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Stability of solutions to nonlinear wave equations with
switching time delay
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Abstract. In this paper we study well–posedness and asymptotic stability
for a class of nonlinear second-order evolution equations with intermittent
delay damping. More precisely, a delay feedback and an undelayed one act
alternately in time. We show that, under suitable conditions on the feed-
back operators, asymptotic stability results are available. Concrete examples
included in our setting are illustrated. We give also stability results for an
abstract model with alternate positive–negative damping, without delay.
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1. Introduction

Let H be a real Hilbert space with scalar product 〈·, ·〉H and norm ‖ · ‖, and let
A : D(A) → H be a linear self–adjoint coercive operator on H with dense domain.
Let V := D(A

1
2 ), the domain of A

1
2 with norm ‖v‖V = ‖A 1

2 v‖H , be such that

V ↪→ H ≡ H ′ ↪→ V ′,

with dense embeddings. Then, there exists λ1 > 0 such that

(1.1) λ1‖u‖2
H ≤ ‖u‖2

V , ∀ u ∈ V.
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32 G. FRAGNELLI AND C. PIGNOTTI

Moreover, let Ui, i = 1, 2, be real Hilbert spaces with norm and inner product
denoted respectively by ‖ · ‖Ui and 〈·, ·〉Ui and let Bi(t) ∈ L(Ui, H), i = 1, 2, be
time–dependent operators satisfying

B∗
1(t)B∗

2(t) = 0, ∀ t > 0.

Let us consider the problem

utt(t) + Au(t) + B1(t)B∗
1(t)ut(t) + B2(t)B∗

2(t)ut(t − τ) = f(u), t > 0,(1.2)
u(0) = u0 ∈ V and ut(0) = u1 ∈ H,(1.3)

where the constant τ > 0 is the time delay.
The example we have in mind is, for p ≥ 0,

utt(x, t) − Δu(x, t) + b1(t)ut(x, t) + b2(t)ut(x, t − τ) = −|u|pu, Ω × (0, +∞),(1.4)
u(x, t) = 0 on ∂Ω × (0, +∞),(1.5)
u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,(1.6)

with initial data (u0, u1) ∈ H1
0 (Ω) × L2(Ω), where Ω is a bounded and smooth

domain of IRN and b1, b2 in L∞(0, +∞) are such that

b1(t)b2(t) = 0, ∀ t > 0.

In this case H = Ui = L2(Ω), B∗
i (ϕ) =

√
biϕ for all ϕ ∈ H and i = 1, 2,

V = H1
0 (Ω) and λ1 in (1.1) is the first eigenvalue of −Δ on H1

0 (Ω), being (1.1) the
usual Poincaré’s inequality.

Time delay is often present in applications and practical problems and it is by
now well–known that even an arbitrarily small delay in the feedback may destabilize
a system wich is uniformly exponentially stable in absence of delay. See, e.g.,
[6, 7, 21, 27] where examples of the destabilization effect due to time delay are
given.

The idea is then to use a stabilizing feedback in order to contrast the instability
due to the presence of a delay term. In [21, 27] a standard damping and a delayed
one act simultaneously and the stability of the systems is guaranteed if the coeffi-
cient of the undelayed damping is bigger than the one of the delay feedback. Then,
in [22, 23], the authors consider the case of delayed–undelayed feedback acting in
alternate time intervals and give sufficient conditions on the feedback operators in
order to have stability.

A similar problem has been considered in [3] for the one dimensional wave
equation but with a completely different strategy. Indeed, in [3] stability results
are obtained, only for particular values of the time delays related to the length of
the domain (cfr. [12]), by using the D’Alembert formula.

Here we extend the results of [22, 23] to nonlinear models but also we sig-
nificantly improve some results there proved. Indeed, we are able to remove an
assumption (see (2.14) below) on the feedback bounds obtaining more general re-
sults also in the linear case.

By using suitable observability inequalities for the model with only the un-
delayed feedback and through the definition of a suitable energy (see (2.13)), we
obtain sufficient conditions ensuring asymptotic stability.

Some concrete examples falling in our abstract setting are also illustrated.
With the same approach we also consider nonlinear second order evolution

equations without delay but with positive–negative dampings acting alternately.



STABILITY OF SOLUTIONS TO NONLINEAR WAVE EQUATIONS 33

This kind of problem was first considered in [13] in the linear case and then extended
to nonlinear models in [10]. In both papers only the case of distributed damping was
considered. Here, we meaningfully generalize these results by considering the case
of local damping. More precisely, in concrete examples, the positive (stabilizing)
damping and the negative (destabilizing) one may be localized in whatever subsets
of the domain. The only geometric requirement is, of course, that the positive
damping has to be localized in a region satisfying a control geometric property (see
[4]).

The interest for models with intermittent delayed–undelayed damping or pos-
itive –negative dampings is motivated by various applications. For example, the
presence of positive–negative damping can be found in aerodynamics: nose wheel
shimmy of an airplane is the consequence of a negative damping, which is con-
trolled by a suitable hydraulic shimmy damper which induces a positive damping
([26]). Another example of sign–changing damping comes from Quantum Field
Theory and Landau instability (see [14]) and from mesodynamics with the laser
driven pendulum (see[8]). Actually, negative damping may appear in every–day–
life, for example Gunn diodes, used as source of microwave power, and suspension
bridges ([15], [20], [18], [19]), which may experience negative damping in a cat-
astrophic way, like Takoma Bridge. Observe also that the recent results given in
[11] show that dampings with pulsating coefficients are more effective, with respect
to the ones with constant coefficients, in order to stabilize second order evolution
equations. This is a further motivation for our study.

The paper is organized as follows. In section 2 we introduce our abstract setting
and give a well–posedness result. In section 3 we prove the asymptotic stability
results. We consider first distributed dampings, then the localized case and finally,
for the linear model, we give the results under more explicit conditions. Finally, in
section 4 we consider the model without delay and positive–negative dampings.

