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Abstract. Asymptotic random dynamics of weak solutions for a damped sto-

chastic wave equation with the nonlinearity of arbitrarily large exponent and
the additive noise on Rn is investigated. The existence of a pullback ran-

dom attractor is proved in a parameter region with a breakthrough in proving
the pullback asymptotic compactness of the cocycle with the quasi-trajectories

defined on the integrable function space of arbitrary exponent and on an un-
bounded domain of arbitrary space dimension.
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1. Introduction

In this paper, we study the asymptotic dynamics of solutions of a damped
stochastic wave equation with nonlinearity of arbitrarily large exponent and additive
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noise defined on the entire Euclidean space R
n of arbitry dimension,

utt − Δu + βut + f(x, u) + αu = g(x) + ε

m∑
j=1

hj(x)
dWj

dt
,(1.1)

for t ≥ τ , with the initial condition

u(x, τ) = u0(x), ut(x, τ) = u1(x),(1.2)

where α, β and ε are positive constants, g and hj (j = 1, 2, · · · , m) are given func-
tions defined on R

n, βut is a damping term, f(x, u) is a nonlinear interaction func-
tion satisfying some dissipative conditions, and {Wj}m

j=1 are independent, two-sided,
real-valued Wiener processes on a probability space which will be specified later.

Asymptotic dynamics of solutions for deterministic nonlinear wave equations
and nonlinear hyperbolic evolutionary equations with linear or nonlinear or local-
ized damping terms have been studied in last three decades by many authors, e.g.
[2]-[4], [8]-[11], [20]-[24], [26]-[27], [30, 31], [33]-[34], [37, 40]. The established
results naturally focus on the existence of global attractors by showing the ab-
sorbing property and the asymptotic compactness of the solution semigroups for
autonomous system [4, 22, 34, 40] or the skew-product flow for nonautonomous
system [10, 11, 27].

For stochastic wave equations, the solution mapping defines a random dynam-
ical system or called a cocycle, which is defined on a state space with a parametric
base space. Pullback random attractor (which is simply called random attractor)
is the appropriate object for describing the asymptotic random dynamics [5]-[6],
[12]-[17], [19, 25, 29, 32, 38]. The topics of random attractors for stochastic
damped wave equations have been studied by several authors [12, 15, 18, 19,

28, 29, 32, 36, 38, 39]. In regard to stochastic nonlinear wave equations driven
by additive noise, the existence of the random attractor has been established for
bounded domains [15, 19, 29, 32, 39] and with the critical exponents on the un-
bounded domain R

3 recently in [35]. However, the existence problem of random
attractors remains open for the stochastic wave equations with a nonlinearity of ar-

bitrarily large exponents and on the unbounded domain R
n with arbitrary dimension

n. This is the topic as well as the main contribution in this work.
In case of high growth-order nonlinearity and high dimensional unbounded do-

main, the issue of pullback asymptotic compactness for a random dynamical system
becomes much more difficult to handle due to not only the lack of compactness of the
Sobolev embeddings but also the necessarily involved high-order integrable function
spaces, in addition to the cumbersome effect by the additive noise. In this work we
shall resolve this challenging problem and accomplish the proof of random attractor
by means of

1) the uniform estimates for absorbing property and norm-smallness of solutions
outside a large ball;

2) the grouping esimates of the extended energy functional for the compactness
in the space H1(Rn) × L2(Rn);

3) the convergence criterion of Vitali type proved in Theorem 5.1 for the function
space Lp(Rn) with an arbitrary exponent and arbitrary space dimension n,

to circumvent the crucial difficulties.
The new insight of this work is a new approach to apply the Vitali-type con-

vergence criterion initially proved in this paper for the function space Lp(Rn) com-
bined with the grouping uniform estimates in the energy Hilbert space and the
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bootstrap method to directly prove the pullback asymptotic compactness for the
quasi-trajectories of random dynamical systems. This new approach will provide
great potential applications to many other stochastic PDEs and much further fields,
which will no longer be barricaded by high growth nonlinearity and high space di-
mension of any unbounded domain.

In Section 2, we recall basic concepts and results related to random attractors
and random dynamical systems. We shall transform the stochastic wave equa-
tion with additive noise to a pathwise random wave equation through Ornstein-
Uhlenbeck processes and define the associated cocycle. In Section 3, we shall con-
duct uniform estimates of solutions for random absorbing sets and tail parts. In
Section 4, we shall establish the intricate asymptotic compactness of the cocycle
with respect to the Hilbert energy space H1(Rn)×L2(Rn). In Section 5, we prove a
necessary and sufficient convergence criterion of Vitai-type for space Lp(Rn) and the
pullback asymptotic compactness of the first component of the cocycle in Lp(Rn),
which is crucial. Then the existence of a random attractor for this stochastic wave
equation with unlimited growth rate and additive noise on the unbounded domain
with unlimited dimension is finally proved.

In this paper, we shall use ‖ · ‖ and 〈·, ·〉 to denote the norm and inner product
of L2(Rn), respectively. The norm of Lr(Rn) or a Banach space X will be denoted
by ‖ · ‖r or ‖ · ‖X . We use c, C or Ci to denote generic or specific positive constants.

2. Preliminaries and the Random Dynamical System

Let (Ω,F , P ) be a probability space and (X, ‖ · ‖X) be a real Banach space
whose Borel σ-algebra is denoted by B(X).

Definition 2.1. Let a mapping θt : R× Ω → Ω be (B(R)×F ,F)-measurable
such that θ0 is the identity on Ω, θt+s = θt ◦ θs for all t, s ∈ R, ω ∈ Ω, and Pθt = P
for all t ∈ R. Then (Ω,F , P, {θt}t∈R) is called a parametric dynamical system.

Definition 2.2. A mapping Φ : R
+×Ω×X → X is called a random dynamical

system or cocycle on X over (Ω,F , P, {θt}t∈R), if Φ is (B(R+)×F ×B(X), B(X))-
measurable and for all ω ∈ Ω and t, s ∈ R

+ the following conditions are satisfied:
(i) Φ(0, ω, ·) is the identity on X.
(ii) Φ(t + s, ω, ·) = Φ(t, θsω, Φ(s, ω, ·)).
(iii) Φ(t, ω, ·) : X → X is strongly continuous.

Such a random dynamical system can be denoted by (Φ, θ) or simply by Φ.

Definition 2.3. A set-valued mapping D(ω) : Ω → 2X is called a random set

in X, if the mapping ω 	−→ distX(x, D(ω)) is measurable with respect to F for any
given x ∈ X, cf. [1, 13, 14].

1) A bounded random set B(ω) ⊂ X means that there is a random variable
r(ω) ≥ 0 such that ‖B(ω)‖ = supx∈B(ω) ‖x‖ ≤ r(ω), ω ∈ Ω.

2) A random set S(ω) ⊂ X is called compact (reps. precompact) if for all ω ∈ Ω
the set S(ω) is a compact (reps. precompact) set in X.

3) If a bounded random set B(ω) satisfies the condition that, for any constant
κ > 0,

lim
t→∞ e−κt‖B(θ−tω)‖ = 0, ω ∈ Ω,
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then it is called tempered with respect to {θt}t∈R. A random variable R : (Ω,F , P ) →
(0,∞) is called tempered if

lim
t→−∞

1

t
log+ R(θtω) = 0, ω ∈ Ω.

We shall denote by DX or simply D the family of tempered random subsets of
X, which is inclusion-closed and called a universe.

Definition 2.4. Let Φ be a random dynamical system on X over the para-
metric dynamical system (Ω,F , P, {θt}t∈R). Let D be a given universe of tempered
random subsets of X.

1) A random set K = {K(ω)}ω∈Ω is a D-pullback absorbing set for Φ if for any
B ∈ D there exists tB(ω) ≥ 0 such that

Φ(t, θ−tω, B(θ−tω)) ⊂ K(ω), for all t ≥ tB(ω), a.e. ω ∈ Ω.

2) Φ is called D-pullback asymptotically compact if for any ω ∈ Ω,

{Φ(tm, θ−tm
ω, xm)}∞m=1 has a convergent subsequence in X,

whenever tm → ∞ and xm ∈ B(θ−tm
ω) for any given B ∈ D .

Definition 2.5. A random set A = {A(ω)}ω∈Ω ∈ D is called a random at-

tractor for a random dynamical system (Φ, θ) with the attraction basin D , if the
following conditions are satisfied:

(i) A is a compact random set.
(ii) A is invariant, Φ(t, ω,A(ω)) = A(θtω), for all t ≥ 0 and ω ∈ Ω.
(iii) A pullback attracts every set B ∈ D in the sense

lim
t→∞

distX(ϕ(t, θ−tω, B(θ−tω)),A(ω)) = 0, ω ∈ Ω,

where distX(·, ·) is the Hausdorff semi-distance with respect to the X-norm.

The following result on the existence of random attractor for a random dynam-
ical system has been established in [1, 6, 13, 15, 35, 36].

Theorem 2.6. Let D be a universe of nonempty tempered random subsets of a

Banach space X and let Φ be a random dynamical system on X over (Ω,F , P, {θt}t∈R).
Suppose that K = {K(ω)}ω∈Ω is a closed pullback absorbing set for Φ with respect to

D and Φ is D-pullback asymptotically compact in X. Then Φ has a unique random

attractor A = {A(ω)}ω∈Ω in X with the attraction basin D , which is given by

A(ω) =
⋂
τ≥0

⋃
t≥τ

Φ(t, θ−tω, K(θ−tω)), ω ∈ Ω.(2.1)

However, for random dynamical systems generated by PDEs with nonlinearity
of higher growth exponents and on an unbounded domain, such as the problem
of stochastic wave equations in this work, it is very difficult to show the pullback
asymptotic compactness of cocycles. It is the advancing contribution of this paper
to prove the D-pullback asymptotic compactness in the space (H1(Rn)∩Lp(Rn))×
L2(Rn) by a new approach shown in Section 4 and Section 5.
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Now we formulate the original problem (1.1)-(1.2). Let ξ = ut + δu, where δ is
a positive number to be determined. Then (1.1)-(1.2) can be rewritten as

ut + δu = ξ,

ξt − δξ + δ2u + αu − Δu + β(ξ − δu) + f(x, u) = g(x) + ε
m∑

j=1

hj
dWj

dt
,

u(x, τ) = u0(x), ξ(x, τ) = ξ0(x) = u1(x) + δu0(x).

(2.2)

The autonomous wave equation driven by a stochastic perturbation with white
noise or colored noise has the nonautonomos nature as the parametric stochastic
processes Wj(t) evolve. Hence the initial condition can be given at any initial time
τ ∈ R.

Assumption I Assume that g ∈ H1(Rn) and for each j = 1, 2, · · · , m, the
function hj ∈ H2(Rn) ∩ W 2,p(Rn), where p > 2 is arbitrarily given.

Assumption II Assume that the nonlinear term f ∈ C1(Rn × R, R) and its
antidrivative F (x, u) =

∫ u

0 f(x, s)ds satisfy the following conditions:

|f(x, u)| ≤ C1|u|p−1 + φ1(x), φ1(x) ∈ H1(Rn),(2.3)

f(x, u)u − C2F (x, u) ≥ φ2(x), φ2(x) ∈ L1(Rn),(2.4)

F (x, u) ≥ C3|u|p − φ3(x), φ3(x) ∈ L1(Rn),(2.5)

where C1, C2 and C3 are positive constants and the arbitrarily given p > 2 is the
same as in Assumption I.

The Assumption II on the heterogeneous nonlinearity is standard for determin-
istic or stochastic wave equations and reaction-diffusion equations on an unbounded
domain.

Assume that {Wj}m
j=1 are independent, two-sided, real-valued Wiener processes

on the canonical probability space (Ω,F , P ), where

Ω = {ω = (ω1, ω2, · · · , ωm) ∈ C(R, Rm) : ω(0) = 0},

F is the Borel σ-algebra induced by the compact-open topology of Ω and P is the
corresponding Wiener measure on (Ω,F). We will identify a ω ∈ Ω with a sample
path

ω(t) = (ω1(t), ω2(t), · · · , ωm(t)), t ∈ R.

Define the time-shift operartor θt by

(θtω)(·) = ω(· + t) − ω(t), ω ∈ Ω, t ∈ R.

