
Dynamics of PDE, Vol.12, No.4, 321-342, 2015

On the locally self-similar singular solutions for the

incompressible Euler equations

Liutang Xue

Communicated by Dong Li, received May 22, 2015.

Contents

1. Introduction 321
2. Auxiliary lemmas concerning the pressure profile 325
3. Proof of the main result 334
References 341

Abstract. In this paper we consider the locally backward self-similar solu-

tions for the Euler system, and specially focus on the case that the possible
nontrivial velocity profiles have non-decaying spatial asymptotics. We derive

the representation formula of the pressure profile in terms of the velocity pro-
files in such a situation, and by using it and the local energy inequality of

the profiles, we prove some nonexistence results and show the energy behavior
concerning these possible velocity profiles.

1. Introduction

Perfect incompressible fluids are governed by the well-known Euler system

(1.1)

⎧⎪⎨⎪⎩
∂tv + v · ∇v + ∇p = 0,

∇ · v = 0,

v|t=0 = v0(x),

where (x, t) ∈ R
N ×R

+, N = 2, 3, · · · is the spatial dimension, v = (v1, v2, · · · , vN)
is the velocity vector field of R

N and p is the scalar-valued pressure field. Assume
v0 ∈ Hs(RN ), s > N

2
+ 1, it has been known for decades (e.g. [15]) that there is

a unique local-in-time smooth solution v ∈ C([0, T [; Hs(RN)) and the pressure can
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be expressed up to a constant by p = −div divΔ−1(v ⊗ v), that is,

(1.2) p(x, t) = −
1

N
|v(x, t)|2 + p.v.

∫
RN

Kij(x − y)vi(y, t)vj(y, t) dy,

where Kij(y) = 1
|SN−1|

Nyiyj−|y|
2δij

|y|N+2 (i, j = 1, 2, · · · , N) is the Calderón-Zygmund

kernel (for the formula of Kij cf. [3]) and the Einstein convention on repeated indices
is used here and thereafter. However, for N ≥ 3, whether such smooth solutions
are globally well-posed or they form finite-time blowup remains a challenging open
problem.

In this paper we address the problem of existence or not of the locally back-
ward self-similar solutions for the Euler system. More precisely, we consider the
solutions that develop a finite-time self-similar singularity on a spacetime domain
Bρ(x0)×]0, T [ of the form

(1.3) v(x, t) =
1

(T − t)
α

α+1

u

(
x − x0

(T − t)
1

α+1

)
,

and

(1.4) p(x, t) =
1

(T − t)
2α

α+1

q

(
x − x0

(T − t)
1

α+1

)
+ d(t),

where (u, q) are stationary profiles, T > 0, α > −1, x0 ∈ R
N , ρ > 0, and the

solutions v, p remain regular outside the ball Bρ(x0). If ρ = ∞, i.e. Bρ(x0) = R
N ,

this corresponds to the “globally” self-similar solutions; while if ρ < ∞, these are
the “locally” self-similar solutions, and d(t) is a function depending only on t. For
the locally self-similar solutions, from (1.2) and (1.3), it seems not obvious to get
the expression (1.4), but which under some suitable assumptions can indeed be
justified by Lemma 2.1 below. In terms of (u, q), we formally have

(1.5)

{
α

α+1u + 1
α+1y · ∇u + u · ∇u + ∇q = 0,

div u = 0,

where y ∈ R
N and q up to a harmonic polynomial is given by Δq = −divdiv(u⊗u).

In Lemma 2.1, we shall also show that q up to a constant is given by a more precise
formula (2.3) according to the value of α and the spatial asymptotic assumptions
of u.

The self-similar ansatz (1.3)-(1.4) for the Euler system (1.1) is widely used in
the numerical simulations, and through studying the vortex filament models or high-
symmetric flows, there were much work suggesting that such backward self-similar
blowup may happen at a finite time (see e.g. [2, 16, 17, 19], and the very recent
work, [13, 14]).

