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Abstract. In this paper we study nonnegative solutions of

(†) |g|
γ
Hnup ≤ (−ΔHn )

α
2 u on H

n,

where H
n is the Heisenberg group; | · |Hn is the homogeneous norm; ΔHn is the

sub-Laplacian; (p,α, γ) ∈ (1,∞)× (0,2)× [0, (p− 1)Q); and Q = 2n + 2 is the

homogeneous dimension of H
n. In particular, we prove that any nonnegative

solution of (†) is zero if and only if p ≤ Q+γ

Q−α
.
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1. Introduction

The Heisenberg group H
n is a Lie group which can be identified with R

2n × R

under the group action

gh = (x, t)(x′, t′) =
(
x + x′, t + t′ + 2

n∑
j=1

(xn+jx
′
j − xjx

′
n+j)

)
for any g = (x, t), h = (x′, t′) ∈ H

n. Q = 2n + 2 is the homogeneous dimension of
H

n and ΔHn is the sub-Laplacian on H
n defined by

ΔHn =
2n∑

j=1

X2
j ,

where

Xj =
∂

∂xj
+ 2xn+j

∂

∂t
, Xn+j =

∂

∂xn+j
− 2xj

∂

∂t
, j = 1, · · · , n.

The homogeneous norm |g|Hn is defined as

|g|Hn =
(
|x|4 + |t|2

) 1
4 ∀ g = (x, t) ∈ H

n.

For 0 < α < 2 let (−ΔHn)
α
2 be the fractional sub-Laplacian on the Heisenberg group

which is defined as follows (cf. [10, Theorem 3.11]): if u belongs to the Schwartz
class S(Hn), then

(−ΔHn)
α
2 u(g) = P.V.

∫
Hn

(u(h)− u(g))R̃−α(h−1g) dh,

where

R̃−α(g) =
−α
2

Γ(−α
2 )

∫ ∞

0

s
−α
2 −1h(s, g) ds

and h(s, ·) is the heat kernel associated with −ΔHn .
In this paper, we consider the following fractional sub-Laplacian differential

inequality

(1.1) |g|γ
Hnup(g) ≤ (−ΔHn)

α
2 u(g), g ∈ H

n.

The inequality will be understood in the weak sense, whose exact meaning is deferred
to next section. Now we state our main result.

Theorem 1.1. Assume that 1 < p <∞, 0 < α < 2, and 0 ≤ γ < (p− 1)Q. Let
u be a nonnegative solution of the fractional sub-Laplacian differential inequality
(1.1). Then u ≡ 0 if and only if p ≤ Q+γ

Q−α .

For the Laplacian differential inequality in R
n,

(1.2) up ≤ −Δu

with p > 1 and n ≥ 2, it is well known that a nonnegative weak solution to (1.2)
equals to 0 if and only if p ≤ n/(n− 2) (cf. [14]). This result has been extended to
more general differential inequalities in R

n, Heisenberg groups and even Riemannian
manifolds, see [5, 6, 23, 17, 30, 1, 19, 26, 27, 28] and references therein.

In Heisenberg groups, it is proved that

(1.3) |g|γ
Hnup ≤ −ΔHnu



NONNEGATIVE SOLUTIONS OF A SUB-LAPLACIAN DIFFERENTIAL INEQUALITY 381

with p ∈ (1,∞) and γ > −2, admits only trivial nonnegative solution if and only

if p ≤ Q+γ
Q−2

, as showed in [1]. The method of [1] is based on a local argument

that uses carefully the chosen test functions for (1.3) and conducts integration-by-
parts argument – however, the argument fails to be applied to (1.1) where one may

encounter the non-local property of the fractional operator (−ΔHn)
α
2 , which rules

out the possibility of applying any local analysis.
It is observed by Caffarelli and Silvestre [3] that the fractional Laplacian can

be reduced to a local problem through bringing one more variable into play. To be
more precise, the fractional Laplacian can be characterized as a Dirichlet-Neumann
operator for an appropriate differential equation of divergence form, to which a local
argument may be applied. Based on this crucial observation, the paper [31] by the
second and third authors extends the results for (1.2) to its fractional counterpart,
where the main difficulties came from choosing suitable test functions to the ex-
tension problem and boundedness of the extended solutions, but were successfully
overcame by proving a new extension estimate and a mixed trace estimate.

Recently, Ferrari and Franchi [10] reduced the fractional sub-Laplacian (−ΔHn)
α
2

into a degenerate local elliptic problem as [3] (see Section 2.3 of [10] for details).
Based on their work and [31], it is very natural to study the fractional differential
inequality (1.1) on H

n. However, though our strategy relies more or less on [31], we
may not be able to apply their argument to the current situation directly. On the
one hand, it is the sub-Laplacian under consideration rather than the Laplacian.
On the other hand, we study the weighted nonlinearity |g|γ

Hnup in this paper. Since
[31] only addresses the case of γ = 0, new ingredients are needed.

Among others, the main difficulty in proving Theorem 1.1 is the extension es-
timate in a weighted Lp(Hn) space; see Lemma 4.1 below. The paper [31] manages
to bound the extension operator on Lp(Rn) by interpolating between L∞(Rn) and
weak-L1(Rn). However, such a weak estimate fails if γ > 0 even for locally sup-
ported function. We first observe that the extension operator may be well-defined in

L
Q+γ

Q (Hn), rather than L1(Hn), provided that the function is dyadically supported.
By putting all dyadic pieces together, it only diverges logarithmically, which may
be circumvent by a carefully duality argument. See Lemma 4.1 and its proof for
more details on this issue.

Here, it is worth recording two consequences of our main theorem which are
new to our best knowledge (except some endpoint cases). Let us first consider the
following fractional sub-Laplacian equation

(1.4) (−ΔHn)
α
2 u = |g|γ

Hnup in H
n,

where 1 < p < ∞, 0 < α ≤ 2, and 0 ≤ γ < (p − 1)Q. It is widely believed that

the nonnegative solution to (1.4) is trivial if and only if p < Q+γ+α
Q−α

. However, the

known results in this direction are far from complete. When α = 2 and γ = 0,
Birindelli and Prajapat [2] prove the nonexistence result under the assumption of
smoothness and cylindrical symmetry on the solution u. When α = 2, the results
in [1] imply that for 1 < p ≤ Q+γ

Q−2 , the only nonnegative solutions of (1.4) are the

trivial ones. Recently, Cinti and Tan in [8] solve the problem similar to ours when
α = 1

2 involving a CR square root of the sub-Laplacian, under the assumption of
boundedness, cylindrical symmetry and smoothness. Since any nonnegative solution
to (1.4) solves the inequality (1.1) as well, it follows from Theorem 1.1 that
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Corollary 1. Assume that 1 < p ≤ Q+γ
Q−α , 0 < α < 2 and 0 ≤ γ < (p− 1)Q.

Let u be a nonnegative solution of the nonlinear equation (1.4). Then u ≡ 0.

Remark 1.2. Unfortunately, we can’t handle the cases when Q+γ
Q−α

< p <
Q+γ+α

Q−α at this moment. Other than moving plane method, more new ingredients

may be needed to completely solve this problem, see [2, 8] for more discussion.

Nevertheless, it should be noted that our main result can be extended to other
Carnot groups with similar arguments, once there is a Caffarelli-Silvestre type local
characterization of the fractional Laplacian. Especially, in R

n, the results in [31]
could be extended to γ > 0. More precisely, we have:

Corollary 2. Assume that 1 < p < ∞, 0 < α < 2 and 0 ≤ γ < (p− 1)n. Let
u be a nonnegative solution of the fractional differential inequality

(1.5) |x|γup ≤ (−Δ)
α
2 u in R

n.

Then u ≡ 0 if and only if p ≤ n+γ
n−α .

This article is organized as follows. In Section 2, we collect some known facts
and results of Heisenberg groups H

n and Carnot group H
n × R. Section 3 recalls

the extension problem related to the fractional sub-Laplacian and gives the local
version of a weak solution to (1.1). In Section 4 we list the main lemmas and prove
Theorem 1.1 by using these lemmas. Section 5 is designed to verify Lemma 4.1.

Notation. Throughout this paper, unless otherwise indicated, we will use C and
c to denote constants, which are not necessarily the same at each occurrence. By
A � B, we mean that there is a constant C > 0 such that A ≤ CB. By A ∼ B, we
mean that there exist C > 0 and c > 0 such that c ≤ A

B
≤ C.