Then (Ω,F , P, (θt)t∈R) is a parametric dynamical system.
To define a random dynamical system for the formulated problem (2.2), we

now convert the stochastic wave equation with the additive noise to a deterministic
equation with a time-dependent random parameter θtω and corresponding random
initial data. Given j = 1, 2, · · · , m, introduce one-dimensional Ornstein-Uhlenbeck
equation

(2.6) dzj + δzjdt = dWj(t), t ∈ R.
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Here δ is the same constant as in (2.2). A solution to (2.6) is given by

zj(t, ωj) =

∫ t

−∞
e−δ(t−s) dWj(s, ω) = −δ

∫ 0

−∞
eδs(θtωj)(s) ds

= zj(0, θtωj) := zj(θtωj), t ∈ R.

The random variable |zj(ωj)| is tempered and zj(θtωj) is continuous in t. It follows
from Proposition 4.3.3 in [1] that there exists a tempered function r0(ω) > 0 such
that

m∑
j=1

(|zj(ωj)|2 + |zj(ωj)|p) ≤ r0(ω).

For the positive constant σ specified later in (3.16), the random variable r0(ω)
satisfies

(2.7) r0(θtω) ≤ e(σ/2)|t|r0(ω), t ∈ R, a.s.

It follows from (2.7) that

(2.8)

m∑
j=1

(|zj(θtωj)|2 + |zj(θtωj)|p) ≤ e(σ/2)|t|r0(ω), t ∈ R, a.s.

The abstract-valued Ornstein-Uhlenbeck process z(θtω) =
∑m

j=1 hjzj(θtωj) satisfies
the stochastic differential equation

(2.9) dz + δzdt =

m∑
j=1

hjdWj.

We make a transformation

(2.10) v(x, t) = ξ(x, t) − εz(θtω).

and convert the problem (2.2) to the following initial value problem:

ut = v + εz(θtω) − δu,

vt − δv + (δ2 + α + A)u +f(x, u) = g − β(v + εz(θtω) − δu) + 2εδz(θtω),

u(x, τ) = u0(x), v(x, τ) = v0(x) = u1(x) + δu0(x) − εz(θτ ω),

(2.11)

where A = −Δ. Define the phase space

E =
(
H1(Rn) ∩ Lp(Rn)

)× L2(Rn)

endowed with the norm

(2.12) ‖(u, v)‖(H1∩Lp)×L2 =
(‖∇u‖2 + ‖u‖2 + ‖v‖2

) 1

2 + ‖u‖Lp, for (u, v) ∈ E.

Lemma 2.7. Under the Assumptions I and II, for every ω ∈ Ω and any given

g0 = (u0, v0) ∈ E, the initial value problem (2.11) has a unique global weak solution

(u(·, ω, τ, u0), v(·, ω, τ, v0)) ∈ C([τ,∞), E).

Moreover,

1) The solution (u(t, ω, τ, u0), v(t, ω, τ, v0)) is (B(R+)×F ×B(R))-measurable

in (t, ω, τ ) for any given g0 = (u0, v0) ∈ E.

2) For any ω ∈ Ω and t ≥ τ ∈ R, (u(t, ω, τ, u0), v(t, ω, τ, v0)) is weakly continu-

ous with respect to g0 = (u0, v0) in E in the sense that

(u(t, ω, τ, u0,m), v(t, ω, τ, v0,m)) ⇀ (u(t, ω, τ, u0), v(t, ω, τ, v0))
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weakly in E, provided that g0,m = (u0,m, v0,m) ⇀ g0 = (u0, v0) weakly in E.

Proof. The local existence and uniqueness of a weak solution for this ω-
parametrized PDE problem (2.11) in the phase space E = (H1(Rn) ∩ Lp(Rn)) ×
L2(Rn) and its weakly continuous dependence on the initial data can be established
by the Galerkin approximation method as in [10, Chapter XV] with some adaptions
and the result in Lemma 3.1 of [35]. Also see [34, 36, 38]. The proof of the global
existence of weak solutions will be included in the proof of Lemma 3.1 below. �

Definition 2.8. A family of mappings S(t, τ ; ω) : X −→ X on a Banach space
X for t ≥ τ ∈ R and ω ∈ Ω is called a stochastic semiflow, if it satisfies the following
properties:

(i) S(t, s; ω)S(s, τ ; ω) = S(t, τ ; ω), for all τ ≤ s ≤ t and ω ∈ Ω;
(ii) S(t, τ ; ω) = S(t − τ, 0; θτω), for all τ ≤ t and ω ∈ Ω;
(iii) The mapping S(t, τ ; ω)x is measurable in (t, τ, ω) and continuous in x ∈ X.

Here for the formulated problem (2.2) and the converted version (2.11) we define

S(t, τ ; ω)(u0, v0) = (u, v)(t, ω, τ, (u0, v0))

= (u(t, ω, τ, u0), v(t, ω, τ, u1 + δu0 − εz(θτ ω))),
(2.13)

where (u, v)(t, ω, τ, (u0, v0)) is the weak solution of the initial value problem (2.11),
shown in Lemma 2.7. This mapping S(t, τ ; ω) : E → E is a stochastic semiflow.
Then define a mapping Φ : R

+ × Ω × E → E by

(2.14) Φ(t − τ, θτ ω, (u0, v0)) = S(t, τ ; ω)(u0, v0),

which is equivalent to

Φ(t, ω, (u0, v0)) = S(t, 0; ω)(u0, v0)

= (u(t, ω, 0, u0), v(t, ω, 0, u1 + δu0 − εz(ω))).
(2.15)

Lemma 2.9. The mapping Φ : R
+ × Ω × E → E defined by (2.14) is a ran-

dom dynamical system (or called a cocycle) on E over the canonical parametric

dynamical system (Ω,F , P, {θt}). Moreover, for any given g0 = (u0, v0) ∈ E,

Φ(t, θ−tω, (u0, v0)) = (u(0, ω,−t, u0), v(0, ω,−t, v0))

= (u(0, ω,−t, u0), ξ(0, ω,−t, ξ0) − εz(ω)), t ≥ 0,
(2.16)

will be called a pullback quasi-trajectory.

3. Uniform Estimates of Pullback Quasi-Trajectories

In this section, we shall derive uniform estimates on the solutions of the random
wave equation (2.11) defined on R

n in a long run as t → ∞. These a priori estimates
pave the way to proving the existence of pullback absorbing sets and the pullback
asymptotic compactness of the cocycle Φ. In particular, we will show that tails of
the solutions for large spatial variables are uniformly small when time is sufficiently
large.

Define a new norm of E by

(3.1) ‖(u, v)‖E =
(‖v‖2 + (α + δ2 − βδ)‖u‖2 + ‖∇u‖2

) 1

2 + ‖u‖Lp,

in which and hereafter let δ be a fixed positive constant satisfying

(3.2) α + δ2 − βδ > 0 and β − 3δ > 0.
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Obviously the norm ‖ · ‖E in (3.1) and the Sobolev norm ‖ · ‖(H1∩Lp)×L2 in (2.12)
are equivalent. We make an assumption on the intensity of stochastic perturbation.

Assumption III. Let the intensity ε > 0 of the additive noise satisfy

(3.3) 0 < ε <
δC2C3p

C1(p − 1)
,

where p > 2 and Ci(i = 1, 2, 3) are the positive constants in Assumptions I and II
and δ is the fixed constant in (3.2).

3.1. Pullback Absorbing Set. The next lemma shows that there exists a
random absorbing set in the universe D = DE for the random dynamical system Φ
associated with the problem (2.11).

Lemma 3.1. Under the Assumptions I, II and III, there exists a D-pullback

absorbing set K = {K(ω)}ω∈Ω ∈ D for the cocycle Φ associated with the problem

(2.11). For any B = {B(ω)}ω∈Ω ∈ D and P -a.e. ω ∈ Ω, there exists a finite

TB(ω) > 0, such that

Φ(t, θ−tω, B(θ−tω)) ⊂ K(ω), for all t ≥ TB(ω).

Proof. Take the inner product of the second equation of (2.11) with v in
L2(Rn) to get

1

2

d

dt
‖v‖2 − δ‖v‖2 + (α + δ2)〈u, v〉 + 〈Au, v〉 + 〈f(x, u), v〉

= − 〈β(v − δu + εz(θtω)), v〉 + 2δε〈z(θtω), v〉 + 〈g(x), v〉.
(3.4)

By the first equation of (2.11), we have

(3.5) v = ut − εz(θtω) + δu.

and

(3.6) − 〈β(v + εz(θtω) − δu), v〉 ≤ −β‖v‖2 + βε‖z(θtω)‖‖v‖ + βδ〈u, v〉.
Substituting (3.5) into the third and fourth terms on the left-hand side of (3.4), we
find that

(3.7) 〈u, v〉 = 〈u, ut + δu − εz(θtω)〉 ≥ 1

2

d

dt
‖u‖2 + δ‖u‖2 − ε‖z(θtω)‖‖u‖

and

〈Au, v〉 = 〈∇u,∇v〉 = 〈∇u,∇ut + δ∇u− ε∇z(θtω)〉

≥ 1

2

d

dt
‖∇u‖2 + δ‖∇u‖2 − ε‖∇z(θtω)‖‖∇u‖.

(3.8)

For the last term on the left-hand side of (3.4), we have

〈f(x, u), v〉 = 〈f(x, u), ut + δu − εz(θtω)〉

=
d

dt

∫
Rn

F (x, u)dx + δ〈f(x, u), u〉 − ε〈f(x, u), z(θtω)〉.
(3.9)
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By Assumption II, we get

δ〈f(x, u), u〉 − 〈f(x, u), εz(θtω)〉

≥ δC2

∫
Rn

F (x, u)dx + δ

∫
Rn

φ2 dx − εC1

∫
Rn

|u|p−1|z(θtω)|dx− ε

∫
Rn

|φ1||z(θtω)|dx

≥ δC2

∫
Rn

F (x, u)dx + δ‖φ2‖L1 − εC1(p − 1)

p
‖u‖p

Lp − εC1

p
‖z(θtω)‖p

Lp

− ε

2
‖φ1‖2 − ε

2
‖z(θtω)‖2

≥ δC2

∫
Rn

F (x, u)dx + δ‖φ2‖L1 − εC1(p − 1)

C3 p

∫
Rn

F (x, u) dx− εC1(p − 1)

C3 p
‖φ3‖L1

− εC1

p
‖z(θtω)‖p

Lp − ε

2
‖φ1‖2 − ε

2
‖z(θtω)‖2

≥
(

δC2 − εC1(p − 1)

C3 p

)∫
Rn

F (x, u) dx−
(

εC1

p
‖z(θtω)‖p

Lp +
ε

2
‖z(θtω)‖2

)
− C4,

(3.10)

where

C4 =
ε

2
‖φ1‖2 − δ‖φ2‖L1 +

εC1(p − 1)

C3 p
‖φ3‖L1 .

For the last term on the right-hand side of (3.4),

(3.11) 〈g, v〉 ≤ ‖g‖‖v‖ ≤ ‖g‖2

2(β − δ)
+

β − δ

2
‖v‖2.

Substitute (3.6)-(3.11) into (3.4). Then we obtain

1

2

d

dt
‖v‖2 − δ‖v‖2 +

1

2

(
α + δ2 − βδ

) d

dt
‖u‖2 + δ

(
α + δ2 − βδ

) ‖u‖2

− ε
(
α + δ2 − βδ

) ‖z(θtω)‖‖u‖ +
1

2

d

dt
‖∇u‖2 + δ‖∇u‖2

− ε‖∇z(θtω)‖‖∇u‖ +
d

dt

∫
Rn

F (x, u) dx +

(
δC2 − εC1(p − 1)

C3 p

)∫
Rn

F (x, u) dx

−
(

εC1

p
‖z(θtω)‖p

Lp +
ε

2
‖z(θtω)‖2

)
− C4 + β‖v‖2 − βε‖z(θtω)‖‖v‖

≤ ‖g‖2

2(β − δ)
+

β − δ

2
‖v‖2 + 2εδ‖z(θtω)‖‖v‖.