The self-similar singular solutions of Euler equations are also analytically stud-
ied in the literature. X. He in [11] constructed the non-trivial solutions to the
3D Euler equations (1.5) with α = 1 on the exterior domain R

3 \ B1(0), and
the asymptotic decay of such solutions are |u(y)| � 1

|y|
and |∇u(y)| � 1

|y|2
. Be-

sides that, there are some noticeable works on the self-similar solutions from the
viewpoint of nonexistence. D. Chae in [4] considered the globally self-similar so-
lutions to the 3D Euler system and proved that if u ∈ C1(R3) and ω = ∇ × u
belongs to ∩0<r<r0L

r(R3) with some r0 > 0, then ω ≡ 0 for all α > −1. R.
Takada [22] treated the strong solutions of the self-similar Euler equations (1.5)
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and show u ≡ 0 under the condition u ∈ C1
loc ∩ X2,∞ ∩ Lp with p ∈ [ 3N

N−1 , 4N
N−2 ]

and X2,∞ = {f ∈ L2
loc : supR

∫
R≤|y|≤2R

|f(y)|2dy < ∞}. See also [10, 20] for

other similar nonexistence results. For the locally self-similar solutions (1.3)-(1.4)
with ρ > 0, D. Chae and R. Shvydkoy [5] proved that if u ∈ C1

loc ∩ Lr with

r ∈ [3,∞], then u ≡ 0 for all −1 < α < N
r

and α > N
2

. They also improved the

result of [4] to get u ≡ const for all α > −1 under the assumptions u ∈ C1
loc(R

N),

ω = ∇×u ∈ Lp(RN ) for some p ∈]0, N
1+α [ and |∇u(y)| = o(1) as |y| → ∞. Recently,

A. Bronzi and R. Shvydkoy in [3] rigorously justified the formula of pressure (1.4)
for the locally self-similar solutions at the case α > 0 and ρ > 0, and under the
assumptions u ∈ C3

loc(R
N) and

for some p ≥ 3, γ < p − 2,

∫
|y|≈L

|u(y)|p dy � Lγ , ∀L � 1,

they proved at the case 0 < α < N/2 either u ≡ 0 or the velocity profiles u behave
as (1.12).

In this article we deal with the locally backward self-similar solutions (1.3)-(1.4)
of Euler equations (1.1) to show some nonexistence results, and we specially consider
the scenario that the velocity profiles u have non-decaying spatial asymptotics, e.g.
for some δ ∈]0, 1[,

(1.6) 1 � |u(y)| � |y|δ, ∀|y| � 1.

This case is not much addressed in the literature (except for the implicitly related
nonexistence results based on the vorticity profile, e.g. [5]), but it is motivated by
the direct numerical simulations (e.g. the recent work [13, 14]) and also by several
works on the 1D models of Euler equations: the 1D Burgers equation, the 1D CCF
model ([7]), the 1D CKY model ([6]) and so on. The blowup issue of all these 1D
equations is clear: the Burgers equation develops shock singularity at finite time,
while it is proved in [7] and [6] respectively that the CCF equation and the CKY
equations form finite-time singularity for some smooth data. The further study ([9]
for Burgers, [8] for CCF, and [12] for CKY) shows that the finite-time singularities
of these equations are of locally self-similar type with some index α ∈]−1, 0[ and the
corresponding velocity profiles have growing spacial asymptotics. Based on these
motivations, it deserves much to consider such a scenario for the Euler equations
(1.1).

In order to do so, we have to derive a meaningful representation formula of the
pressure profile in terms of the velocity profiles, since the usual one

(1.7) q(y) = −
1

N
|u(y)|2 + p.v.

∫
RN

Kij(x − y)ui(y)uj (y) dy,

works for the velocity profiles with suitable decaying asymptotics, e.g. u ∈ Lp(RN )
for some p ∈]2,∞[, but it does not make sense for the profiles satisfying (1.6).
We justify the needed formula in Lemma 2.1, which can respectively be stated as
follows: if 1 � |u(z)| � |z|δ, δ ∈ [0, 1

2 [,

q(y) = −
1

N
|u(y)|2 + p.v.

∫
|z|≤M

Kij(y − z)ui(z)uj(z) dz +

+

∫
|z|≥M

(
Kij(y − z) − Kij(z)

)
ui(z)uj(z) dz,

(1.8)
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and if |z|
1
2 � |u(z)| � |z|δ, δ ∈ [ 12 , 1[,

q(y) = −
1

N
|u(y)|2 + p.v.