2. Preliminaries

As a basic reference for the Heisenberg group H
n we refer the reader to Stein’s

book [24]. We recall that the Heisenberg group H
n is a Lie group with the under-

lying manifold R
2n ×R and the group action

gh = (x, t)(x′, t′) =
(
x + x′, t + t′ + 2

n∑
j=1

(xn+jx
′
j − xjx

′
n+j)

)
for any g = (x, t), h = (x′, t′) ∈ H

n. Clearly, g−1 = (−x,−t) and (0, · · · , 0, 0) is
its unit element, which can be simply written as o. A basis for the Lie algebra of
left-invariant vector fields on H

n is given by

X2n+1 =
∂

∂t
, Xj =

∂

∂xj
+ 2xn+j

∂

∂t
, Xn+j =

∂

∂xn+j
− 2xj

∂

∂t
, j = 1, · · · , n.

All non-trivial commutators are [Xj, Xn+j ] = −4X2n+1, j = 1, · · · , n. So the vector
fields X1, · · · , X2n satisfy the so-called Hörmander condition (see [18]). Denote by

n the Heisenberg Lie algebra. It can admits a vector space decomposition n =
V1

⊕
V2 such that V1 = span{X1, · · · , X2n}, V2 = span{X2n+1} and [V1, V2] = 0.

Then H
n is nilpotent Lie group of step 2. The first layer V1, the so-called horizontal

layer, plays a key role in the theory, since it generates n by commutation.
The sub-Laplacian ΔHn is defined by

ΔHn =

2n∑
j=1

X2
j .
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For any function f : H
n → R for which the partial derivatives Xjf exist for j =

1, · · · , 2n, the horizontal gradient of f , denoted by ∇Hnf , as the horizontal section

∇Hnf :=

2n∑
i=1

(Xif)Xi ,

whose coordinates are (X1f, ..., X2nf). Moreover, if φ = (φ1, . . . , φ2n) is an hori-
zontal section such that Xjφj ∈ L1

loc(H
n) for j = 1, . . . , 2n, we define divHnφ as the

real valued function

divHn(φ) := −
2n∑

j=1

X∗
j φj =

2n∑
j=1

Xjφj.

The dilations on H
n have the form

δλ(x, t) = (λx, λ2t), λ > 0.

The Haar measure on H
n coincides with the Lebesgue measure on R

2n × R. We
denote the measure of any measurable set E by |E|. Then |δλE| = λQ|E|, where
Q = 2n + 2 is called the homogeneous dimension of H

n.
We can define a homogeneous norm function on H

n by

|g|Hn =
(
|x|4 + |t|2

) 1
4 , g = (x, t) ∈ H

n.

Moreover, for all g ∈ H
n, r > 0, |δrg|Hn = r|g|Hn , |g−1|Hn = |g|Hn, and |g|Hn > 0

if g �= 0. This norm satisfies the triangular inequality and leads to a left-invariant
distance function d(g, h) = |g−1h|Hn. Then the ball of radius r centered at g is
given by

B(g, r) = {h ∈ H
n : d(g, h) < r}.

Because the ball B(g, r) is the left translation by g of B(o, r), although the
shape of B(g, r) much varies with the position of the center g, we have

|B(g, r)| = μ1r
Q,

where μ1 is a positive constant. Moreover, there exists another distance dc which
is called Carnot-Carathéodory on H

n and it is globally equivalent to the metric d
(see e.g. [11]).

In what follows we recall some facts for the Riesz potential on the Heisenberg
group. Denote by h = h(s, g) the fundamental solution of (−ΔHn) + ∂

∂s on H
n ×

(0,∞) (see [13, Proposition 3.3], or [12]), which is also called the heat kernel
associated with −ΔHn . By [29] the following estimates for the heat kernel h(s, ·)
hold true: there exists a positive constant C such that for all g ∈ H

n, s > 0,

(2.1) h(s, g) ≈ s−
Q
2 exp{−

|g|2
Hn

Cs
}.

Via Theorem 3.15, Proposition 3.17 and 3.18 in [13] we have the following lemma.

Lemma 2.1. Suppose 0 < α < Q. Then

Rα(g) =
1

Γ(α
2
)

∫ ∞

0

s
α
2 −1h(s, g) ds

converges absolutely for g �= o. In addition, Rα is a kernel of type α and the kernels
Rα admit the following convolution rule: if α > 0, β > 0 and g �= o, then

Rα+β(g) = Rα(g) ∗Rβ(g).
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The Riesz potential on the Heisenberg group is defined as follows:

(−ΔHn)−
α
2 u(g) = u ∗Rα(g)

for any u ∈ Dom((−ΔHn)−
α
2 ). Then the Riesz potential is the inverse of the frac-

tional Laplacian (−ΔHn)
α
2 in the sense of:

(−ΔHn)−
α
2 ((−ΔHn)

α
2 u) = (−ΔHn)

α
2 ((−ΔHn)−

α
2 u) = u.

Next, we recall the Carnot group Ĥ
n := H

n × R (see [10]). Its Lie algebra ˆn

admits the stratification:
ˆn = V̂1 ⊕ V2,

where V̂1 = span {Y, V1} and Y = ∂
∂y for y ∈ R. Since the basis {X1, . . . , X2n}

of V1 has been already fixed once and for all, the associated basis for V̂1 will be

{X1, . . . , X2n, Y }. Moreover, the horizontal layer defines a fiber bundle HĤ
n over

Ĥ
n (the horizontal bundle) by left translation. Its sections are the horizontal vector

fields.
The corresponding dilations on Ĥ

n are given by

δ̂r(g, y) = (δrg, ry), r > 0.

The homogeneous dimension of Ĥ
n is Q + 1. Then we introduce a homogeneous

norm function | · |
Ĥn on Ĥ

n defined as follows:

|(g, y)|
Ĥn = (|g|2

Hn + |y|2)1/2,

which satisfies |δ̂r(g, y)|
Ĥn = r|(g, y)|

Ĥn for all (g, y) ∈ Ĥ
n, r > 0. Let d̂ be a function

on Ĥ
n × Ĥ

n defined by

d̂((g, y), (g′, y′)) := |(g−1g′, y′ − y)|
Ĥn .

It is easy to check that d̂ satisfies the triangle inequality, that is, d̂ is a metric on

Ĥ
n. The corresponding ball is denoted by B̂((g, y), r) for any (g, y) ∈ Ĥ

n and r > 0.

Similarly, for a smooth function u on Ĥ
n, the horizontal gradient of u is defined

as

∇
Ĥnu :=

2n∑
i=1

(Xiu)Xi + (Y u)Y,

whose coordinates are (X1u, ..., X2nu, Y u). Moreover, if Φ = (φ1, . . . , φ2n+1) is an

horizontal section such that Xjφj, Y φ2n+1 ∈ L1
loc(Ĥ

n) for j = 1, . . . , 2n, we define
div

ĤnΦ as follows:

div
Ĥn(Φ) := −

2n∑
j=1

X∗
j φj − Y ∗φ2n+1 =

2n∑
j=1

Xjφj + Y φ2n+1.

If E ⊂ Ĥ
n is a measurable set, the notion of measure |∂E|

Ĥn has been introduced

in [16]. We say that E has locally finite Ĥ
n-perimeter (or, is also called a Ĥ

n-

Caccioppoli set) if for any bounded open set Ω ⊆ Ĥ
n

|∂E|
Ĥn(Ω) := sup

{∫
E

div
ĤnΨdgdy : Ψ ∈ C1

0(Ω, HĤ
n), |Ψ(g, y)| ≤ 1

}
< ∞.

Therefore, |∂E|
Ĥn is a Radon measure in Ĥ

n, invariant under group translations
and the homogeneous of degree Q. Moreover, the following representation theorem
holds (see [4]).
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Lemma 2.2. Let Ω ⊆ Ĥ
n be an open set. If E is a Ĥ

n-Caccioppoli set with
Euclidean C1 boundary, then there is an explicit representation of the Ĥ

n-perimeter
in terms of the Euclidean 2n + 1-dimensional Hausdorff measure H2n+1

|∂E|
Ĥn(Ω) =

∫
∂E∩Ω

( 2n∑
j=1

〈Xj , n〉
2
R2n+2 + 〈Y, n〉2

R2n+2

)1/2

dH2n+1,

where n = n(x) is the Euclidean unit outward normal to ∂E.

We have also the following divergence theorem on Ĥ
n by using the Riesz theorem

(see e.g. [10, 11]).

Lemma 2.3. If E is a regular bounded open set in Ĥ
n with Euclidean C1 bound-

ary and Ψ ∈ C1(E, HĤ
n), then

−

∫
E

div
ĤnΨ dx =

∫
∂E

〈Ψ, νE〉d|∂E|
Ĥn,

where νE is the intrinsic horizontal outward normal to ∂E.

