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Asymptotic behavior of solutions to the cubic coupled
Schrödinger systems in one space dimension

Victor V. Da Rocha
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Abstract. In this paper, we study a coupled nonlinear Schrödinger system
with small initial data in the one dimension Euclidean space. Such a system
appears in the context of the coupling between two different optical waveg-
uides. We establish an asymptotic nonlinear behavior and a decay estimate
for solutions of this system. The proof uses a recent work of Kato and Pusateri.
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1. Introduction

We consider the following system

(1.1)

⎧⎨⎩ i∂tu+ ∂xxu = |v|2 u, (t, x) ∈ [1,+∞)× R,

i∂tv + ∂xxv = |u|2 v,
u(1, x) = u1(x), v(1, x) = v1(x).

1.1. Motivation and background. An interesting area within the study
of the asymptotic behavior of small solutions of nonlinear dispersive PDEs is the
search of nonlinear global dynamics. In the well-known case of the cubic Schrödinger
equation, different methods have been treated by several authors.
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On the one hand, the asymptotic behavior depends on the geometry of the
spatial domain.

• For Euclidean spaces, we mainly have phase corrections results. For ex-
ample, Kato and Pusateri treat the case x ∈ R in [8] using only tools from
the analysis in Fourier space. For general Euclidean spaces, we can look
at [7] where Hayashi and Naumkin deal with x ∈ Rn.

• In the case of compact domains, the usual example is the study of the
torus Td. We can for example mention the work of Colliander, Keel,
Staffilani, Takaoka and Tao who showed some first results in the search
of unboundedness of Sobolev norms for small initial data in the spatial
space T2 in [2].

• Combining these two kinds of spaces, we can study the product spaces
Rn × Td. The first to consider such spaces were Tzvetkov and Visciglia.
They obtained some scattering behaviors in Rn ×M, where M is a com-
pact manifold (see [10]), or in Rn × T where they extended their point
of view and studied the well-posedness of their equation (see [11]). For
the case R × Td, we can cite the work of Hani, Pausader, Tzvetkov and
Visciglia, who showed in 2013 (see [5]) a real growth of Sobolev norms by
adding a direction of diffusion to the compact problem. For that purpose,
they exhibited a modified scattering of the solution of the Schrödinger
equation to the solution of the resonant system associated. Contrary to
the Euclidean case, this is an effective scattering, and not only a phase
correction.

On the other hand, after the geometry of the spatial domain, we can deal
with the equation itself. Using the method presented in [5], similar results have
been obtained by adding a potential (see [4]), a harmonic trapping (see [6]), or
by considering different derivatives along the Euclidean direction and the periodic
one (see [12]). In the last mentioned article, Xu exhibits a scattering between the
Schrödinger equation i∂tU + ΔRU − |∇T|U = |U |2U in the spatial domain R × T

and the cubic Szegő equation.

In this article, we focus on a coupled Schrödinger system. Such a system
occurs while, for example, looking for the coupling between two different optical
waveguides, that can be provided by a dual-core single-mode fiber (see [1]). Other
examples are given by two orthogonally polarized components traveling at differ-
ent speeds because of different refractive indices associated with them; or by two
distinct pulses with different carrier frequencies but with the same polarization.
A surprising fact about these examples is that they lead to a system close to the
Schrödinger system (1.1), obtained by interchanging the spatial and temporal co-
ordinates.

From our point of view, such a system is interesting. Indeed this coupling
effect can provide more nonlinear asymptotic behavior than a single equation. For
example, Grébert, Paturel and Thomann exhibited some beating effects (see [3]),
that is to say some energy exchanges between different modes of the solutions,
although they were just dealing with the spatial domain T. Another example of
study of Schrödinger systems is given by Kim in [9]. Considering relations on the
masses in the equations, the author obtains L∞ decay of the solution for the spatial
domain R.
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The goal of this article is to present a self contained proof of nonlinear behavior
in the spatial domain R. Following the method of Kato and Pusateri in [8], we will
first prove a L∞ decay of the solutions. Then, we will highlight an asymptotic
behavior, in the sense that we will be looking for a pair (Wf ,Wg) depending only
on the space variable in a space to be determined, such that:

(1.2)

{ ‖ŵf (t, .)−Wf‖ −→
t→∞ 0,

‖ŵg(t, .)−Wg‖ −→
t→∞ 0,

where |ŵf (t, ξ)| = |û(t, ξ)| and |ŵg(t, ξ)| = |v̂(t, ξ)|. This is a result of phase
correction scattering, and it is interesting to see what effect the coupling has in
this case, to get informations on Wf and Wg, and to approximate the speed of
this convergence. Moreover, we exhibit an asymptotic formula for large time of the
solutions.

1.2. Notations and norms. We define the spatial Fourier transform in the
Schwartz space, for ϕ ∈ S(R), by

F(ϕ)(ξ) = ϕ̂(ξ) :=
1√
2π

∫
R

e−ixξϕ(x)dx.

We use the notation f � g to denote that there exists a positive constant M such
that f ≤ Mg. This notation will be useful, allowing us to avoid dealing with all
the constants in the different inequalities.
When a function depends on two variables t and x, we denote by ϕ(t) the function
ϕ(t) : x 	→ ϕ(t, x).
Working with small initial data, we can expect the nonlinearity to stay small, and
thus the linear dynamics to be dominant. This is the reason why it is interesting
to consider the profile of a solution, which is the backwards linear evolution of a
solution of the nonlinear equation. We define f (respectively g) the profile of the
solution u (respectively v) by

(1.3) f(t, x) := e−it∂xxu(t, x) g(t, x) := e−it∂xxv(t, x).

We will see in Subsection 2.1 that after considering Duhamel’s formula of the solu-
tions, the equations in f and g are easier to treat than the ones with u and v. This
is the main reason why the profiles have been introduced.

The norm used will be essential in order to prove the global existence of the
solutions. Let n ∈ N, we define the spaces Hn,0

x , H0,n
x and L∞

T corresponding to the
following norms:

• ‖ϕ‖L∞
x

:= sup
x∈R

|ϕ(x)|,

• ‖ϕ‖Hn,0
x

:=

n∑
i=0

‖∂i
xϕ‖L2

x
,

• ‖ϕ‖H0,n
x

:=

n∑
i=0

‖xiϕ‖L2
x
,

• ‖ϕ‖L∞
T

:= sup
t∈[1,T ]

|ϕ(t)|.

With these norms, we follow the method of Kato and Pusateri in [8] to construct
the space

XT :=
{
ϕ, ‖ϕ‖XT

:= ‖ϕ‖L∞
T L∞

x
+ ‖t−αϕ‖L∞

T H1,0
x

+ ‖t−αϕ‖L∞
T H0,2n+1

x
< ∞

}
,
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where α > 0 is small enough.
We want to obtain a L∞ decay of the solutions. For that purpose, we need to

control the behavior of the cubic nonlinearity, which is why the terms ‖ϕ‖L∞
T L∞

x
and

‖t−αϕ‖L∞
T H1,0

x
are required in the definition of the norm. With these two terms, we

can show that we have a unique and global pair of solutions, and that the scattering
limits Wf ,Wg of the equations (1.2) are in L∞. The last term ‖t−αϕ‖L∞

T H0,2n+1
x

will allow us to show that Wf ,Wg are also in H0,n.

1.3. Statement of the results. The idea here is to apply the result of [8] to
our coupled Schrödinger system (1.1). As we can expect, we also obtain a global
existence, a decay estimate, a scattering result and an asymptotic formula.

Theorem 1.1. Fix n ∈ N and 0 < ν < 1
4 .

Assume ‖u1‖H2n+1,0
x

+ ‖u1‖H0,1
x

+ ‖v1‖H2n+1,0
x

+ ‖v1‖H0,1
x

≤ ε for ε small enough.

Let I = [1,+∞) and set F := C (
I;H2n+1,0(I) ∩H0,1(I)

)
. Then (1.1) admits a

unique pair of solutions (u, v) ∈ F ×F . The pair of solutions satisfies the following
decay estimates:

‖u(t)‖L∞
x

� 1

t
1
2

, ‖v(t)‖L∞
x

� 1

t
1
2

.