2. The abstract setting

In order to deal with the well-posedness of (1.2) – (1.3), first we consider the
abstract problem

utt(t) + Au(t) + B(t)ut(t) = f(u)
and its associated Cauchy problem

utt(t) + Au(t) + B(t)ut(t) = f(u), t > 0,(2.1)
u(0) = u0 ∈ V and ut(0) = u1 ∈ H.(2.2)

Here H and V are as before and B = B1B
∗
1 : V → V ′. We recall the next definition:

Definition 2.1. A function u is a weak solution of (2.1) – (2.2) if for any
T > 0 we have

u ∈ L2(0, T ; V ) ∩ H1(0, T ; H) ∩ H2(0, T ; V ′)

with B(t)ut(t) ∈ H for any t, 〈But, ut〉H ∈ L2(0, T ) and

Au ∈ L2(0, T ; V ′), But ∈ L2(0, T ; V ′), f(u) ∈ L2(0, T ; H).

Moreover, u is such that u(0) = u0, ut(0) = u1 and

utt(t) + Au(t) + B(t)ut(t) = f(u) in L2(0, T ; V ′).
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Now, rewrite (2.1) – (2.2) as

Ut + LU + C(U) = 0,(2.3)
U(0) = U0,(2.4)

where U = (u, ut), L =
(

0 −I
A B

)
, C(U) :=

(
0

−f(u)

)
, and U0 = (u0, u1).

On the nonlinear term f we assume

(2.5)
f is locally Lipschitz continuous, i.e.

∀ K > 0 ∃ L(K) such that ‖f(u) − f(v)‖H ≤ L(K)‖u − v‖V ,

provided ‖u‖V , ‖v‖V ≤ K;

(2.6) sf(s) ≤ 0, ∀ s ∈ IR,

which implies

F (s) :=
∫ s

0

f(r)dr ≤ 0, ∀ s ∈ IR

or

(2.7) sf(s) − F (s) ≤ 0, ∀ s ∈ IR .

As prototype, we can consider the function f(u) = −|u|pu, p ≥ 0. Clearly f
is locally Lipschitz continuous. Moreover, we remark that the sign assumptions on
f is quite reasonable and hard to to relax. Indeed, Levin, Park and Serrin in [16]
and [17] proved that the solutions of utt − Δu + a(x, t)ut = |u|pu in Ω with p > 0
and a(x, t) ≥ 0 can blow up in finite time.

Observe that, setting H := V × H, (2.5) implies that C : H → H is locally
Lipschitz continuous. Hence, defining

D(L) := {(u, v) ∈ V × V : Au + Bv ∈ H},
we can apply [5, Theorem 7.2], obtaining the following existence result:

Theorem 2.2. Suppose that L is a maximal monotone mapping, L0 = 0 and
U0 ∈ D(L). Then there exists TM such that problem (2.3) – (2.4) has a unique
strong solution U on the interval [0, TM ), i.e. U ∈ W 1,∞(0, TM ;H). Furthermore,
if we assume only U0 ∈ H we obtain a unique weak solution U ∈ C([0, TM );H).
In both cases we have

lim
t→TM

‖u(t)‖V = ∞,

provided TM < ∞.

Observe that if A is a self-adjoint, positive and coercive operator with dense
domain in H and if B ∈ L(V, V ′) is such that 〈Bv, v〉H ≥ 0 for all v ∈ V , then L
is a maximal monotone operator with dense domain in H (see [1], [2]). Hence, as
a consequence of Theorem 2.2, we have:

Corollary 2.3. Assume that A is a self-adjoint, positive and coercive operator
with dense domain in H and B ∈ L(V, V ′) is such that 〈Bv, v〉H ≥ 0 for all
v ∈ V . If (u0, u1) ∈ D(L) then there exists TM such that problem (2.1) – (2.2)
has a unique strong solution u on the interval [0, TM ), i.e. u ∈ W 1,∞(0, TM ; V ).
Furthermore, if we assume only (u0, u1) ∈ H we obtain a unique weak solution
(u, ut) ∈ C([0, TM );H).
In both cases we have

lim
t→TM

‖u(t)‖V = ∞,
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provided TM < ∞.

Now, for any solution of problem (2.1) – (2.2), we consider the energy associated
to such a solution:

(2.8) ES(t) = ES(u; t) :=
1
2

(
‖u(t)‖2

V + ‖ut(t)‖2
H

)
−F(u),

where F is a real–valued functional such that F(0) = 0 and F ′(u)(v) = 〈f(u), v〉V ′,V
for all u, v ∈ V . Of course, in problem (1.4) – (1.6),

F(u) =
∫

Ω

F (u)dx,

where F (s) =
∫ s

0
f(t)dt, i.e. F (s) = −|s|p+2

p + 2
for the model case. The following

existence result holds

Theorem 2.4. Assume that A is a self–adjoint, positive and coercive operator
with dense domain in H, B ∈ L(V, V ′) is such that 〈Bv, v〉H ≥ 0 for all v ∈ V
and F ≤ 0. Moreover, assume that there exists a positive constant C such that
ES(T ) ≤ CES(0) for all T ∈ (0, TM ). If (u0, u1) ∈ D(L) then problem (2.1) – (2.2)
has a unique strong solution u on the interval [0,∞). Furthermore, if (u0, u1) ∈ H
we obtain a unique weak solution (u, ut) ∈ C([0,∞);H).

Proof. Thanks to Corollary 2.3, we know that there exists a unique solution in
[0, TM ). Assume, by contradiction, that TM < ∞. Then

(2.9) lim
t→TM

‖u(t)‖V = ∞.

By definition of ES(t) and since F ≤ 0, it follows that

‖u(t)‖2
V ≤ 2ES(T ) ≤ 2CES(0).

Hence (2.9) cannot happen.

Clearly, if (2.6) is satisfied, then F ≤ 0. Moreover, observe that in the linear
case, i.e. f ≡ 0, the existence and uniqueness of a solution in [0,∞) is guaranteed,
for example, by [5, Theorem 7.1].

Now, we assume that for all n ∈ IN, there exists tn > 0, with tn < tn+1, such
that

B2(t) = 0 ∀ t ∈ I2n = [t2n, t2n+1),
B1(t) = 0 ∀ t ∈ I2n+1 = [t2n+1, t2n+2),

with B1 ∈ C1([t2n, t2n+1];L(U1, H)) and B2 ∈ C1([t2n+1, t2n+2];L(U2, H)). We
further assume

(2.10) τ ≤ T2n, ∀ n ∈ IN,

where Tn denotes the length of the interval In, that is

(2.11) Tn = tn+1 − tn, n ∈ IN.

Let W be an Hilbert space such that H is continuously embedded into W, i.e.