∫
|z|≤M

Kij(y − z)ui(z)uj(z) dz +

+

∫
|z|≥M

(
Kij(y − z) − Kij(z) − y · ∇Kij(z)

)
ui(z)uj(z) dz + A · y,

(1.9)

where A ∈ R
N is some fixed constant vector and M > 0 is an absolute constant so

that (1.6) holds for all |y| ≥ M . The formula (1.8)-(1.9) also have the decomposition
(2.6) (and its variant), which can be used to show that q(y) belongs to C2

loc(R
N ) as

long as u ∈ C3
loc(R

N) (see Lemma 2.1). Note that (1.8) is reminiscent of a similar
formula of the pressure in terms of the velocity field when considering the local
Leray solutions of the 3D Navier-Stokes equations (cf. [18, Chapter 32]).

Our main results read as follows.

Theorem 1.1. Suppose that v ∈ C([0, T [; Hs(RN )), s > N
2

+1 is a locally self-
similar solution for the Euler system which satisfies (1.3) on the spacetime domain
Bρ(x0)×]0, T [ with profiles u ∈ C3

loc(R
N ) and α > −1. In addition, we assume that

u satisfies that for some δ ∈]0, 1[,

(1.10) |u(y)| � |y|δ, ∀|y| � 1.

We have the following statements.

(1) If additionally there is a small number ε0 � 1 so that 0 < ε0 < δ and

(1.11) |u(y)| � |y|ε0 , ∀|y| � 1,

then the possible scope of α to admit nontrivial self-similar velocity profiles is
−δ ≤ α ≤ −ε0, and for every such an α, the corresponding profiles satisfy that

(1.12)

∫
|y|≤L

|u(y)|2 dy ≈ LN−2α, ∀L � 1.

(2) If δ < 1
2
, α > −1

2
, and additionally

(1.13) |u(y)| � 1, ∀|y| � 1,

then the possible range of α to admit nontrivial self-similar profiles is −δ ≤ α ≤
0, and the velocity profiles corresponding to each α ∈ [−δ, 0] satisfy (1.12).

For the proof of Theorem 1.1, we first show Lemma 2.1 which states that under
the assumptions of Theorem 1.1, the pressure p can be expressed as (1.4) on the
domain Bρ(x0)×]0, T [ with the pressure profile q has an explicit formula (1.8)-(1.9)
in terms of u; then we start with the following local energy inequality of the profiles
(u, q) (cf. [5]) for 0 < l1 < l2 and the standard test function φ,∣∣∣ 1

lN−2α
2

∫
|y|≤l2

|u(y)|2φ
( y

l2

)
dy −

1

lN−2α
1

∫
|y|≤l1

|u(y)|2φ
( y

l1

)
dy

∣∣∣ ≤
≤ C

∫
l1/2≤|y|≤l2

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy,

(1.14)

and by applying the bootstrapping method and a careful analysis according to the
values of (α, δ), we prove the main results, which is placed in the whole Section 3.
In this process, the treating of the term containing the pressure profile q is technical
and is repeatedly used, and we specially tackle with it in Lemma 2.2 of Section 2.
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Remark 1.2. From (1.12) for every −1 < α < N
2 (cf. [3] for the case 0 < α < N

2
and cf. Theorem 1.1 for the case −1 < α ≤ 0), we can expect the “typical” possible
velocity profiles are that

(1.15) |u(y)| ≈ |y|−α + l.o.t., ∀|y| � 1,

where l.o.t. is the abbreviation of the lower order terms. By scaling, we can also
expect the typical vorticity profiles are

(1.16) |∇ × u(y)| ≈ |y|−α−1 + l.o.t., ∀|y| � 1,

which is compatible with the nonexistence result based on the vorticity profile of
[5]. Furthermore, in the considered blowup scenario and using (1.16), we have that
for all (t, x) ∈]0, T [×

(
Bρ(x0) \ {x0}

)
,

(1.17) |∇ × v(x, t)| =
1

T − t

∣∣∣∣∣∇× u

(
x − x0

(T − t)
1

1+α

)∣∣∣∣∣ ≈ 1

|x− x0|1+α
.

