xθ‖2/3

2

‖∂xθ‖7 ≤ ‖θ‖5/7
∞ ‖Λ7/2θ‖2/7

2

‖∂3
xθ‖7/3 ≤ ‖θ‖1/7

∞ ‖Λ7/2θ‖6/7
2

and we find, for a constant C0 (that does not depend on θ0 nor on ε),
(6.1)

∂t(‖θ‖22 +‖∂3
xθ‖22) ≤ C0‖θ0‖∞(‖θ‖22 +‖∂3

xθ‖22)+2(C0‖θ0‖∞−1)‖Λ7/2θ‖22−2ε‖∂4
xθ‖22

Thus, if C0‖θ0‖∞ < 1, we find that, on [0, T ∗ε,η), we have

‖θ‖22 + ‖∂3
xθ‖22 ≤ eC0‖θ0‖∞t(‖θ0 ∗ ϕη‖22 + ‖θ0 ∗ ∂3

xϕη‖22)
and thus T ∗ε,η = +∞.

Fourth step : relaxing ε

From inequality 6.1, we get that θε,η is controlled, on each bounded interval of
time [0, T ], uniformly with respect to ε, in the following ways :

• sup
ε>0

sup
0<t<T

‖θε,η(t, .)‖H3 < +∞

• sup
ε>0

∫ T

0

‖θε,η‖2H7/2 dt < +∞

and we get from equation (T ε,η
1 ), that

• sup
0<ε<1

∫ T

0

‖∂tθε,η‖2H1/2 dt < +∞

We then use the Rellich theorem [25] to get that there exists a sequence εk → 0
so that θεk,η converges strongly in L2

loc((0, +∞)×R) to a limit θη. As θε,η is (locally)

bounded in L2H7/2, the strong convergence holds as well in (L2H1)loc, so that θη
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is a solution of (T1), with initial value θ0 ∗ ϕη.

Moreover, we know that ‖θη‖∞ ≤ ‖θ0‖∞ and that, for every finite T > 0,

sup
0<t<T

‖θη(t, .)‖H3 < +∞ and

∫ T

0

‖θη‖2H7/2 dt < +∞.

Fifth step : uniform estimates in H1/2 and H1

• control of the L2 norm :

1

2

d

dt

(∫
θ2
η dx

)
=

∫
θη ∂tθη dx = −

∫
θηΛθη dx−

∫
θη(Hθ)∂xθη dx

≤ −
∫
|Λ1/2θη |2 dx + ‖θ0‖∞‖θη‖2‖Λθη‖2

(6.2)

• control of the Ḣ1/2 norm :

1

2

d

dt

(∫
|Λ1/2θη |2 dx

)
=

∫
Λθη ∂tθη dx

= −
∫
|Λθη|2 dx−

∫
(Hθη) (Λθη ∂xθη) dx

= −
∫
|Λθη|2 dx +

∫
θη H(Λθη ∂xθη) dx

We now use the identity, valid for every f ∈ L2,

(6.3) 2H(fHf)(x) = (Hf(x))2 − f(x)2,

along with,

∂xθη = HΛθη ,

to get,

‖H(Λθη ∂xθη)‖1 ≤ ‖Λθη‖22,
and finally obtain

(6.4)
d

dt

∫
|Λ1/2θη |2 dx + 2(1− ‖θ0‖∞)

∫
|Λθη|2 dx ≤ 0.

• control of the Ḣ1 norm : we write

1

2

d

dt

∫
|Λθη|2 dx =

∫
Λ2θη ∂tθη dx

=−
∫
|Λ3/2θη|2 dx− 1

2

∫
∂x(Hθη ) (∂xθη)2 dx.

Using a Gagliardo–Nirenberg inequality, we get

1

2

∣∣∣∣
∫

∂x(Hθη) (∂xθη)2 dx

∣∣∣∣ ≤ C‖∂xθ‖33 ≤ C1‖θ‖∞‖Λ3/2θη‖22,

and finally obtain,

(6.5)
d

dt

(∫
|Λθη|2 dx

)
+ 2(1− C1‖θ0‖∞)

∫
|Λ3/2θη |2 dx ≤ 0.
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Sixth step : relaxing η

From inequalities (6.2) and (6.4), we get that, for θ0 ∈ H1/2, (when ‖θ0‖∞ is
small enough) θη is controlled, on each bounded interval of time [0, T ], uniformly
with respect to η, in the following ways :

• sup
η>0

sup
0<t<T

‖θη(t, .)‖H1/2 < +∞,

• sup
η>0

∫ T

0

‖θη‖2H1 dt < +∞

and we get from equation (T1), that

• sup
η>0

∫ T

0

‖∂tθε,η‖2H−1/4 dt < +∞.

We may then use the Rellich theorem [25] and get that there exists a sequence
ηk → 0 so that θηk converges strongly in L2

loc((0, +∞) × R) to a limit θ. As θη

is (locally) bounded in L2H1,we have weak convergence in L2H1; we then write
Hθη∂xθη = ∂x(θηHθη) − θηH∂xθη and find that θ is a solution of (T1), with initial
value θ0.

Moreover, we find that we have

• ‖θ‖∞ ≤ ‖θ0‖∞
• sup

t>0
‖Λ1/2θ(t, .)‖2 ≤ ‖Λ1/2θ0‖2

•
∫ +∞
0

‖Λθ‖22 ds ≤ 1
2(1−‖θ0‖∞)

‖Λ1/2θ0‖22
• ‖θ(t, .)‖2 ≤ ‖θ0‖2 + ‖θ0‖∞

∫ t

0
‖Λθ(s, .)‖2 ds.

Similarly, if θ0 ∈ H1 (with ‖θ0‖∞ small enough) , then inequality (6.5) will give
a control of the H1 norm of θη uniformly with respect to η, and thus, we find for
the limit θ that,

• sup
t>0

‖Λθ(t, .)‖2 ≤ ‖Λθ0‖2,

•
∫ +∞
0

‖Λ3/2θ‖22 ds ≤ 1
2(1−C1‖θ0‖∞)

‖Λθ0‖22.
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