Furthermore, there exists a unique pair (Wf ,Wg) ∈ (L∞
ξ ∩ H0,n

ξ ) × (L∞
ξ ∩ H0,n

ξ )
such that for t ≥ 1,⎧⎪⎪⎨⎪⎪⎩

‖f̂(t, .) exp
(

i

2
√
2π

∫ t

1

1

s
|v̂(s, .)|2 ds

)
−Wf‖L∞

ξ
� t−

1
4+ν ,

‖ĝ(t, .) exp
(

i

2
√
2π

∫ t

1

1

s
|û(s, .)|2 ds

)
−Wg‖L∞

ξ
� t−

1
4+ν ,

and ⎧⎪⎪⎨⎪⎪⎩
‖f̂(t, .) exp

(
i

2
√
2π

∫ t

1

1

s
|v̂(s, .)|2 ds

)
−Wf‖H0,n

ξ
� t−

1
8+

ν
2 ,

‖ĝ(t, .) exp
(

i

2
√
2π

∫ t

1

1

s
|û(s, .)|2 ds

)
−Wg‖H0,n

ξ
� t−

1
8+

ν
2 ,

where f and g are defined in (1.3). Finally, we have an asymptotic formula. It
exists a unique pair of functions (Γf ,Γg) ∈ L∞

ξ × L∞
ξ such that for large time t,⎧⎨⎩u(t, x) = 1

(2it)
1
2
Wf (

x
2t ) exp

(
ix

2

4t − i
2
√
2π

(|Wg(
x
2t )|2 ln(t) + Γg(

x
2t ))

)
+O(t−

3
4+ν),

v(t, x) = 1

(2it)
1
2
Wg(

x
2t ) exp

(
ix

2

4t − i
2
√
2π

(|Wf (
x
2t )|2 ln(t) + Γf (

x
2t ))

)
+O(t−

3
4+ν).

Remark 1.2. Let’s begin with some remarks about this theorem.

• We see that, as we can expect, the role of the coupling appears here as a
phase correction term of the scattering result.

• By taking n = 0 in Theorem 1.1, we obtain that Wf ,Wg ∈ L∞
ξ ∩ L2

ξ for

a small initial data in H1,0
x ∩H0,1

x . This is the coupled equivalent of the
Theorem 1.1 of [8]. In this article, we are able to get the control of the
H0,n norms too.

• The decay estimate is not new here. Indeed, Kim already obtained it in [9],
but without scattering result on the solutions.
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• We see that we need a control on the derivatives on u1, v1 to obtain a
control on the H0,n norm of Wf ,Wg. The reason is that Wf ,Wg are the
asymptotic behaviors of wf and wg, defined in (2.5), which are, up to a
phase correction, the Fourier transforms of u and v.

• They are two losses that can be surprising. First, the loss of speed be-
tween the L∞ behavior and the H0,n one. Secondly, the need for 2n + 1
derivatives in u, v to obtain n multiplications in Wf ,Wg. Both losses are
connected to the same phenomenon. The key part of all the estimations
will be the good decay in L∞ of a remainder term R defined in (2.3). To
control the H0,n norm of R by using this L∞ decay, we use the inequal-
ity (4.8), which gives us these losses. These losses may not be sharp, as
this control of the H0,n norm may not be optimal.

The rest of the paper is organized as follows. In Section 2, we will do some pre-
liminary computations and introduce the notion of profile. In Section 3, we will
prove a key proposition. Finally, the proof of the Theorem 1.1 will be treated in
Section 4.

2. Preliminaries

In this section, we reformulate the problem by considering Duhamel’s formula
of the profiles of the solutions. Moreover, we state a proposition, which will be the
main ingredient to begin the proof of the Theorem 1.1. Finally, we state and prove
a classical estimate of the Schrödinger linear group.

2.1. Introduction of the profile. We apply Duhamel’s formula to the sys-
tem (1.1). If the solution u exists, then u = Φ(u), where

Φ(u)(t, x) = ei(t−1)∂xxu1(x)− i

∫ t

1

ei(t−s)∂xx |v(s, x)|2u(s, x)ds.

To get the existence of the solution, we have to apply the fixed point theorem. We
filter out the linear contribution by introducing the profile here. For f defined in
(1.3), Duhamel’s formula becomes (with the same notation Φ for the profile),

Φ(f)(t, x) = e−i∂xxu1(x)− i

∫ t

1

e−is∂xxv(s, x)v(s, x)u(s, x)ds.

Using that ûv = 1√
2π

û ∗ v̂, we compute the spatial Fourier transform of Φ(f) as

follows:

Φ̂(f)(t, ξ) = eiξ
2

û1(ξ)− i

∫ t

1

eisξ
2

v̂vu(s, ξ)ds

= eiξ
2

û1(ξ)− i

∫ t

1

∫
R2

eisξ
2

û(s, α)v̂(s, η − α)v̂(s, ξ − η)dηdαds

= eiξ
2

û1(ξ)− i

∫ t

1

∫
R2

eisξ
2

û(s, α)v̂(s, α− η)v̂(s, ξ − η)dηdαds.

Now, we reintroduce f = e−it∂xxu and g = e−it∂xxv in the above equation to get:

Φ̂(f)(t, ξ) = eiξ
2

û1(ξ)− i

∫ t

1

∫
R2

e2isη(ξ−α)f̂(s, α)ĝ(s, α− η)ĝ(s, ξ − η)dηdαds.
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After the change of variables α ↔ ξ − σ, we get

(2.1) Φ̂(f)(t, ξ) = eiξ
2

û1(ξ)− i

2π

∫
e2isησ ĝ(s, ξ−σ)ĝ(s, ξ−η−σ)f̂(s, ξ−η)dσdηds.

We define

(2.2) F (s, η, σ, ξ) := ĝ(s, ξ − σ)ĝ(s, ξ − η − σ)f̂(s, ξ − η).

Using the Plancherel formula on (2.1) we get

Φ̂(f)(t, ξ) = eiξ
2

û1(ξ)− i

2π

∫ t

1

∫
Fη,σ

[
e2isησ

]F−1
η,σ [F (s, η, σ, ξ)] dσdηds.

Using δ̂a = 1√
2π

e−iax, êiax =
√
2πδa and the fact that f̂λ(ξ) = 1

λ f̂(
ξ
λ ) where

fλ(x) := f(λx), we have

Fη,σ

[
e2isησ

]
(a, b) = Fη

[√
2πδ2sη(b)

]
(a) =

1

2s
e−i ab

2s .

Therefore, with the definition of F in (2.2),

Φ̂(f)(t, ξ) = eiξ
2

û1(ξ)− i

4π

∫ t

1

∫
1

s
e−i ab

2sF−1
η,σ [F (s, η, σ, ξ)] (a, b)dadbds

= eiξ
2

û1(ξ)− i

4π

∫ t

1

1

s

∫
F−1

η,σ [F (s, η, σ, ξ)] (a, b)dadbds

− i

4π

∫ t

1

1

s

∫ (
e−i ab

2s − 1
)
F−1

η,σ [F (s, η, σ, ξ)] (a, b)dadbds

= eiξ
2

û1(ξ)− i
√
2π

4π

∫ t

1

1

s
|ĝ(s, ξ)|2 f̂(s, ξ)ds+

∫ t

1

R(s, ξ)ds,

where
(2.3)

R(s, ξ) = R(ĝ, ĝ, f̂)(s, ξ) := − i

4πs

∫ (
e−i ab

2s − 1
)
F−1

η,σ [F (s, η, σ, ξ)] (a, b)dadb.

Thus, we obtain

(2.4) ∂tΦ̂(f)(t, ξ) = − i

2
√
2πt

|ĝ(t, ξ)|2 f̂(t, ξ) +R(t, ξ).

The idea is to use the good behavior of R, which has a good decay in time. To take
advantage of this decay, we introduce a last change of variable. We set
(2.5)

Bg(t, ξ) = exp

(
i

2
√
2π

∫ t

1

1

s
|ĝ(s, ξ)|2 ds

)
, ŵf (t, ξ) = f̂(t, ξ)Bg(t, ξ),

Bf (t, ξ) = exp

(
i

2
√
2π

∫ t

1

1

s

∣∣∣f̂(s, ξ)∣∣∣2 ds) , ŵg(t, ξ) = ĝ(t, ξ)Bf (t, ξ).

The main property of this change of variables is the conservation of the modulus

of f : |ŵf (t, ξ)| = |f̂(t, ξ)|. Thus, we have f̂ = Φ̂(f) if and only if ŵf is a solution
of the following differential equation:

∂tŵf (t, ξ) = Bg(t, ξ)R(t, ξ).
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Applying Duhamel’s formula a second time, we define the Duhamel form for the
couple (ŵf , ŵg) (still using the same notation Φ) by:

(2.6)

⎧⎪⎪⎨⎪⎪⎩
Φ1(ŵf , ŵg)(t, ξ) = ŵ1

f (ξ) +

∫ t

1

Bg(s, ξ)R(ĝ, ĝ, f̂)(s, ξ)ds,

Φ2(ŵf , ŵg)(t, ξ) = ŵ1
g(ξ) +

∫ t

1

Bf (s, ξ)R(f̂ , f̂ , ĝ)(s, ξ)ds,

where ŵ1
f (ξ) = ŵf (1, ξ) and ŵ1

g(ξ) = ŵg(1, ξ). They are the equations that we will
treat to get the existence of the solutions. For that purpose, we are now able to
state the key result of the article.