This typical self-similar blowup case is consistent with the Beale-Kato-Majda cri-
terion (cf. [1]) since for all α > −1,∫ T

0

‖∇× v‖L∞ dt ≈ T sup
0<|x−x0|≤ρ

|x− x0|
−(1+α) = ∞.

On the other hand, the bound
∫ T

0 ‖∇ × v‖Lr dt < ∞ with some 1 ≤ r < ∞ is not
sufficient to get rid of such typical blowup scenario (1.15)-(1.16) for all α > −1;
indeed, this typical blowup scenario still may happen at the range −1 < α <
−1 + N/r.

Remark 1.3. Under the assumptions of Theorem 1.1, we have the energy in-
equality of the velocity field ‖v(t)‖L2 ≤ ‖v0‖L2 � 1 for all t < T , which can naturally
lead to a part of the estimate (1.12):∫

|y|≤L

|u(y)|2 dy � LN−2α, with L = (T − t)−
1

1+α � 1;

indeed, this can be seen from plugging the self-similar scenario (1.3) into the in-
equality

∫
Bρ(x0)

|v(x, t)|2 dx � 1 and then changing of variables. But we still resolve

this estimate in Section 3 based on the local energy inequality (1.14) of the profiles
(u, q), which may have its own interest (due to that the assumptions on u and the
formula of q truly take part in the proof).

Throughout this paper, C stands for a constant which may be different from
line to line, X � Y means that there is a harmless constant C such that X ≤ CY ,
and X ≈ Y means that X � Y and Y � X simultaneously. Denote Br(x) := {y ∈
R

N : |y − x| ≤ r} the ball of R
N and Bc

r(x) := R
N \Br(x) its complement set. For

a number a ∈ R, denote [a] by the integer part of a.

2. Auxiliary lemmas concerning the pressure profile

We collect two useful auxiliary lemmas in this section: one is about the justifi-
cation of the representation formula of the pressure profile, and the other is about
the estimation of the term containing the pressure profile.
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Lemma 2.1. Suppose v ∈ C([0, T [; Hs(RN )), s > N
2 + 1 is a locally self-similar

solution (1.3) to the Euler equations and α > −1. Assume that u ∈ C3
loc(R

N )
satisfies that for some δ ∈ [0, 1[,

(2.1) |u(y)| � |y|δ , ∀|y| ≥ M,

with M > 0 a pure number, then the corresponding pressure on the ball Bρ(x0) for
all t near T is expressed as

(2.2) p(x, t) =
1

(T − t)
2α

α+1

q

(
x − x0

(T − t)
1

α+1

)
+ d(t),

where d(t) is a function depending only on t (satisfying (2.23) below), and q(y) is
a C2

loc-smooth scalar function defined by

q(y) = −
1

N
|u(y)|2 + p.v.

∫
|z|≤M

Kij(y − z)ui(z)uj(z) dz+

+

∫
|z|≥M

K̃ij(y, z)ui(z)uj(z) dz + A · y

(2.3)

with A ∈ R
N some fixed constant vector (especially, A equals 0 at the case {α >

−1
2 , δ < 1/2} or {α > −1

2 , u ∈ Lp, p ∈]2,∞[}) and the kernel function K̃ij given by
(2.4)

K̃ij(y, z) =

⎧⎪⎨⎪⎩
Kij(y − z), if u ∈ Lp(RN ), p ∈]2,∞[,

Kij(y − z) − Kij(z), if 1 � |u(z)| � |z|δ, δ ∈ [0, 1
2 [,

Kij(y − z) − Kij(z) − y · ∇Kij(z), if |z|
1
2 � |u(z)| � |z|δ, δ ∈ [ 12 , 1[.

Proof of Lemma 2.1. We mainly adapt the strategy in the proof of [3, Lemma
2.1] with suitable modification. We first introduce a function I(y), which is a part
of (2.3), and prove that it is meaningfully defined and is a tempered distribution,
and also pointwisely solves the equation ΔI = −divdiv(u⊗u). Then we find a tem-
pered distribution q(y) solving the first equation of (1.5). Since q also solves the
same Poisson equation, the difference between I and q is a harmonic polynomial,
and at last we prove that the order of this polynomial is at most one and conclude
the formula (2.3).