3. A weak solution for |g|γ
Hnup(g) ≤ (−ΔHn)

α
2 u(g)

We begin with reviewing the extension results related to the fractional sub-
Lapacian. The extension problem related to the fractional Laplacian on the Eu-
clidean space has been investigated by Caffarelli and Silvestre (cf. [3]). Recently,
Ferrari and Franchi obtain the analogous result on the Carnot group in [10], where
they turn the fractional sub-Laplacian into a Dirichlet-Neumann operator for an
appropriate differential equation of divergence form: if α ∈ (0, 2), u = u(g) is a
function defined in H

n, and P = P(g, y) is a solution to the boundary value prob-
lem

(3.1)

{
−div

Ĥn(y1−α∇
ĤnP) = 0 in Ĥ

n
+ := H

n × (0,∞);

P(g, 0) = u(g) ∀ g ∈ H
n,

then there is a constant C̃α depending on α such that

(3.2) − lim
y→0+

y1−αPy(g, y) = C̃α(−ΔHn)
α
2 u(g).

Clearly, the divergence form in (3.1) can be rewritten as

(−ΔHn)P + (1− α)y−1Py + Pyy = 0.

Following from [10] we know that the Poisson kernel PHn(·, y) in the half-space
H

n × (0,∞) defined below:

PHn(·, y) := Cα yα

∫ ∞
0

s(−α−2)/2e−
y2

4s h(s, ·) ds,

where

Ca = 2a−1Γ(
α

2
)
−1

.

Therefore, via (2.1)

PHn(g, y) ≈
yα(

|g|2
Hn + |y|2

)Q+α
2

.
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As done in [25] we can conclude that

(−ΔHn)PHn(g, y) + (1 − α)y−1 ∂PHn(g, y)

∂y
+

∂2PHn(g, y)

∂y2
= 0.

Consequently,

(3.3) P(g, y) =

∫
Hn

u(h)PHn(h−1g, y) dh = u ∗ PHn(·, y)(g)

satisfies (3.1). The solution P(g, y) of (3.1) is also called the α-extension of u(g)

due to (3.3). Naturally, P can be extended to Ĥ
n via putting

P̃(g, y) =

{
P(g, y), ∀ g ∈ H

n & y ≥ 0;

P(g,−y), ∀ g ∈ H
n & y < 0.

By Theorem 4.6 in [10], we know that P̃(g, y) is a weak solution of the equation

divHn

(
|y|1−α∇

ĤnP
)

= 0 in H
n × (−1, 1)

whenever u ∈ Hα(Hn) is a solution to (−ΔHn)
α
2 u = 0, where Hα(Hn) is the Sobolev

space introduced in [13] under the graph norm

‖ u ‖Hα(Hn)=‖ u ‖L2 + ‖ (−ΔHn)
α
2 u ‖L2 .

Via (3.1) and (3.2), the inequality (1.1) can be rewritten as

(3.4)

⎧⎨⎩−div
Ĥn(y1−α∇

ĤnP) = 0 ∀ (g, y) ∈ H
n × (0,∞);

lim
y→0+

y1−α ∂P

∂y
(g, y) + |g|γ

Hnup(g) ≤ 0 ∀ g ∈ H
n.

Lemma 3.1. Assume that 1 < p < ∞ and α ∈ (0, 2). Suppose that u is a non-

negative solution to (1.1) and ω is its α-extension. If |y|
1−α

2 |∇
ĤnP̃(g, y)| ∈ L2(Ĥn),

then for any nonnegative continuous function ψ satisfying |y|
1−α

2 |∇
Ĥnψ(g, y)| ∈

L2(Ĥn), one has

(3.5)

∫
Hn

|g|γ
Hnup(g)ψ(g, 0) dg ≤

∫∫
Ĥn

∇
ĤnP̃(g, y) · ∇

Ĥnψ(g, y)|y|1−α dgdy.

Proof. Without losing of generality, we may assume that ψ supports in the

ball B̂R := B̂((o, 0), R) centered at the origin point (o, 0) ∈ Ĥ
n with radius R > 0.
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For any ε > 0, via the equation div
Ĥn(|y|1−α∇

ĤnP̃(g, y)) = 0 we get∫∫
B̂R

∇
ĤnP̃(g, y) · ∇

Ĥnψ(g, y)|y|1−αdgdy

=

∫∫
B̂R\{|y|<ε}

+

∫∫
B̂R∩{|y|<ε}

∇
ĤnP̃(g, y) · ∇

Ĥnψ(g, y)|y|1−αdgdy

=

∫∫
B̂R\{|y|<ε}

div
Ĥn(|y|1−αψ∇

ĤnP̃)dgdy

−

∫∫
B̂R\{|y|<ε}

ψdiv
Ĥn(|y|1−α∇

ĤnP̃)dgdy

+

∫∫
B̂R∩{|y|<ε}

∇
ĤnP̃(g, y) · ∇

Ĥnψ(g, y)|y|1−αdgdy

=

∫∫
B̂R\{|y|<ε}

div
Ĥn(|y|1−αψ∇

ĤnP̃)dgdy

+

∫∫
B̂R∩{|y|<ε}

∇
ĤnP̃(g, y) · ∇

Ĥnψ(g, y)|y|1−αdgdy

=: I + II.

The term II goes to 0 as ε → 0+ due to |y|
1−α

2 |∇
ĤnP̃(g, y)| ∈ L2

loc(Ĥ
n)

Denote E = B̂R∩{|y| < ε}. Applying the divergence theorem on the Heisenberg
group (cf. Lemma 2.3) to the term I we have

I = −

∫
∂E

|y|1−αψ〈∇
ĤnP̃, ν〉d|∂E|

Ĥn

= −

∫∫
B̂R∩{|y|=ε}

ε1−αψ(g, ε)
∂P̃

∂y
(g, ε)dg

−

∫∫
∂B̂R∩{|y|<ε}

|y|1−αψ〈∇
Ĥn P̃, ν〉d|∂E|

Ĥn

= −

∫∫
B̂R∩{|y|=ε}

ε1−αψ(g, ε)
∂P̃

∂y
(g, ε)dg.

The inequality in (3.4) implies

|g|γ
Hnup(g) ≤ − lim

ε→0+
ε1−α ∂P

∂y
(g, ε),

thereby completing the proof of (3.5). �

Remark 3.2. By the above proof of Lemma 3.1, we conclude that, when ψ(g, y)
is the α-extension of ψ(g, 0), the inequality (3.5) is equivalent to∫

Hn

|g|γ
Hnup(g)ψ(g, 0) dg ≤

∫
Hn

(−ΔHn)
α
2 u(g)ψ(g, 0)dg,

whence implying that u ∈ Ḣ
α
2 (Hn) ∩ Lp+1(Hn, |g|γ

Hndg), where Ḣs(Hn) is defined

as the class of the functions u with the property that (−ΔHn)
s
2 u ∈ L2(Hn) (cf. [10]

and [13]).

Based on the above arguments we give the definition of a weak solution of (1.1).
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Definition 3.3. A function u defined on H
n is called a nonnegative weak

solution of (1.1) provided that u is a nonnegative function and its extension P

satisfies both |y|
1−α

2 |∇
ĤnP(g, y)| ∈ L2(Ĥn) and

(3.6)

∫
Hn

|g|γ
Hnup(g)φ(g, y)|y=0 dg ≤

∫∫
Ĥ

n
+

∇
ĤnP · ∇Ĥnφ y1−α dgdy,

for any compactly supported nonnegative function φ satisfying |y|
1−α

2 |∇
Ĥnφ(g, y)| ∈

L2(Ĥn).

4. Proof of Theorem 1.1

To verify Theorem 1.1, we still need two more lemmas.

Lemma 4.1. Let 1 < p <∞ and α ∈ (0, 2). If u ∈ Lp(Hn, |g|γ
Hndg), then

(4.1)

(∫∫
Ĥ

n
+

|P(g, y)|
(Q+2−α)p

Q+γ y1−α dgdy

) Q+γ
(Q+2−α)p

� ‖u‖Lp(Hn,|g|γ
Hndg)

for 0 ≤ γ < (p− 1)Q, where P(g, y) is given by (3.3).

Remark 4.2. If γ = 0, we can prove Lemma 4.1 by the well-known interpolation
theorem similar to the method in [31]. If γ �= 0 and assume that u is supported in
the set B(g, 2jr)\B(g, 2j−1r) for j > 1 and r > 0, we can translate this case into
the case of γ = 0 by scaling. For the general case, see Section 4 for the detail of its
proof.

Remark 4.3. If γ < 0, the inequality (4.1) isn’t valid. In fact, let u(g) =
χB(g0,1) for any g0 ∈ H

n with |g0|Hn ≥ 2. Then

|g|γ
Hn ≤ (|g0|Hn − 1)γ ∀ g ∈ B(g0, 1).