(2.12) ‖u‖2
W ≤ C‖u‖2

H , ∀ u ∈ H with C > 0 independent of u.
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We assume that, for all n ∈ IN, there exist three positive constants m2n, M2n

and M2n+1, with m2n ≤ M2n, such that for all u ∈ H we have

i) m2n‖u‖2
W ≤ ‖B∗

1(t)u‖2
U1

≤ M2n‖u‖2
W for t ∈ I2n = [t2n, t2n+1), ∀ n ∈ IN;

ii)‖B∗
2(t)u‖2

U2
≤ M2n+1‖u‖2

W for t ∈ I2n+1 = [t2n+1, t2n+2), ∀ n ∈ IN.

Let us introduce the energy functional
(2.13)

E(t) = E(u; t) :=
1
2

(
‖u(t)‖2

V + ‖ut(t)‖2
H

)
+

1
2

∫ t

t−τ

‖B∗
2(s + τ)ut(s)‖2

U2
ds −F(u).

Note that (2.13) is the usual energy ES(·), for wave–type equation in presence
of the nonlinearity f, plus an integral term (see [22], cfr. also [21]) due to the
presence of the time delay.

Now, we give the following definition:

Definition 2.5. A solution of problem (1.2) − (1.3) is a function u such that
for any T > 0

u ∈ L2(0, T ; V ) ∩ H1(0, T ; H) ∩ H2(0, T ; V ′)
with ‖B∗

1ut‖U1 ∈ L2(0, T ), ‖B∗
2ut(· − τ)‖U2 ∈ L2(0, T ) and

Au ∈ L2(0, T ; V ′), B∗
1ut ∈ L2(0, T ; V ′), B∗

2ut(·−τ) ∈ L2(0, T ; V ′), f(u) ∈ L2(0, T ; H).

Moreover, u is such that u(0) = u0, ut(0) = u1 and

utt(t) + Au(t) + B1(t)B∗
1(t)ut(t) + B2(t)B∗

2(t)ut(t − τ) = f(u) in L2(0, T ; V ′).

Observe that if H = Ui = L2(Ω), i = 1, 2, and V = H1
0 (Ω), then the condition

f(u) = −|u|pu ∈ L2(0, T ; H) is clearly satisfied when p ≥ 0 if N = 1, 2 or 0 < p ≤
2

N−2 if N ≥ 3.

Remark 2.6. Our assumptions do not ensure that the energy E(·) is decreasing
on the time intervals I2n where only the standard frictional damping acts, i.e.
B2 ≡ 0 , as of course it happens for the standard energy ES(·). In order to have a
decay estimate for E(·) in the intervals I2n, we should assume, as in [23],

(2.14) inf
n∈IN

m2n

M2n+1
> 0,

and define E(·) as

E(t) = E(u; t) :=
1
2

(
‖u(t)‖2

V + ‖ut(t)‖2
H

)
+

ξ

2

∫ t

t−τ

‖B∗
2(s + τ)ut(s)‖2

U2
ds −F(u).

where ξ is a positive number satisfying

ξ < inf
n∈IN

m2n

M2n+1
.

However, here we do not need E decreasing in the time intervals without delay
I2n, since in these time intervals we will work with the standard energy ES(·).
Consequently, we do not assume (2.14) to obtain our stability results.

Proposition 2.7. Assume i), ii), (2.6) and (2.10). For any regular solution of
problem (1.2) − (1.3), the energy E(t) satisfies

(2.15) E′(t) ≤ M2n+1‖ut‖2
W ,

for t ∈ I2n+1, n ∈ IN.
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Proof: Differentiating the energy functional, we have

E′(t) = 〈ut, u〉V +〈utt, ut〉H+
1
2
‖B∗

2(t+τ)ut(t)‖2
U2
−1

2
‖B∗

2(t)ut(t−τ)‖2
U2
−〈f(u), ut〉H .

Then, from equation (1.2),

E′(t) = 〈ut, utt + Au − f(u)〉V,V ′ +
1
2
‖B∗

2(t + τ)ut(t)‖2
U2

− 1
2
‖B∗

2(t)ut(t − τ)‖2
U2

= −〈ut, B1(t)B∗
1(t)ut(t) + B2(t)B∗

2(t)ut(t − τ)〉V,V ′

+
1
2
‖B∗

2(t + τ)ut(t)‖2
U2

− 1
2
‖B∗

2(t)ut(t − τ)‖2
U2

.

Therefore we obtain
E′(t) = −‖B∗

1(t)ut(t)‖2
U1

− 〈B∗
2(t)ut, B

∗
2(t)ut(t − τ)〉U2

+
1
2
‖B∗

2(t + τ)ut(t)‖2
U2

− 1
2
‖B∗

2(t)ut(t − τ)‖2
U2

.

For t ∈ I2n+1, it is B1(t) = 0 and so the previous identity gives

E′(t) = −〈B∗
2(t)ut, B

∗
2(t)ut(t − τ)〉U2 +

1
2
‖B∗

2(t + τ)ut(t)‖2
U2

− 1
2
‖B∗

2(t)ut(t − τ)‖2
U2

.

By using Young’s inequality we have

E′(t) ≤ 1
2
‖B∗

2(t)ut(t)‖2
U2

+
1
2
‖B∗

2(t + τ)ut(t)‖2
U2

.

This proves (2.15) using assumption ii) because t + τ belongs either to I2n+1, or to
I2n+2 and in the last case B∗

2(t + τ) = 0.

Proceeding analogously to [22] and using Theorem 2.4 we can prove the fol-
lowing existence result.

Theorem 2.8. Under the assumptions of Theorem 2.4, if (u0, u1) ∈ V × H,
for any T > 0 we obtain a unique weak solution

u ∈ C([0, T ];V ) ∩ C1([0, T ];H).

Proof. We can combine analogous lemma in [9] with the well–posedness result
in [22]. We can argue on the interval [0, t2) which is the union of the first time
interval [0, t1), where the delay term is no present, and the second time interval
[t1, t2), where on the contrary only the delay feedback B2 is present. First, on
[0, t1], since B2 ≡ 0, we are in the situation of [9]. Thus, for initial data u0 ∈ V and
u1 ∈ H, the solution u belongs to C([0, t1];V ) ∩ C([0, t1];H). Then, we decompose
the second interval [t1, t2) into the intervals (t1 + lτ, t1 + (l + 1)τ), for l = 0, . . . , L,
where L is the first value such that t1 + (L + 1)τ ≥ t2. The last interval is then
(t1 + Lτ, t2). Now, we look at the interval (t1, t1 + τ). In this time interval problem
(1.2) – (1.3) can be rewritten as

(2.16)
utt(t) + Au(t) = g1(t) + f(u), t ∈ (t1, t1 + τ),
u(t1+) = u(t1−) and ut(t1+) = ut(t1−),

where g1(t) = −B2(t)B∗
2(t)ut(t−τ) belongs to C([t1, t1 +τ); H) from the first step.