Proposition 2.1. Assume that

‖ŵ1
f‖H1,0

ξ
+ ‖ŵ1

f‖H0,2n+1
ξ

+ ‖ŵ1
g‖H1,0

ξ
+ ‖ŵ1

g‖H0,2n+1
ξ

≤ ε,

then there exists a positive constant M such that
(2.7)

‖Φ1(ŵf , ŵg)‖XT
≤ ε+M ‖ŵf‖XT

‖ŵg‖2XT
(1 + ‖ŵf‖4XT

)(1 + ‖ŵg‖4XT
),

‖Φ2(ŵf , ŵg)‖XT
≤ ε+M ‖ŵg‖XT

‖ŵf‖2XT
(1 + ‖ŵg‖4XT

)(1 + ‖ŵf‖4XT
).

Remark 2.2. There are two main differences between this estimation and the
Proposition 1.3 of Kato and Pusateri in [8]. First, we are dealing here with a result
about w, and not about u directly. The reason is in the equation (2.4). As long
as we have no proof of the existence of f , we cannot take Φ(f) = f and do a legit
change of variables in this equation. But the existence of f is equivalent to the
existence of w, which is why we focus on w here. Secondly, the right-hand side in
[8] is a cubic term. The apparition of (1 + ‖ŵf‖4XT

)(1 + ‖ŵg‖4XT
) terms in this

paper is due to the choice of the XT -norm. In particular, the terms ‖∂ξ f̂(s)‖L2
ξ
and

‖∂ξ ĝ(s)‖L2
ξ
are not controlled by the definition of the XT -norm. In fact, as soon as

we consider small solutions, the right-hand side is very close to a cubic term.

2.2. Properties of the linear Schrödinger group. Before dealing with the
computations on the XT norm, we introduce the following result of independent
interest, about the linear Schrödinger group. This lemma will be used in both
proofs of Proposition 2.1 and Theorem 1.1.

Lemma 2.3. For all ϕ ∈ S(R) and for all 0 < β < 1
4 , we have

‖eit∂xxϕ‖L∞
x

� 1

|t| 12 ‖ϕ̂‖L
∞
ξ

+
1

|t| 12+β
‖ϕ̂‖H1,0

ξ
.

Proof. The following proof is based on the proof of the more general Lemma
in [7]. The idea is to write eit∂xxϕ as an integral with a kernel. Recall that for

Kt(x) = (4iπt)−
1
2 e−

x2

4it ,
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we have eit∂xxϕ = Kt ∗ ϕ. Thus,

eit∂xxϕ(x) =

∫
R

ϕ(y)Kt(x− y)dy

= (4iπt)−
1
2

∫
R

ϕ(y)e−
(x−y)2

4it dy

= (4iπt)−
1
2 ei

x2

4t

∫
R

ϕ(y)ei
y2

4t e−i xy
2t dy

= (4iπt)−
1
2 ei

x2

4t

(∫
R

ϕ(y)e−i xy
2t dy +

∫
R

ϕ(y)(ei
y2

4t − 1)e−i xy
2t dy

)
.

We define Aϕ such that

(2.8) eit∂xxϕ(x) := (2it)−
1
2 ei

x2

4t ϕ̂(
x

2t
) +Aϕ(t, x).

The first part of the sum gives us the L∞ part of the Lemma. We now deal with
the term Aϕ by using the fact that (with 0 < β < 1

4 ):

(2.9)
∣∣eix − 1

∣∣ = 2
∣∣∣sin(x

2
)
∣∣∣ � xβ .

This trivial inequality gives us for A

‖Aϕ(t)‖L∞
x

� |t|− 1
2

∥∥∥|x|2β |t|−β
ϕ
∥∥∥
L1

x

� |t|− 1
2−β

∥∥∥|x|2β 〈x〉 〈x〉−1
ϕ
∥∥∥
L1

x

� |t|− 1
2−β

∥∥∥|x|2β 〈x〉−1
∥∥∥
L2

x

‖〈x〉ϕ‖L2
x

� |t|− 1
2−β ‖ϕ̂‖H1,0

ξ
.

This concludes the proof of the lemma. �

3. The a priori estimates

In this section, we prove the Proposition 2.1, following the proof of the similar
proposition in [8]. We want to deal with the XT norms of ŵf and ŵg. Here we write
the computations for ŵf , obviously, the results are the same mutatis mutandis for
ŵg. We split the proof in three parts because of the several estimations needed in
the XT norm.

3.1. The decay of R, one L∞ estimate. We first focus on R. We recall
that

R(s, ξ) = R(ĝ, ĝ, f̂)(s, ξ) = − i

4πs

∫ (
e−i ab

2s − 1
)
F−1

η,σ [F (s, η, σ, ξ)] (a, b)dadb,

with

F (s, η, σ, ξ) := ĝ(s, ξ − σ)ĝ(s, ξ − η − σ)f̂(s, ξ − η).

We have the following lemma:

Lemma 3.1. For all 0 < 3α < δ < 1
4 we have

|R(s, ξ)| � s−1−δ ‖ĝ‖2H1,0
ξ

‖f̂‖H1,0
ξ

.

Remark 3.2. This lemma is the key of the estimates we will deal with.
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• The important result here is this small δ that ensures the integrability
of ‖R(s, .)‖L∞

ξ
. Moreover, this provides a good decay that will erase the

behavior of the other parts, because 3α < δ, and ensures the existence of
the solutions of our system (1.1).

• We see here why we choose the time 1 for initial data in the system (1.1).
Indeed, here is the main problem with the integral in 0. Almost all the 1

t
terms can be controlled in 0 by changing the coefficients in the XT norm
(for example by changing the t in 1 + t), but not this 1

s1+δ here. This
is a consequence of the behavior of the solution of the linear Schrödinger
equation near 0. Our purpose here is to highlight an asymptotic behavior,
this is the reason why we just avoid this problem by taking a strictly positive
time for the initial data.

• This lemma is satisfied for all 0 < 3α < δ < 1
4 . The goal after the lemma

is to take α small enough, and δ as big as possible. Keeping this in mind,
in the Subsection 4.4, it will be natural to consider that we can choose α
and δ such that 0 < 4α < δ < 1

4 .

Proof. By definition we have

|R(s, ξ)| � 1

s

∫ ∣∣∣e−i ab
2s − 1

∣∣∣ ∣∣F−1
η,σ [F (s, η, σ, ξ)] (a, b)

∣∣ dadb.
Once again we use (2.9) with 0 < δ < 1

4 to obtain

|R(s, ξ)| � s−1−δ

∫
|a|δ |b|δ ∣∣F−1

η,σ [F (s, η, σ, ξ)] (a, b)
∣∣ dadb.

Let’s focus on F−1
η,σF ,

F−1
η,σ [F (s, η, σ, ξ)] (a, b) = F−1

η,σ

[
ĝ(s, ξ − σ)ĝ(s, ξ − η − σ)f̂(s, ξ − η)

]
(a, b)

= F−1
η

[
f̂(s, ξ − η)F−1

σ

(
ĝ(s, ξ − σ)ĝ(s, ξ − η − σ)

)
(b)

]
(a).

But F−1(fg) = 1√
2π

F−1(f) ∗ F−1(g), therefore,

F−1
η,σ [F (s, η, σ, ξ)] (a, b) =

F−1
η

[
f̂(s, ξ − η)

1√
2π

F−1
σ ĝ(s, ξ − σ) ∗ F−1

σ ĝ(s, ξ − η − σ)(b)

]
(a).

Moreover, F−1
σ [ĝ(ξ − σ)](b) = eiξyg(−b) and F−1

σ [ĝ(ξ − σ)](b) = eiξbg(b),

F−1
η,σF (a, b) =

1√
2π

F−1
η

[
f̂(s, ξ − η)

(
eibξg(s,−b) ∗b eib(ξ−η)g(s, b)

)
(b)

]
(a)

=
1√
2π

F−1
η

[
f̂(s, ξ − η)

∫
R

eiyξg(s,−y)ei(b−y)(ξ−η)g(s, b− y)dy

]
(a)

=
1√
2π

∫
R

eibξg(s,−y)g(s, b− y)F−1
η

(
e−i(b−y)η f̂(s, ξ − η)

)
(a)dy.

But F−1
η [e−ibη f̂(ξ − η)](a) = eiξ(a−b)f(b− a),

F−1
η,σ [F (s, η, σ, ξ)] (a, b) =

1√
2π

∫
R

eibξg(s,−y)g(s, b− y)eiξ(y+a−b)f(s, b− y − a)dy.
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Finally, with the change of variables x ↔ (b− y) we obtain

F−1
η,σ [F (s, η, σ, ξ)] (a, b) =

1√
2π

∫
R

eibξg(s, x− b)g(s, x)eiξ(a−x)f(s, x− a)dx

=
1√
2π

ei(a+b)ξ

∫
R

e−ixξg(s, x− b)g(s, x)f(s, x− a)dx.