First define the quantity contained in (2.3) as

I(y) := −
1

N
|u(y)|2 + p.v.

∫
|z|≤M

Kij(y − z)ui(z)uj(z) dz +

+

∫
|z|≥M

K̃ij(y, z)uiuj(z) dz

(2.5)

and we show that I(y) is meaningful and is a tempered distribution. Let φ ∈
C∞c (RN) be a test function supported on B1(0) such that φ ≡ 1 on B1/2(0) and
0 ≤ φ ≤ 1. For any L ≥ M , set φL(z) = φ( z

L ), then we have the following
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decomposition

I(y) = −
1

N
|u(y)|2 + p.v.

∫
RN

Kij(y − z)φ4L(z)uiuj(z) dz+

+

∫
|z|≥M

(
K̃ij(y, z) − Kij(y − z)

)
φ4L(z)uiuj(z) dz+

+

∫
RN

K̃ij(y, z)(1 − φ4L(z))uiuj(z) dz

:= −
1

N
|u(y)|2 + I1(y, L) + I2(y, L) + I3(y, L).(2.6)

Since u ∈ C3
loc(R

3), from the Besov embedding, we infer that I1(y, L) ∈ Cβ for all
β < 3. For I2(y, L), due to that

K̃ij(y, z)−Kij (y−z) =

⎧⎪⎨⎪⎩
0, if u ∈ Lp(RN), p ∈]2,∞[,

−Kij(z), if 1 � |u(z)| � |z|δ, δ ∈ [0, 1
2 [,

−Kij(z) − y · ∇Kij(z), if |z|
1
2 � |u(z)| � |z|δ, δ ∈ [ 1

2
, 1[,

we deduce that for all y ∈ BL(0) and 1 � |u(z)| � |z|δ, δ ∈ [0, 1[,

(2.7) I2(y, L) � L2δ.

Similarly, for s = 1, 2, we see that all the terms ∇s
y(I2(y, L)) vanishes except for

∇1
y(I(y, L)) at the case |z|1/2 � |u(z)| � |z|δ, δ ∈ [1/2, 1[, and for which we get

|∇1
y(I2(y, L))| �

∫
M≤|z|≤4L

|∇Kij(z)||u(z)|2 dz � L2δ−1.

We next consider I3(y, L) acting on the ball BL(0), and if u ∈ Lp(RN) for some
p ∈]2,∞[, then

I3(y, L) �

∞∑
k=0

∫
2kL≤|z|≤2k+1L

1

|z|N
|u(z)|2dz

�

∞∑
k=0

(2kL)−N+N(1−2/p)‖u‖
2/p
Lp � L−2N/p;

(2.8)

and if 1 � |u(z)| � |z|δ, δ ∈]0, 1
2
[ for all |z| ≥ M , then

I3(y, L) �

∫
|z|≥2L

|y|

|z|N+1
|u(z)|2 dz � L2δ;(2.9)

and if |z|1/2 � |u(z)| � |z|δ, δ ∈ [1/2, 1[ for all |z| ≥ M , then

I3(y, L) �

∫
|z|≥2L

|y|2

|z|N+2
|u(z)|2 dz � L2δ.(2.10)

For s = 1, 2 and for all y ∈ BL(0), we also get that if u ∈ Lp(RN), p ∈]2,∞[,

∇s
y(I3(y, L)) �

∞∑
k=0

∫
2kL≤|z|≤2k+1L

1

|z|N+s
|u(z)|2 dz � L−s− 2N

p ,
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and if 1 � |u(z)| � |z|δ, δ ∈]0, 1/2[, ∀|z| ≥ M ,

∇s
y

(
I3(y, L)

)
≤ ∇s

y

(∫
RN

∫ 1

0

y · ∇Kij(τy − z)(1 − φ4L(z))uiuj(z) dτdz

)
�

∫
|z|≥2L

|y|

|z|N+1+s
|u(z)|2 dz � L−s+2δ,

and if |z|1/2 � |u(z)| � |z|δ, δ ∈ [1/2, 1[, ∀|z| ≥ M ,

∇s
(
I3(y, L)

)
≤

≤∇s
y

(∫
|z|≥4L

∫ 1

0

∫ 1

0

(
y · ∇2Kij(τθy − z) · y

)
(1 − φ4L(z))uiuj(z)τ dθd τdz

)

�

∫
|z|≥2L

|y|2

|z|N+2+s
|u(z)|2 dz � L−s+2δ.