Indeed, for t ∈ (t1, t1 + τ), it is t− τ ∈ (0, t1). Then, since (u(t1−), ut(t1−)) belongs
to V ×H, the existence of local solution u ∈ C1([t1, t1 + δ];H) ∩C([t1, t1 + δ];V ) ,
δ ≤ τ, follows from [24, Theorems 1.4 and 1.5, Ch. 6]. Now observe that, from
(2.15),

E(t) ≤ e2M1τE(t1), ∀ t ∈ [t1, t1 + δ] ,
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then δ = τ , namely there exists a solution u ∈ C1([t1, t1 +τ ];H)∩C([t1, t1 +τ ];V ) .
By iterating this procedure we find u ∈ C1([t1+τ, t1+2τ ];H)∩C([t1+τ, t1+2τ ];V )
and then on the whole interval (t1, t2).

3. Stability results

In this section, we give sufficient conditions ensuring stability results in case
of distributed/localized damping. More explicit conditions are given in the linear
case, improving previous results given in [23].

3.1. Distributed damping.
First of all, consider the case U1 = W = H, that is the case of distributed

feedback B1(t). In this case, of course, the constant C in the estimate (2.12) is 1 .
The following result holds (see [9, Theorem 4.1]; cfr. [13]).

Theorem 3.1. Assume i) and (2.7). Then, any solution u of (1.2) − (1.3)
satisfies

(3.1) ES(t2n+1) ≤ 1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

ES(t2n), n ∈ IN,

where λ1 is the constant in (1.1).

Theorem 3.2. Assume i), ii), (1.1) and (2.6) – (2.10). If

(3.2)
∞∑

n=0

(2M2n+1T2n+1 + ln c̃n) = −∞,

where

(3.3) c̃n =
1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

+ M2n+1T2n+1,

then system (1.2) − (1.3) is asymptotically stable, that is any solution u of (1.2) −
(1.3) satisfies ES(t) → 0 as t → +∞.

For some comments on (3.2) we refer to the next Remark 3.3.
Proof of Theorem 3.2. Observe that (2.15) implies

E′(t) ≤ 2M2n+1E(t), t ∈ I2n+1 = [t2n+1, t2n+2), n ∈ IN.

Then we deduce

(3.4) E(t2n+2) ≤ e2M2n+1T2n+1E(t2n+1), ∀ n ∈ IN.

Now, note that

E(t2n+1) = ES(t2n+1) +
1
2

∫ t2n+1

t2n+1−τ

‖B∗
2(s + τ)ut(s)‖2

U2
ds,
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and then, as |I2n| ≥ τ, n ∈ IN, and B2(t) is null on the intervals I2n,

(3.5)

E(t2n+1) ≤ ES(t2n+1) +
1
2
M2n+1

∫ min{t2n+1,t2n+2−τ}

t2n+1−τ

‖ut(s)‖2
Hds

≤ ES(t2n+1) + M2n+1

∫ min{t2n+1,t2n+2−τ}

t2n+1−τ

ES(s)ds

≤ ES(t2n+1) + M2n+1T2n+1ES(t2n+1 − τ)

≤ ES(t2n+1) + M2n+1T2n+1ES(t2n).

Then, from Theorem 3.1 and (3.5) we deduce

(3.6) E(t2n+1) ≤

⎛
⎜⎜⎝ 1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

+ M2n+1T2n+1

⎞
⎟⎟⎠ ES(t2n),

and therefore, by (3.4),
(3.7)

ES(t2n+2) ≤ e2M2n+1T2n+1E(t2n+1)

≤ e2M2n+1T2n+1

⎛
⎜⎜⎝ 1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

+ M2n+1T2n+1

⎞
⎟⎟⎠ ES(t2n).

Since (3.7) holds for any n ∈ IN we conclude
(3.8)

ES(t2n+2) ≤ Πn
p=0e

2M2p+1T2p+1

⎛
⎜⎜⎜⎝

1

1 +
T 3

2p

30
1

4
λ1m2p

+
3T2

2p
32m2p

+
M2pT2

2p
16λ1

+ M2p+1T2p+1

⎞
⎟⎟⎟⎠ ES(0).

Now observe that the standard energy ES(·) is not decreasing in general. However,
it is decreasing for t ∈ [t2n, t2n+1), when only the standard dissipative damping
acts and so

(3.9) ES(t) ≤ ES(t2n), ∀ t ∈ [t2n, t2n+1).

Moreover, for t ∈ [t2n+1, t2n+2), it results

(3.10) ES(t) ≤ E(t) ≤ e2M2n+1T2n+1E(t2n+1),

where in the second inequality we have used (2.15).
Then, by (3.8), (3.9), (3.10) and (3.6), asymptotic stability occurs if (3.2) is

satisfied.

Remark 3.3. Observe that (3.2) holds true if the following easier conditions
are satisfied:

(3.11)
∞∑

n=0

M2n+1T2n+1 < +∞
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and

(3.12)
∞∑

n=0

ln

⎛
⎝1 +

T 3
2n

30
1

4
λ1m2n

+ 3T 2
2n

32m2n
+ M2nT 2

2n

16λ1

⎞
⎠ = +∞.

Indeed, it is easy to see (cfr. [25]) that (3.11) and

(3.13)
∞∑

n=0

ln c̃n = −∞

with c̃n, n ∈ IN, as in (3.3), imply (3.2). Now it is sufficient to observe that, under
assumption (3.11), the conditions (3.12) and (3.13) are equivalent. Indeed if (3.13)
holds true then

− ln

⎛
⎝1 +

T 3
2n

30
1

4
λ1m2n

+ 3T 2
2n

32m2n
+ M2nT 2

2n

16λ1

⎞
⎠

= ln

⎛
⎜⎜⎝ 1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

⎞
⎟⎟⎠ < ln c̃n

and therefore also (3.12) is satisfied. Assume now that (3.11) and (3.12) are satis-
fied. Then, by (3.11),

(3.14) M2n+1T2n+1 → 0, n → ∞.