Therefore, back on R, we have

|R(s, ξ)| � s−1−δ

∫
|a|δ |b|δ |g(s, x− b)| |g(s, x)| |f(s, x− a)| dxdadb.

Using that |a|δ |b|δ � (|x− a|δ + |x|δ)(|x− b|δ + |b|δ), we obtain

|R(s, ξ)| � s−1−δ

∫
|x− b|δ |g(s, x− b)| |g(s, x)| |x− a|δ |f(s, x− a)| dxdadb

+ s−1−δ

∫
|g(s, x− b)| |x|δ |g(s, x)| |x− a|δ |f(s, x− a)| dxdadb

+ s−1−δ

∫
|x− b|δ |g(s, x− b)| |x|δ |g(s, x)| |f(s, x− a)| dxdadb

+ s−1−δ

∫
|g(s, x− b)| |x|2δ |g(s, x)| |f(s, x− a)| dxdadb

� s−1−δ
(
‖ |x|δ g‖L1

x
‖g‖L1

x
‖ |x|δ f‖L1

x
+ ‖g‖L1

x
‖ |x|δ g‖L1

x
‖ |x|δ f‖L1

x

+ ‖ |x|δ g‖L1
x
‖ |x|δ g‖L1

x
‖f‖L1

x
+ ‖ |x|2δ g‖L1

x
‖g‖L1

x
‖g‖L1

x

)
.

Using the Cauchy-Schwarz inequality and the fact that δ < 1
4 , we get∥∥∥〈x〉2δ f∥∥∥

L1
x

≤
∥∥∥〈x〉2δ 〈x〉−1

∥∥∥
L2

x

‖〈x〉 f‖L2
x
� ‖f̂‖H1,0

ξ
.

Therefore,

|R(s, ξ)| � s−1−δ‖f̂‖H1,0
ξ

‖ĝ‖2
H1,0

ξ

.

�

3.2. Some L2 estimates. By the previous estimation, we see that we first

need to control the ‖f̂‖H1,0
ξ

term, which will occur in a lot of our computations.

By definition,

‖f̂(t)‖H1,0
ξ

= ‖f̂(t)‖L2
ξ
+ ‖∂ξ f̂(t)‖L2

ξ

= ‖ŵf (t)‖L2
ξ
+ ‖∂ξ(ŵfBg)(t)‖L2

ξ

≤ ‖ŵf (t)‖L2
ξ
+ ‖∂ξŵf (t)‖L2

ξ
+ ‖ŵf (t)‖L∞

ξ
‖∂ξBg(t)‖L2

ξ

≤ ‖ŵf (t)‖H1,0
ξ

+ ‖ŵf (t)‖L∞
ξ

∫ t

1

s−1‖∂ξŵg.ŵg(s)‖L2
ξ
ds.

Thus, using the definition of the XT -norm, we obtain

(3.1) ‖f̂(t)‖H1,0
ξ

� tα ‖ŵf‖XT
(1 + ‖ŵg‖2XT

).
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We now have all the tools for studying ‖R(s)‖L2
ξ
. By construction, we have that

(3.2)

R(s, ξ) =
i
√
2π

4π

1

s
|ĝ(s, ξ)|2f̂(s, ξ)− iFξ

(
e−is∂xx(|eis∂xxg(s, x)|2eis∂xxf(s, x))

)
.

Using that ‖eis∂xxϕ‖L2
ξ
= ‖ϕ‖L2

ξ
and the conservation of the L2 norm of Fourier’s

transform, we get

‖R(s)‖L2
ξ
� 1

s
‖ĝ(s)‖2L∞

ξ
‖f̂(s)‖L2

ξ
+ ‖eis∂xxg(s)‖2L∞

x
‖f(s)‖L2

x
.

Thus, we use the Lemma 2.3 with α < β and the fact that (a+ b)2 � a2 + b2,

‖R(s)‖L2
ξ
� s−1

(
‖ĝ(s)‖2L∞

ξ
‖f̂(s)‖L2

ξ
+ s−2β‖ĝ(s)‖2

H1,0
ξ

‖f̂(s)‖L2
ξ

)
� s−1

(
‖ŵg(s)‖2L∞

ξ
‖ŵf (s)‖L2

ξ

+s2(α−β)‖ŵg(s)‖2XT
(1 + ‖ŵf (s)‖2XT

)2‖ŵf (s)‖L2
ξ

)
.

Thus we get

(3.3) ‖R(s)‖L2
ξ
� s−1+α‖ŵg‖2XT

‖ŵf‖XT
(1 + ‖ŵf‖4XT

),

Now, let us deal with the derivative with respect to ξ. In the computation to obtain
(3.1), we already showed that

(3.4) ‖∂ξBg(t)‖L2
ξ
� tα‖ŵg‖2XT

.

For R, we go back once again to its construction. We have

(3.5)

R(s, ξ) = − i
2π

∫
e2isησ ĝ(s, ξ − σ)ĝ(s, ξ − η − σ)f̂(s, ξ − η)dσdη

+ i
√
2π

4π
1
s |ĝ(s, ξ)|2 f̂(s, ξ)

=: I(ĝ, ĝ, f̂)(s, ξ) +
1

s
N(ĝ, ĝ, f̂)(s, ξ).

Then, by linearity,

∂ξR =I(∂ξ ĝ, ĝ, f̂) + I(ĝ, ∂ξ ĝ, f̂) + I(ĝ, ĝ, ∂ξ f̂)

+
1

s
N(∂ξ ĝ, ĝ, f̂) +

1

s
N(ĝ, ∂ξ ĝ, f̂) +

1

s
N(ĝ, ĝ, ∂ξ f̂).(3.6)

Obviously, the three terms in I and N play the same role. We will focus on one of
each.

‖I(∂ξ ĝ, ĝ, f̂)(s)‖L2
ξ
� ‖Fξ

(
e−is∂xx(eis∂xxxg(s, x)e−is∂xxg(s, x)eis∂xxf(s, x))

) ‖L2
ξ

� ‖eis∂xxf(s)‖L∞
x
‖eis∂xxg(s)‖L∞

x
‖xg(s)‖L2

x

� s−1(‖f̂(s)‖L∞
ξ

+ s−β‖f̂(s)‖H1,0
ξ

)(‖ĝ(s)‖L∞
ξ

+ s−β‖ĝ(s)‖H1,0
ξ

)‖∂ξ ĝ(s)‖L2
ξ

� s−1+α ‖ŵf‖XT
(1 + ‖ŵg‖2XT

) ‖ŵg‖2XT
(1 + ‖ŵf‖4XT

).

For N , we have

‖s−1N(∂ξ ĝ, ĝ, f̂)(s)‖L2
ξ
� s−1‖f̂(s)‖L∞

ξ
‖ĝ(s)‖L∞

ξ
‖∂ξ ĝ(s)‖L2

ξ

� s−1+α ‖ŵf‖XT
‖ŵg‖2XT

(1 + ‖ŵf‖2XT
).
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Thus, we can conclude that

(3.7) ‖∂ξR(s, ξ)‖L2
ξ
� s−1+α ‖ŵf‖XT

‖ŵg‖2XT
(1 + ‖ŵg‖2XT

)(1 + ‖ŵf‖4XT
).

The computations are almost the same for the H0,2n+1
ξ part. Since |B(s, ξ)| = 1,

we just focus on R. With the decomposition (3.5), we have∣∣ξ2n+1R(s, ξ)
∣∣ ≤ ∣∣∣ξ2n+1I(ĝ, ĝ, f̂)(s, ξ)

∣∣∣+ 1

s

∣∣∣ξ2n+1N(ĝ, ĝ, f̂)(s, ξ)
∣∣∣ .

For the I term, using that by convexity of x 	→ x2n+1 on R+, we have

(3.8) |ξ|2n+1 � |ξ − σ|2n+1
+ |ξ − η|2n+1

+ |ξ − σ − η|2n+1
.

We obtain∣∣∣ξ2n+1I(ĝ, ĝ, f̂)(s, ξ)
∣∣∣ ≤ ∣∣∣I(ξ2n+1ĝ, ĝ, f̂)(s, ξ)

∣∣∣+ ∣∣∣I(ĝ, ξ2n+1ĝ, f̂)(s, ξ)
∣∣∣

+
∣∣∣I(ĝ, ĝ, ξ2n+1f̂)(s, ξ)

∣∣∣ .
Let’s deal for example with the third part, we have

‖I(ĝ, ĝ, ξ2n+1f̂)(s, ξ)‖L2
ξ
� ‖eis∂xxg(s)‖2L∞

x
‖∂2n+1

x f(s)‖L2
x

� s−1(‖ĝ(s)‖L∞
ξ

+ s−β‖ĝ(s)‖H1,0
ξ

)2‖ξ2n+1f̂(s)‖L2
ξ

� s−1+α ‖ŵf‖XT
‖ŵg‖2XT

(1 + ‖ŵf‖4XT
).