Then

‖ u ‖Lp(Hn,|g|γ
Hn dg)=

(∫
B(g0,1)

|g|γ
Hndg

) 1
p

� (|g0|Hn − 1)
γ
p → 0 as |g0|Hn →∞.

While for q =
(Q+2−α)p

Q+γ one has that(∫∫
Ĥ

n
+

|

∫
Hn

yαχB(g0,1)(h)

(|h−1g|2
Hn + y2)

Q+α
2

dh|qy1−α dgdy

) 1
q

�

(∫ ∞

0

∫
B(g0,1)

( ∫
B(g0,1)

yα

(2 + y)Q+α
dh
)q

y1−αdgdy

) 1
q

�

(∫ ∞
0

y1−α+αq

(2 + y)(Q+α)q
dy

) 1
q

�

(∫ ∞
1

1

(2 + y)(Q+α)q
dy

) 1
q

�
1

[(Q + α)q − 1]
1
q

3−(Q+α)+ 1
q .

Consequently, the inequality (4.1) doesn’t hold.
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Lemma 4.4. Assume that 1 < p < ∞ and α ∈ (0, 2). Let ϕ be a smooth

function in Ĥ
n
+ with the compact support supp(ϕ) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 in

an nonempty open subset of supp(φ). If u is a nonnegative weak solution to (1.1)
and P is its α-extension, then for any 0 < l � 1 and s � 1 there is a constant
Cs,Q > 0 depending on s and Q such that

∫
Hn

ϕs|y=0 |g|
γ
Hnup−ldg

≤ Cs,Q

(∫∫
Ĥ

n
+

Pp′−l′ϕs y1−αdgdy

) 1−l

p′−l′

(4.2)

×

(
l
− p′−l′

p′−1+l−l′

∫∫
Ĥ

n
+

|∇ϕ|
2p′−2l′

p′−1+l−l′ y1−αdgdy

) p′−1+l−l′

p′−l′

,

where

p′ =
(Q + 2− α)p

Q + γ
& l′ =

(Q + 2− α)l

Q + γ
& 0 ≤ γ < (p − 1)Q.

Proof. The nonnegativity of u implies that P is also nonnegative. Choose a
small number 0 < δ � 1, and let

Pδ = P + δ & ψ(g, y) = ϕ(g, y)sPδ(g, y)−l ,

where 0 < l � 1, s � 1. We firstly claim that the function ψ can be chosen as a
test function for (3.6). For j = 1, 2, · · · , 2n,

Xjψ = −lP−1−l
δ ϕsXjP + sP−l

δ ϕs−1Xjϕ

and

Y ψ = −lP−1−l
δ ϕsY P + sP−l

δ ϕs−1Y ϕ.

Consequently,

(4.3) ∇
Ĥnψ = −lP−1−l

δ ϕs∇
ĤnP + sP−l

δ ϕs−1∇
Ĥnϕ.

Clearly, ψ ∈ Lp+1(Ĥn). Since Pδ is uniformly away from 0, P−1
δ is uniformly

bounded from above, then for the fixed constants l > 0 and s > 1

|∇
Ĥnψ(g, y)|y

1−α
2 dgdy ∈ L2(Ĥn

+),
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which proves the claim. Hence, via (3.6), (4.3), the Hölder inequality and the Young
inequality we have

l

∫∫
Ĥ

n
+

P−1−l
δ ϕs|∇

ĤnP|
2 y1−αdgdy +

∫
Hn

ϕs|y=0|g|
γ
Hn(u + δ)p−l dg

≤ s

∫∫
Ĥ

n
+

P−l
δ ϕs−1(∇

ĤnP · ∇Ĥnϕ) y1−αdgdy

=

∫∫
Ĥ

n
+

(lP−1−l
δ ϕs)

1
2 (∇

ĤnP · ∇Ĥnϕ)sl−1/2P
1−l
2 ϕ

s
2−1 y1−αdgdy

≤

(
l
∫∫

Ĥ
n
+
P−1−l

δ ϕs|∇
ĤnP|2 y1−αdgdy

)1/2

(
s2l−1

∫∫
Ĥ

n
+
P1−l

δ ϕs−2|∇
Ĥnϕ|2 yαdgdy

)−1/2

≤
l

2

∫∫
Ĥ

n
+

P−1−l
δ ϕs|∇

ĤnP|
2 y1−αdgdy +

s2l−1

2

∫∫
Ĥ

n
+

P1−l
δ ϕs−2|∇

Ĥnϕ|2 y1−αdgdy.

By moving the first term in the right side to the left side we get

l

2

∫∫
Ĥ

n
+

P−1−l
δ ϕs|∇

ĤnP|
2 y1−αdgdy +

∫
Hn

ϕs|y=0|g|
γ
Hn(u + δ)p−l dg

≤
s2l−1

2

∫∫
Ĥ

n
+

P1−l
δ ϕs−2|∇

Ĥnϕ|2 y1−αdgdy.(4.4)

By the Hölder inequality again, the right side of (4.4) can be bounded by

2−1s2l−1

∫∫
Ĥ

n
+

P1−l
δ ϕs−2|∇

Ĥnϕ|2 y1−αdgdy

=

∫∫
Ĥ

n
+

P1−l
δ ϕ

1−l

p′−l′
s
(
2−1s2l−1ϕ

s−2− 1−l

p′−l′
s|∇

Ĥnϕ|2
)

y1−αdgdy

≤ ‖P1−l
δ ϕ

1−l

p′−l′
s‖Lp1 (Ĥn

+,y1−αdgdy)

× ‖2−1s2l−1ϕ
s−2− 1−l

p′−l′
s|∇

Ĥnϕ|2‖
Lp′1(Ĥn

+,y1−αdgdy)
,

(4.5)

where

p1 =
p′ − l′

1− l
.

And for s � 1 and 0 < l � 1, we have

ϕ
s−2− 1−t

p′−l′
s ≤ 1.

Hence, by using (4.4) and (4.5) we finally obtain∫
Hn

ϕs|y=0|g|
γ
Hn(u + δ)p−l dg

�

(∫∫
Ĥ

n
+

Pp′−l′

δ ϕs y1−αdgdy

) 1−l

p′−l′

×

(
l
− p′−l′

p′−1+l−l′

∫∫
Ĥ

n
+

|∇
Ĥnϕ|

2p′−2l′

p′−1+l−l′ y1−αdgdy

) p′−1+l−l′

p′−l′

.
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Letting δ → 0, we obtain (4.2), which arrives at the desired proof. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Firstly, we consider the case Q+γ
Q < p ≤ Q+γ

Q−α . As-

sume that u is a nonnegative weak solution to (1.1). Similar to the method in [31],
the next goal is to estimate the second factor of right side of (4.2) by selecting
a series of appropriate test functions. More precisely, for a large number R > 0
consider the following function

ϕ(g, y) =

⎧⎨⎩1, |(g, y)|
Ĥn < R,∣∣∣δ̂R−1 (g, y)

∣∣∣−l

Ĥn
, |(g, y)|

Ĥn ≥ R.

By the expression of the vector fields X′
js and Y we have

Xjϕ(g, y) = −
Rll

(|g|2
Hn + y2)

l
2+1

⎛⎝ xj(
∑2n

i=1 x2
i )[

(
∑2n

i=1 x2
i )

2 + t2
] 1

2

+
2xn+jt[

(
∑2n

i=1 x2
i )

2 + t2
] 1

2

⎞⎠
= −

Rll

|(g, y)|l+2

Ĥn
|g|2

Hn

(
xj|x|

2 + 2xn+jt
)
,

Xn+jϕ(g, y) = −
Rll

(|g|2
Hn + y2)

l
2+1

⎛⎝ xn+j(
∑2n

i=1 x2
i )[

(
∑2n

i=1 x2
i )

2 + t2
] 1

2

−
2xjt[

(
∑2n

i=1 x2
i )

2 + t2
] 1

2

⎞⎠
= −

Rll

|(g, y)|l+2

Ĥn
|g|2

Hn

(
xn+j|x|

2 − 2xjt
)

and

Y ϕ(g, y) = −
Rlly

(|g|2
Hn + y2)

l
2+1

= −
Rlly

|(g, y)|l+2

Ĥn

where j = 1, 2, · · · , n.

Then we can get

(4.6) |∇
Ĥnϕ| =

( 2n∑
j=1

(Xjϕ)2 + (Y ϕ)2
) 1

2 � Rll|(g, y)|−l−1

Ĥn
.