If (3.13) does not hold then it has to be

ln c̃n → 0, n → ∞.

But then, by (3.14), it results

c̃n ∼ 1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

,

in contradiction with (3.12).

Remark 3.4. Observe that, under the assumptions of Theorem 3.2, one can
prove that also

(3.15) E(t) → 0 as t → +∞,

for every solution u of (1.2) − (1.3). Indeed, recall that

E(t) = ES(t) +
1
2

∫ t

t−τ

‖B∗
2(s + τ)ut(s)‖2

U2
ds

and that we are assuming T2n ≥ τ, for all n ∈ IN, and B2 null in the intervals I2n.
Then, if t ∈ Ī2n = [t2n, t2n+1],
(3.16)

E(t) ≤ ES(t) +
1
2

∫ min{t,t2n+2−τ}

t2n+1−τ

‖B∗
2(s + τ)ut(s)‖2

U2
ds

≤ ES(t) + M2n+1

∫ min{t,t2n+2−τ}

t2n+1−τ

ES(s)ds ≤ ES(t) + M2n+1T2n+1ES(t2n);
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if t ∈ I2n+1, by using (2.15) and (3.16), we have
(3.17)
E(t) ≤ e2M2n+1T2n+1E(t2n+1) ≤ e2M2n+1T2n+1 [ES(t2n+1) + M2n+1T2n+1ES(t2n)] .

Therefore, observing that by (3.2) one has

sup
n

M2n+1T2n+1 < +∞,

(3.15) follows when Theorem 3.2 applies.

As an example of application of Theorem 3.2 one can consider problem (1.4) – (1.6)
assuming

iw) 0 < m2n ≤ b1(t) ≤ M2n, b2(t) = 0, for all t ∈ I2n = [t2n, t2n+1) and
b1 ∈ C1(Ī2n) for all n ∈ IN;

iiw) |b2(t)| ≤ M2n+1, b1(t) = 0 for all t ∈ I2n+1 = [t2n+1, t2n+2) and b2 ∈
C1(Ī2n+1) for all n ∈ IN.

The previous result can be extended to a more general situation. Indeed,
consider the nonlinear wave system

utt(t) + Au(t) + B1(t)B∗
1(t)g(ut) + B2(t)B∗

2(t)ut(t − τ) = f(u), t > 0,(3.18)
u(0) = u0 and ut(0) = u1,(3.19)

with (u0, u1) ∈ V ×H. On the functions g and f we make the following assumptions:

(A)

⎧⎨
⎩

g : IR −→ IR is a C1 function with g(0) = 0,
∃B ≥ A > 0 such that 0 < A ≤ g′(v) ≤ B ∀ v ∈ IR,
f satisfies (2.6) and (2.7).

Moreover, on B1 we assume, in place of i), that, for all n ∈ IN, there exist positive
constants m2n, M2n, with m2n ≤ M2n, such that, for all u ∈ H, we have

i’) m2n‖u‖2
W ≤ 〈B∗

1(t)u, B∗
1(t)g(u)〉U1 ≤ M2n‖u‖2

W for t ∈ I2n = [t2n, t2n+1),
∀ n ∈ IN.

As prototype, one can think to the problem

utt(x, t) − Δu(x, t) + b1(t)g(ut) + b2(t)ut(x, t − τ) = −|u|pu, Ω × (0, +∞),(3.20)
u(x, t) = 0 in ∂Ω × (0, +∞),(3.21)
u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,(3.22)

where Ω, u0, u1, b1, b2 and p are as before.
For (3.18) – (3.19), if B2(t) = 0 for all t ∈ (0, +∞), Theorem 3.1 becomes (see

[9, Theorem 5.1])

Theorem 3.5. Assume i’) and suppose that also (A) holds. Then, any solution
u of (3.18) − (3.19) satisfies

(3.23) ES(t2n+1) ≤ 1

1 + T 3
2n

30
1

4
λ1m2n

+
3T2

2n
32m2n

+
M2nT2

2n
16λ1

ES(t2n), n ∈ IN.
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Therefore, observe that, since B1(t) = 0 for all t ∈ I2n+1, (2.15) still holds.
Thus, as Theorem 3.1 implies Theorem 3.2, Theorem 3.5 immediately gives, for
global defined solutions, the following fundamental application via (2.15):

Theorem 3.6. Assume i’) and ii). Moreover suppose that (2.10) and (A) are
satisfied. If (3.2) holds, then system (3.18)− (3.19) is asymptotically stable, that is
any solution u of (3.18) − (3.19) satisfies ES(t) → 0 as t → +∞.

Remark 3.7. Observe that problems (1.2) – (1.3) and (3.18) − (3.19) with
B2(t) ≡ 0 correspond to the models with on-off damping considered in [9]. Hence
Theorems 3.2 and 3.6 give stability results also in these situations.

Of course, the abstract setting of the previous theorems let us deal with higher
order problems in bounded and smooth domain of IRN . For example, Theorem 3.6
can be applied to the problem

utt(x, t) + Δ2mu(x, t) + b1(t)g(ut) + b2(t)ut(x, t − τ) = f(u), Ω × (0, +∞),(3.24)

Cu(x, t) = 0 ∈ IR2m in ∂Ω × (0, +∞),(3.25)
u(x, 0) = u0(x) ∈ D(Δm) and ut(x, 0) = u1(x) in Ω,(3.26)

where m ∈ N , f , g, b1, b2 and p are as before and C is a boundary operator such
that the first eigenvalue of Δ2m under the boundary conditions Cu(x, t) = 0 ∈ IR2m

in ∂Ω×(0, +∞) is strictly positive. For example, one can consider as C the Dirichlet
operator, while the case of Neumann boundary conditions must be excluded since
the first eigenvalue is 0.

3.2. Localized damping.
In this section we consider the more general situation U1 �= W . In practice, for

concrete models, the feedback operators B1 and B2 may be localized in subregions
of Ω.

Proposition 3.8. Assume i), ii), (2.6) and (2.10). For any regular solution of
problem (1.2) − (1.3) the energy ES is decreasing on the intervals I2n, n ∈ IN. In
particular,

(3.27) E′
S(t) = −‖B∗

1(t)ut(t)‖2
U1

.