Doing the same for the two others parts, we conclude for the I part by

‖ξ2n+1I(ĝ, ĝ, f̂)(s)‖L2
ξ
� s−1+α ‖ŵf‖XT

‖ŵg‖2XT
(1 + ‖ŵg‖2XT

)(1 + ‖ŵf‖4XT
).

The N term is simpler, cause we remark that∣∣∣ξ2n+1N(ĝ, ĝ, f̂)(s, ξ)
∣∣∣ = ∣∣∣N(ξ2n+1ĝ, ĝ, f̂)(s, ξ)

∣∣∣ .
Thus we have that

‖s−1ξ2n+1N(ĝ, ĝ, f̂)(s)‖L2
ξ
� s−1‖f̂(s)‖L∞

ξ
‖ĝ(s)‖L∞

ξ
‖ξ2n+1ĝ(s)‖L2

ξ

� s−1+α ‖ŵf‖XT
‖ŵg‖2XT

.

Finally we conclude for R that

(3.9) ‖ξ2n+1R(s)‖L2
ξ
� s−1+α‖ŵg‖2XT

‖ŵf‖XT
(1 + ‖ŵg‖2XT

)(1 + ‖ŵf‖4XT
).

3.3. Conclusion of the proof. We have to compile our estimates with the
norms that defined the XT norm. We remind that

‖ŵf‖XT
:= ‖ŵf‖L∞

T L∞
ξ

+ ‖t−αŵf‖L∞
T H1,0

ξ
+ ‖t−αŵf‖L∞

T H0,2n+1
ξ

,

and

Φ1(ŵf , ŵg)(t, ξ) := ŵ1
f (ξ) +

∫ t

1

Bg(s, ξ)R(s, ξ)ds.

For the L∞ part, we use the Lemma 3.1, the equation (3.1) and the fact that we
have 3α− δ < 0,

‖Φ1(ŵf , ŵg)(t)‖L∞
ξ

≤ ‖ŵ1
f‖L∞

ξ
+

∫ t

1

‖R(s)‖L∞
ξ
ds

� ε+ ‖ŵf‖XT
‖ŵg‖2XT

(1 + ‖ŵg‖2XT
)(1 + ‖ŵf‖4XT

).



ASYMPTOTIC BEHAVIOR OF SCHRÖDINGER SYSTEMS ON R 65

For the H1,0 part, we use the Lemma 3.1, the equations (3.3), (3.4) and (3.7),

‖t−αΦ1(ŵf , ŵg)(t)‖H1,0
ξ

≤ ‖ŵ1
f‖H1,0

ξ

+ t−α

∫ t

1

(
‖R(s)‖H1,0

ξ
+ ‖R(s)‖L∞

ξ
‖∂ξBg(s)‖L2

ξ

)
ds

� ε+ ‖ŵf‖XT
‖ŵg‖2XT

(1 + ‖ŵf‖4XT
)(1 + ‖ŵg‖4XT

).

The H0,2n+1 part is easier, just using (3.9) we get

‖t−αΦ1(ŵf , ŵg)(t)‖H0,2n+1
ξ

� ε+ ‖ŵf‖XT
‖ŵg‖2XT

(1 + ‖ŵf‖4XT
)(1 + ‖ŵg‖2XT

).

Finally, we have, with a constant M > 0,

‖Φ1(ŵf , ŵg)‖XT
≤ ε+M ‖ŵf‖XT

‖ŵg‖2XT
(1 + ‖ŵf‖4XT

)(1 + ‖ŵg‖4XT
).

The other equation is obtained by the same way by symmetry of the roles of u and
v. �

4. The asymptotic behavior

We are now able to use the proposition in order to prove the Theorem 1.1.
First, this gives us a local existence, by a fixed point argument in a suitable space.
Moreover, by a continuity argument, we prove a global one. In the two last parts
of this section, we use our estimates to get the L∞ decay and the scattering.

4.1. Local existence and uniqueness of the solution. For the introduc-
tion of the function Φ, we need to take care of the notations while considering two
pairs of solutions. We consider the application

(4.1) Φ : (ŵf , ŵg) 	→ (Φ1(ŵf , ŵg),Φ2(ŵf , ŵg)) ,

with Φ1 and Φ2 defined in (2.6). The idea is to apply a fixed point argument to Φ
in

E := {(ŵf , ŵg) ∈ XT , ‖ŵf‖XT
< 2ε, ‖ŵg‖XT

< 2ε} ,
that we endow with the norm ‖(ŵf , ŵg)‖E = ‖ŵf‖XT

+ ‖ŵg‖XT
.

Using the Proposition 2.1, we have that{
‖Φ1(ŵf , ŵg)‖XT

≤ ε+M ‖ŵf‖XT
‖ŵg‖2XT

(1 + ‖ŵf‖4XT
)(1 + ‖ŵg‖4XT

),

‖Φ2(ŵf , ŵg)‖XT
≤ ε+M ‖ŵg‖XT

‖ŵf‖2XT
(1 + ‖ŵg‖4XT

)(1 + ‖ŵf‖4XT
).

For ε small enough,

(4.2) 8Mε3(1 + 16ε4)2 ≤ 1

2
ε.

In this case, E is invariant under the action of Φ. For this invariance, we could
have chosen just ε instead of 1

2ε in the RHS of (4.2). The result would have been
the same, but we will need a deeper accuracy for the global existence in the next
part. We now have to show that Φ is a contraction, therefore we consider two pairs
of solutions. Let (ŵf1 , ŵg1), (ŵf2 , ŵg2) ∈ E,

‖Φ(ŵf1 , ŵg1)− Φ(ŵf2 , ŵg2)‖E =‖Φ1(ŵf1 , ŵg1)− Φ1(ŵf2 , ŵg2)‖XT

+ ‖Φ2(ŵf1 , ŵg1)− Φ2(ŵf2 , ŵg2)‖XT
.
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We do the computations for Φ1, they are mutatis mutandis the same for Φ2. We
set ψ(t) := (Φ1(ŵf1 , ŵg1)− Φ1(ŵf2 , ŵg2)) (t), we have

ψ(t) =

∫ t

1

Bg1(s, ξ)R1(s, ξ)ds−
∫ t

1

Bg2(s, ξ)R2(s, ξ)ds

=

∫ t

1

Bg1(R1 −R2)(s, ξ)ds+

∫ t

1

R2(Bg1 −Bg2)(s, ξ)ds.

As we saw in the proof of the Proposition 2.1, the role of ‖f̂1(t)− f̂2(t)‖H1,0
ξ

will be

predominant, but we have to do some preliminary computations before. We first
focus on the coupling effect of Bg1 −Bg2 , which give us in a second time estimates

for f̂1− f̂2. In the third part of the proof, we will focus on the effect of the R1−R2

terms. To be as clear as possible, we split the proof by announcing the estimates
we are going to prove.

4.1.1. The Bg1 −Bg2 estimates. First of all, let us rewrite Bg1 −Bg2 .

For a, b ∈ R, eia − eib = 2i sin
(
a−b
2

)
ei(

a+b
2 ), so we get

(Bg1 −Bg2)(t, ξ) =2i sin

(∫ t

1

|ŵg1(s, ξ)|2 − |ŵg2(s, ξ)|2
2s

ds

)
× exp

(
i

∫ t

1

|ŵg1(s, ξ)|2 + |ŵg2(s, ξ)|2
2s

ds

)
.

Thus, we have the following relations:

•‖(Bg1 −Bg2)(t)‖L∞
ξ

� ln(t)ε‖ŵg1 − ŵg2‖XT
.

Actually, we have

‖(Bg1 −Bg2)(t)‖L∞
ξ

� ‖
∫ t

1

s−1(|ŵg1(s)|2 − |ŵg2(s)|2)ds‖L∞
ξ

�
∫ t

1

s−1‖ŵg1(s)− ŵg2(s)‖L∞
ξ
(‖ŵg1(s)‖L∞

ξ
+ ‖ŵg2(s)‖L∞

ξ
)ds.

•‖∂ξ(Bg1 −Bg2)(t)‖L2
ξ
� tαε(1 + ε2 ln(t))‖ŵg1 − ŵg2‖XT

.