Since R is big enough, l = (lnR)−1 is sufficiently small. For any k ∈ Z+ we
define a cutoff function ηk by

ηk(g, y) =

⎧⎪⎨⎪⎩
1, 0 ≤ |(g, y)|

Ĥn ≤ kR;

2− |δ̂(kR)−1(g, y)|
Ĥn , kR ≤ |(g, y)|

Ĥn ≤ 2kR;

0, |(g, y)|
Ĥn ≥ 2kR.

In a similar manner to establish (4.6), we have

(4.7) |∇
Ĥnηk| � (kR)−1.

In what follows we consider the function

ϕk(g, y) = ϕ(g, y)ηk(g, y)

with ϕk(g, y) tending to ϕ(g, y) from below as k → ∞. It is easy to see that

∇
Ĥnϕk = ϕ∇

Ĥnηk + ηk∇Ĥnϕ.
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Thus, for any b ≥ 2 we have

(4.8) |∇
Ĥnϕk|

b � |ϕ∇
Ĥnηk|

b + |ηk∇Ĥnϕ|b.

Now we are in a position to estimate

Ik(b) :=

∫∫
Ĥ

n
+

|∇
Ĥnϕk|

by1−α dgdy,

where b = 2p′−2l′

p′−1+l−l′ . Denote by B̂kR = B̂((o, 0), kR) for any k ∈ Z+. Via (4.8) we

have

Ik(b) �

∫∫
Ĥ

n
+

ηb
k|∇Ĥnϕ|by1−α dgdy +

∫∫
Ĥ

n
+

ϕb|∇
Ĥnηk|

by1−α dgdy

�

∫∫
Ĥ

n
+\B̂R

|∇
Ĥnϕ|by1−αdgdy +

∫∫
(B̂2kR\B̂kR)∩Ĥ

n
+

ϕb|∇
Ĥnηk|

by1−α dgdy

= J1 + J2.

(4.9)

At first, by (4.7) we get

J2 �(kR)−b

∫
(B̂2kR\B̂kR)∩Ĥ

n
+

ϕby1−α dgdy

�(kR)−b

⎛⎝ sup
(B̂2kR\B̂kR)∩Ĥ

n
+

ϕb

⎞⎠∫
B(o,2kR)

∫ 2kR

0

y1−αdydg

�(kR)−b

(
kR

R

)−bl

(kR)2−α(2kR)Q

≈kQ+2−α−b−blRQ+2−α−b.

(4.10)

Secondly, using the polar coordinate formula on the Heisenberg group and (4.6), we
obtain

J1 �

∫
|g|>R

∫ ∞

0

|∇
Ĥnϕ|by1−α dgdy +

∫
Hn

∫ ∞

R

|∇
Ĥnϕ|by1−α dgdy

�Rbllb
∫
|g|> R

2

∫ ∞

0

|(g, y)|−bl−b

Ĥn
y1−α dgdy + Rbllb

∫
Hn

∫ ∞
R
2

|(g, y)|−bl−b

Ĥn
y1−α dgdy

�Rbllb
∫ ∞

0

(
R

2
+ y)−b−bl+Qy1−αdy + Rbllb

∫ ∞

R
2

y−b−bl+Q+1−αdy

≈lbRQ+2−b−α if b + bl > Q + 2− α.

(4.11)

By (4.10), (4.11) and (4.9) we get

Ik(b) � kQ+2−α−b−blRQ+2−α−b + lbRQ+2−α−b.

Consequently,

(4.12) Ik(b) � k−bl + lb under b ≥ Q + 2− α.

Here it should be noted that Ik(b) is uniformly bounded in R and k.
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Now, it follows from (4.2) and (4.12) that

∫
Hn

ϕs
kup−l |g|γ

Hndg �

(
l
− p′−l′

p′−1+l−l′ [k−bl + lb]

)p′−1+l−l′

p′−l′

(∫∫
Ĥ

n
+
Pp′−l′ϕs

k y1−αdgdy
)− 1−l

p′−l′

.

Upon taking k →∞ in the above, we gain

(4.13)

∫
Hn

ϕsup−l |g|γ
Hndg � l

(∫∫
Ĥ

n
+

Pp′−l′ϕs y1−αdgdy

) 1−l

p′−l′

.

Note that

u ∈ Lp+1(Hn, |g|γ
Hndg) ⇒ P ∈ L

(p+1)(Q+2−α)
Q+γ (Ĥn

+, y1−αdgdy)

(due to Lemma 4.1) and that the integral of right side of (4.13) is uniformly bounded
in l. So, by letting l → 0+, we have∫

Hn

ϕsup |g|γ
Hndg = lim

l→0+

∫
Hn

ϕsup−l |g|γ
Hndg

≤ lim
l→0+

l

(∫∫
Ĥ

n
+

Pp′−l′ϕs y1−αdgdy

) 1−l

p′−l′

= 0,

whence reaching u = 0 provided b + bl > Q + 2− α.
Also, note that

b =
2(p′ − l′)

p′ − 1 + l− l′
.

Thus, choosing l to be sufficiently small, we get

b + bl =
2(p′ − l′)

p′ − 1 + l− l′
+

2l(p′ − l′)

p′ − 1 + l − l′
>

2p′

p′ − 1
.

Because
2p′

p′ − 1
≥ Q + 2− α, i.e., (Q − α)p′ ≤ Q + 2− α,

and

p′ =
p(Q + 2− α)

Q + γ
,

we have
p(Q + 2− α)(Q − α)

Q + γ
≤ Q + 2− α, i.e.,

p(Q− α)

Q + γ
≤ 1.

Moreover, Lemma 4.1 implies p > Q+γ
Q .

Secondly, we prove the existence of a positive solution of (1.1) when p > Q+γ
Q−α

.

The main method is to perturb the fundamental solution Rα(g) by the following
smooth cut-off function:

ρ(g) =

⎧⎪⎨⎪⎩
1, |g|Hn ≤ 1;

smooth and radially decreasing, 1 ≤ |g|Hn ≤ 2;

0, |g|Hn ≥ 2.

For 0 < δ < Q− α, define uδ by

uδ(g) = ρ ∗Rδ+α(g) ∀ g ∈ H
n.
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In what follows we show that uδ satisfies the inequality (1.1) under p > Q+γ
Q−α when

|g|Hn ≥ 4. By Lemma 2.1 we see

Rδ+α(g) ≈ |g|δ+α−Q
Hn .

For any g, h ∈ H
n with |g|Hn ≥ 4 and |h|Hn ≤ 2, it is easy to see that |h−1g|Hn ≈

|g|Hn, and so

|h−1g|α+δ−Q
Hn ≈ |g|α+δ−Q

Hn & uδ(g) =

∫
|h|Hn≤2

ρ(h)Rδ+α(h−1g)dh ≈ |g|α+δ−Q
Hn .

Then, for any g ∈ H
n with |g|Hn ≥ 4 one has

(4.14) |g|γ
Hnup

δ(g) ≈ |g|αp+δp+γ−Qp
Hn .

By Lemma 2.1 again we get

(−ΔHn)
α
2 uδ(g) = (−ΔHn)

α
2 (ρ ∗Rδ(g) ∗Rα(g)) = ρ ∗Rδ(g).

Similarly, we obtain that

(4.15) (−ΔHn)
α
2 uδ(g) ≈ |g|δ−Q

Hn

holds for all g ∈ H
n with |g|Hn ≥ 4. If p > Q+γ

Q−α , then there exists a sufficiently

small constant δ such that (Q−α−δ)p > Q−δ+γ. By using this inequality, (4.14)
and (4.15) we conclude that for all g ∈ H

n with |g|Hn ≥ 4,

up
δ(g) ≤ (−ΔHn)

α
2 uδ(g).

Finally, let

m = max

⎧⎪⎨⎪⎩
max
|g|Hn≤4

|g|γ
Hnup

δ(g)

min
|g|Hn≤4

(−ΔHn)
α
2 uδ(g)

, 1

⎫⎪⎬⎪⎭ .

The previous arguments imply that uδ solves the inequality

|g|γ
Hnup ≤ m(−ΔHn)

α
2 u in H

n.

Therefore, u = m
1

1−p uδ is the positive solution to (1.1) in H
n, whence completing

the proof. �

5. Proof of Lemma 4.1

Before proving Lemma 4.1, we recall the dyadic decomposition of homogeneous
space, which is valid on the Heisenberg and Carnot groups (cf. [7] and [21]).

