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ABSTRACT. Our aim in this paper is to study the well-posedness and the long-
time behavior of solutions for the Cahn-Hilliard-Brinkman system with dy-
namic boundary conditions. We prove the well-posedness of solutions and the
existence of a global attractor in H'(,dv) for the Cahn-Hilliard-Brinkman
system with dynamic boundary conditions by using Aubin-Lions compactness
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1. Introduction

In this paper, we consider the following Cahn-Hilliard-Brinkman system:

9¢

(1.1) E—&—V-(ugb)zV-(MVu), (z,1) € Q x RT,
(1.2) p=—eBé+ f(6), (2.1) € QxR

(1.3) —vAu+nu=—-Vp—v¢Vpu, (z,t) € QxR
(1.4) V-u=0, (z,t) € QxRT.

Equation (1.1)-(1.4) is subject to the following dynamic boundary conditions

(1.5) u(z,t) =0, (x,t) €T x RT,
o +
(1.6) %—0, (x,t) eT xR,
109 _ Do _ i
and initial conditions
(18) ¢(I,0) = ¢0(I)v S Q7
(1.9) ¢(z,0) = Op(x), z €T,

where  C R? is a bounded domain with smooth boundary I" and R* = [0, +00),
v > 0 is the viscosity, 7 > 0 is the fluid permeability, M > 0 stands for the
mobility, € > 0 is related to the diffuse interface thickness, v > 0 is a surface tension
parameter,d > 0 a > 0 3 > 0 are constants, p is the fluid pressure, 77 is the normal
vector on I'; Ar is the Laplace-Beltrami operator on the surface I' of Q and f is the
derivative of a double well potential F(s) = %(s* —1)? describing phase separation.

Dynamic boundary conditions were recently proposed by physicists to describe
spinodal decomposition of binary mixtures where the effective interaction between
the wall (i.e., the boundary) and two mixture components is short-ranged, and this
type of boundary conditions is very natural in many mathematical models such as
heat transfer in a solid in contact with a moving fluid, thermoelasticity, diffusion
phenomena, heat transfer in two medium, problems in fluid dynamics. The well-
posedness and long-time behavior of solutions for many equations with dynamical
boundary conditions have been studied extensively(see [3, 4, 5, 9, 10, 13, 16,
22, 23, 24, 29, 32, 33, 34, 36, 39, 43]). For example, the global well-posedness
of solutions for the non-isothermal Cahn-Hilliard equation with dynamic bound-
ary conditions was proved in [21]. In [22], the author proved the existence and
uniqueness of a global solution for a Cahn-Hilliard model in bounded domains with
permeable walls. The global existence and uniqueness of solutions for the Cahn-
Hilliard equation with highest-order boundary conditions were proved in [36]. In
[33], the authors proved the maximal regularity and asymptotic behavior of solu-
tions for the Cahn-Hilliard equation with dynamic boundary conditions. The fact
that any global weak/strong solution of the Cahn-Hilliard equation with dynamic
boundary conditions converges to a single steady state as time ¢ — +o00 was proved
in [13]. In [25], the author proved the existence of a global attractor and an expo-
nential attractor in H!(Q) for a homogeneous two-phase flow model and established
any global weak/strong solution converges to a single steady state as time ¢ — 400,
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and provided its convergence rate. Under the assumptions that the potential func-
tion is real analytic and satisfies certain growth conditions, the authors proved each
solution of a Cahn-Hilliard equation with Wentzell boundary conditions and mass
conservation converges to a steady state as time goes to oo and its convergence
rate was obtained as well in [39]. Meanwhile, they recalled some results about the
existence of global and exponential attractors and gave their properties. In [23], the
author proved the existence of an exponential attractor for a Cahn-Hilliard model
in bounded domains with permeable walls. The existence of a global attractor for
the reaction-diffusion equation with dynamical boundary conditions was proved in
[16]. In [29], the authors proved the existence of an exponential attractor for the
Cahn-Hilliard equation with dynamical boundary conditions. The smooth effect of
the process {U (¢, T) }+>, associated with a non-autonomous homogeneous two-phase
flow model was proved in [30] by verifying AY = A". In [42], the authors proved the
existence of a global attractor for p-Laplacian equations with dynamical boundary
conditions by using asymptotical a priori estimates.