Hence the scalar function I(y) defined by (2.5) is C2-smooth on BL(0). Moreover,
for all y ∈ BL(0), we have

ΔI = Δ

(
−

1

N
|u|2φ4L + I1

)
+ Δ (I2 + I3)

= −div div
(
u
√

φ4L ⊗ u
√

φ4L

)
= −div div

(
u ⊗ u

)
,

where in the second line Δ(I2+I3) = 0 due to that the term K̃ij(y, z) is harmonic in
the y-variable for all y ∈ BL(0) and z ∈ Bc

2L(0). Besides, it is not hard to show that
I is a tempered distribution, which can be seen from the following computation,
that is, if 1 � |u(z)| � |z|δ, δ ∈ [0, 1[, ∀|z| ≥ M , then for L � 1 and some r > 2,∫

|y|≤L

|I1(y, L)|
r
2 dy �

∫
|z|≤4L

|u(z)|r dz � LN+rδ ,

and by (2.7), (2.9)-(2.10),∫
|y|≤L

|I2(y, L) + I3(y, L)|
r
2 dy � LN+rδ ;

while if u ∈ Lp(RN ), p ∈]2,∞[, then ‖I(y)‖
L

p
2

� ‖u‖2
Lp from the Calderón-

Zygmund theorem.
Next we intend to find a distributional pressure profile solving the first equation

of (1.5), i.e.,

(2.11)
α

α + 1
u +

1

α + 1
y · ∇u + u · ∇u + ∇q = 0.

Applying the ansatz (1.3) to the Euler equations (1.1), and by setting

(2.12) y :=
x − x0

(T − t)
1

1+α

, p(x, t) := p̄(y, t),

we obtain that for all |y| ≤ ρ(T − t)−
1

1+α ,

(2.13)
α

1 + α
u(y) +

1

1 + α
y · ∇yu(y) + u · ∇yu(y) + ∇y

(
(T − t)

2α
1+α p̄(y, t)

)
= 0.

For any fixed t < T , denoting f(y, t) = (T − t)
2α

1+α p̄(y, t), then the vector-valued
function ∇yf(y, t) =: g(y) depends only on y on the domain D(t) := {y : |y| ≤
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ρ(T − t)−
1

1+α }. Thus from the fundamental theorem of calculus, we deduce that for
all y ∈ D(t),

(T − t)
2α

1+α p̄(y, t) − (T − t)
2α

1+α p̄(0, t)

= f(y, t) − f(0, t) =

∫ 1

0

d

ds
f(sy, t) ds =

∫ 1

0

y · ∇f(sy, t)ds

=

∫ 1

0

y · g(sy) ds =: q(y),

(2.14)

that is,

(2.15) p(x, t) =
1

(T − t)
2α

1+α

q

(
x − x0

(T − t)
1

1+α

)
+ c(t), ∀x ∈ Bρ(x0),

with c(t) = p(x0, t). Inserting (2.15) into (2.13) yields the equation (2.11) on R
N .

Now we prove that q(y) is indeed a tempered distribution. The proof is quite
similar to the deduction in [3, Lemma 2.1], and we here include it for completeness.
Since we have the energy conservation of the velocity v and (1.2), we infer that
‖p(x, t)‖L1

weak
� ‖v(x, t)‖2

L2 � ‖v0‖
2
L2 � 1, which implies |{x : |p(x, t)| > λ}| ≤ C

λ

for all t < T . Thus there exists a small number η > 0 so that |{x : |p(x, t)| >
1
η

1
(T−t)N/(1+α) }| ≤

|B1(0)|
2 ρN (T − t)