Lemma 5.1. Let X be a homogeneous space equipped with a quasi-metric d
and a doubling measure μ. There exists λ > 1 so that for any (large negative)
integer m ∈ Z, there exist points {gk

j } in X and a family Dm = {Ek
j } of sets for

k = m, m + 1, · · · and j = 1, 2, · · · such that
(i) B(gk

j , λk) ⊆ Ek
j ⊆ B(gk

j , λk+1),

(ii) For each k = m, m +1, · · · , X =
⋃

j Ek
j and {Ek

j } is pairwise disjoint in j,

(iii) If k < l then either Ek
j

⋂
El

j = ∅ or Ek
j ⊆ El

j.
The family D =

⋃
m∈Z

Dm is called a dyadic cube decomposition of X and the

sets in D are called dyadic cubes. If Q̃ = Ek
j ∈ Dm for some m ∈ Z, we say Q̃ is

centered at gk
j and define the sidelength of Q̃ to be l(Q̃) = 2λk. We also denote by

Q̃∗ the containing ball B(gk
j , λk+1) of Q̃.



NONNEGATIVE SOLUTIONS OF A SUB-LAPLACIAN DIFFERENTIAL INEQUALITY 395

Moreover, the following is valid for the homogeneous spaces (cf. [9]).

Lemma 5.2. (Covering Lemma). If {B} is a family of balls with bounded radii
in a homogeneous space X , then there is a countable pairwise disjoint subfamily
{Bi} of balls so that each ball in {B} is contained in one of the balls θBi, where
θ = κ(3κ + 2) and κ is the constant in the quasi-triangle inequality for the quasi-
metric in the homogeneous space X .

It should be noted that κ = 1 whenever X = H
n or X = Ĥ

n
+.

Proof of Lemma 4.1. Via modifying the argument in [22], we prove Lemma
4.1 according to three steps. But, at first, we are required to introduce some nota-

tions. For a measure μ on Ĥ
n
+ we denote | Ê |μ the measure of a measurable set Ê in

Ĥ
n
+. For a ball B in H

n or a ball B̂ in Ĥ
n
+ denote by r(B) or r(B̂) the corresponding

radii, respectively. We introduce a measure σ on H
n with dσ(g) = |g|

− γ
p−1

Hn dg and a

measure ω on Ĥ
n
+ with dω(g, y) = y1−α+αqdgdy. Denote by dσ̂(g, y) = δ0(y)dσ(g),

where δ0(g) is the Dirac delta function. Let K be the kernel on Ĥ
n
+ × Ĥ

n
+ which is

defined by

(5.1) K((g, y), (h, y′)) =
1

(|h−1g|2
Hn + (y − y′)2)

Q+α
2

.

For (g, y) ∈ Ĥ
n
+ set

T φ̂(g, y) =

∫
Ĥ

n
+

K((g, y), (h, y′))φ̂(h, y′) dσ̂(h, y′)

=

∫
Hn

φ(h)

(|h−1g|2
Hn + y2)

Q+α
2

|h|
− γ

p−1

Hn dh,

where φ̂(h, 0) = φ(h) is a function defined on H
n. Let

T ∗ψ̂(g, y) =

∫
Ĥ

n
+

K((g, y), (h, y′))ψ̂(h, y′) dω(h, y′), (g, y) ∈ Ĥ
n
+,

where ψ̂ is a function defined on Ĥ
n
+. The next goal is to verify

(5.2)

(∫
Ĥ

n
+

|T φ̂(g, y)|qdω

) 1
q

�

(∫
Ĥ

n
+

|φ̂|pdσ̂

) 1
p

where q =
(Q + 2− α)p

Q + γ
.

Here, it should be mentioned that (4.1) can be obtained by choosing φ̂(g, 0) =

u(g)|g|
γ

p−1

Hn in (5.2).

Step 1: For p > Q+γ
Q and q = (Q+2−α)p

Q+γ , we need to show that the weak type

inequality

sup
ρ

ρ | {(g, y) ∈ Ĥ
n
+ : T ∗ψ̂(g, y) > ρ} |

1
p′

σ �

(∫
Ĥ

n
+

ψ̂(g, y)q′dω(g, y)

) 1
q′

holds for ψ̂ ≥ 0, where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.

Without loss of generality, we may assume that ψ̂ is nonnegative and bounded

with support in some ball. For ρ > 0, we denote Ω̂ρ = {(g, y) ∈ Ĥ
n
+ : T ∗ψ̂(g, y) > ρ}.

Let D̂ be a dyadic decomposition of Ĥ
n
+ (cf. Lemma 5.1) and let D̂Ωρ

denote the
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dyadic cubes ˆ̃Q ∈ D̂ with the property that R ˆ̃Q∗ ⊆ Ω̂ρ for a fixed constant R

which can be chosen later. For each m ∈ Z, we denote D̂ρ,m = D̂Ωρ

⋂
D̂m and

Ω̂ρ,m =
⋃

ˆ̃
Q∈D̂ρ,m

Q̃, where D̂m can be similarly constructed as Lemma 5.1.

Let A > 1 be a constant which will be chosen later. It is easy to check that
Ω̂ρ ⊆ Ω̂ ρ

A
and Ω̂ρ,m ⊆ Ω̂ ρ

A
,m for all m ∈ Z. Following from [20] and [21], we

conclude that the following covering property of Whitney-type for Ω̂ ρ
A

,m is also
valid: there exists a constant R, independent of ρ, m and A, such that the sequence

of maximal (with respect to inclusion) dyadic cubes { ˆ̃Qj} in D̂ ρ
A

,m satisfies:

a. Ω̂ ρ
A

,m =
⋃

j
ˆ̃
Qj and

ˆ̃
Qi

⋂ ˆ̃
Qj = ∅ for i �= j;

b. R ˆ̃Q∗j ⊆ D̂ ρ
A

,m and 2Rλ ˆ̃Q∗j
⋂

Ω̂c
ρ
A
�= ∅ for all j;

c.
∑

j χ
30

ˆ̃
Q∗j

� χΩ̂ ρ
A

.

In what follows we need to show that there is a positive constant C, independent
of f, ρ, m, j and A, so that

(5.3) T ∗(χ
(2 ˆ̃Q

∗

j )c
ψ̂)(g, y) ≤ C

( ρ

A

)
, (g, y) ∈ ˆ̃

Qj .

In fact, for (g, y) ∈ ˆ̃
Qj , (h′, y′) ∈ (2

ˆ̃
Q∗j)

c and (g′, z) ∈ 2Rλ
ˆ̃
Q∗j
⋂

Ω̂c
ρ
A

, we have

d̂((g′, z), (h′, y′)) � d̂((g, y), (h′, y′)).

so

T ∗(χ
(2

ˆ̃
Q
∗

j )c
ψ̂)(g, y) � T ∗(χ

(2
ˆ̃
Q
∗

j )c
ψ̂)(g′, z) ≤ C

( ρ

A

)
.

Upon choosing A = 2C with C as in (5.3), we get that if (g, y) ∈ ˆ̃Qj

⋂
Ω̂ρ,m then

(5.4)

∫
2 ˆ̃Q
∗

j

K((g, y), (h, y′))
dω(h, y′)(
ψ̂(h, y′)

)−1 = T ψ̂(g, y) − T ∗(χ
(2

ˆ̃
Q
∗

j )c
ψ̂)(g, y) >

ρ

2
.

Denote by supp(σ̂) the support of the measure σ̂. Let

j & (g, y) ∈ ˆ̃
Qj

⋂
Ω̂ρ,m

⋂
supp(σ̂)

be temporarily fixed. Choose a decreasing sequence of balls B̂0
j ⊇ B̂1

j ⊇ B̂2
j ⊇ · · ·

such that B̂0
j = B̂((g, y), 4r( ˆ̃Q

∗

j )), and{
B̂k

j = B̂((g, y), 2−kr(B̂0
j )) if B̂k

j

⋂
supp(σ̂) �= ∅;

B̂k
j = ∅ if B̂k

j

⋂
supp(σ̂) = ∅.

Therefore, B̂k
j

⋂
suppσ̂ �= ∅ and B̂k

j

⋂
suppω̂ �= ∅ if B̂k

j �= ∅. Note that

2 ˆ̃Q
∗

j ⊆ B̂0
j ⊆ 6 ˆ̃Q

∗

j

and
1

2
r(B̂k

j ) ≤ d̂((g, y), (g′, y′)) ≤ r(B̂k
j ) for (g′, y′) ∈ B̂k

j \B̂
k+1
j if B̂k

j �= ∅.

So, via (5.1) we get∫
B̂0

j

K((g, y), (g′, y′))ψ̂(g′, y′) dω(g′, y′) �
∑

k:B̂k
j 	=∅

∫
B̂k

j \B̂
k+1
j

ψ̂(g′, y′) dω(g′, y′)

(r(B̂k
j ))Q+α

.
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Next we select a subsequence {B̂i = B̂ki

j } of {B̂k
j } satisfying the following properties:

d. B̂0 = B̂0
j ;

e. | 5B̂i+1 |σ̂< 1
2 | 5B̂i |σ̂;

f. | 5B̂k
j |σ̂≥

1
2 | 5B̂i |σ̂, if B̂′i ⊆ B̂k

j ⊆ B̂i for i = 1, 2, · · · , where B̂′i = B̂
ki+1−1
j .