(3.12)
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Grouping some terms together in (3.12), we obtain

1

2

d

dt

[
‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2 + 2

∫
Rn

F (x, u) dx

]

+
δ

2

[‖v‖2 +
(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2
]

+

(
δC2 − εC1(p − 1)

C3 p

)∫
Rn

F (x, u) dx

≤ 3δ − β

2
‖v‖2 +

‖g‖2

2(β − δ)
+

ε2(α + δ2 − βδ)

2δ
‖z(θtω)‖2 +

ε2

2δ
‖∇z(θtω)‖2

+
ε2(2δ + β)2

2δ
‖z(θtω)‖2 +

εC1

p
‖z(θtω)‖p

Lp +
ε

2
‖z(θtω)‖2 + C4

≤ ‖g‖2

2(β − δ)
+ C0

(‖z(θtω)‖2 + ‖∇z(θtω)‖2 + ‖z(θtω)‖p
Lp

)
+ C4,

(3.13)

where C0 > 0 is a constant and by (3.2) the term (3δ − β)‖v‖2/2 ≤ 0. Since
z(θtω) =

∑m
j=1 hjzj(θtωj) and hj ∈ H2(Rn)∩W 2,p(Rn), by (2.7) and (2.8) there is

a constant C5 > 0 such that for P -a.e. ω ∈ Ω,

Γ1(θt ω) := C0

(‖z(θtω)‖2 + ‖∇z(θtω)‖2 + ‖z(θtω)‖p
Lp

)
≤ c

m∑
j=1

(‖zj(θtωj)‖2 + ‖zj(θtωj)‖p
Lp

) ≤ C5 e
1

2
σ|t|r0(ω), for all t ∈ R.

(3.14)

It follows from (3.13)-(3.14) that

d

dt

[
‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2 + 2

∫
Rn

F (x, u) dx

]

+ δ
[‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2
]
+ 2

(
δC2 − εC1(p − 1)

C3 p

)∫
Rn

F (x, u) dx

≤ ‖g‖2

β − δ
+ 2Γ1(θtω) + 2C4, t ∈ R, ω ∈ Ω.

It leads to the differential inequality

d

dt

[
‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2 + 2

∫
Rn

(F (x, u) + φ3(x)) dx

]

+ δ
[‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2
]

+ 2

(
δC2 − εC1(p − 1)

C3p

)∫
Rn

(F (x, u) + φ3(x)) dx

≤ ‖g‖2

β − δ
+ 2Γ1(θtω) + 2

(
δC2 − εC1(p − 1)

C3 p

)
‖φ3‖L1 + 2C4.

(3.15)

In view of (3.3) in the Assumption III, let σ be a fixed positive constant:

(3.16) σ = min

{
δ, δC2 − εC1(p − 1)

C3 p

}
> 0.
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Note that
∫

Rn(F (x, u)+ φ3(x)) dx ≥ 0 due to (2.5) in the Assumption II. It follows
from (3.15) and (3.16) that

d

dt

[
‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2 + 2

∫
Rn

(F (x, u) + φ3(x)) dx

]

+ σ

[
‖v‖2 +

(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2 + 2

∫
Rn

(F (x, u) + φ3(x)) dx

]

≤ ‖g‖2

β − δ
+ 2Γ1(θtω) + C6, t ∈ R, ω ∈ Ω,

(3.17)

where

C6 = 2

(
δC2 − εC1(p − 1)

C3 p

)
‖φ3‖L1 + 2C4.

Thus we can apply Gronwall inequality to (3.17) to confirm that for any ω ∈ Ω and
t ≥ τ the weak solution of (2.11) satisfies

‖v(t, ω, τ, v0)‖2 +
(
α + δ2 − βδ

) ‖u(t, ω, τ, u0)‖2

+ ‖∇u(t, ω, τ, u0)‖2 + 2

∫
Rn

(F (x, u(t, ω, τ, u0)) + φ3(x)) dx

≤ e−σ(t−τ)

[
‖v0‖2 +

(
α + δ2 − βδ

) ‖u0‖2 + ‖∇u0‖2 + 2

∫
Rn

F (x, u0) dx

]

+ 2e−σ(t−τ)‖φ3‖L1 + 2

∫ t

τ

eσ(s−t)Γ1(θsω) ds +
1

σ

(
C6 +

‖g‖2

β − δ

)
.

(3.18)

Replace the time interval [τ, t] by [−t, 0] and consider any given tempered set B ∈ D .
For (u0(θ−tω), v0(θ−tω)) ∈ B(θ−tω), we have

‖v(0, ω,−t, v0(θ−tω))‖2 +
(
α + δ2 − βδ

) ‖u(0, ω,−t, u0(θ−tω))‖2

+ ‖∇u(0, ω,−t, u0(θ−tω))‖2 + 2

∫
Rn

(F (x, u(0, ω,−t, u0(θ−tω))) + φ3(x)) dx

≤ e−σt
[‖v0(θ−tω)‖2 +

(
α + δ2 − βδ

) ‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2
]

+2e−σt

[∫
Rn

F (x, u0(θ−tω)) dx + ‖φ3‖L1

]
+ 2

∫ 0

−t

eσsΓ1(θsω) ds +
1

σ

(
C6 +

‖g‖2

β − δ

)

≤ e−σt
(‖v0(θ−tω)‖2 +

(
α + δ2 − βδ

) ‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2 + 2‖φ3‖L1

)
+ 2e−σt

∫
Rn

F (x, u0(θ−tω)) dx + 2C5

∫ 0

−t

eσs+ 1

2
σ|s|r0(ω) ds +

1

σ

(
C6 +

‖g‖2

β − δ

)
= e−σt

(‖v0(θ−tω)‖2 +
(
α + δ2 − βδ

) ‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2
)

+ 2e−σt

∫
Rn

F (x, u0(θ−tω)) dx + 2e−σt‖φ3‖L1 +
1

σ

(
4C5 r0(ω) + C6 +

‖g‖2

β − δ

)
,

(3.19)

for t ≥ 0 and P -a.e. ω ∈ Ω. Note that (2.3) and (2.4) imply that there is a constant
c = c(C1, C2, φ1, φ2) > 0 such that

(3.20)

∫
Rn

F (x, u0(θ−tω)) dx ≤ c
(
1 + ‖u0(θ−tω)‖2 + ‖u0(θ−tω)‖p

Lp

)
.
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For any set B ∈ D , which is a tempered set in E, since (u0(θ−tω), v0(θ−tω)) ∈
B(θ−tω), there exists a constant C > 0 and a finite TB(ω) > 0 such that for all
t ≥ TB(ω) one has

e−σt
[‖v0(θ−tω)‖2 +

(
α + δ2 − βδ

) ‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2
]

+ 2e−σt

[∫
Rn

F (x, u0(θ−tω)) dx + ‖φ3‖L1

]
≤Ce−σt

(
1 + ‖v0(θ−tω)‖2 + ‖u0(θ−tω)‖2

H1 + ‖u0(θ−tω)‖p
Lp

) ≤ 1.

(3.21)

Substitute (3.21) into the right-hand side of the last equality of (3.19) and note
that (2.5) implies

2

∫
Rn

(F (x, u(0, ω,−t, u0(θ−tω)) + φ3(x)) dx ≥ 2C3‖u(0, ω,−t, u0(θ−tω))‖p
Lp .

Then it results in

‖v(0, ω,−t, v0(θ−tω))‖2 +
(
α + δ2 − βδ

) ‖u(0, ω,−t, u0(θ−tω))‖2

+ ‖∇u(0, ω,−t, u0(θ−tω))‖2 + 2C3‖u(0, ω,−t, u0(θ−tω))‖p
Lp

≤ 1 +
1

σ

(
4C5 r0(ω) + C6 +

‖g‖2

β − δ

)
, for t ≥ TB(ω) and a.e. ω ∈ Ω.

(3.22)

By (2.16) and (3.22), we conclude that Φ(t, θ−tω, B(θ−tω)) ⊂ K(ω) = BE(0, R(ω))
for t ≥ TB(ω), a.e. ω ∈ Ω, where the radius of the closed ball BE(0, R(ω)) in the
space E is

R(ω) =

(
1

min{1, (α + δ2 − βδ)}
[
1 +

1

σ

(
4C5 r0(ω) + C6 +

‖g‖2

β − δ

)]) 1

2

+

(
1

2C3

[
1 +

1

σ

(
4C5 r0(ω) + C6 +

‖g‖2

β − δ

)]) 1

p

.

(3.23)

Since r0(ω) is a tempered random variable, K = {K(ω)}ω∈Ω ∈ D . Therefore,
K = {K(ω)}ω∈Ω is a D-pullback absorbing set for the cocycle Φ. �

3.2. Tail Estimates. Next we conduct uniform estimates on the tail parts
of the weak solutions for large spatial and time variables. These estimates play
key roles in proving the pullback asymptotic compactness of the random dynamical
systems Φ generated by the random wave equation (2.11) on the unbounded domain
R

n.

Lemma 3.2. Under the Assumptions I, II and III, for every B = {B(ω)}ω∈Ω ∈
D , 0 < η ≤ 1 and P -a.e. ω ∈ Ω, there exists T = T (ω, B, η) > 0 and V = V (ω, η) ≥
1 such that the cocycle Φ associated with the problem (2.11) satisfies

(3.24) ‖Φ(t, θ−tω, B(θ−tω))‖E(Rn\Br) = max
g0∈B(θ

−tω)
‖Φ(t, θ−tω, g0)χBc

r
‖E < η,

for all t ≥ T and every r ≥ V , where χBc
r
(x) is the characteristic function of the

set {x ∈ R
n : |x| > r}.

Proof. Choose a smooth nondecreasing function ρ such that 0 ≤ ρ(s) ≤ 1 for
all s ∈ [0,∞) and

ρ(s) =

⎧⎨
⎩

0, if 0 ≤ s < 1,

1, if s > 2,
(3.25)
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with 0 ≤ ρ′(s) ≤ 2 for s ≥ 0. Taking the inner product of the second equation of
(2.11) with ρ(|x|2/r2)v in L2(Rn), we get

1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx− δ

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx + (α + δ2)

∫
Rn

ρ

( |x|2
r2

)
uv dx

+

∫
Rn

(Au)ρ

( |x|2
r2

)
v dx +

∫
Rn

ρ

( |x|2
r2

)
f(x, u)v dx

=

∫
Rn

ρ

( |x|2
r2

)
(g + 2δεz(θtω)) v dx−

∫
Rn

ρ

( |x|2
r2

)
β(v + εz(θtω) − δu)v dx.

(3.26)

Substitute

−
∫

Rn

ρ

( |x|2
r2

)
β(v + εz(θtω) − δu)v dx

≤ −β

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx + βδ

∫
Rn

ρ

( |x|2
r2

)
uv dx + εβ

∫
Rn

ρ

( |x|2
r2

)
|z(θtω)||v| dx.

into (3.26) to obtain

1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx + (α + δ2 − βδ)

∫
Rn

ρ

( |x|2
r2

)
uv dx

+ (β − δ)

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx +

∫
Rn

(Au)ρ

( |x|2
r2

)
v dx +

∫
Rn

ρ

( |x|2
r2

)
f(x, u) v dx

≤
∫

Rn

ρ

( |x|2
r2

)(
δ

2
|v|2 +

ε2β2

2δ
|z(θtω)|2

)
dx +

∫
Rn

ρ

( |x|2
r2

)
(g + 2δεz(θtω)) v dx.

(3.27)

For the second term on the left-hand side of (3.27), by (2.11) we have

(α + δ2 − βδ)

∫
Rn

ρ

( |x|2
r2

)
uv dx

=(α + δ2 − βδ)

∫
Rn

ρ

( |x|2
r2

)
u(ut + δu − εz(θtω)) dx

≥ (α + δ2 − βδ)

(
1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)
|u|2 dx + δ

∫
Rn

ρ

( |x|2
r2

)
|u|2 dx

)

− (α + δ2 − βδ)

∫
Rn

ρ

( |x|2
r2

)(
δ

2
|u|2 +

ε2

2δ
|z(θtω)|2

)
dx.

(3.28)

For the fourth term on the left-hand side of (3.27),∫
Rn

(Au) ρ

( |x|2
r2

)
v dx =

∫
Rn

(Au) ρ

( |x|2
r2

)
(ut + δu − εz(θtω)) dx

=

∫
Rn

(∇u)∇
(

ρ

( |x|2
r2

)
(ut + δu − εz(θtω))

)
dx

=

∫
Rn

(∇u)

(
2x

r2
ρ′

( |x|2
r2

)
(ut + δu − εz(θtω)) + ρ

( |x|2
r2

)
∇(ut + δu − εz(θtω))

)
dx

=

∫
Rn

(∇u)
2x

r2
ρ′

( |x|2
r2

)
v dx +

∫
Rn

(∇u)ρ

( |x|2
r2

)
∇(ut + δu − εz(θtω)) dx
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=

∫
Rn

(∇u)
2x

r2
ρ′

( |x|2
r2

)
v dx +

1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)
|∇u|2 dx + δ

∫
Rn

ρ

( |x|2
r2

)
|∇u|2 dx

− ε

∫
Rn

ρ

( |x|2
r2

)
(∇u)(∇z(θtω)) dx.