For this relation, we need more computations due to the derivative. We have

‖∂ξ(Bg1 −Bg2)(t)‖L2
ξ
≤ ‖∂ξ sin

(∫ t

1

|ŵg1(s)|2 − |ŵg2(s)|2
2s

ds

)
‖L2

ξ

+ ‖ sin
(∫ t

1

|ŵg1(s)|2 − |ŵg2(s)|2
2s

ds

)
∂ξe

i

⎛
⎝
∫ t

1

|ŵg1(s)|2 + |ŵg2(s)|2
2s

ds

⎞
⎠
‖L2

ξ
.
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We consider separately the two parts of the sum. For the first part,

I1 = ‖∂ξ sin
(∫ t

1

|ŵg1(s)|2 − |ŵg2(s)|2
2s

ds

)
‖L2

ξ

� ‖
∫ t

1

s−1∂ξ(|ŵg1(s)|2 − |ŵg2(s)|2)ds‖L2
ξ

�
∫ t

1

s−1
(
(‖∂ξŵg1(s)‖L2

ξ
+ ‖∂ξŵg2(s)‖L2

ξ
)‖ŵg1(s)− ŵg2(s)‖L∞

ξ

+ (‖ŵg1(s)‖L∞
ξ

+ ‖ŵg2(s)‖L∞
ξ
)‖∂ξ(ŵg1(s)− ŵg2(s))‖L2

ξ

)
ds

� tαε‖ŵg1 − ŵg2‖XT
.

For the second one, using the same relation for the coupled part,

I2 = ‖ sin
(∫ t

1

|ŵg1(s)|2 − |ŵg2(s)|2
2s

ds

)
∂ξe

i

⎛
⎝
∫ t

1

|ŵg1(s)|2 + |ŵg2(s)|2
2s

ds

⎞
⎠
‖L2

ξ

�
∫ t

1

s−1‖ŵg1(s)− ŵg2(s)‖L∞
ξ
(‖ŵg1(s)‖L∞

ξ
+ ‖ŵg2(s)‖L∞

ξ
)ds

×
∫ t

1

s−1(‖∂ξŵg1(s)‖L2
ξ
‖ŵg1(s)‖L∞

ξ
+ ‖∂ξŵg2(s)‖L2

ξ
‖ŵg2(s)‖L∞

ξ
)ds

� tα ln(t)ε3‖ŵg1 − ŵg2‖XT
.

4.1.2. The f̂1 − f̂2 estimates. Using the previous estimates, we now deal with

the coupling effect of f̂1 − f̂2. First, we see that

f̂1 − f̂2 = ŵf1Bg1 − ŵf2Bg2 = ŵf1(Bg1 −Bg2) +Bg2(ŵf1 − ŵf2).

Thanks to this decomposition, we deal with the L∞, H1,0 and H0,2n+1 norms

of f̂1 − f̂2.

•‖(f̂1 − f̂2)(t)‖L∞
ξ

� ln(t)ε2‖ŵg1 − ŵg2‖XT
+ ‖ŵf1 − ŵf2‖XT

.

We prove this inequality by using the estimation of ‖(Bg1 −Bg2)(t)‖L∞
ξ
. We have

‖(f̂1 − f̂2)(t)‖L∞
ξ

� ‖ŵf1(t)‖L∞
ξ
‖(Bg1 −Bg2)(t)‖L∞

ξ
+ ‖(ŵf1 − ŵf2)(t)‖L∞

ξ
.

•‖(f̂1 − f̂2)(t)‖L2
ξ
� tα ln(t)ε2‖ŵg1 − ŵg2‖XT

+ tα‖ŵf1 − ŵf2‖XT
.

Indeed, by the exact same way but with the L2 control of the ŵ terms,

‖(f̂1 − f̂2)(t)‖L2
ξ
� ‖ŵf1(t)‖L2

ξ
‖(Bg1 −Bg2)(t)‖L∞

ξ
+ ‖(ŵf1 − ŵf2)(t)‖L2

ξ
.

•‖ξ2n+1(f̂1 − f̂2)(t)‖L2
ξ
� tα ln(t)ε2‖ŵg1 − ŵg2‖XT

+ tα‖ŵf1 − ŵf2‖XT
.

This is the same estimation and exactly the same computation because

‖ξ2n+1(f̂1 − f̂2)(t)‖L2
ξ
� ‖ξ2n+1ŵf1(t)‖L2

ξ
‖(Bg1 −Bg2)(t)‖L∞

ξ

+ ‖ξ2n+1(ŵf1 − ŵf2)(t)‖L2
ξ
.

•‖∂ξ(f̂1 − f̂2)(t)‖L2
ξ
� tα ln(t)ε2‖ŵg1 − ŵg2‖XT

+ tα‖ŵf1 − ŵf2‖XT
.
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For this one we have

‖∂ξ(f̂1 − f̂2)(t)‖L2
ξ
� ‖∂ξŵf1(t)‖L2

ξ
‖(Bg1 −Bg2)(t)‖L∞

ξ

+ ‖ŵf1(t)‖L∞
ξ
‖∂ξ(Bg1 −Bg2)(t)‖L2

ξ

+ ‖∂ξBg2(t)‖L2
ξ
‖(ŵf1 − ŵf2)(t)‖L∞

ξ
+ ‖∂ξ(ŵf1 − ŵf2)(t)‖L2

ξ
.

Here, we can use the previous relations of this part, the equation (3.4), and the
fact that ε is small to obtain the desired estimate. Computing these estimates, we
finally have

(4.3)

‖(f̂1 − f̂2)(t)‖L∞
ξ

� ln(t)ε2‖ŵg1 − ŵg2‖XT
+ ‖ŵf1 − ŵf2‖XT

,

‖(f̂1 − f̂2)(t)‖H1,0
ξ

� tα ln(t)ε2‖ŵg1 − ŵg2‖XT
+ tα‖ŵf1 − ŵf2‖XT

,

‖(f̂1 − f̂2)(t)‖H0,2n+1
ξ

� tα ln(t)ε2‖ŵg1 − ŵg2‖XT
+ tα‖ŵf1 − ŵf2‖XT

.

4.1.3. The R1 −R2 estimates.

•‖(R1 −R2)(t)‖L∞
ξ

� t−1−δ+3αε2(ln(t)ε2 + 1)(‖ŵg1 − ŵg2‖XT
+ ‖ŵf1 − ŵf2‖XT

).

Indeed, by definition of R we have

|(R1 −R2)| = |R(ĝ1, ĝ1, f̂1)−R(ĝ2, ĝ2, f̂2)|
≤ |R(ĝ1 − ĝ2, ĝ1, f̂1)|+ |R(ĝ2, ĝ1 − ĝ2, f̂1)|+ |R(ĝ2, ĝ2, f̂1 − f̂2)|.

Therefore, using the Lemma 3.1 and the equation (4.3), we obtain the announced
result.

•‖(R1 −R2)(t)‖L2
ξ
� t−1+αε2(ln(t)ε2 + 1)(‖ŵf1 − ŵf2‖XT

+ ‖ŵg1 − ŵg2‖XT
).

In order to get this estimate, we use the relation (3.5),

‖(R1 −R2)(t)‖L2
ξ
≤ ‖(I(ĝ1, ĝ1, f̂1)− I(ĝ2, ĝ2, f̂2))(t)‖L2

ξ

+ t−1‖(N(ĝ1, ĝ1, f̂1)−N(ĝ2, ĝ2, f̂2))(t)‖L2
ξ
.

Once again, by linearity, with the notations I1, I2, N1, N2 induced by the notations
R1 and R2, we remark that

I1 − I2 = I(ĝ1 − ĝ2, ĝ1, f̂1) + I(ĝ2, ĝ1 − ĝ2, f̂1) + I(ĝ2, ĝ2, f̂1 − f̂2),

N1 −N2 = N(ĝ1 − ĝ2, ĝ1, f̂1) +N(ĝ2, ĝ1 − ĝ2, f̂1) +N(ĝ2, ĝ2, f̂1 − f̂2).

Here, we just show how to control one term in I, and one in N , all the others
computations are the same. For I we use the Lemma 2.3 and the equations (3.1)
and (4.3),

‖I(ĝ1 − ĝ2, ĝ1, f̂1)(t)‖L2
ξ
� ‖eit∂xxg1(t)‖L∞

x
‖eit∂xxf1(t)‖L∞

x
‖(g1 − g2)(t)‖L2

x

� t−1(‖ĝ1‖L∞
ξ

+ t−β‖ĝ1‖H1,0
ξ

)(‖f̂1‖L∞
ξ

+ t−β‖f̂1‖H1,0
ξ

)

× ‖ĝ1 − ĝ2‖L2
ξ

� t−1+αε2
(
ln(t)ε2‖ŵf1 − ŵf2‖XT

+ ‖ŵg1 − ŵg2‖XT

)
.
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For the N term, by equation (4.3) we have

‖N(ĝ1 − ĝ2, ĝ1, f̂1)(t)‖L2
ξ
= ‖(ĝ1 − ĝ2)ĝ1f̂1(t)‖L2

ξ

� ‖f̂1‖L∞
ξ
‖ĝ1‖L∞

ξ
‖(ĝ1 − ĝ2)‖L2

ξ

� tαε2
(
ln(t)ε2‖ŵf1 − ŵf2‖XT

+ ‖ŵg1 − ŵg2‖XT

)
.