Moreover, on the intervals I2n+1, n ∈ IN, the estimate (2.15) holds.

Proof. By differentiating ES(·), we have

E′
S(t) = 〈ut, u〉V + 〈utt, ut〉H − 〈f(u), ut〉H .

Then, recalling that B2(t) = 0 in I2n, from equation (1.2) it follows that

E′
S(t) = 〈ut, utt + Au − f(u)〉V,V ′ = −〈ut, B1(t)B∗

1(t)ut(t)〉V,V ′,

for all t ∈ I2n. Thus, identity (3.27) holds.

Consider now the system

wtt(t) + Aw(t) + B1(t)B∗
1(t)wt = f(w), t ∈ (t2n, t2n+1), n ∈ IN,(3.28)

w(t2n) = wn
0 and wt(t2n) = wn

1(3.29)
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with (wn
0 , wn

1 ) ∈ V ×H. For our stability result we need that the next observability
type inequality holds. Namely we assume that, for every n, there exists a time Tn

such that

(3.30) T2n > Tn,

and that, for every n and every time T, with T2n ≥ T > Tn, there is a constant dn,
depending on T but independent of (wn

0 , wn
1 ), such that

(3.31) ES(t2n + T ) ≤ dn

∫ t2n+T

t2n

‖B∗
1(t)wt(t)‖2

U1
dt,

for every weak solution of problem (3.28) – (3.29) with initial data (wn
0 , wn

1 ) ∈ V ×H.

Remark 3.9. The observability inequality above is satisfied for solutions of
wave–type equations when the nonlinearity f satisfies some requirements. For in-
stance in [28] Zuazua proved (3.31) if f is globally Lipschitz, as a perturbation of
the well–known linear case, or also when f satisfies

(3.32) (2 + δ)F (s) ≥ sf(s),

for some δ > 0 .

Proposition 3.10. Assume i). Moreover, we assume that there is a sequence
{Tn}n, such that (3.30) is satisfied and the observability estimate (3.31) holds for
every T ∈ (Tn, T2n], ∀ n ∈ IN. Then, for any solution of system (1.2) − (1.3) we
have

(3.33) ES(t2n+1) ≤ d̂nES(t2n), ∀ n ∈ IN,

where

(3.34) d̂n =
dn

dn + 1
,

dn being the observability constant in (3.31) corresponding to the time T2n.

Proof. To prove (3.33) it suffices to use the estimate (3.27) in (3.31), reminding
that B2(t) = 0 on (t2n, t2n+1). Indeed, (3.31) gives

(3.35) ES(t2n+1) ≤ dn

∫ t2n+1

t2n

‖B∗
1(t)ut(t)‖2

U1
dt.

By integrating (3.27) on the interval [t2n, t2n+1], we have

ES(t2n+1) − ES(t2n) = −
∫ t2n+1

t2n

‖B∗
1(t)ut(t)‖2

U1
dt,

and therefore, using (3.35),

ES(t2n+1) − ES(t2n) ≤ − 1
dn

ES(t2n+1).

Thus,

ES(t2n+1)
(dn + 1

dn

)
≤ ES(t2n).
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Theorem 3.11. Assume hypotheses of Proposition 3.10, ii), (2.6) and (2.10).
If

(3.36)
∞∑

n=0

[2CM2n+1T2n+1 + ln(d̂n + CM2n+1T2n+1)] = −∞,

where C is the constant in the norm embedding (2.12) , then system (1.2)− (1.3) is
asymptotically stable, that is any solution u of (1.2) − (1.3) satisfies ES(t) → 0 as
t → +∞.

Proof. The proof is analogous to the one of Theorem 3.2. Simply we use now the
inequality (3.33) in place of (3.1) on the intervals I2n.

Remark 3.12. As in Remark 3.3, one can show that (3.36) is verified if, in
particular,

(3.37)
∞∑

n=0

M2n+1T2n+1 < +∞ and
∞∑

n=0

ln d̂n = −∞.

Observe also that dn depends on n since, by hypothesis, B1 may depend on the
time variable. However, if B1 is independed of t, then by a translation of t2n the
constant dn becomes independent of n. But, if dn = d > 0 for all n, then the
condition

∞∑
n=0

ln d̂n = −∞

is clearly satisfied. On the other hand, the first condition in (3.37) depends only
on the length of the intervals I2n+1 and on the boundedness constant of B∗

2 on the
same intervals, hence (3.37) can be easily checked.

As an example of model for which this result holds, we can consider

utt(x, t) − Δu(x, t) + b1(t)χωut(x, t)(3.38)
+b2(t)χω̃ut(x, t − τ) = f(u), in Ω × (0, +∞)

u(x, t) = 0 on ∂Ω × (0, +∞),(3.39)
u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,(3.40)

with initial data (u0, u1) ∈ H1
0 (Ω) × L2(Ω), b1, b2 as before and the nonlinearity f

as in [28]. Moreover, we assume that the set ω ⊂ Ω satisfies a control geometric
property (see [4]) and that ω̃ ⊂ ω.

As for the distributed damping, the previous result can be extended to a more
general situation. Indeed, consider again the nonlinear wave system (3.18) – (3.19)
with (u0, u1) ∈ V × H. On the functions g and f we assume (A).

Proposition 3.8 becomes

Proposition 3.13. Assume i’), ii), (2.6) and (2.10). For any regular solution
of problem (3.18) − (3.19) the energy ES is such that

(3.41) E′
S(t) = −〈B∗

1(t)ut(t), B∗
1(t)g(ut)〉U1 ,

for all t ∈ I2n, n ∈ IN. Moreover, on the intervals I2n+1, n ∈ IN, the estimate (2.15)
holds.
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As before, consider now the system

wtt(t) + Aw(t) + B1(t)B∗
1(t)g(wt) = f(w), t ∈ (t2n, t2n+1), n ∈ IN,(3.42)

w(t2n) = wn
0 and wt(t2n) = wn

1 ,(3.43)

with (wn
0 , wn

1 ) ∈ V × H. For our stability result we need that the next inequality
holds. Namely we assume that, for every n, there exists a time Tn such that (3.30)
holds and that, for every n and every time T, with T2n ≥ T > Tn, there is a
constant dn, depending on T but independent of (wn

0 , wn
1 ), such that

(3.44) ES(t2n + T ) ≤ dnES(t2n),

for every weak solution of problem (3.42) – (3.43) with initial data (wn
0 , wn

1 ) ∈ V ×H.
The inequality above is satisfied for solutions of wave–type equations when the

nonlinearities f and g satisfy some requirements. In [28], for example, (3.44) is
proved if f is globally Lipschitz or when f satisfies (3.32) for some δ > 0 and g is
globally Lipschitz (hence if g is as in (A)) and there exists c > 0 such that

g(s)s ≥ c|s|2, ∀s ∈ IR.