Since 0 ≤ ρ′(s) ≤ 2, it follows that

∫
Rn

(Au) ρ

( |x|2
r2

)
v dx ≥ −

∫
r≤|x|≤√2r

4|x|
r2

|(∇u)v|dx +
1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)
|∇u|2 dx

+ δ

∫
Rn

ρ

( |x|2
r2

)
|∇u|2 dx − ε

∫
Rn

ρ

( |x|2
r2

)
(∇u)(∇z(θtω)) dx

≥ − 2
√

2

r

∫
r≤|x|≤√2r

(|∇u|2 + |v|2) dx +
1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)
|∇u|2 dx

+
δ

2

∫
Rn

ρ

( |x|2
r2

)
|∇u|2 dx− ε2

2δ

∫
Rn

ρ

( |x|2
r2

)
|∇z(θtω))|2 dx.

(3.29)

For the fifth term on the left-hand side of (3.27), by (2.3)-(2.5), we have

∫
Rn

ρ

( |x|2
r2

)
f(x, u)v dx =

∫
Rn

ρ

( |x|2
r2

)
f(x, u)(ut + δu − εz(θtω)) dx

≥ d

dt

∫
Rn

ρ

( |x|2
r2

)
F (x, u) dx + δ

∫
Rn

ρ

( |x|2
r2

)
(C2F (x, u)+ φ2(x)) dx

− εC1

∫
Rn

ρ

( |x|2
r2

)
|u|p−1|z(θtω)|dx− ε

∫
Rn

ρ

( |x|2
r2

)
|φ1(x)||z(θtω)|dx

≥ d

dt

∫
Rn

ρ

( |x|2
r2

)
F (x, u) dx + δ

∫
Rn

ρ

( |x|2
r2

)
(C2F (x, u)+ φ2(x)) dx

− εC1
p − 1

p

∫
Rn

ρ

( |x|2
r2

)
|u|p dx − εC1

p

∫
Rn

ρ

( |x|2
r2

)
|z(θtω)|p dx

− ε

2

∫
Rn

ρ

( |x|2
r2

)
|z(θtω)|2dx− ε

2

∫
Rn

ρ

( |x|2
r2

)
|φ1|2dx

≥ d

dt

∫
Rn

ρ

( |x|2
r2

)
F (x, u) dx +

(
δC2 − εC1(p − 1)

C3 p

)∫
Rn

ρ

( |x|2
r2

)
F (x, u) dx

− C7

∫
Rn

ρ

( |x|2
r2

)
(|z(θtω)|p + |z(θtω)|2)dx

−
∫

Rn

ρ

( |x|2
r2

)(
εC1(p − 1)

C3 p
|φ3| − δ|φ2|+ ε

2
|φ1|2

)
dx,

(3.30)

where C7 = C7(ε) > 0 is a constant and we used the Hölder inequality in the second
inequality as well as

−εC1
p − 1

p

∫
Rn

ρ

( |x|2
r2

)
|u|p dx ≥ −εC1(p − 1)

C3p

∫
Rn

ρ

( |x|2
r2

)
(F (x, u) + φ3(x)) dx
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in the third inequality. For the last term on the right-hand side of (3.27), we have

∫
Rn

ρ

( |x|2
r2

)
(g + 2δεz(θtω)) v dx

≤ 1

2(β − δ)

∫
Rn

ρ

( |x|2
r2

)
(|g|+ 2δε|z(θtω)|)2 dx +

β − δ

2

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx.

(3.31)

Now substitute (3.28)-(3.31) into (3.27), we obtain

1

2

d

dt

∫
Rn

ρ

( |x|2
r2

)(|v|2 + (α + δ2 − βδ)|u|2 + |∇u|2 + 2F (x, u)
)
dx

+
δ

2

∫
Rn

ρ

( |x|2
r2

)
|v|2 dx +

δ

2

∫
Rn

ρ

( |x|2
r2

)
((α + δ2 − βδ)|u|2 + |∇u|2) dx

+

(
δC2 − εC1(p − 1)

C3 p

)∫
Rn

ρ

( |x|2
r2

)
F (x, u) dx

≤ ε2

2δ

∫
Rn

ρ

( |x|2
r2

)
(|∇z(θtω)|2 + (α + δ2 − βδ)|z(θtω)|2 + β2|z(θtω)|2) dx

+
2
√

2

r

∫
r≤|x|≤√2r

(|∇u|2 + |v|2) dx + C7

∫
Rn

ρ

( |x|2
r2

)
(|z(θtω)|p + |z(θtω)|2) dx

+
1

β − δ

∫
Rn

ρ

( |x|2
r2

)
(|g|2 + 4δ2ε2|z(θtω)|2) dx

+

∫
Rn

ρ

( |x|2
r2

)(
εC1(p − 1)

C3 p
|φ3| − δ|φ2| + ε

2
|φ1|2

)
dx

≤ 2
√

2

r

∫
r≤|x|≤√2r

(|∇u|2 + |v|2) dx

+ C8

∫
Rn

ρ

( |x|2
r2

)
(|∇z(θtω)|2 + |z(θtω)|2 + |z(θtω)|p) dx

+ C9

∫
Rn

ρ

( |x|2
r2

)
(|g|2 + |φ1|2 + |φ2|+ |φ3|) dx,

(3.32)

where C8 = C8(ε) > 0 and C9 = C9(ε) > 0 are constants. In grouping the
coefficients of the terms

∫
Rn ρ(|x|2/r2)|v|2 dx appearing on both sides of (3.32), we

used (3.2) to get (β − δ)/2 = (β − 3δ)/2 + δ ≥ δ.
Since g, φ1 ∈ L2(Rn) and φ2, φ3 ∈ L1(Rn), for any given η > 0, there exists

K0 = K0(η) ≥ 1 such that for all r ≥ K0,

C9

∫
Rn

ρ

( |x|2
r2

) (|g|2 + |φ1|2 + |φ2| + |φ3|
)
dx + 2σ

∫
Rn

ρ

( |x|2
r2

)
|φ3(x)| dx

≤ C9

∫
|x|≥r

(|g|2 + |φ1|2 + |φ2| + |φ3|
)
dx + 2σ

∫
Rn

|φ3(x)| dx ≤ η.

(3.33)
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By (3.16) and (3.32)-(3.33), there exists K1 = K1(η) ≥ 1 such that for all r ≥ K1,

d

dt

∫
Rn

ρ

( |x|2
r2

) (|v|2 + (α + δ2 − βδ)|u|2 + |∇u|2 + 2(F (x, u) + φ3)
)
dx

+ σ

∫
Rn

ρ

( |x|2
r2

)(|v|2 + (α + δ2 − βδ)|u|2 + |∇u|2 + 2(F (x, u) + φ3)
)
dx

≤ η

[
1 +

∫
r≤|x|≤√2r

(|∇u|2 + |v|2) dx

]

+ C8

∫
|x|≥r

(|∇z(θtω)|2 + |z(θtω)|2 + |z(θtω)|p) dx.

Integrating the above inequality over the time interval [−t, 0], we see that for any
t > 0, ω ∈ Ω and r ≥ K1,

∫
Rn

ρ

( |x|2
r2

)
(|v(0, ω,−t, v0(θ−tω))|2 +

(
α + δ2 − βδ

) |u(0, ω,−t, u0(θ−tω))|2) dx

+

∫
Rn

ρ

( |x|2
r2

)
|∇u(0, ω,−t, u0(θ−tω))|2dx

(3.34)

+ 2

∫
Rn

ρ

( |x|2
r2

)
(F (x, u(0, ω,−t, u0(θ−tω)) + φ3(x)) dx

≤ e−σt

∫
Rn

ρ

( |x|2
r2

)
(|v0(θ−tω)|2 + (α + δ2 − βδ)|u0(θ−tω)|2 + |∇u0(θ−tω)|2) dx

+ 2e−σt

∫
Rn

ρ

( |x|2
r2

)
(F (x, u0(θ−tω)) + φ3(x)) dx +

η

σ

+ η

∫ 0

−t

eσs

∫
r≤|x|≤√2r

(|∇u(s, ω,−t, u0(θ−tω))|2 + |v(s, ω,−t, v0(θ−tω))|2) dx ds

+ C8

∫ 0

−t

eσs

∫
|x|≥r

(|∇z(θsω)|2 + |z(θsω)|2 + |z(θsω)|p) dx ds.
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Next we conduct estimate of the terms on the right-hand side of in (3.34). For the
first two terms we have

e−σt

∫
Rn

ρ

( |x|2
r2

)
(|v0(θ−tω))|2 + (α + δ2 − βδ)|u0(θ−tω))|2 + |∇u0(θ−tω)|2) dx

+ 2e−σt

∫
Rn

ρ

( |x|2
r2

)
(F (x, u0(θ−tω)) + φ3(x)) dx

≤ e−σt

∫
Rn

(|v0(θ−tω)|2 + (α + δ2 − βδ)|u0(θ−tω)|2 + |∇u0(θ−tω)|2) dx

+ 2e−σt

∫
Rn

[
1

C2
(C1|u0(θ−tω)|p + |u0(θ−tω)||φ1(x)| + |φ2(x)|) + |φ3(x)|

]
dx

≤ e−σt
(‖v0(θ−tω)‖2 + (α + δ2 − βδ)‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2

)
+ 2e−σt

[
1

C2

(‖u0(θ−tω)‖2 + C1‖u0(θ−tω)‖p
Lp + ‖φ1‖2 + ‖φ2‖L1

)
+ ‖φ3‖L1

]

≤C10 e−σt
(‖v0(θ−tω)‖2 + ‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2 + ‖u0(θ−tω)‖p

Lp

)
+ C10 e−σt

(‖φ1‖2 + ‖φ2‖L1 + ‖φ3‖L1

)
< η, for all t ≥ T1,

(3.35)

where C10 > 0 and T1 = T1(B, ω, η) > 0 are constants, and the last step follows
from the tempered property of B ∈ D .

Note that z(θtω) =
∑m

j=1 hjzj(θtωj) and hj ∈ H2(Rn)∩W 2,p(Rn). Thus there

is a constant K2 = K2(ω, η) ≥ 1 such that for all r ≥ K2,

(3.36) max
1≤j≤m

∫
|x|≥r

(|hj(x)|2 + |hj(x)|p + |∇hj(x)|2) dx ≤ σ η

2C8 r0(ω)
,

where r0(ω) is the tempered function in (2.8). By (2.8) and (3.36) we obtain the
estimate of the last integral term in (3.34),

C8

∫ 0

−t

eσs

∫
|x|≥r

(|∇z(θsω)|2 + |z(θsω)|2 + |z(θsω)|p) dx ds

≤C8

∫ 0

−t

eσs
m∑

j=1

∫
|x|≥r

(|∇hj|2|zj(θsωj)|2 + |hj|2|zj(θsωj)|2 + |hj|p|zj(θsωj)|p
)
dx ds

≤ ση

2r0(ω)

∫ 0

−t

eσs
m∑

j=1

(|zj(θsωj)|2 + |zj(θsωj)|p) ds ≤ ση

2r0(ω)

∫ 0

−t

e
1

2
σs r0(ω) ds < η.

(3.37)

Finally we estimate the third integral term on the right-hand side of (3.34).
Applying the Gronwall inequality to (3.17) while taking the spatial integral over
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the region r ≤ |x| ≤ √
2r, with (3.16) in mind, we can get

∫ 0

−t

eσs

∫
r≤|x|≤√2r

(|∇u(s, ω,−t, u0(θ−tω))|2 + |v(s, ω,−t, v0(θ−tω))|2) dx ds

≤ e−σ(s+t)
(‖v0(θ−tω)‖2 + (α + δ2 − βδ)‖u0(θ−tω)‖2 + ‖∇u0(θ−tω)‖2

)

+ 2e−σ(s+t)

∫
Rn

(F (x, u0(θ−tω)) + φ3(x)) dx

+
1

σ

(
C6 +

1

β − δ
‖g‖2

)
+ 2

∫ s

−t

e−σ(s−τ)Γ2(θτω) dτ.

(3.38)

In the last integral of (3.38), due to (3.36) and (2.8), similar to (3.14) we find that
for r ≥ K2,

Γ2(θt ω) = C0

∫
r≤|x|≤√2r

(|z(θtω)|2 + |∇z(θtω)|2 + |z(θtω)|p) dx

≤ C0

m∑
j=1

∫
|x|≥r

(|∇hj|2|zj(θtωj)|2 + |hj|2|zj(θtωj)|2 + |hj|p|zj(θtωj)|p
)
dx

≤ C0 ση

2C8 r0(ω)

m∑
j=1

(|zj(θtωj)|2 + |zj(θtωj)|p
) ≤ C0 ση

2C8
e(σ/2)|t|.