Combining these results, we have the desired one. For the H1,0 part, we want to
show that

•‖∂ξ(R1 −R2)(t)‖L2
ξ
� t−1+αε2(ln(t)ε2 + 1)(‖ŵf1 − ŵf2‖XT

+ ‖ŵg1 − ŵg2‖XT
).

To prove this one, we write ∂ξ(R1 − R2) by using the equation (3.6), we obtain
twelve terms, six terms in I, six in N . We need to couple these terms, using the
same method as previously. For example, for I we have

I(∂ξ ĝ1, ĝ1, f̂1)− I(∂ξ ĝ2, ĝ2, f̂2) =I(∂ξ(ĝ1 − ĝ2), ĝ1, f̂1) + I(∂ξ ĝ2, ĝ1 − ĝ2, f̂1)

+ I(∂ξ ĝ2, ĝ2, f̂1 − f̂2).

Thus, we obtain eighteen terms with a coupled part in each of them. Following the
way of the estimation of ‖(R1−R2)(t)‖L2

ξ
, and using the equations (3.1) and (4.3),

we finally obtain the result. The last estimate we deal with is

•‖ξ2n+1(R1 −R2)(t)‖L2
ξ
� t−1+αε2(ln(t)ε2 + 1)(‖ŵg1 − ŵg2‖XT

+ ‖ŵf1 − ŵf2‖XT
).

This is the same estimation as ‖(R1 −R2)(t)‖L2
ξ
, and the computations are almost

the same too. As in the previous estimate, we use the following decomposition,

|ξ2n+1(R1 −R2)| ≤ |ξ2n+1R(ĝ1 − ĝ2, ĝ1, f̂1)|+ |ξ2n+1R(ĝ2, ĝ1 − ĝ2, f̂1)|
+ |ξ2n+1R(ĝ2, ĝ2, f̂1 − f̂2)|.

Let’s just focus on the first term, using the equation (3.5), we have that

|ξ2n+1R(ĝ1 − ĝ2, ĝ1, f̂1)| ≤ |ξ2n+1I(ĝ1 − ĝ2, ĝ1, f̂1)|
+ t−1|ξ2n+1N(ĝ1 − ĝ2, ĝ1, f̂1)|.

For the I term, we use a second time the equation (3.8) to obtain

|ξ2n+1I(ĝ1 − ĝ2, ĝ1, f̂1)| ≤ |I(ξ2n+1(ĝ1 − ĝ2), ĝ1, f̂1)|+ |I(ĝ1 − ĝ2, ξ
2n+1ĝ1, f̂1)|

+ |I(ĝ1 − ĝ2, ĝ1, ξ
2n+1f̂1)|.

Now we just do the same computations that previously. We take the L2
x part of

the norm for the coupling part, and the others ones in L∞
x . For N , we simply have

|ξ2n+1N(ĝ1 − ĝ2, ĝ1, f̂1)| = |N(ĝ1 − ĝ2, ξ
2n+1ĝ1, f̂1)|.

As we have the relation |ξ2n+1ĝ1| = |ξ2n+1ŵg1 |, we have the same bound once again.
4.1.4. Conclusion. Recall that ψ(t) := (Φ1(ŵf1 , ŵg1)− Φ1(ŵf2 , ŵg2)) (t), and

ψ(t) =

∫ t

1

Bg1(R1 −R2)(s, ξ)ds+

∫ t

1

R2(Bg1 −Bg2)(s, ξ)ds.
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Thus, we have

‖ψ(t)‖L∞
ξ

≤
∫ t

1

‖(R1 −R2)(s)‖L∞
ξ
ds+

∫ t

1

‖R2(s)‖L∞
ξ
‖(Bg1 −Bg2)(s)‖L∞

ξ
ds,

‖ψ(t)‖L2
ξ
≤

∫ t

1

‖(R1 −R2)(s)‖L2
ξ
ds+

∫ t

1

‖R2(s)‖L2
ξ
‖(Bg1 −Bg2)(s)‖L∞

ξ
ds,

‖ξ2n+1ψ(t)‖L2
ξ
≤

∫ t

1

‖ξ2n+1(R1 −R2)(s)‖L2
ξ
ds

+

∫ t

1

‖ξ2n+1R2(s)‖L2
ξ
‖(Bg1 −Bg2)(s)‖L∞

ξ
ds,

‖∂ξψ(t)‖L2
ξ
≤

∫ t

1

‖∂ξBg1(s)‖L2
ξ
‖(R1 −R2)(s)‖L∞

ξ
ds

+

∫ t

1

‖∂ξ(R1 −R2)(s)‖L2
ξ
ds

+

∫ t

1

‖R2(s)‖L∞
ξ
‖∂ξ(Bg1 −Bg2)(s)‖L2

ξ
ds

+

∫ t

1

‖∂ξR2(s)‖L2
ξ
‖(Bg1 −Bg2)(s)‖L∞

ξ
ds.

Finally, we find, for a constant M > 0,

‖Φ1(ŵf1 , ŵg1)−Φ1(ŵf2 , ŵg2)‖XT
≤ M(ε2+ln(t)ε4)(‖ŵf1−ŵf2‖XT

+‖ŵg1−ŵg2‖XT
).

We chose ε small enough. Thus, for T sufficiently close to 1, M(ε2 + ε4 ln(T )) ≤ 1
4 ,

and wet get

(4.4) ‖Φ(ŵf1 , ŵg1)− Φ(ŵf2 , ŵg2)‖E ≤ 1

2
‖(ŵf1 , ŵg1)− (ŵf2 , ŵg2)‖E .

Finally, for such a T , Φ is a contraction. We can apply the fixed point theorem
to get the local existence of the solutions. Let’s see now of to pass from the local
existence to the global one.

4.2. Global existence of the solution. The key argument for the transition
from the local existence to the global one is the continuity. First, we show that
t 	→ ‖ŵf (t)‖L∞

ξ
+ ‖t−αŵf (t)‖H1,0

ξ
+ ‖t−αŵf (t)‖H0,2n+1

ξ
is continuous. Then we will

conclude by a connectivity argument. Let’s remark that, for 1 < t1 < t2 < T , with
the T defined in the previous section,

ŵf (t2)− ŵf (t1) =

∫ t2

t1

Bg(s, ξ)R(ĝ, ĝ, f̂)(s, ξ)ds.

By the Lemma 3.1 and the estimate (3.1), we have that

(4.5)

∣∣∣‖ŵf (t2)‖L∞
ξ

− ‖ŵf (t1)‖L∞
ξ

∣∣∣ ≤ ‖ŵf (t2)− ŵf (t1)‖L∞
ξ

≤
∫ t2

t1

‖R(ĝ, ĝ, f̂)(s)‖L∞
ξ
ds

�
∣∣t23α−δ − t1

3α−δ
∣∣ −→
t1→t2

0.

For the L2 part, we remark that∣∣t−α
2 ŵf (t2)− t−α

1 ŵf (t1)
∣∣ ≤ ∣∣t−α

2 − t−α
1

∣∣ |ŵf (t2)|+ t−α
1 |ŵf (t2)− ŵf (t1)| .
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With the Proposition 2.1, we control the ‖ŵf (t2)‖H1,0
ξ

and ‖ŵf (t2)‖H0,2n+1
ξ

terms.

Therefore, using this time the Lemma 3.1 and the estimates (3.1), (3.3), (3.4), (3.7)
and (3.9), we have

‖ŵf (t2)− ŵf (t1)‖H1,0
ξ

≤
∫ t2

t1

(‖R(ĝ, ĝ, f̂)(s)‖H1,0
ξ

+ ‖R(ĝ, ĝ, f̂)(s)‖L∞
ξ
‖∂ξB(s)‖L2

ξ
)ds

� |t2α − t1
α|+ ∣∣t24α−δ − t1

4α−δ
∣∣ −→
t1→t2

0.

‖ŵf (t2)− ŵf (t1)‖H0,2n+1
ξ

≤
∫ t2

t1

‖R(ĝ, ĝ, f̂)(s)‖H0,2n+1
ξ

ds

� |t2α − t1
α| −→

t1→t2
0.

Thus, we obtain by the previous computation the continuity of the application

t 	→ ‖ŵf (t)‖L∞
ξ

+ ‖t−αŵf (t)‖H1,0
ξ

+ ‖t−αŵf (t)‖H0,2n+1
ξ

.

Finally, taking the supremum of this application on [1, T ], we have the continuity
of the application T 	→ ‖ŵf‖XT

. Thanks to this continuity, we define the space

A := {T ≥ 1, ‖ŵf‖XT
≤ 2ε} ⊂ [1,+∞).

Now, we show that A = [1,+∞). Let’s remark that,

• A is non empty.
Indeed, by the hypothesis of the Theorem 1.1 and the embedding ofH1(R)
in L∞(R), 1 ∈ A.