A diffuse interface variant of Brinkman equation has been proposed to model
phase separation of incompressible binary fluids in a porous medium (see [31]). The
coupled system consists of a convective Cahn-Hilliard equation for the phase field
¢, i.e., the difference of the relative concentrations of the two phases, coupled with
a modified Darcy equation proposed by H. C. Brinkman [7] in 1947 for the fluid ve-
locity u. This equation incorporates a diffuse interface surface force proportional to
¢V i, where p is the so-called chemical potential which is the variational derivative
of the free energy functional

1
B(0) = [ §IV9F + 1P (o) do.

For this reason, equation (1.1)-(1.4) has been called Cahn-Hilliard-Brinkman sys-
tem. Such a system belongs to a class of diffuse interface models which are used to
describe the behavior of multi-phase fluids. The Cahn-Hilliard-Navier-Stokes sys-
tem has been investigated from the numerical and analytical viewpoint in several
papers (see, e.g., [1, 2, 6, 11, 12, 17, 18, 19, 28, 37, 44, 45]). The long-time
behavior and well-posedness of solutions for the Cahn-Hilliard-Hele-Shaw system
were proved in [40, 41]. In [26], the authors have considered the well-posedness
and long-time behavior of solutions for a non-autonomous Cahn-Hilliard-Darcy sys-
tem with mass source modeling tumor growth which is more complicated than the
Cahn-Hilliard-Brinkman system thanks to the compressibility of the fluid. Mean-
while, they established the existence of a pullback attractor in H?(Q), and proved
any global weak /strong solution converges to a single steady state as time ¢ — 400
and obtained its convergence rate.

Cahn-Hilliard-Brinkman system (1.1)-(1.4) with M, v, and n possibly depend-
ing on ¢ has been analyzed from the numerical point of view in [11, 15]. From
the analytical point of view, the authors in [8] have considered the well-posedness
of solutions and the existence of a global attractor in H'(Q) for the Cahn-Hilliard-
Brinkman system (1.1)-(1.4) with positive constants M, v, n, ¢ and more gen-
eral f(u) when the system is subject to the Neumann boundary conditions, and
established the convergence of a given weak solution to a single equilibrium via
Lojasiewicz-Simon inequality and gave its convergence rate. Furthermore, the au-
thors have also studied the behavior of the solutions as the viscosity goes to zero,
i.e., the existence of a weak solution to the Cahn-Hilliard-Hele-Shaw system was
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proved as the limit of solutions to the Cahn-Hilliard-Brinkman system when the
Cahn-Hilliard-Brinkman system approaches the Cahn-Hilliard-Hele-Shaw system.
In contrast to the Cahn-Hilliard-Brinkman system with Neumman boundary con-
ditions, not so much is known on well-posedness and long-time behavior of solu-
tions for the Cahn-Hilliard-Brinkman system with dynamical boundary conditions.
In this paper, we study the existence of a global attractor for the Cahn-Hilliard-
Brinkman system with dynamical boundary conditions (1.1)-(1.9).

The rest of this paper is organized as follows: In the next Section, we introduce
some notations and lemmas used in the sequel, and give the definition of weak solu-
tions for the Cahn-Hilliard-Brinkman system with dynamical boundary conditions
(1.1)-(1.9). In Section 3, we prove the well-posedness of solutions for the Cahn-
Hilliard-Brinkman system with dynamical boundary conditions (1.1)-(1.9). Section
4 is devoted to prove the existence of a global attractor for the Cahn-Hilliard-
Brinkman system with dynamical boundary conditions (1.1)-(1.9).

Throughout this paper, for the sake of simplicity, we assume M =e=~v=v =
n = 1. Let C be a generic constant that is independent of the initial datum for ¢.
Define the average of function ¢(z) over (2 as

1
me = @/ﬂqﬁ(x) dzx.

2. Preliminaries

In order to study the problem (1.1)-(1.9), we introduce the space of divergence-
free functions defined by
V={ue(Cr(N)>:V -u=0}
Denote by H and V the closure of V with respect to the norms in (L?*(2))? and
(H'(£2))3, respectively, and let Qp = Q x (0,T) and 'y =T x (0, 7).
We define the Lebesgue spaces as follows

LP(T) = {U : HU”LP(F) < OO},

ol o) = ( / |v|pd5>
I

for p € [1,00). Moreover, we have
LP(Q) @ LP(T) = LP(Q,dv), p€ [1,0)

where

and
0 = (| fulda+ [ Jopds)?
Q r

for any U = (u,v) € LP(€, dv), where the measure dv = dz|q ®dS|r on Q is defined
by v(A) = |[AN Q|+ S(ANT) for any measurable set A C Q.