Based on (3.38) and the above inequality as well as the tempered property of B ∈ D ,
there exists T2 = T2(B, ω, η) > 0 such that

∫ 0

−t

eσs

∫
r≤|x|≤√2r

(|∇u(s, ω,−t, u0(θ−tω))|2 + |v(s, ω,−t, v0(θ−tω))|2)dx ds

≤Ct e−σt

[
‖(u0, v0)(θ−tω)‖2 + ‖∇u0(θ−tω)‖2 +

∫
Rn

(F (x, u0(θ−tω)) + φ3(x)) dx

]

+
1

σ

(
C6 +

1

β − δ
‖g‖2

)
+

C0 ση

C8

∫ 0

−t

∫ s

−t

eστ− 1

2
στ dτ ds

≤Ct e−σt
(‖(u0, v0)(θ−tω)‖2 + ‖∇u0(θ−tω)‖2 + ‖φ3‖L1

)
+

C

C2
t e−σt

(
C1‖u0(θ−tω)‖p

Lp + ‖u0(θ−tω)‖2 + ‖φ1‖2 + ‖φ2‖L1

)
+

1

σ

(
C6 +

1

β − δ
‖g‖2

)
+

4C0η

C8σ
≤ M, for all t ≥ T2,

(3.39)

where the constant

M = 1 +
1

σ

(
C6 +

1

β − δ
‖g‖2 +

4C0η

C8σ

)
.

Now assemble all these estimates and substitute (3.35), (3.37) and (3.39) into (3.34).
It shows that for any B ∈ D , 0 < η ≤ 1 and a.e. ω ∈ Ω, as long as r ≥ V =
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max{K0, K1, K2} and t ≥ max{T1, T2} one has

∫
|x|≥√2r

(|v(0, ω,−t, v0(θ−tω))|2 + (α + δ2 − βδ)|u(0, ω,−t, u0(θ−tω))|2) dx

+

∫
|x|≥√2r

(|∇u(0, ω,−t, u0(θ−tω))|2 + |u(0, ω,−t, u0(θ−tω))|p) dx

≤
∫

Rn

ρ

( |x|2
r2

)(|v(0, ω,−t, v0(θ−tω))|2 + (α + δ2 − βδ)|u(0, ω,−t, u0(θ−tω))|2)) dx

+

∫
Rn

ρ

( |x|2
r2

)
|∇u(0, ω,−t, u0(θ−tω))|2 dx

+
2

C3

∫
Rn

ρ

( |x|2
r2

)
(F (x, u(0, ω,−t, u0(θ−tω)) + φ3) dx ≤

(
1 +

1

C3

)
(2 + M)η.

(3.40)

By (3.1), the above inequality (3.40) demonstrates that for any B ∈ D and a.e.
ω ∈ Ω, it holds that

�Φ(t, θ−tω, B(θ−tω))�E(Rn\BR) = max
g0∈B(θ

−tω)
‖Φ(t, θ−tω, g0)‖E(Rn\BR)

≤
[(

1 +
1

C3

)
(2 + M)η

]1/2

+

[(
1 +

1

C3

)
(2 + M)η

]1/p

,
(3.41)

where R =
√

2r. (3.41) implies (3.24) according to (2.16) by renaming r to be
R and η to be ((1 + 1/C3)(2 + M)η)1/2 + ((1 + 1/C3)(2 + M)η)1/p. The proof is
completed. �

4. Pullback Asymptotic Compactness in Space H1(Rn) × L2(Rn)

In this section, we shall prove the pullback asymptotic compactness in the space
H1(Rn)×L2(Rn) of the random dynamical sytem Φ associated with the stochastic
damped wave equation (2.2) which has been converted to (2.11).

Lemma 4.1. The following statements hold for Lp(Rn), 1 ≤ p < ∞.

1) Let {ψm} be a sequence and ψ be a function in Lp(Rn) such that ‖ψm −
ψ‖Lp → 0 as m → ∞. Then there exists a subsequence {ψmk

} such that

lim
k→∞

ψmk
(x) = ψ(x), a.e. on R

n.

2) If a sequence {ψm} and a function ψ in Lp(Rn) satisfy the following two

conditions:

(4.1) lim
m→∞

ψm(x) = ψ(x), a.e. on R
n and ψm is bounded in Lp(Rn),

then ψm → ψ weakly in Lp(Rn), as m → ∞.

3) For 1 < p < ∞, if a sequence {ψm} and a function ψ in Lp(Rn) satisfy the

following two conditions:

(4.2) lim
m→∞

ψm(x) = ψ(x), a.e. on R
n and lim

m→∞
‖ψm‖Lp = ‖ψ‖Lp ,

then limm→∞ ‖ψm − ψ‖Lp = 0.
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Proof. Since R
n with the Lebesgue measure is a σ0-finite measure space, the

first item is a standard result in Real and Functional Analysis.
For the second item, since Lp(Rn) is a reflexive Banach space for 1 < p < ∞,

the boundedness of {ψm} in Lp(Rn) implies that there is ϕ ∈ Lp(Rn) such that
ψm → ϕ weakly as m → ∞. By Mazur’s lemma, this weak convergence implies
there exists a sequence {ζm} ⊂ Lp(Rn) such that

(4.3) ζm ∈ conv {ψm, ψm+1, · · · } and ζm → ϕ strongly in Lp(Rn).

It follows from the condition ψm → ψ a.e. and ζm ∈ conv (
⋃∞

i=m ψi) that

(4.4) ζm → ψ a.e. in R
n.

On the other hand, by the first statement in this lemma, the strong convergence
in (4.3) implies that there exists a subsequence {ζmk

} such that ζmk
→ ϕ a.e. as

k → ∞. Therefore, (4.4) leads to ψ = ϕ a.e. on R
n and ψm → ψ weakly as m → ∞.

The third item is a known result in Functional Analysis, cf. [7, Chapter 4]. �

Let us define the following energy functional on E: for (u, v) ∈ E,

(4.5) Q(u, v) = ‖v‖2 +
(
α + δ2 − βδ

) ‖u‖2 + ‖∇u‖2 + 2

∫
Rn

(F (x, u) + φ3(x)) dx.

Compare (3.1) and (4.5), we see that

(4.6) Q(u, v) ≤ ‖(u, v)‖2
E + 2

∫
Rn

(F (x, u) + φ3(x)) dx.

Lemma 4.2. For every ω ∈ Ω and any B ∈ D and any integer k > 0, there

exists a constant M1 = M1(B, ω, k) > 0 such that for all m ≥ M1 one has tm > k
and

Q (u(t, ω,−tm, u0,m), v(t, ω,−tm, v0,m)) ≤ R(ω) + 1

+
1

σ
e

1

2
σk

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

]
, t ∈ [−k, 0],

(4.7)

for all (u0,m, v0,m) ∈ B(θ−tm
ω), where R(ω) and r0(ω) are the same as in (3.23)

and (2.7), respectively.

Proof. Integrate the inequality (3.17) over the time interval [−k, t] ⊂ [−k, 0],
where δ ≥ σ by (3.16). Similar to (3.22), there exists M1 = M1(B, ω, k) > 0 such
that for all m ≥ M1 one has tm > k and

Q(u(t, ω,−tm, u0,m), v(t, ω,−tm, v0,m))

≤ e−σ(t+k)Q(u(−k, ω,−tm, u0,m), v(−k, ω,−tm, v0,m))

+

∫ t

−k

e−σ(t−s)

(
2Γ1(θsω) + C6 +

‖g‖2

β − δ

)
ds

≤R(ω) + 1 + 2C5

∫ t

−k

e−σt+(σ− 1

2
σ)sr0(ω) ds +

1

σ

(
C6 +

‖g‖2

β − δ

)

≤R(ω) + 1 +
1

σ

(
4e−

1

2
σt C5r0(ω) + C6 +

‖g‖2

β − δ

)
, t ∈ [−k, 0].

(4.8)

Therefore, (4.7) holds. �
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Theorem 4.3. Under Assumptions I, II and III, for every B = {B(ω)}ω∈Ω ∈ D

and for any sequences tm → ∞ and g0,m = (u0,m, v0,m) ∈ B(θ−tm
ω), the sequence

{Φ(tm, θ−tm
ω, g0,m)}∞m=1

of a pullback quasi-trajectory of the cocycle Φ associated with the problem (2.11)
of the stochastic wave equation has a strongly convergent subsequence in H1(Rn) ×
L2(Rn).

Proof. The proof goes through the following five steps.
STEP 1. First by Lemma 3.1, there exist a constant M2 = M2(B, ω) > 0 such

that for all m ≥ M2 and g0,m ∈ B(θ−tm
ω), we have

‖Φ(tm, θ−tm
ω, g0,m)‖E ≤ R(ω) + 1, ω ∈ Ω,(4.9)

where R(ω) > 0 is given by (3.23). Then for any ω ∈ Ω there is (ũ(ω), ṽ(ω)) ∈ E
such that, up to a subsequence relabeled the same,

Φ(tm, θ−tm
ω, g0,m) −→ (ũ(ω), ṽ(ω)) weakly in E;

Φ(tm, θ−tm
ω, g0,m) −→ (ũ(ω), ṽ(ω)) weakly in H1(Rn) × L2(Rn);

Φ(tm, θ−tm
ω, g0,m) −→ (ũ(ω), ṽ(ω)) weakly in Lp(Rn).

(4.10)

Since E is a reflexive and separable Banach space, the weak lower-semicontinuity
of the E-norm and the norm of H1(Rn) × L2(Rn) implies that

lim inf
m→∞

‖Φ(tm, θ−tm
ω, g0,m)‖E ≥ ‖(ũ(ω), ṽ(ω))‖E ,

lim inf
m→∞

‖Φ(tm, θ−tm
ω, g0,m)‖H1×L2 ≥ ‖(ũ(ω), ṽ(ω))‖H1×L2 .

(4.11)

Next we shall prove that in the Hilbert space H1(Rn) × L2(Rn),

(4.12) Φ(tm, θ−tm
ω, g0,m) −→ (ũ(ω), ṽ(ω)) strongly.

It suffices to show that

(4.13) lim sup
m→∞

‖Φ(tm, θ−tm
ω, g0,m)‖H1×L2 ≤ ‖(ũ(ω), ṽ(ω))‖H1×L2 .

Then (4.11) and (4.13) lead to

lim
m→∞ ‖Φ(tm, θ−tm

ω, g0,m)‖H1×L2 = ‖(ũ(ω), ṽ(ω))‖H1×L2 .

By the item 3 of Lemma 4.1, we shall obtain (4.12).
STEP 2. By Lemma 4.2 and (2.5), there exists a constant C > 0 such that for

every ω ∈ Ω and any given integer k > 0, whenever m ≥ M1 one has tm > k and

‖(u(t, ω,−tm, u0,m), v(t, ω,−tm, v0,m))‖E

≤C

[
R(ω) + 1 +

1

σ
e

1

2
σk

(
4C5r0(ω) + C6 +

‖g‖2

β − δ

)]1/2

+C

[
R(ω) + 1 +

1

σ
e

1

2
σk

(
4C5r0(ω) + C6 +

‖g‖2

β − δ

)]1/p

, t ∈ [−k, 0],

(4.14)

for any (u0,m, v0,m) ∈ B(θ−tm
ω). In particular, (4.14) is satisfied for t = −k.

Then by the Banach-Alaoglu theorem, there exists a sequence {ũk(ω), ṽk(ω)}∞k=1

in the space E and subsequences of {−tm}∞m=1 and {(u0,m, v0,m)}∞m=1 again rela-
beled as the same, such that for all ω ∈ Ω and every integer k ≥ 1,
(4.15)

(u(−k, ω,−tm, u0,m), v(−k, ω,−tm, v0,m)) −→ (ũk(ω), ṽk(ω)) weakly in E,
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as m → ∞, which can be extracted through a diagonal selection procedure.
By the weakly continuous dependence on the initial data of the solutions stated

in Lemma 2.7, the weak convergence (4.15) and the fact of concatenation,

(u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m))

= (u(0, ω,−k, u(−k, ω,−tm, u0,m)), v(0, ω,−k, v(−k, ω,−tm, v0,m))),
(4.16)

imply that for all integers k ≥ 1 and ω ∈ Ω, when m → ∞,

(4.17) (u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m)) −→ (u(0, ω,−k, ũk), v(0, ω,−k, ṽk))

weakly in E. By (2.16), (4.10) and (4.17) we reach the following equality that for
every ω ∈ Ω and all positive integers k,

(4.18) (ũ(ω), ṽ(ω)) = (u(0, ω,−k, ũk(ω)), v(0, ω,−k, ṽk(ω))).