• A is closed.
This is due to the large inequality in the definition of A and the continuity
of the application T 	→ ‖ŵf‖XT

.
• A is open.
Here we use the Proposition 2.1, if T ∈ A, then we have that :

‖ŵf‖XT
≤ ε+M ‖ŵf‖XT

‖ŵg‖2XT
(1 + ‖ŵf‖4XT

)(1 + ‖ŵg‖4XT
)

≤ ε+ 8Mε3(1 + 16ε4)2.

Therefore, by the choice of ε in (4.2), ‖ŵf‖XT
≤ 3

2ε, we can go further
for T .

Finally, A is non empty, open, closed and included in the interval [1,+∞), there-
fore A = [1,+∞) by connectivity. Thus, we have the global existence under the
assumptions of the Proposition 2.1. The last thing to check is that these assump-
tions are satisfied under the ones of the Theorem 1.1. Fix ε > 0 and suppose

that ‖u1‖H1,0
x

+ ‖u1‖H0,2n+1
x

≤ ε
2 . We want to control ŵ1

f (ξ) = f̂(1, ξ) = eiξ
2

û(1, ξ),
we have

‖ŵ1
f (ξ)‖H1,0

ξ
≤ ‖û(1)‖L2

ξ
+ ‖ξû(1)‖L2

ξ
+ ‖∂ξû(1)‖L2

ξ
≤ ε

2
,

‖ŵ1
f (ξ)‖H0,2n+1

ξ
= ‖û(1)‖H0,2n+1

ξ
≤ ε

2
.

Therefore,

‖ŵ1
f (ξ)‖H1,0

ξ
+ ‖ŵ1

f (ξ)‖H0,2n+1
ξ

≤ ε.
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The hypothesis of the Proposition 2.1 are checked, and we have the global solution
for the Theorem 1.1.

4.3. The decay estimate. This estimate comes from the Lemma 2.3. Indeed,
let (u, v) be the pair of solutions of our problem (1.1). Then, for all β ∈ (0, 1

4 ), we
have that

‖u(t)‖L∞
x

= ‖eit∂xxf(t)‖L∞
x

� 1

t
1
2

‖f̂(t)‖L∞
ξ

+
1

t
1
2+β

‖f̂(t)‖H1,0
ξ

� 1

t
1
2

‖ŵf‖L∞
ξ

+
1

t
1
2+β

‖f̂(t)‖H1,0
ξ

.

By the definition of the XT norm and the bound (3.1), we get

‖u(t)‖L∞
x

� t−
1
2 (1 + tα−β) ‖ŵf‖XT

(1 + ‖ŵg‖2XT
).

Remembering that α < β, we finally use the control of the XT norm from the
previous subsection to get the desired decay of the Theorem 1.1.

4.4. The long-range scattering. All the ingredients we need to exhibit the
long-range scattering are already in the equation (4.5),

‖ŵf (t2)− ŵf (t1)‖L∞
ξ

�
∣∣t23α−δ − t1

3α−δ
∣∣ .

As 3α− δ < 0, the Cauchy criterion for the existence of a limit of a function allows
us to construct the application W∞

f ∈ L∞
ξ (R) by W∞

f : ξ 	→ lim
t→+∞ ŵf (t, ξ) in

the L∞ sense. Let t1 → +∞ in the previous equation, we obtain

(4.6) ‖ŵf (t)−W∞
f ‖L∞

ξ
� t3α−δ.

We still have to deal with the H0,n case. For that purpose, we’ll use the following
embedding

(4.7) ‖f‖L1
ξ
� ‖f‖ 1

2

L2
ξ
‖xf‖ 1

2

L2
ξ
.

Let’s prove this inequality, using Cauchy-Schwarz. Let M > 0,

‖f‖L1
x
=

∫
|x|<M

1 |f |+
∫
|x|>M

x−1x |f |

� M
1
2 ‖f‖L2

x
+M− 1

2 ‖xf‖L2
x
.

Choosing M = ‖xf‖ 1
2

L2
x
‖f‖− 1

2

L2
x
, we get the inequality (4.7). Thereby, we have that

(4.8)

‖ξnR‖L2
ξ

� ‖R 1
2 ‖L∞

ξ
‖ξnR 1

2 ‖L2
ξ

� ‖R‖ 1
2

L∞
ξ
‖ξ2nR‖ 1

2

L1
ξ

� ‖R‖ 1
2

L∞
ξ
‖R‖ 1

2

H0,2n+1
ξ

,

where we used (4.7) in the last inequality. Finally we have

‖ŵf (t2)− ŵf (t1)‖H0,n
ξ

�
∣∣∣t2 4α−δ

2 − t1
4α−δ

2

∣∣∣ .
As 4α − δ < 0 (see Remark 3.2), the Cauchy criterion for the existence of a limit

of a function allows us to construct the application Wn
f ∈ H0,n

ξ (R) by taking Wn
f :
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ξ 	→ lim
t→+∞ ŵf (t, ξ) in the H0,n sense. Let t1 → +∞ in the previous equation, we

obtain

‖ŵf (t)−Wn
f ‖H0,n

ξ
� t

4α−δ
2 .

These inequalities are verified for all α small enough and all 0 < δ < 1
4 . The

idea is to take the limits for α → 0 and δ → 1
4 . Let ν := 1

4 − δ + 4α ∈ (0, 1
4 ),

we obtain the desired estimates of long-range scattering. The last thing to check
is that W∞

f = Wn
f . This is a consequence of the Riesz-Fischer Theorem for the

completeness of Lp. Indeed, it’s proved in this theorem that if ŵf (tn) converges
to W in Lp, then there exists a subsequence ŵf (tϕ(n)) that converges to W almost
everywhere. Taking p = 2 and p = ∞, we show that W∞

f = Wn
f almost everywhere.

Thus we can define Wf := W∞
f = Wn

f ∈ L∞
ξ ∩H0,n.

4.5. The asymptotic formula. From the previous part, we know that it
exists an unique W∞

f ∈ L∞
ξ (R) such that

‖f̂(t, .) exp
(

i

2
√
2π

∫ t

1

1

s
|v̂(s, .)|2 ds

)
−Wf‖L∞

ξ
� t−

1
4+ν .

By the equation (2.8) we have

u(t, x) = eit∂xxf(t, x) = (2it)−
1
2 ei

x2

4t f̂(
x

2t
) +Af (t, x),

where, using the bound (3.1),

‖Af (t)‖L∞
x

� t−
1
2−δ‖f̂‖H1,0

ξ
� t−

1
2+α−δ � t−

3
4+ν .

Thus, we obtain the following asymptotic expansion for u, for a large time t:

(4.9) u(t, x) =
1

(2it)
1
2

exp(i
x2

4t
)Wf (

x

2t
) exp(

−i

2
√
2π

∫ t

1

1

τ
|v̂(τ, x

2t
)|2dτ)+O(t−

3
4+ν).

This is an implicit formula. Indeed we have a v term in the RHS of the equality.
To deal with this term, we follow the method of Hayashi and Naumkin in [7]. Let
us define

(4.10) γg(t) :=

∫ t

1

(|ŵg(τ)|2 − |ŵg(t)|2)dτ
τ
.

Thus, for 1 ≤ s ≤ t, we have

γg(t)− γg(s) =

∫ t

s

(|ŵg(τ)|2 − |ŵg(t)|2)dτ
τ

+ (|ŵg(s)|2 − |ŵg(t)|2) ln(s).

We use the bounds of the Lemma 3.1 and the equation (3.1) to get∣∣|ŵg(τ)|2 − |ŵg(t)|2
∣∣ � ||ŵg(τ)| − |ŵg(t)|| �

∣∣τ3α−δ − t3α−δ
∣∣ .

By using this bound in the previous equation we obtain

|γg(t)− γg(s)| �
∣∣t3α−δ − s3α−δ

∣∣+ ∣∣t3α−δ ln(t)− s3α−δ ln(s)
∣∣ .

Therefore, by the Cauchy criterion, it exists an unique Γg ∈ L∞
ξ (R) defined by

Γg : ξ 	→ lim
t→+∞ γg(t, ξ) in L∞

ξ . Let t → +∞ in the previous equation. We use that

ln(s) � sα to obtain

(4.11) |γg(s)− Γg| � s4α−δ.
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Back to the definition of γg in (4.10), we have∫ t

1

|ŵg(τ)|2 dτ
τ

= γg(t) + |ŵg(t)|2 ln(t)
= |Wg|2 ln(t) + Γg

+(γg(t)− Γg) +
(|ŵg(t)|2 − |Wg|2

)
ln(t).

Thus, using the equations (4.6) and (4.11), we obtain

‖
∫ t

1

|ŵg(τ)|2 dτ
τ

− |Wg|2 ln(t)− Γg‖L∞
ξ

� t4α−δ � tν−
1
4 .

We combine this equation with the equation (4.9) to get the formula for u for large
time t.
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