Theorem 3.11 becomes

Theorem 3.14. Assume i’), ii), (2.6) and (2.10). Moreover, we assume that
there is a sequence {Tn}n, such that (3.30) is satisfied and (3.44) holds for every
T ∈ (Tn, T2n], ∀ n ∈ IN. If (3.36) holds then system (3.18)−(3.19) is asymptotically
stable, that is any solution u of (3.18) − (3.19) satisfies ES(t) → 0 as t → +∞.

Remark 3.15. One can make the same considerations made in Remark 3.7,
obtaining stability results also for the localized on-off damping. These results are
then more general than the ones proved in [9].

3.3. Localized damping: the linear case.
In the linear case (i.e. f ≡ 0) we can improve previous results given in [23]

by removing the assumption (2.14) on the coefficients. As in [23] we can deter-
mine more explicitely, in terms of the coefficients T2n, m2n, M2n, the constant d̂n

of Proposition 3.10, for all n ∈ IN .
Consider now the conservative system associated with (1.2) – (1.3)

wtt(t) + Aw(t) = 0, t > 0,(3.45)
w(0) = w0 and wt(0) = w1,(3.46)

with (w0, w1) ∈ V × H.
To prove stability results we need that a suitable observability inequality holds.

Then, we assume that there exists a time T > 0 such that, for every time T > T ,
there is a constant c, depending on T but independent of the initial data, such that

(3.47) ES(0) ≤ c

∫ T

0

‖wt(s)‖2
W ds,

for every weak solution of problem (3.45)−(3.46) with initial data (w0, w1) ∈ V ×H.
The following result is proved in [23]:

Proposition 3.16. Assume i) and f ≡ 0 . Moreover, we assume that the
observability inequality (3.47) holds for every time T > T and that, setting T ∗ :=
infn{T2n},
(3.48) T ∗ > T.
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Then, for any solution of system (1.2) − (1.3) we have

(3.49) ES(t2n+1) ≤ ĉnES(t2n), ∀ n ∈ IN,

where

(3.50) ĉn =
2c(1 + 4C2T 2

2nM2
2n)

m2n + 2c(1 + 4C2T 2
2nM2

2n)
,

c being the observability constant in (3.47) corresponding to the time T ∗ and C
the constant in the norm embedding (2.12) between W and H.

Combining the previous proposition with estimate (2.15) one can obtain the
following theorem.

Theorem 3.17. Assume hypotheses of Proposition 3.16, ii), (2.6) and (2.10).
If

(3.51)
∞∑

n=0

[2CM2n+1T2n+1 + ln(ĉn + CM2n+1T2n+1)] = −∞,

where ĉn is as in (3.50) and C is the constant in the norm embedding (2.12), then
system (1.2)−(1.3) is asymptotically stable, that is for every solution of (1.2)−(1.3)
ES(t) → 0 as t → +∞ .

Proof. The proof is analogous to the one of Theorem 3.2. Simply we use now the
inequality (3.49) in place of (3.1) on the intervals I2n.

Remark 3.18. As in Remark 3.3 we can show that (3.51) is verified in partic-
ular if

(3.52)
∞∑

n=0

M2n+1T2n+1 < +∞, and
∞∑

n=0

ln ĉn = −∞.

Now, it is easy to see that the second condition of (3.52) is equivalent (see the proof
of [23, Theorem 3.3] for details) to

(3.53)
∞∑

n=0

m2n

1 + 4C2T 2
2nM2

2n

= +∞.

which is, together with the first condition of (3.52) on the intervals with delay,
the assumption of [23, Theorem 3.3]. Actually, as clearly appears from the proof,
Theorem 3.3 of [23] holds true under the more general condition (3.51). The authors
there preferred, for sake of clairness, to formulate the assumption in an easier but
less general form.

Remark 3.19. Observe that Theorem 3.17 significantly improve [23, Theorem
3.3]. Indeed it allows to obtain the same stability result by removing the assumption
(2.14) on the coefficients, which is crucial in the proof of [23, Theorem 3.3].
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4. Stability result: localized positive–negative damping without delay

In this section we want to generalize the results given in [10] to the localized
situation. In particular, in order to deal with a positive–negative damping, we
consider the problem

utt(t) + Au(t) + B1(t)B∗
1(t)ut(t) − B3(t)B∗

3(t)ut(t) = f(u), t > 0,(4.1)
u(0) = u0 and ut(0) = u1,(4.2)

where Bi(t) ∈ L(Ui, H), i = 1, 3. Here H and Ui, i = 1, 3, are real Hilbert spaces
as before. On the time–dependent operators Bi we assume

B∗
1(t)B∗

3(t) = 0, ∀ t > 0

and, for all n ∈ IN, there exists tn > 0, with tn < tn+1, such that

B3(t) = 0, ∀ t ∈ I2n = [t2n, t2n+1),
B1(t) = 0, ∀ t ∈ I2n+1 = [t2n+1, t2n+2),

with B1 ∈ C1([t2n, t2n+1];L(U1, H)) and B3 ∈ C([t2n+1, t2n+2];L(U3, H)). We
further assume that there exist two Hilbert spaces W1, W3 such that, for i = 1, 3,

(4.3) ‖u‖2
Wi

≤ Ci‖u‖2
H , ∀ u ∈ H with Ci > 0 independent of u,

and, for all n ∈ IN, there exist three positive constants m2n, M2n and M2n+1, with
m2n ≤ M2n, such that for all u ∈ H we have

j) m2n‖u‖2
W1

≤ ‖B∗
1(t)u‖2

U1
≤ M2n‖u‖2

W1
for t ∈ I2n = [t2n, t2n+1), ∀ n ∈ IN;

jj)‖B∗
3(t)u‖2

U3
≤ M2n+1‖u‖2

W3
for t ∈ I2n+1 = [t2n+1, t2n+2), ∀ n ∈ IN.