We also define the Sobolev space H' (€2, dv) as the closure of C''(Q) with respect
to the norm given by

1012 000y = ( [ wopac+ [ alvro +ﬁ|¢2d5>
), H

for any ¢ € C''(Q), denote by X* the dual space of X and let H*(Q), H*(T') (s € R)
be the usual Sobolev spaces. In general, any vector 6 € LP(€2,dv) will be of the
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form (6;,02) with 6; € LP(Q,dz) and 0y € LP(T',dS), and there need not be any
connection between ¢ and 0.

Let the operator A : H'(Q,dv) — (H'(Q,dv))* be associated with the bilinear
form defined by

(2.1) a(¢,¥) =(A(¢), ¥)
:/v¢~v¢dz+/avp¢~vp¢+ﬂ¢wd6’-
Q r

REMARK 2.1. ([20]) C(Q) is a dense subspace of L*(€,dv) and a closed sub-
space of L>(Q, dv).

Next, we recall briefly some lemmas used to prove the well-posedness of weak
solutions for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions
(1.1)-(1.9).

LEMMA 2.2. ([35]) Let O be a bounded domain in R™ and let 1 < ¢ < oc.
Assume that {g,} C L9(O) with |[{gn}|rs0) < C, where C' is independent of n
and there exists g € L9(O) such that {g,} — g, as n — oo, almost everywhere in
O. Then g, — g, as n — oo weakly in LI(0O).

LEMMA 2.3. (21, 29]) Let Q C R? be a bounded domain with smooth boundary
T'. Consider the following linear problem

7A¢:j17 1’697
—aArg+ 98 + Bp = j», z €T.

Assume that (j1,j2) € H*(Q,dv), s > 0, s + 3 & N. Then the following estimate
holds
9l e +2(@,a0) < CUldllms () + 72l )

for some constant C > 0.

LEMMA 2.4. ([38]) Let V, H, V* be three Hilbert spaces such that V. C H =
H* C V*, where H* and V* are the dual spaces of H and V, respectively. Suppose

u € L?(0,T;V) and % € L%(0,T;V*). Then u is almost everywhere equal to a

function continuous from [0,T] into H.

Finally, we give the definition of weak solutions for the Cahn-Hilliard-Brinkman
system with dynamic boundary conditions (1.1)-(1.9).

DEFINITION 2.5. Assume that (¢o,0p) € H(Q,dv). For any fixed T > 0, a
function (u, ¢) is called a weak solution of the Cahn-Hilliard-Brinkman system with
dynamic boundary conditions (1.1)-(1.9) on (0,7, if

€ L*(0,T; H'(Q)) is given by (1.2)
and

¢ € C([0,T); H (9, dv)) N L*(0,T; H*(Q,dv)),
u € L*0,T;V)
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satisfy

Grpdx + V- (ug)y dx + V- Vipdr =0,

Qr Qr Qr
Vu-Vu+uwde +/ (vo) - Vudr =0,
Qr Qr
1
P $:0dS + V¢-V9+f(¢)0dx+/ aVr¢ - Vb + Bof dS = pl dx
I'p Qr I'p Qr

for all test functions v € V and ¢, § € H'(Q, dv).

3. The well-posedness of weak solutions

In this section, we prove the well-posedness of weak solutions for the Cahn-
Hilliard-Brinkman system with dynamic boundary conditions (1.1)-(1.9). Now, we
state it as follows.

THEOREM 3.1. Assume that (¢o,00) € H*(Q,dv). Then there exists a unique
weak solution (u(t),d(t)) for the Cahn-Hilliard-Brinkman system with dynamic
boundary conditions (1.1)-(1.9) such that m¢(t) = mdg, which depends continu-
ously on the initial data (¢o,00) with respect to the norm in H'(Q,dv).