Then

1

r(B̂k
j )Q+α

� min{
1

r(B̂′i)
Q+α

, K((g, y), (g′, y′))}

holds for all (g′, y′) ∈ B̂k
j and all k with B̂′i ⊆ B̂k

j ⊆ B̂i. Hence,

∑
k:B̂′

i
⊆B̂k

j
⊆B̂i

1

r(B̂k
j )Q+α

χB̂k
j
\B̂k+1

j
(g′, y′)

� min{
1

r(B̂′i)
Q+α

, K((g, y), (g′, y′))}
∑

k:B̂′
i
⊆B̂k

j
⊆B̂i

χB̂k
j \B̂

k+1
j

(g′, y′)

� min{
1

r(B̂′i)
Q+α

, K((g, y), (g′, y′))}χB̂i
(g′, y′).

Since p < q and q′ < p′, via (5.4) we have

ρ
∑

i

(
|5B̂i|σ̂

|5B̂0|σ̂

) 1
q′
− 1

p′

≤ ρ
∑

i

(
1

2i

) 1
q′
− 1

p′

�

∫
2 ˆ̃Q
∗

j

K((g, y), (g′, y′))ψ̂(g′, y′) dω(g′, y′)

�

∫
B̂0

j

K((g, y), (g′, y′))ψ̂(g′, y′) dω(g′, y′)

�
∑

i

∑
k:B̂′

i
⊆B̂k

j
⊆B̂i

1

r(B̂k
j )Q+α

∫
B̂k

j \B̂
k+1
j

ψ̂(g′, y′) dω(g′, y′)

�
∑

i

∫
Ĥ

n
+

⎛⎜⎝ ∑
k:B̂′

i
⊆B̂k

j
⊆B̂i

1

r(B̂k
j )Q+α

χB̂k
j \B̂

k+1
j

(g′, y′)

⎞⎟⎠ ψ̂(g′, y′)dω(g′, y′)

�
∑

i

∫
B̂i

min{
1

r(B̂′i)
Q+α

, K((g, y), (g′, y′))}ψ̂(g′, y′)dω(g′, y′).

Therefore, there exists i0 such that
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ρ

(
|5B̂i0|σ̂

|5B̂0|σ̂

) 1
q′
− 1

p′

�

∫
B̂i0

min{
1

r(B̂′i0)
Q+α

, K((g, y), (g, y′))}ψ̂(g′, y′)dω(g′, y′)

�

(∫
Ĥ

n
+

min{
1

r(B̂′i0 )
Q+α

, K((g, y), (g′, y′))}qdω(g′, y′)

) 1
q

×

(∫
B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�
[( ∫

2B̂′
i0

min{
1

r(B̂′i0)
Q+α

, K((g, y), (g′, y′))}qdω(g′, y′)
) 1

q

+
( ∫

(2B̂′i0
)
c
min{

1

r(B̂′i0)
Q+α

, K((g, y), (g′, y′))}qdω(g′, y′)
) 1

q
]

×

(∫
B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�
[( ∫

2B̂′
i0

1

r(B̂′i0 )
(Q+α)q

y′1−α+αqdg′dy′
) 1

q

+
( ∫

(2B̂′i0
)
c

1

d̂((g, y), (g′, y′))(Q+α)q
y′1−α+αqdg′dy′

) 1
q
]

×

(∫
B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�
[
r(B̂′i0 )

−Q+ Q+2−α
q +

∞∑
j=1

( ∫
d̂((g,y),(g′,y′))<2j+1r(B̂′i0

)
y′1−α+αqdg′dy′

) 1
q

(2jr(B̂′i0 ))
(Q+α)q

]

×

(∫
B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�
[
r(B̂′i0 )

−Q+ Q+2−α
q

+
( ∞∑

j=1

(2jr(B̂′i0 ))
−(Q+α)q+Q+2−α+αq

) 1
q
](∫

B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�| 5B̂′i0 |
− 1

p′

σ̂

(∫
B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�| 5B̂i0 |
− 1

p′

σ̂

(∫
B̂i0

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

,
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where we have used the fact that⎧⎪⎪⎨⎪⎪⎩
| 5B̂′i0 |

1
p′

σ̂ =
∫

θB′
i0

|g|
− γ

p−1

Hn dg � r(B̂′i0 )
Q

p′
− γ

p ;

| 5B̂′i0 |σ̂≥
1
2 | 5B̂i0 |σ̂;

B̂i0 ⊆ B̂0 = B̂0
j ⊆ 6

ˆ̃
Q∗j .

Moreover, γ < (p−1)Q ensures that Q(1−q)+2−α < 0 and p > Q+γ
Q . Subsequently,

we have shown that for any (g, y) ∈ ˆ̃Qj

⋂
Ω̂ρ,m

⋂
supp(σ̂), there is a ball B̂(g,y) ⊆

6 ˆ̃Q∗j with center (g, y) such that

ρq′ | 5B̂(g,y) |σ̂�| 30 ˆ̃Q∗j |
1−q′

p′

σ̂

∫
B̂(g,y)

ψ̂(g′, y′)q′dω(g′, y′).

Via the covering lemma (cf. Lemma 5.2), there exists a pairwise disjoint sequence

{B̂i
j} of balls in the family {B̂(g,y) : (g, y) ∈ ˆ̃Qj

⋂
Ω̂ρ,m

⋂
supp(σ̂)} such that

ˆ̃
Qj

⋂
Ω̂ρ,m

⋂
supp(σ̂) ⊆

⋃
i B̂i

j . Therefore, | Ĥ
n
+\supp(σ̂) |σ̂= 0 and 5B̂0

j ⊆ 30
ˆ̃
Q∗j

imply

ρp′ | ˆ̃Qj

⋂
Ω̂ρ,m |σ̂ ≤ ρp′

∑
i

|5B̂i
j|σ̂

� ρp′−q′ | 30 ˆ̃Q∗j |
1−q′

p′

σ̂

∑
i

∫
B̂i

j

ψ̂(g′, y′)q′dω(g′, y′)

� ρp′−q′ | 30 ˆ̃Q∗j |
1−q′

p′

σ̂

∫
η ˆ̃Q∗j

ψ̂(g′, y′)q′dω(g′, y′).

By summing this inequality over the family of all maximal cubes ˆ̃Qj in D̂ ρ
A

,m

and noting both Ω̂ρ ⊆ Ω̂ ρ
A

and q′ < p′, we obtain

ρp′ | Ω̂ρ,m |σ̂ �
∑

j

ρp′−q′ | 30 ˆ̃Q∗j |
1−q′

p′

σ̂

∫
30 ˆ̃Q∗

j

ψ̂(g′, y′)q′dω(g′, y′)

� ρp′−q′

⎛⎝∑
j

| 30 ˆ̃Q∗j |σ̂

⎞⎠1− q′

p′

⎛⎜⎝∑
j

(∫
30 ˆ̃Q∗

j

ψ̂(g′, y′)q′dω(g′, y′)

) p′

q′

⎞⎟⎠
q′

p′

�
(
ρp′ | Ω̂ ρ

A
|σ̂
)1− q′

p′

∫
Ĥ

n
+

ψ̂(g′, y′)q′dω(g′, y′),

where we have utilized the properties (a) and (c) of the family of maximal cubes
ˆ̃Qj in Ω̂ ρ

A
,m in the last step. Thus, letting m → ∞ and taking the supremum in ρ

for 0 < ρ < N , we conclude that there exists a constant C independent of N such
that

sup
0<ρ<N

ρp′ | Ω̂ρ |σ̂≤ C

(
sup

0<ρ<N
ρp′ | Ω̂ρ |σ̂

)1− q′

p′
∫

Ĥ
n
+

ψ̂(g′, y′)q′dω(g′, y′).
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If sup0<ρ<N ρp′ | Ω̂ρ |σ̂ is finite, we can derive the desired weak type inequality

by dividing both sides of the above inequality by
(
sup0<ρ<N ρp′ | Ω̂ρ |σ̂

)1− q′

p′

and

taking N → ∞. Let B̂ be the ball containing the support of ψ̂. Fix the constant

κ > 1. It is obvious that ρp′ | κB̂ |σ̂≤ Np′ | κB̂ |σ̂< ∞, provided N > ρ. In what
follows we only need to show that

(5.5) sup
ρ>0

ρp′ | Ω̂ρ\κB̂ |σ̂≤

(∫
Ĥ

n
+

ψ̂(g′, y′)q′dω(g′, y′)

) p′

q′

,

thereby implying supρ>0 ρp′ | Ω̂ρ\κB̂ |σ̂< ∞. Given a constant β > 1. When

(g, y) ∈ Ω̂ρ\κB̂, upon setting

D̂(g,y) = B̂((g, y)B̂ , βd̂((g, y), (g, y)B̂ )),

where (g, y)B̂ is the center of B̂, one has (g, y) ∈ D̂(g,y) due to

B̂ ⊆ D̂(g,y) & d̂((g, y), (g, y)B̂ ) ≥ κr(B̂).