The energy functional E(t) coincide in this case with ES(t) and the next result
holds.

Proposition 4.1. Assume (2.6). Then, for any regular solution of problem
(4.1) − (4.2) the energy is decreasing on the intervals I2n and increasing on I2n+1,
n ∈ IN. In particular,

(4.4) E′
S(t) = −‖B∗

1(t)ut(t)‖2
U1

, ∀ t ∈ I2n

and

(4.5) E′
S(t) = ‖B∗

3(t)ut(t)‖2
U3

, ∀ t ∈ I2n+1

Proof. Proceeding as in Proposition 3.8, one has

E′
S(t) = 〈ut, u〉V + 〈utt, ut〉H − 〈f(u), ut〉H .

Then, recalling that B3(t) = 0 in I2n and B1(t) = 0 in I2n+1, from equation (4.1)
it follows that

E′
S(t) = 〈ut, utt + Au − f(u)〉V,V ′ = −〈ut, B1(t)B∗

1(t)ut(t)〉V,V ′

for all t ∈ I2n and

E′
S(t) = 〈ut, utt + Au − f(u)〉V,V ′ = 〈ut, B3(t)B∗

3(t)ut(t)〉V,V ′

for all t ∈ I2n+1. Thus, identities (4.4) and (4.5) hold.

As in the previous section we consider the system (3.28) – (3.29) for which we
assume that the observability inequality (3.31) holds.

Setting again Tn := tn+1 − tn, we have:
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Proposition 4.2. Assume i) and suppose that there is a sequence {Tn}n, such
that (3.30) and (3.31) hold for every T ∈ (Tn, T2n], ∀ n ∈ IN. Then, for any solution
of system (1.2) − (1.3) we have

(4.6) ES(t2n+1) ≤ d̂nES(t2n), ∀ n ∈ IN,

where

(4.7) d̂n =
dn

dn + 1
,

dn being the observability constant in (3.31) corresponding to the time T2n.

The proof of the previous Proposition is similar to the one of Proposition 3.10,
so we omit it.

Using Proposition 4.2, one can give an asymptotic stability result.

Theorem 4.3. Assume hypotheses of Proposition 4.2, ii), (2.6) and (2.10). If

(4.8)
∞∑

n=0

[2C3M2n+1T2n+1 + ln d̂n] = −∞,

where C3 is the constant in the norm embedding (4.3) between W3 and H, then
system (4.1) − (4.2) is asymptotically stable, that is any solution u of (4.1) − (4.2)
satisfies ES(t) → 0 as t → +∞.

Proof. From (4.5) and (4.3) we obtain

ES(t) ≤ e2C3M2n+1T2n+1ES(t2n+1), ∀ t ∈ I2n+1 = [t2n+2, t2n+1].

Therefore, by using (4.6), we have

ES(t2n+2) ≤ e2C3M2n+1T2n+1 d̂nES(t2n).

Now, we can conclude proceeding as in the proof of Theorem 3.2.

Remark 4.4. In particular (4.8) is satisfied if
∞∑

n=0

M2n+1T2n+1 < +∞ and
∞∑

n=0

ln d̂n = −∞.

As an example of model for which the previous result holds, we can consider

utt(x, t) − Δu(x, t) + b1(t)χωut(x, t) − b3(t)χω̃ut(x, t) = f(u) in Ω × (0, +∞),
u(x, t) = 0 on ∂Ω × (0, +∞),
u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,

with initial data (u0, u1) ∈ H1
0 (Ω) × L2(Ω), b1, b3 in L∞(0, +∞) such that

b1(t)b3(t) = 0, ∀ t > 0,

and the nonlinearity f as in [28]. Moreover, we assume that the set ω ⊂ Ω satisfies
a control geometric property.

On the coefficients b1 and b3 we assume

jw) 0 < m2n ≤ b1(t) ≤ M2n, b3(t) = 0 for all t ∈ I2n = [t2n, t2n+1) and
b1 ∈ C1(Ī2n) for all n ∈ IN;

jjw) |b3(t)| ≤ M2n+1, b1(t) = 0 for all t ∈ I2n+1 = [t2n+1, t2n+2) and b3 ∈
C(Ī2n+1) for all n ∈ IN.
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We emphasize that in the case without delay, since we deal only with the
standard energy ES(·), the set ω̃ where the negative damping is localized may be
any subset of Ω, not necessarily a subset of ω.

Remark 4.5. Combining the results and the methods used so far, we can obtain
stability results for problems with distributed or localized positive-negative damp-
ing with delay. We recall that the case of distributed positive-negative damping
without delay was studied in [10].

4.1. Positive–negative damping without delay: the linear case.
In the linear case, as for the case with delay feedback, we can use a more

explicit observability constant in the interval I2n where only the positive damping
is present.

Consider problem (3.45) – (3.46) and assume that the observability inequality
(3.47) holds (with now W1 instead of W ).

We can restate Proposition 3.16.

Proposition 4.6. Assume j) and f ≡ 0 . Moreover, we assume that the
observability inequality (3.47) holds for every time T > T and that, denoting
T ∗ := infn{T2n},
(4.9) T ∗ > T.

Then, for any solution of system (4.1) − (4.2), we have

(4.10) ES(t2n+1) ≤ ĉnES(t2n), ∀ n ∈ IN,

where

(4.11) ĉn =
2c(1 + 4C1

2T 2
2nM2

2n)
m2n + 2c(1 + 4C1

2T 2
2nM2

2n)
,

c being the observability constant in (3.47) corresponding to the time T ∗ and C1

the constant in the norm embedding (4.3) between W1 and H.

Combining the previous proposition with (4.5) we can obtain the following
stability result.

Theorem 4.7. Assume hypotheses of Proposition 4.6, jj), (2.6) and (2.10). If

(4.12)
∞∑

n=0

[2C3M2n+1T2n+1 + ln ĉn] = −∞,

where ĉn is as in (4.11) and C3 is the constant in the norm embedding (4.3) between
W3 and H, then system (4.1) − (4.2) is asymptotically stable, that is any solution
u of (4.1) − (4.2) satisfies ES(t) → 0 as t → +∞.

Remark 4.8. As in Remark 3.18, one can prove that (4.12) is satisfied if
∞∑

n=0

M2n+1T2n+1 < +∞, and
∞∑

n=0

m2n

1 + 4C2
1T 2

2nM2
2n

= +∞.
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