Proof. We first prove the existence of weak solutions for the Cahn-Hilliard-
Brinkman system with dynamic boundary conditions (1.1)-(1.9) by the Faedo-
Galerkin method (see [38]). We consider the eigenvalue problems Ay = A and
Ayw = kw, where A} = —PA is the Stokes operator and P is the Leray-Helmotz
projection from L?(2) onto H. It is well-known that there exist two sequences of
non-decreasing numbers {\,, }52 ;, {k, }°2; and two sequences of functions {1, }52 4,
{w, }22,, which are orthonormal and complete in H'(Q,dv), H, respectively, such
that for every k > 1, we have

Apr, = A\t
AW = KWk
and
lim A\, = +o0,
k——+oo
lim kp = +oo.
k——+o0
For any n > 1, we introduce two finite-dimensional spaces W,, = span{t1, ..., ¥, }
and H,, = span{wy, ...,w, }. Let P, be the orthogonal projection from H!(Q,dv) to

W, and let II,, be the orthogonal projection from H to H,.
Consider the approximate solution (¢, (t),u,(t)) in the form

bn(t) = Z 9:(t)s,
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we obtain (¢, (t), u,(t)) from solving the following problem

O,
(3.1) /QT %ﬂ}k dx + /QT V- (U @n )tx dx + Vi - Vb dx = 0,

Qr
(3.2) Vu, - Vwi + upwy dr + / Wk * OV, drz =0,
QT QT
1 0y,
(3.3) = | S YkdS+ | Vén Vi + f(dn)r da
dJr, Ot Qr
+ [ aVes, Vv + Boubds
I'r
— | s,
Qr

(34) Hn = _A¢n + Pnf((bn)a
(35) /Q(?n(o)wk dx = /Q¢01/)k d.’E, k= ]-7 e,

(3.6) /Foﬁn(omds:/reowkd& k=1, .n

Since f is continuous, using the Peano theorem, we obtain the local (in time) exis-
tence of (¢, (t), un(t)). Next, we will establish some a priori estimates for (¢, (t), uy, (t)).
We have

ULEAGIN

1
+— ¢n2-y+/F¢ndaz>+Vﬂn2
Bacry + o (2|| i@+ [ PG do ) + 1Vl

== [ Vb,

N Ap— /Q (tnhn) - Viin,

3 i 1n O ey + Wl + [ F@)6nde = [ podnda,

which implies that
aan d /1 1
e+ 55 (5100 By + sghonl + [ Flon)ds)

" ||wn||‘12<m HlhualBs @y + 160 B @ + [ 16000 da

:/ /Jnd)n dx
Q

<llpn — mpn | L2@)|Onll L2 @) + [Qmpnmey,
<C||Vpnllrz@)lonllz2@) + [Qmunmeo.
Thanks to (3.4), we obtain

65 [ mdo< HiY

which implies that

(3.7) *II

ey + Bllén®llzr ey + [6n(®)ll7s0) — [2Imeo,

(3.9) |Qmp,meo < CII ( )

2@y + Cllén®) L2y + Clion ()25 0
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Note that
(3.10) f(s)s > 2F(s),
(3.11) s* < 8F(s) +4.

Combining (3.8)-(3.11) with Young inequality, we find

3%( )12

312 1% + 5 (1@ + 310,00 + [ 2F(@n) o)

IV 2y + 2l sy + 6020 iy + / 3F(¢) de
<C.

From Sobolev trace embedding theorem, Young inequality and the classical Gron-
wall inequality, we deduce that there exist two positive constants § and p; such
that

1
(3.13) a0 + gllon Oz + [ 2F(0)da

=¢ (%l%“m) + 116017 vy + /Q 2F(¢o) dm) e+ py.

From Young inequality and Holder inequality, we infer that there exist two positive
constants C'7, C5 such that

1
B1) 16l @an —Cr <16l @ + G160 + [ 2P@)ds
<Cs (1911t (0 + 1913y + 1) -
By virtue of (3.13)-(3.14), we obtain
(3.15) ||¢n||?-[1(§_27du) <Cs (H(ZSOHZ}LP(Q) + ||90||§{1(r) + 1) e’ + p1+Cy.