According to (3.4)-(3.9), the weak solutions (u, v) of (2.11) satisfies

d

dt
Q(u, v) + 2σQ(u, v) ≤ −2(β − δ − σ)‖v‖2 − 2(δ − σ)

(
α + δ2 − βδ

) ‖u‖2

− 2(δ − σ)‖∇u‖2 + 4σ

∫
Rn

(F (x, u) + φ3(x)) dx − 2δ〈f(x, u), u〉

+ 2ε
(
α + δ2 − βδ

) 〈z(θtω), u〉 + 2ε〈∇z(θtω),∇u〉+ 2ε〈z(θtω), f(x, u)〉

+ (4δε − 2βε)〈z(θtω), v〉 + 2〈g, v〉 := G(u(t, ω, τ, u0), v(t, ω, τ, v0)).

(4.19)

From (4.18) and (4.19), for any integer k ≥ 1 we have

Q(ũ(ω), ṽ(ω)) ≤ e−2σkQ(ũk(ω), ṽk(ω))

+

∫ 0

−k

e2σξ G(u(ξ, ω,−k, ũk), v(ξ, ω,−k, ṽk)) dξ.
(4.20)
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STEP 3. From the concatenation (4.16) and (4.19), on the other hand, we have

Q(u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m))

≤ e−2σkQ(u(−k, ω,−tm, u0,m), v(−k, ω,−tm, v0,m))

− 2(β − δ − σ)

∫ 0

−k

e2σξ‖v(ξ, ω,−k, v(−k, ω,−tm, v0,m))‖2d ξ

− 2(δ − σ)
(
α + δ2 − βδ

) ∫ 0

−k

e2σξ‖u(ξ, ω,−k, u(−k, ω,−tm, u0,m))‖2dξ

− 2(δ − σ)

∫ 0

−k

e2σξ‖∇u(ξ, ω,−k, u(−k, ω,−tm, u0,m))‖2 dξ

+ 4σ

∫ 0

−k

e2σξ

∫
Rn

(F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) + φ3(x)) dx dξ

− 2δ

∫ 0

−k

e2σξ

∫
Rn

f(x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m)))·

· u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) dx dξ

+ 2ε
(
α + δ2 − βδ

) ∫ 0

−k

e2σξ

∫
Rn

z(θξω)u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) dx dξ

+ 2ε

∫ 0

−k

e2σξ

∫
Rn

∇z(θξω)∇u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) dx dξ

+ 2ε

∫ 0

−k

e2σξ

∫
Rn

z(θξω)f(x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) dx dξ

+ (4δε − 2βε)

∫ 0

−k

e2σξ

∫
Rn

z(θξω)v(ξ, ω,−k, v(−k, ω,−tm, v0,m)) dx dξ

+ 2

∫ 0

−k

e2σξ

∫
Rn

g(x) v(ξ, ω,−k, v(−k, ω,−tm, v0,m)) dx dξ.

(4.21)

Below we treat all the terms on the right-hand side of (4.21).
1) For the first term on the right-hand side of (4.21), by (4.7) in Lemma 4.2,

for every ω ∈ Ω and all m ≥ M1(B, ω, k) we have

e−2σkQ(u(−k, ω,−tm, u0,m), v(−k, ω,−tm, v0,m))

≤ e−2σk

(
R(ω) + 1 +

1

σ
e

1

2
σk

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

])

≤ e−σk

(
R(ω) + 1 +

1

σ

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

])
.

(4.22)

2) For the second term on the right-hand side of (4.21), by (4.15) and the
weakly continuous dependence of solutions on the initial data stated in Lemma 2.7,
we find that for every ω ∈ Ω and all ξ ∈ [−k, 0], when m → ∞,

v(ξ, ω,−k, v(−k, ω,−tm, v0,m)) −→ v(ξ, ω,−k, ṽk(ω)) weakly in L2(Rn),

which implies that for all ξ ∈ [−k, 0],

(4.23) lim inf
m→∞ ‖v(ξ, ω,−k, v(−k, ω,−tm, v0,m))‖2 ≥ ‖v(ξ, ω,−k, ṽk(ω))‖2.
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By (4.23) and Fatou’s lemma we obtain

lim inf
m→∞

∫ 0

−k

e2σξ‖v(ξ, ω,−k, v(−k, ω,−tm, v0,m))‖2 dξ

≥
∫ 0

−k

e2σξ lim inf
m→∞

‖v(ξ, ω,−k, v(−k, ω,−tm, v0,m))‖2 dξ

≥
∫ 0

−k

e2σξ‖v(ξ, ω,−k, ṽk(ω))‖2 dξ.

(4.24)

Therefore, since (3.2) and (3.16) implies β − δ − σ ≥ β − 2δ > 0, (4.24) leads to

lim sup
m→∞

−2(β − δ − σ)

∫ 0

−k

e2σξ‖v(ξ, ω,−k, v(−k, ω,−tm, v0,m))‖2 dξ

= − 2(β − δ − σ) lim inf
m→∞

∫ 0

−k

e2σξ‖v(ξ, ω,−k, v(−k, ω,−tm, v0,m))‖2 dξ

≤ − 2(β − δ − σ)

∫ 0

−k

e2σξ‖v(ξ, ω,−k, ṽk(ω))‖2 dξ.

(4.25)

Similarly for the third and fourth terms, by (4.15) and Fatou’s lemma we obtain

lim sup
m→∞

− 2(δ − σ)
(
α + δ2 − βδ

) ∫ 0

−k

e2σξ‖u(ξ, ω,−k, u(−k, ω,−tm, u0,m))‖2 dξ

≤ −2(δ − σ)
(
α + δ2 − βδ

) ∫ 0

−k

e2σξ‖u(ξ, ω,−k, ũk(ω))‖2 dξ,

lim sup
m→∞

− 2(δ − σ)

∫ 0

−k

e2σξ‖∇u(ξ, ω,−k, u(−k, ω,−tm, u0,m))‖2 dξ

≤ −2(δ − σ)

∫ 0

−k

e2σξ‖∇u(ξ, ω,−k, ũk(ω))‖2 dξ.

(4.26)

3) For the fifth term on the right-hand side of (4.21), we have

∣∣∣∣
∫ 0

−k

e2σξ

∫
Rn

(F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) − F (x, u(ξ, ω,−k, ũk)))dxdξ

∣∣∣∣
≤
∫ 0

−k

e2σξ

∫
|x|>r

|F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) − F (x, u(ξ, ω,−k, ũk))|dxdξ

+

∫ 0

−k

e2σξ

∫
|x|≤r

|F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) − F (x, u(ξ, ω,−k, ũk))|dxdξ.

(4.27)

A) For any given η > 0, by the proof of Lemma 3.2 adapted to the time interval
(−∞,−k], there exist M3 = M3(B, ω, η) > M2 and K = K(B, ω, η) ≥ 1 such that
for ω ∈ Ω and ξ ∈ [−k, 0], whenever r ≥ K and m ≥ M3 one has
(4.28)∫

|x|>r

(|u(ξ, ω,−tm, u0,m)|2 + |u(ξ, ω,−tm, u0,m)|p + |φ1|2 + |φ2| + |φ3|
)
dx < η.
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In view of the Assumption II, there exists a constant L1 > 0 such that for all ω ∈ Ω
and ξ ∈ [−k, 0], one has∫

|x|>r

|F (x, u(ξ, ω,−tm, u0,m))| dx

≤
∫
|x|>r

L1(|u(ξ, ω, − tm, u0,m)|2 + |u(ξ, ω,−tm, u0,m)|p + |φ1|2 + |φ2| + |φ3|)dx

< L1η, for all r ≥ K, m ≥ M3.

B) Since (4.15) shows that

ũk(ω) = (weak) lim
m→∞

u(−k, ω,−tm, u0,m) in L2(Rn) ∩ Lp(Rn),

by the weakly continuous dependence of solutions on intial data stated in Lemma
2.7 and the weak lower-semicontinuity of the L2 and Lp norms, it follows from (4.28)
that∫ 0

−k

e2σξ

∫
|x|>r

|F (x, u(ξ, ω,−k, ũk))| dx dξ

≤
∫ 0

−k

e2σξ

∫
|x|>r

L1(|u(ξ, ω,−k, ũk)|2 + |u(ξ, ω,−k, ũk)|p + |φ1|2 + |φ2| + |φ3|) dxdξ

=

∫ 0

−k

e2σξL1

(
‖u(ξ, ω,−k, ũk)‖2

L2(Rn\Br) + ‖u(ξ, ω,−k, ũk)‖p
Lp(Rn\Br)

)
dξ

+

∫ 0

−k

e2σξL1

∫
|x|>r

(|φ1|2 + |φ2| + |φ3|) dx dξ

≤
∫ 0

−k

e2σξL1 lim inf
m→∞

‖u(ξ, ω,−k, ũk)‖2
L2(Rn\Br) dξ

+

∫ 0

−k

e2σξL1 lim inf
m→∞

‖u(ξ, ω,−k, ũk)‖p
Lp(Rn\Br) dξ

+

∫ 0

−k

e2σξL1

∫
|x|>r

(|φ1|2 + |φ2| + |φ3|) dx dξ ≤ L1

2σ
η, for ω ∈ Ω, r ≥ K1, m ≥ M3.

The above two inequalities show that there exists a constant L2 = L1(1+1/(2σ)) > 0
such that the first term on the right-hand side of (4.27) satisfies

∫ 0

−k

e2σξ

∫
|x|>r

|F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) − F (x, u(ξ, ω,−k, ũk))| dxdξ

≤
∫ 0

−k

e2σξ

∫
|x|>r

(|F (x, u(ξ, ω,−tm, u0,m))| + |F (x, u(ξ, ω,−k, ũk))|)dx dξ ≤ L2η,

(4.29)

for all ω ∈ Ω, r ≥ K and m ≥ M3.
C) For the second term on the right-hand side of (4.27), by (4.15) we have

u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) −→ u(ξ, ω,−k, ũk) weakly in H1(Br) ∩ Lp(Br).

Since H1(Br) is compactly embedded in L2(Br), it follows that for any ω ∈ Ω and
ξ ∈ [−k, 0],

(4.30) u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) −→ u(ξ, ω,−k, ũk) strongly in L2(Br).
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Then by the first item of Lemma 4.1 and the continuity of F (x, u), as m → ∞,

(4.31) F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) −→ F (x, u(ξ, ω,−k, ũk)) in Br.

On the other hand, by the Assumption II and Lemma 4.2, we have a uniform bound
that there exists a constant L3 > 0 such that

∫
|x|<r

|F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m)))| dx

≤L1

(
‖u(ξ, ω,−k, u(−k, ω,−tm, u0,m))‖2

L2(Br)

+‖u(ξ, ω,−k, u(−k, ω,−tm, u0,m))‖p
Lp(Br)

+ ‖φ1‖2 + ‖φ2‖L1(Rn) + ‖φ3‖L1(Rn)

)
≤L3

[
R(ω) + 1 +

1

σ
e

1

2
σk

(
4C5r0(ω) + C6 +

‖g‖2

β − δ

)
+ ‖φ1‖2 + ‖φ2‖L1 + ‖φ3‖L1

]

(4.32)

for all ω ∈ Ω, ξ ∈ [−k, 0] and m ≥ M1. By the second item of Lemma 4.2, it follows
from (4.31) and (4.32) that as m → ∞,

F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) −→ F (x, u(ξ, ω,−k, ũk)) weakly in L1(Br).

Consequently, when m → ∞,
(4.33)∫
|x|<r

F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m)))dx −→
∫
|x|<r

F (x, u(ξ, ω,−k, ũk)) dx.

Furthermore, by (4.32) we have

∣∣∣∣∣
∫
|x|<r

[F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) − F (x, u(ξ, ω,−k, ũk))] dx

∣∣∣∣∣
≤L3

[
R(ω) + 1 +

1

σ
e

1

2
σk

(
4C5r0(ω) + C6 +

‖g‖2

β − δ

)
+ ‖φ1‖2 + ‖φ2‖L1 + ‖φ3‖L1

]

+ ‖F (·, u(ξ, ω,−k, ũk))‖L1(Rn).