If (g′, y′) ∈ B̂, then

d̂((g, y), (g, y)B̂ ) ≤ d̂((g, y), (g′, y′)) + κ−1d̂((g, y), (g, y)B̂ ),

and hence

d̂((g, y), (g′, y′)) ≥ (1 − κ−1)d̂((g, y), (g, y)B̂ ) = (1− κ−1)β−1r(D̂(g,y)).

Consequently, one has

K((g, y), (g′, y′)) �
1

[r(D̂(g,y))]Q+α
.

Since

| D̂(g,y) |
1
q
ω=

(∫
D̂(g,y)

y1−α+αqdydg

) 1
q

≈ r(D̂(g,y))
Q+2−α

q
+α

and

| D̂(g,y) |
1
p′

σ̂ � r(D̂(g,y))
Q

p′
− γ

p ,

one finds
1

[r(D̂(g,y))]Q+α
| D̂(g,y) |

1
q
ω | D̂(g,y) |

1
p′

σ̂ � 1.

Utilizing both Hölder’s inequality and B̂ ⊆ D̂(g,y) gives

ρ ≤ T ∗ψ̂(g, y)

=

∫
B̂

K((g, y), (g′, y′))ψ̂(g′, y′)dω(g′, y′)

�
1

[r(D̂(g,y))]Q+α
| D̂(g,y) |

1
q
ω

(∫
B̂

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

�| D̂(g,y) |
− 1

p′

σ̂

(∫
B̂

ψ̂(g′, y′)q′dω(g′, y′)

) 1
q′

,
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whence

(5.6) ρp′ | D̂(g,y) |σ̂�

(∫
B̂

ψ̂(g′, y′)q′dω(g′, y′)

)p′

q′

.

Because Ω̂ρ\κB̂ ⊆
⋃

D̂(g,y) and D̂(g,y)’s are all balls with common center, via (5.6)
and the monotone convergence theorem we immediately have

ρp′ | Ω̂ρ\κB̂ |σ̂≤

(∫
B̂

ψ̂(g′, y′)q′dω(g′, y′)

) p′

q′

,

whence (5.5).

Step 2: We show that T is of restricted type (p, q), namely, is, for Q+γ
Q < p <

q <∞, one has

(5.7)

(∫
Ĥ

n
+

T (χÊ)(g, y)qdω(g, y)

) 1
q

�

(∫
Ĥ

n
+

χÊdσ̂(g, y)

) 1
p

for all measurable set Ê in Ĥ
n
+. Without loss of generality, we may assume that the

measurable set Ê has finite measure. Let φ̂ be a nonnegative function on Ĥ
n
+ such

that ‖ φ̂ ‖Lq′(ω)≤ 1.∫
Ĥ

n
+

T (χÊ)(g, y)φ̂(g, y)dω(g, y)

=

∫
Ê

T ∗(φ̂)(g′, y′)dσ̂(g′, y′)

=

∫ ∞
0

| Ê
⋂
{(g′, y′) ∈ Ĥ

n
+ : T ∗(φ̂)(g′, y′) > ρ |σ̂ dρ

≤

∫ ∞
0

min{| Ê |σ̂, | {(g′, y′) ∈ Ĥ
n
+ : T ∗(φ̂)(g′, y′) > ρ |σ̂}dρ

�

∫ ∞
0

min{| Ê |σ̂,
‖ φ̂ ‖p′

Lq′(ω)

ρp′
}dρ

�| Ê |
1
p

σ̂ .

By taking the supremum over all such φ̂, we conclude that (5.7) is valid.
Step 3: In what follows we consider the strong type (p, q) estimate for P(g, y).

Define the operator P as

P(φdσ)(g, y) = CαyαT φ̂(g, y)

= Cαyα

∫
Hn

φ(h)

(|h−1g|2
Hn + y2)

Q+α
2

|h|
− γ

p−1

Hn dh ∀ (g, y) ∈ Ĥ
n
+,

where φ̂(g, 0) = φ(g). For any measurable set E ⊆ H
n, let Ê = {(g, y) ∈ Ĥ

n
+ : g ∈

E, y ∈ T}, where T is a measurable set in [0,∞). Note that χÊ(g, 0) = χE(g). By
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(5.7) we have(∫
Ĥ

n
+

P(χEdσ)(g, y)qy1−αdgdy

) 1
q

=

(∫
Ĥ

n
+

T (χÊ)(g, y)qdω(g, y)

) 1
q

�

(∫
Ĥ

n
+

χÊdσ̂(g, y)

) 1
p

�

(∫
Hn

χEdσ(g)

) 1
p

.

Furthermore, we prove that the operator P can be uniquely extended to be a

bounded linear operator from Lp(dσ) into Lq(Ĥn
+, y1−αdgdy). In fact, let φ =∑N

j=1 ajχEj
, where a1 > a2 > · · · > aN > 0, Ej, j = 1, · · · , N, are mutually

disjoint and |Ej|σ < ∞ for j = 1, · · · , N . Let Fj = E1

⋃
· · ·
⋃

Ej, B0 = 0 and

Bj = |Fj|σ for j ≥ 1. Rewrite φ as φ =
∑N

j=1(aj − aj+1)χFj
, where aN+1=0. Then

‖ P(φdσ) ‖Lq(Ĥn
+,y1−αdgdy) ≤

N∑
j=1

(aj − aj+1) ‖ P(χFj
dσ) ‖Lq(Ĥn

+,y1−αdgdy)

�‖ φ ‖Lp,1(Hn,dσ),

where Lp,1(Hn, dσ) is the Lorentz space (cf. Section 1.4 in [15]). Since simple
functions are dense in Lp,1(Hn, dσ) and Lp,1(Hn, dσ) ↪→ Lp(Hn, dσ) for p > 1, we
have

‖ P(φdσ) ‖Lq(Ĥn
+,y1−αdgdy)�‖ φ ‖Lp(Hn,dσ) ∀ φ ∈ Lp(Hn, dσ).

Furthermore, utilizing u(g) = φ(g)|g|
γ

p−1

Hn in the above inequality, we obtain

‖ P(u) ‖Lq(Ĥn
+,y1−αdgdy)�‖ u ‖Lp(Hn,|g|γ

Hn ),

whence completing the proof of (4.1).
�
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[19] S.I. Pohozaev and L. Véron, Nonexistence results of solutions of semilinear differential in-

equalities on the Heisenberg group, Manuscripta Math. 102(2000), 85-99.
[20] E.T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson

integrals, Trans. Amer. Math. Soc. 308(1988), 533-545.
[21] E.T. Sawyer and R.L. Wheeden, Weighted inequalities for fractional integrals on Euclidean

and homogeneous spaces, Amer. J. Math. 114(1992), 813-874.
[22] E.T. Sawyer, R.L. Wheeden and S. Zhao, Weighted norm inequalities for operators of potential

type and fractional maximal functions, Potential Anal. 5(1996), 523-580.
[23] J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear

elliptic equations and inequalities, Acta Math. 189(2002), 79-142.
[24] E.M. Stein, Harmonic analysis: real-variable method, orthogonality, and oscillatory integrals,

Princeton Univ. Press, Princeton, N.J., 1993.
[25] P. R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional

operators, Comm. Partial Diff. Equ. 35(2010), 2092-2122.
[26] Y. Sun, Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian

manifolds, J. Math. Anal. Appl. 419(2014), 643-661.
[27] Y. Sun, On nonexistence of positive solutions of quasi-linear inequality on Riemannian man-

ifolds, Proc. Amer. Math. Soc.143(2015)2969-2984.
[28] Y. Sun, On the uniqueness of nonegative solutions of differential inequalities with gradient

terms on Riemannian manifolds, Preprint, 2014.
[29] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups,

Cambridge Univ. Press, Cambridge, UK, 1992.
[30] Y. Wang and J. Xiao, A constructive approach to positive solutions of Δpu+f(u,∇u) ≤ 0 on

Riemannian manifolds, Ann. I.H.P. Analyse non linéaire, doi:10.1016/j.anihpc.2015.06.003.
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