Integrating (3.12) from 0 to ¢, we obtain

O
16 3 [ 12 s [ IV s +2 [ a6
<C(1+T) +Cs (I16ollfys y + 160l ey +1)

for any ¢ € (0,77].
Due to (3.15)-(3.16), we find
{dn}22, is uniformly bounded in L>°(0,T; H*(Q,dv)),
{pn )52, is uniformly bounded in L*(0,T; H'()),
{un }22, is uniformly bounded in L*(0,T;V),

(2n 0y is uniformiy bounded in L2(0.T: LX(T)).
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b (t
Therefore, one can extract subsequences { @, } 321, {tn; }51, {ftn, } 521, {%() e
Opn .
of {dn 1521, {un oy, {untoq, { ¢6t(t) o ., respectively, such that

bn; — ¢ weakly star in L>(0,T} HY(Q,dv)),
Up, — u weakly in L*(0,T;V),
fin, — X weakly in L*(0,T; H' (1)),

Ogn, () 0¢(t)
ot ot
From (3.15), we obtain

(3.17) {f(pn)}22, is uniformly bounded in L*(0,T; L*(52)).
We infer from Lemma 2.3 and (3.16)-(3.17) that
(3.18) {dn )52, is uniformly bounded in L*(0,T; H*(S, dv)),

weakly in L*(0,T; L*(T)).

which implies one can extract a subsequence {¢y,}32, of {¢,}52; such that
bn; — ¢ weakly in L(0,T; H*(Q, dv)).
For any ¢ € H'(Q,dv), set 1), = P,1), we have

¢
|| Sindal < [ untnl Vil do+ [ Vol V] do
o Ot Q Q
<lunlls @ llénl s @) IVYnllL2@) + IVinllLz@) I Vnll L2
which implies that

Odn
{ ot
Therefore, we can extract a subsequence such that
060, _ 0
ot ot

By virtue of the Aubin-Lions compactness theorem, we can extract a further sub-
sequence (still denote by {¢,,}32;) such that additionally

1o | is uniformly bounded in L*(0,T; (H'(Q,dv))*).

weakly in L*(0,T; (H*(Q,dv))*).

(3.19) Gn, — ¢ strongly in L*(0,T; H'(Q, dv)).
From (3.17), (3.19) and Lemma 2.2, we obtain
(3.20) F(6ny) = F(6) weakly in L(0, T; L2(2).

Hence, we have

X =—08¢+ f(d) = p
Thanks to

V- (unon — up)y de = — o(uy —u) - Vipdr — / (on, — O)uy - Vip do
Qr Qr

Qr
for any ¢ € H*(Q,dv) and

/ v (onVin — ¢V p) dz = / v Vi (dn — ¢) do + / v¢ - (Vi — V) de
Qr

T Qr
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for any v € V, which imply
V- (un¢n) -~V (ud)) weakly in L2(07 T (Hl(Qv dy))*)’
GV iy — OV pweakly in L*(0,T; V™).

Therefore, a weak solution (u, ¢) for the Cahn-Hilliard-Brinkman system with dy-
namic boundary conditions (1.1)-(1.9) has been proved and we obtain

o(t) € C(RT; HY(Q, dv))

from lemma 2.4.

Finally, we prove the uniqueness and the continuous dependence on the initial
data of the solutions. Let (ui, ¢1,p1), (u2, d2,p2) be two solutions for the Cahn-
Hilliard-Brinkman system with dynamic boundary conditions (1.1)-(1.9) with the
initial data (¢1,,61,), (¢2,,02,), respectively, and mep1, = mea,. Let u = uy — ua,
¢ = d1 — b2, p=p1 — p2, then (u, @, p) satisfies the following equations

(3.21) %+u~v¢1 +ug-Vo=Au, (z,t) € QxR
(3.22) p=p1—p2=—A¢+ f(d1) = f(d2), (z,t) € AxRT,
(3.23) —Au+u=-Vp—$Vu— ¢V, (z,t) € QxR
(3.24) Vou=0, (z,t) € QxR
Equation (3.21)-(3.24) is subject to the following boundary conditions
(3.25) u(z,t) =0, (x,t) €T x RT,
(3.26) % =0, (v,t) €T xR",

109 ¢ +
(3.27) ~S = alré - 55—, (z.t) €T xR
and initial conditions
(328) ¢($,0) = (blo - ¢20) T e Qa
(329) (]5(33‘,0) = 910 — 910, zel.

Taking the inner product of the equation (3.21) with —Ag, we obtain

1d 1
(3.30) 5 10O .0 + gl Oy
+ / (ug1) - VAP + (uz9) - VAP + |VA¢|2 dx
Q

- / V(f(61) - f(62)) - VAde.