(4.34)

According to the Lebesgue dominated convergence theorem, (4.33) and (4.34) imply
that for every ω ∈ Ω, integer k ≥ 1 and any given r ≥ K,

lim
m→∞

∫ 0

−k

e2σξ

∫
|x|<r

F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) dx dξ

=

∫ 0

−k

e2σξ

∫
|x|<r

F (x, u(ξ, ω,−k, ũk)) dx dξ.

(4.35)

Combine (4.27), (4.29) and (4.35), we obtain

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

(F (x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) + φ3(x)) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

(F (x, u(ξ, ω,−k, ũk)) + φ3(x)) dx dξ.

(4.36)
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4) By an argument similar to the proof of (4.36) shown above, we can also prove
the convergence of the sixth term on the right-hand side of (4.21). Namely,

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

f(x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m)))·

· u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

f(x, u(ξ, ω,−k, ũk(ω)))u(ξ, ω,−k, ũk(ω)) dx dξ.

(4.37)

5) The convergence of the remaining terms on the right-hand side of (4.21) can
be shown even simpler:

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

z(θξω)u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

z(θξω)u(ξ, ω,−k, ũk(ω)) dx dξ,

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

∇z(θξω)∇u(ξ, ω,−k, u(−k, ω,−tm, u0,m)) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

∇z(θξω)∇u(ξ, ω,−k, ũk(ω)) dx dξ,

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

z(θξω)f(x, u(ξ, ω,−k, u(−k, ω,−tm, u0,m))) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

z(θξω)f(x, u(ξ, ω,−k, ũk(ω))) dx dξ,

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

z(θξω)v(ξ, ω,−k, v(−k, ω,−tm, v0,m)) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

z(θξω)v(ξ, ω,−k, ṽk(ω)) dx dξ,

lim
m→∞

∫ 0

−k

e2σξ

∫
Rn

g(x) v(ξ, ω,−k, v(−k, ω,−tm, v0,m)) dx dξ

=

∫ 0

−k

e2σξ

∫
Rn

g(x) v(ξ, ω,−n, ṽk(ω)) dx dξ.

STEP 4. Take the limit of (4.21) as m → ∞ and assemble together the results
shown above in the items 1) through 5) of Step 3. Then we get
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lim sup
m→∞

Q(u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m))

≤ e−σk

(
R(ω) + 1 +

1

σ

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

])

− 2(β − δ − σ)

∫ 0

−k

e2σξ‖v(ξ, ω,−k, ṽk(ω))‖2 dξ

− 2(δ − σ)
(
α + δ2 − βδ

) ∫ 0

−k

e2σξ‖u(ξ, ω,−k, ũk(ω))‖2 dξ

− 2(δ − σ)

∫ 0

−k

e2σξ‖∇u(ξ, ω,−k, ũk(ω))‖2 dξ

+ 4σ

∫ 0

−k

e2σξ

∫
Rn

(F (x, u(ξ, ω,−k, ũk(ω))) + φ3(x)) dx dξ

− 2δ

∫ 0

−k

e2σξ

∫
Rn

f(x, u(ξ, ω,−k, ũk(ω)))u(ξ, ω,−k, ũk(ω)) dx dξ

+ 2ε
(
α + δ2 − βδ

) ∫ 0

−k

e2σξ

∫
Rn

z(θξω)u(ξ, ω,−k, ũk(ω)) dx dξ

+ 2ε

∫ 0

−k

e2σξ

∫
Rn

∇z(θξω)∇u(ξ, ω,−k, ũk(ω)) dx dξ

+ 2ε

∫ 0

−k

e2σξ

∫
Rn

z(θξω)f(x, u(ξ, ω,−k, ũk(ω))) dx dξ

+ (4δε − 2βε)

∫ 0

−k

e2σξ

∫
Rn

z(θξω)v(ξ, ω,−k, ṽk(ω)) dx dξ

+ 2

∫ 0

−k

e2σξ

∫
Rn

g(x) v(ξ, ω,−k, ṽk(ω)) dx dξ.

(4.38)

It follows from (4.20) and (4.38) that

lim sup
m→∞

Q(u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m))

≤ e−σk

(
R(ω) + 1 +

1

σ

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

])

+

∫ 0

−k

e2σξ G(u(ξ, ω,−k, ũk), v(ξ, ω,−k, ṽk)) dξ,

= e−σk

(
R(ω) + 1 +

1

σ

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

])
+ Q(ũ(ω), ṽ(ω)) − e−2σkQ(ũk(ω), ṽk(ω))

≤ e−σk

(
R(ω) + 1 +

1

σ

[
4C5r0(ω) + C6 +

‖g‖2

β − δ

])
+ Q(ũ(ω), ṽ(ω)),

(4.39)

because −e−2σkQ(ũk(ω), ṽk(ω)) ≤ 0 due to (2.5) and (4.5). Take limit k → ∞. We
obtain

(4.40) lim sup
m→∞

Q (u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m)) ≤ Q (ũ(ω), ṽ(ω)).
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On the other hand, from (4.18), (4.31) and (4.32) we get

(4.41) lim
m→∞

∫
Rn

F (x, u(0, ω,−tm, u0,m)) dx =

∫
Rn

F (x, ũ) dx,

which along with (4.40) shows that

lim sup
m→∞

(‖v(0, ω,−tm, v0,m)‖2 + (α + δ2 − βδ)‖u(0, ω,−tm, u0,m)‖2

+ ‖∇u(0, ω,−tm, u0,m)‖2
) ≤ ‖ṽ‖2 + (α + δ2 − βδ)‖ũ‖2 + ‖∇ũ‖2.

(4.42)

STEP 5. Note that the norm of H1(Rn) × L2(Rn) is equivalent to

‖(u, v)‖Π
def
= Q(u, v)−2

∫
Rn

(F (x, u)+φ3(x)) dx = ‖v‖2+(α+δ2−βδ)‖u‖2+‖∇u‖2.

Same as the second inequality in (4.11), from the weak convergence shown by (4.10),
for any g0,m = (u0,m, v0,m) ∈ B(θ−tm

ω) we have

lim inf
m→∞

‖Φ(tm, θ−tm
ω, g0,m)‖Π ≥ ‖(ũ(ω), ṽ(ω))‖Π.

Meanwhile, (4.42) implies that

lim sup
m→∞

‖Φ(tm, θ−tm
ω, g0,m)‖Π ≤ ‖(ũ(ω), ṽ(ω))‖Π.

It follows that

(4.43) lim
m→∞

‖Φ(tm, θ−tm
ω, g0,m)‖Π = ‖(ũ(ω), ṽ(ω))‖Π.

Finally, for the Hilbert space H1(Rn) × L2(Rn), the weak convergence (4.10) and
the norm convergence (4.43) imply the strong convergence. Therefore, up to a finite
steps of subsequence selections always relabeled as the same in this proof, we reach
the conclusion that

Φ(tm, θ−tm
ω, g0,m) → (ũ, ṽ) strongly in H1(Rn) × L2(Rn).

Thus the proof is completed. �

5. The Existence of Random Attractor

In this section we shall first prove an instrumental convergence theorem in the
space Lp(X,M, μ) of Vitali type. It will pave the way to prove pullback asymptotic
compactness of the cocycle Φ in the space Lp(Rn) for 2 < p < ∞. This is the crcucial
and final step to accomplish the proof of the existence of a random attractor for this
random dynamical system Φ generated by the stochastic wave equation (1.1)-(1.2).

Theorem 5.1. Let (X,M, μ) be a σ0-finite measure space and assume that a

sequence {fm}∞m=1 ⊂ Lp(X,M, μ) with 1 ≤ p < ∞ satisfies

(5.1) lim
m→∞

fm(x) = f(x), a.e.

Then f ∈ Lp(X,M, μ) and

(5.2) lim
m→∞

‖fm − f‖Lp(X,M, μ) = 0

if and only if the following two conditions are satisfied :
(a) For any given ε > 0, there exists a set Aε ∈ M such that μ(Aε) < ∞ and

(5.3)

∫
X\Aε

|fm(x)|p dμ < ε, for all m ≥ 1.
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(b) The absolutely continuous property of the Lp integrals of the functions in

the sequence is satisfied uniformly,

(5.4) lim
μ(Y )→0

∫
Y

|fm(x)|p dμ = 0, uniformly in m ≥ 1.

Proof. First we prove the necessity. Statement (a): Under the condition (5.2),
for an arbitrarily given ε > 0 there exists an integer N = N(ε) ≥ 1 such that

(5.5) ‖fm − f‖p
Lp(X,M, μ)

<
ε

2p
, for all m > N.

Since f ∈ Lp(X,M, μ), there exist measurable sets Bε and Sε both of finite measure,
such that

(5.6)

∫
X\Bε

|f(x)|p dμ <
ε

2p
and

∫
X\Sε

|fm(x)|p dμ < ε, for m = 1, · · · , N.

Put Aε = Bε ∪ Sε. Then μ(Aε) < ∞ and we have∫
X\Aε

|fm(x)|p dμ =

∫
X\Aε

(|fm(x) − f(x)| + |f(x)|)p dμ

≤ 2p−1

(∫
X

|fm(x) − f(x)|p dμ +

∫
X\Bε

|f(x)|p dμ

)
<

ε

2
+

ε

2
= ε, for m > N.

Besides it follows from the second inequality in (5.6) that∫
X\Aε

|fm(x)|p dμ ≤
∫

X\Sε

|fm(x)|p dμ < ε, for m = 1, · · · , N.

Therefore, the statement (a) is valid.
Statement (b): By the absolutely continuous property of Lebesgue integral on

a σ0-finite measure space, for any given ε > 0, there exists δ0 = δ0(ε) > 0 such that
whenever μ(Y ) < δ0 one has

(5.7)

∫
Y

|f(x)|p dμ <
ε

2p
and

∫
Y

|fm(x)|p dμ < ε, for m = 1, · · · , N,

where N = N(ε) is the same integer in (5.5). Then for any measurable set Y ⊂ X
with μ(Y ) < δ0 one also has∫

Y

|fm(x)|p dμ ≤ 2p−1

(∫
X

|fm(x) − f(x)|p dμ +

∫
Y

|f(x)|p dμ

)
< ε, for m > N.

Thus the statement (b) is also valid.
Next we prove the sufficiency. Suppose the two conditions (a) and (b) are

satisfied. First of all, by the condition (a) and Fatou’s Lemma, for an arbitrarily
given ε > 0 there exists a set Aε of finite maesure with

sup
m≥1

∫
X\Aε

|fm(x)|p dμ < ε,

which implies that the limit function f in the assumption (5.1) satisfies

(5.8)

∫
X\Aε

|f(x)|p dμ ≤ lim inf
m→∞

∫
X\Aε

|fm(x)|p dμ < ε.

Hence it follows that

(5.9) f ∈ Lp(X\Aε) and ‖fm − f‖Lp(X\Aε) < 2ε1/p, for all m ≥ 1.
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Therefore, the proof of f ∈ Lp(X,M, μ) and (5.2) is reduced to proving that

(5.10) f ∈ Lp(Y ) and lim
m→∞

‖fm − f‖Lp(U) = 0,

for any given measurable set Y ⊂ X with μ(Y ) < ∞.
Then by the condition (b), for any given ε > 0, there exists δ1 = δ1(ε) > 0 such

that for any S ⊂ X with μ(S) < δ1 one has

(5.11)

∫
S

|fm(x)|p dμ < εp, uniformly in m ≥ 1.

Consequently, by Fatou’s lemma,

(5.12)

∫
S

|f(x)|p dμ ≤ lim inf
m→∞

∫
S

|fm(x)|p dμ < εp.

By Egorov’s theorem on Lebesgue integral over such a set Y of finite measure in
the space (X,M, μ), there exists a measurable subset B ⊂ Y with μ(Y \B) < δ1

such that

lim
m→∞

fm(x) = f(x), uniformly a.e. on B,

so that there exists an integer m0 = m0(ε) ≥ 1 such that

(5.13) ‖fm − f‖Lp(B) < ε, for all m ≥ m0.

Combining (5.11), (5.12) and (5.13), we see that

‖fm − f‖Lp(Y ) ≤ ‖fm‖Lp(Y \B) + ‖f‖Lp(Y \B) + ‖fm − f‖Lp(B) < 3ε, for m ≥ m0.

Therefore, (5.10) is proved. The proof is completed. �

Finally we present and prove the main result of this work on the existence of a
pullback random attractor for this random dynamical system Φ associated with the
concerned stochastic wave equation on the product Banach space E with arbitrary
exponent and arbitrary space dimension.