Multiplying (3.23) by u and integrating by parts, we find
(3:31) ey == [ (w6): Vit (0) - Yz d
=~ [ w)- Vo + [ (upn) - VG
Q Q
— [ wn) - 9(s01) = F(on)) da.
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Combining (3.30) with (3.31), we obtain
(33 3 IO @ + 510 Oery + [ (VA0 do+ ulfe
V(1) = £(62)) - VAGds — [ (u6) Vpsads ~ [ (126)- VAG o
Q Q

- /Q (un) - V(f (&) — (o)) da

<IV(f(P1) = f(o2)) L2 [[VAS L2(0)
+ ullzs@lld1]l s @) IV (f(¢1) = f(2) L2
+ lulla@) @l Lo @) IVR2ll L2(0) + luzll L2 @) 10l Lo @) VA L2
Due to
(3.33) IV(f(¢1) = f(92)llz2(0)
<IF (@)l @ VOl L2y + 3ll¢1 + dallLs@)lldll Lo @) I VdallLs (@)
we infer from (3.32)—(3.33) and Young inequality that

(3.34) 3 dt||¢( N2 @.awy + el Fr @) < LIS (0.0

where

(3:35)  L(t) =C(L+ l¢1llZs ) 1" (@) 17 ) + 61 + b2l Zo() VD2l F6 ()

+ C(lluallZaq) + Va2l 720)-

Thanks to

(3.36) 1 (@[ () =I136T = 1T ()
<O([[ 11|70y +1)
SC(H(blH?{l(fz,dy)n(blH?{%Q,du) +1),

we conclude from (3.15)-(3.16), (3.18), (3.35)-(3.36) that

From the classical Gronwall inequality, we obtain

t
16O v + / () 12y s

< (||¢1o — b1 H() + 1161, — 920”%11@)) M,

Therefore, (uy(x,t), ¢1(z,t)) = (ua(z,t), da(x,t)) ae. in Qr, if ¢1,(z) = ¢o,(z) in
Q and 61, (z) = 0, () in I, and (u(z, 1), é(z,t)) depends continuously on the initial
data (¢o,6p) with respect to the norm in H1 (9, dv). This is the end of the proof.
]
For every fixed I € R, let V; = {¢ € H'(Q,dv) : m¢ = I}, by Theorem 3.1, we
can define the operator semigroup {S;(t)}i>0 in Vi by

S1(t)(¢0,00) = ¢(t) = ¢(; (¢0, 00))
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for all ¢ > 0, which is (V7, Vr)-continuous, where ¢(t) is the solution of the Cahn-
Hilliard-Brinkman system with dynamic boundary conditions (1.1)-(1.9) with

o(z,0) = (¢o,0p) € H' (2, dv).

4. The existence of a global attractor

In this section, we prove the existence of a global attractor in V; for the semi-
group {S;(¢)}i>0 generated by the Cahn-Hilliard-Brinkman system with dynamic
boundary conditions (1.1)-(1.9). First of all, we prove the existence of an absorbing
set in V; for the semigroup {S;(¢)}i>0 generated by the Cahn-Hilliard-Brinkman
system with dynamic boundary conditions (1.1)-(1.9).

THEOREM 4.1. Let {S;(t)}i>0 be a semigroup generated by the Cahn-Hilliard-
Brinkman system with dynamic boundary conditions (1.1)-(1.9). Then there exists
an absorbing set in V. That is, there exists a positive constant R1 = p2+1 satisfying
for any bounded subset B C Vi, there is a positive time Ty = T1(B) depending on
the Vi-norm of B such that

le(®)¥, < R
for any t > Ty, where po is specified in (4.2).

Proof. Repeating the proof of Theorem 3.1, we find

d
a0 12 e+ 5 (1l + G100 + [ 270 do)

IV lZ a0 + 20l + 16120 00y + /Q 3F(9) du
<C.

It is similar with the proof of (3.15), we obtain

(4.2) ||¢>HH1(Q ay < Cs (H%HHl @ T H90||H1 + 1) "+ p2,

which implies that there exists a positive constant Ry = py + 1 satisfying for any
bounded subset B C Vi, there is a positive time 77 = T3(B) depending on the
Vi-norm of B such that

lo®17, <RI

for any t > T7.
Integrating (4.1) from ¢ to t + 1, we obtain

3925() o 2 o 2
43 3 10 o [T IOy s+ [ o 0
t t
<p3

for any t > T}. For brevity, we omit writing out explicitly these bounds here.
O
Next, to prove the asymptotical compactness of the semigroup {S;(¢)}¢>0 gen-
erated by the Cahn-Hilliard-Brinkman system with dynamic boundary conditions
(1.1)-(1.9), we introduce the following lemma which can be referred to [14, 27].
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LEMMA 4.2. Let Xg C X C X3 be triple Banach spaces such that Xy, X1 are
reflexive and Xo C X is compact. For any 0 <T < oo, define

d
Y = {u cu e L*0,T; Xo), di: € L*0,T; Xl)} .

Then Y is a Banach space equipped with the norm ||ul| 20, 1;x,) + H%HLQ(O,T;Xl)-
Moreover, Y C L*(0,T; X) is compact.

Finally, we prove the asymptotical compactness of the semigroup {S;(¢)}i>0
generated by the Cahn-Hilliard-Brinkman system with dynamic boundary condi-
tions (1.1)-(1.9).

THEOREM 4.3. The semigroup {S1(t) }1>0 generated by the Cahn-Hilliard-Brinkman
system with dynamic boundary conditions (1.1)-(1.9) is asymptotically compact in
HY(Q,dv).

Proof. Thanks to the existence of an absorbing set for the semigroup {S;(t) }:1>0
generated by the Cahn-Hilliard-Brinkman system with dynamic boundary condi-
tions (1.1)-(1.9), it is sufficient to consider a bounded subset B of H!(Q,dv) to
prove the compactness of the semigroup {S7(¢)}+>0. For any fixed T > 0, define the
set O as a subset of the function space L?(0,T; H (2, dv)) :

Cr :={9: (¢o,00) € B,¢(t) = S1(t)(d0,00),t € [0, T]}.

Due to the compactness of H2(Q,dv) C H'(Q,dv), if (¢o,0¢) € B, then it has been
shown in the previous section that for any fixed T' > 0, the weak solution ¢ of
the Cahn-Hilliard-Brinkman system with dynamic boundary conditions (1.1)-(1.9)
satisfies

¢ € L*(0,T; H*(Q, dv)),

) _

a—f € L*(0,T; (HY(Q,dv))").
By Lemma 4.2 with

Xo = H*(Q,dv), X = H (Q,dv), X; = (H"(Q,dv))*,
we know that Cr is compact in L2(0,T; H(Q, dv)).

Taking any bounded sequence {(¢o.n,00.n)}n>1 C B, we infer from {¢,}72; C
Cr that there is a function ¢ € L?(0,T; H*(Q,dv)) and a subsequence of

{S1(t)(d0,n,00,n)  nzss
still denoted by {S7(t)(¢0,n,00,n)}oe, for simplicity of notation, such that

T
(4.4) liy [ 151() @0, o) — 6(5) 121 0.0y 0 = O,

n—0o0

which implies that there exists a subsequence of {S7(¢)(¢0.n,00.n) }o2, still denoted
by {S1(t)(¢0,n,00,n) o2, for simplicity of notation, such that

(4.5) Jim [[S7() (00,0, 00.0) = ()11 (0,00) = 0, a-et € (0,7),
Therefore, for any fixed ¢ € (0,7"), we can select a to € (0,t) such that
i [1S1(t0) G0, 80.0) — 9(00) s 1.0y = O
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Then, it follows from the continuity of the map S7(t) in H'(Q,dv) that

S1(t)(Po,n,00.n) =S1(t —t0)S1(t0)(P0,n,00.n)
—>S](t - to)(b(t()), m Hl(Q, du)

That is, for any ¢ > 0, {S1(t)(¢0,n,00,n)}5e1 contains a subsequence which is con-

vergence in H'(Q, dv). Therefore, we conclude that the semigroup {S;(t)};>0 as-

sociated with the solutions of the Cahn-Hilliard-Brinkman system with dynamic
boundary conditions (1.1)-(1.9) is asymptotically compact in H* (€2, dv).

O

From Theorem 4.1 and Theorem 4.3, we immediately obtain the following result.

THEOREM 4.4. The semigroup {S1(t) }1>0 generated by the Cahn-Hilliard-Brinkman
system with dynamic boundary conditions (1.1)-(1.9) possesses a global attractor in
Vi.
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