Theorem 5.2. Under the Assumptions I, II and III, the random dynamical

system Φ generated by the damped stochastic wave equation (1.1) on the Banach

space E = (H1(Rn) ∩ Lp(Rn)) × L2(Rn) over the parametric dynamical space

(Ω,F , P, (θt)t∈R) has a unique D-pullback random attractor A = {A(ω)}ω∈Ω ∈ D .

Proof. Lemma 3.1 shows that there exists a D-pullback random absorbing
set, the K = {BE(0, R(ω))}ω∈Ω in the space E for the cocycle Φ. Thus it suffices
to prove that the cocycle Φ is D-pullback asymptotically compact in E.

(1) Theorem 4.3 shows that for every B = {B(ω)}ω∈Ω ∈ D and any sequence

{Φ(tm, θ−tm
ω, g0,m)}∞m=1 ,

where tm → ∞ and g0,m = (u0,m, v0,m) ∈ B(θ−tm
ω), along a pullback quasi-

trajectory of the cocycle Φ has a subsequence, which is denoted by the same, such
that

(5.14) Φ(tm, θ−tm
ω, g0,m) −→ (ũ(ω), ṽ(ω)) strongly in H1(Rn) × L2(Rn),

and consequently

(5.15) Pu Φ(tm, θ−tm
ω, g0,m) −→ ũ(ω) strongly in L2(Rn).

Here Pu : (u, v) 	→ u is the projection.
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(2) Apply the first item in Lemma 4.1 to L2(Rn). It follows from (5.14) that
there exists a subsequence {Φ(tmk

, θ−tmk
ω, g0,mk

)}∞k=1 of {Φ(tm, θ−tm
ω, g0,m)}∞m=1,

such that

(5.16) lim
k→∞

Φ(tmk
, θ−tmk

ω, g0,mk
)(x) = (ũ(ω)(x), ṽ(ω)(x)), a.e. in R

n.

Hence we have

(5.17) lim
k→∞

PuΦ(tmk
, θ−tmk

ω, g0,mk
)(x) = ũ(ω)(x), a.e. in R

n.

Therefore, the assumption (5.1) in Theorem 5.1 is satisfied by the sequence of
functions {PuΦ(tmk

, θ−tmk
ω, g0,mk

)(x)}∞k=1 in Lp(Rn).

(3) By Lemma 3.2, for a.e. ω ∈ Ω and any ε > 0, there exists an integer
k0 = k0(B, ω, ε) > 0 and V = V (ω, ε) ≥ 1 such that for all k > k0 one has
(5.18)∫

Rn\BV

|PuΦ(tmk
, θ−tmk

ω, g0,mk
)(x)|p dx ≤ �Φ(tmk

, θ−tmk
ω, g0,mk

)�p
E(Rn\BV ) < ε,

for any g0,mk
∈ B(θ−tmk

ω), where BV is the ball centered at the origin with radius

V in R
n. Then there exists V0 = V0(ω, ε) > 0 such that

(5.19)

∫
Rn\BV0

|PuΦ(tmk
, θ−tmk

ω, g0,mk
)(x)|p dx < ε, for k = 1, · · · , k0.

Here (5.18) and (5.19) confirm that with Aε = Bmax{V,V0} in (5.3) of the condition
(a) in Theorem 5.1 is satisfied by the sequence {PuΦ(tmk

, θ−tmk
ω, g0,mk

)(x)}∞k=1 in

Lp(Rn).
(4) Finally we show that the uniform absolutely continuous condition (b) of The-

orem 5.1 is satisfied by the sequence of functions {PuΦ(tmk
, θ−tmk

ω, g0,mk
)(x)}∞k=1

in Lp(Rn).
According to the Assumption II, for any measurable set Y ⊂ R

n, we have

C3

∫
Y

|u|p dx ≤
∫

Y

(F (x, u) + φ3(x)) dx ≤ QY (u, v), for (u, v) ∈ E,

where QY (u, v) is analogous to (4.5) and defined by
(5.20)

QY (u, v) = ‖v‖2
L2(Y )+

(
α + δ2 − βδ

) ‖u‖2
L2(Y )+‖∇u‖2

L2(Y )+2

∫
Y

(F (x, u)+φ3(x))dx.

We integrate the inequality (3.17) over the time interval [−tm, 0] to get

QY (u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m))

≤ e−σtm QY ((u0,m, v0,m)) +

∫ 0

−tm

eσt

(
2ΓY

1 (θtω) + C6(Y ) +
‖g‖2

L2(Y )

β − δ

)
dt,

(5.21)

where, in view of (3.14) and the set-up of the constants C4 and C6 in Section 3.1,
we have

ΓY
1 (θtω) = C0

(
‖z(θtω)‖2

L2(Y ) + ‖∇z(θtω)‖2
L2(Y ) + ‖z(θtω)‖p

Lp(Y )

)
and
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C6(Y ) = 2

(
δC2 − εC1(p − 1)

C3p

)
‖φ3‖L1(Y ) + ε‖φ1‖2

L2(Y )

− δ‖φ2‖L1(Y ) +
εC1(p − 1)

C3p
‖φ3‖L1(Y ) ≤ ε‖φ1‖2

L2(Y ) + 2δC2‖φ3‖L1(Y ).

(5.22)

Note that z(θtω) =
∑m

j=1 hj(x)zj(θtωj). By (2.8), we obtain

ΓY
1 (θtω) = C max

1≤j≤m

{
‖hj‖2

H1(Y ), ‖hj‖p
Lp(Y )

} m∑
j=1

(|zj(θtωj)|2 + |zj(θtωj)|p
)

≤ C max
1≤j≤m

{
‖hj‖2

H1(Y ), ‖hj‖p
Lp(Y )

}
e

σ
2
|t|r0(ω),

(5.23)

where C > 0 is a constant.
Substitute the expression of QY ((u0,m, v0,m)) for (u0,m, v0,m) ∈ B(θ−tm

ω) and
(5.22), (5.23) into the inequality (5.21). Since (2.3)-(2.4) yield∫

Y

(F (x, u) + φ3(x)) dx ≤ 1

C2

[
C1‖u‖p

Lp(Y ) + ‖u‖2
L2(Y ) + ‖φ1‖2

L2(Y ) + ‖φ2‖L1(Y )

]
,

for every ω ∈ Ω and B ∈ D and any g0,m = (u0,m, v0,m) ∈ B(θ−tm
ω) it holds that

C3

∫
Y

|u(0, ω,−tm, u0,m)|p dx ≤ QY (u(0, ω,−tm, u0,m), v(0, ω,−tm, v0,m))

≤ e−σtm

[
‖v0,m‖2

L2(Y ) + (α + δ2 − βδ)‖u0,m‖2
L2(Y ) + ‖∇u0,m‖2

L2(Y )

]
+ e−σtm

1

C2

[
C1‖u0,m‖p

Lp(Y ) + ‖u0,m‖2
L2(Y ) + ‖φ1‖2

L2(Y ) + ‖φ2‖L1(Y )

]

+

∫ 0

−tm

2eσtC max
1≤j≤m

{
‖hj‖2

H1(Y ), ‖hj‖p
Lp(Y )

}
e−

σ
2

tr0(ω) dt

+ (ε + 2δC2)

∫ 0

−tm

eσt
(
‖φ1‖2

L2(Y ) + ‖φ3‖L1(Y )

)
dt +

∫ 0

−tm

eσt

β − δ
‖g‖2

L2(Y ) dt.

(5.24)

Due to the absolute continuity of the respective Lebesgue integrals of the func-
tions φ1(x), φ2(x), φ3(x), hj(x), j = 1, · · · , m, and g involved in the above inequality
(5.24), for an arbitrarily given η > 0, there exists μ0 = μ0(ω, η) > 0 such that for
any measurable set Y ⊂ R

n with μ(Y ) < μ0 one has

e−σtm
1

C2

(
‖φ1‖2

L2(Y ) + ‖φ2‖L1(Y )

)

+

∫ 0

−tm

2eσtC max
1≤j≤m

{
‖hj‖2

H1(Y ), ‖hj‖p
Lp(Y )

}
e−

σ
2

tr0(ω) dt

+ (ε + 2δC2)

∫ 0

−tm

eσt
(
‖φ1‖2

L2(Y ) + ‖φ3‖L1(Y )

)
dt +

∫ 0

−tm

eσt

β − δ
‖g‖2

L2(Y ) dt

≤ 1

C2

(
‖φ1‖2

L2(Y ) + ‖φ2‖L1(Y )

)
+

4C

σ
r0(ω) max

1≤j≤m

{
‖hj‖2

H1(Y ), ‖hj‖p
Lp(Y )

}
+

1

σ
(ε + 2δC2)

(
‖φ1‖2

L2(Y ) + ‖φ3‖L1(Y )

)
+

1

σ(β − δ)
‖g‖2

L2(Y ) <
η

2
.

(5.25)
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Moreover, since it has been specified in the beginning of Section 3.1 that the universe
D = DE and here B ∈ D , there exists a constant C∗ > 0 such that

e−σtm

[
‖v0,m‖2

L2(Y ) + (α + δ2 − βδ)‖u0,m‖2
L2(Y ) + ‖∇u0,m‖2

L2(Y )

]
+

1

C2
e−σtm

[
C1‖u0,m‖p

Lp(Y )
+ ‖u0,m‖2

L2(Y )

]
≤ e−σtmC∗

(
‖B(θ−tm

ω)‖2
E(Y ) + ‖B(θ−tm

ω)‖p
E(Y )

)
,

where ‖B(θ−tm
ω)‖E(Y ) = maxg0∈B(θ

−tm ω) ‖g0 ζY ‖E with ζY being the characteris-

tic function for the set Y . Since limt→∞ e−σt‖B(θ−tω)‖E = 0, for the aforemen-
tioned arbitrary η > 0 there exists an integer m0 = m0(B, ω, η) ≥ 1 such that

e−σtmC∗
(
‖B(θ−tm

ω)‖2
E(Y ) + ‖B(θ−tm

ω)‖p
E(Y )

)
≤ e−σtmC∗

(‖B(θ−tm
ω)‖2

E + ‖B(θ−tm
ω)‖p

E

)
<

η

2
, for all m > m0.

(5.26)

Then there esists μ1 = μ1(B, ω, m0, η) > 0 such that for any set Y with μ(Y ) < μ1

one has

(5.27) e−σtj C∗
(
‖B(θ−tj

ω)‖2
E(Y ) + ‖B(θ−tj

ω)‖p
E(Y )

)
<

η

2
, j = 1, · · · , m0.

Put together (5.24), (5.25), (5.26) and (5.27). It shows that, for every ω ∈ Ω,
whenever a measurable set Y ⊂ R

n satisfies μ(Y ) < min{μ0, μ1} one has

(5.28) C3

∫
Y

|u(0, ω,−tm, u0,m)|p dx ≤ η

2
+

η

2
= η, for all m ≥ 1.

Therefore,

(5.29) lim
μ(Y )→0

∫
Y

|PuΦ(tmk
, θ−tmk

ω, g0,m)(x)|p dx = 0, uniformly in k ≥ 1,

so that the condition (b) of Theorem 5.1 is satisfied by the sequence of functions
{PuΦ(tmk

, θ−tmk
ω, g0,mk

)(x)}∞k=1 in Lp(Rn).

As checked by the steps (2), (3) and (4) in this proof, all the conditions in Theo-
rem 5.1 are satisfied by the sequence of functions {PuΦ(tmk

, θ−tmk
ω, g0,mk

)(x)}∞k=1

in Lp(Rn). Thus we apply Theorem 5.1 to obtain

(5.30) lim
k→∞

PuΦ(tmk
, θ−tmk

ω, g0,mk
) = ũ(ω), strongly in Lp(Rn).

Finally, combination of (5.14) and (5.30) shows that there exists a convergent
subsequence {Φ(tmk

, θ−tmk
ω, g0,mk

)}∞k=1 of the sequence {Φ(tm, θ−tm
ω, g0,m)}∞m=1

in the space E = (H1(Rn) ∩ Lp(Rn)) × L2(Rn). Therefore, the random dynamical
system Φ on E is D-pullback asymptotically compact.

According to Theorem 2.6, we conclude that there exists a D-pullback random
attractor A = {A(ω)}ω∈Ω ∈ D for this random dynamical system Φ on E generated
by the original stochastic damped wave equation (1.1). The proof is completed. �
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