N
1+α , which yields that there is a point xt in the

ball {x : |x− x0| ≤ ρ(T − t)
1

1+α } so that |p(xt, t)| ≤
1
η

1
(T−t)N/(1+α) . Hence with this

xt and the corresponding yt = xt−x0

(T−t)1/(1+α) ∈ Bρ(0) at our disposal, we have

|c(t)| ≤ (T − t)−
2α

1+α |q(yt)| + η−1(T − t)−
N

1+α � (T − t)−
2α

1+α + (T − t)−
N

1+α ,

where we have used the fact that |q(yt)| ≤ C from q(y) ∈ C2
loc(R

N ). From (2.15),
we see that

q(y) = (T − t)
2α

1+α p
(
x0 + y(T − t)

1
1+α , t

)
+ (T − t)

2α
1+α c(t), ∀|y| ≤ ρ(T − t)−

1
1+α ,

thus if 1 � |u(y)| � |y|δ, ∀|y| ≥ M for some δ ∈ [0, 1[, we get that for any p̃ ∈]2,∞[,∫
ρ

4(T−t)1/(1+α)
≤|y|≤ ρ

2(T−t)1/(1+α)

|q(y)|
p̃
2 dy

� (T − t)−
N

1+α + (T − t)
(2α−N)

p̃
2
−N

1+α + (T − t)
p̃α−N
1+α

∫
ρ
4≤|x−x0|≤

ρ
2

|p(t)|
p̃
2 dx

� (T − t)−
N

1+α + (T − t)
(2α−N)

p̃
2
−N

1+α +

+ (T − t)
p̃α−N
1+α

(∫
ρ
8≤|x−x0|≤ρ

|v(x, t)|p̃ dx + ‖v(t)‖p̃
L2

)
� (T − t)−

N
1+α + (T − t)

(2α−N)p̃/2−N
1+α + (T − t)

p̃α−N
1+α +

+ (T − t)
p̃α

1+α

∫
ρ

8(T−t)1/(1+α)
≤|y|≤ ρ

(T−t)1/(1+α)

|u(y)|p̃ dy,

(2.16)

which leads to that for some m1 ∈ N,

(2.17)

∫
ρ

4(T−t)1/(1+α) ≤|y|≤
ρ

2(T−t)1/(1+α)

|q(y)|
p̃
2 dy � (T − t)−m1 ;
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while if u ∈ Lp(RN) for some p ∈]2,∞[, we see that (2.16) also holds true for
p̃ = p and so does (2.17) for some number m1. In the above deduction of (2.16)
from the second line to the third line, we have used the decomposition that for all
ρ
4 ≤ |x− x0| ≤

ρ
2 ,

p(x, t) = −
1

N
|v(x, t)|2+

+

(
p.v.

∫
|z−x0|≤

ρ
8

+

∫
ρ
8≤|z−x0|≤ρ

+

∫
|z−x0|≥ρ

) (
Kij(x − z)vivj(z, t) dz

)
:= −

1

N
|v(x, t)|2 + p1(x, t) + p2(x, t) + p3(x, t),

and the following estimates that

‖p1(x, t)‖L∞x ({ ρ
4≤|x−x0|≤

ρ
2 })

� ‖v(x, t)‖2
L2

x
,∫

ρ
4≤|x−x0|≤

ρ
2

|p2(x, t)|
p̃
2 dx �

∫
ρ
8≤|x−x0|≤ρ

|v(x, t)|p̃ dx,

‖p3(x, t)‖L∞x ({ ρ
4≤|x−x0|≤

ρ
2 })

�

∫
|z−x0|≥ρ

1

|z − x0|N
|v(z, t)|2 dz � ‖v(x, t)‖2

L2
x
.

According to (2.17), we infer that q(y) at most has the polynomial growth near
infinity and is thus a tempered distribution of R

N .
Now we show that q and I are equal up to a first-order harmonic polynomial.

Since they both satisfy the Poisson equation ΔI = −divdiv(u ⊗ u) = Δq, and are
both tempered distributions of R

N , the difference

(2.18) q − I =: h

is a harmonic polynomial. In the following we prove that the order of h is at
most one. For all |y| ≤ ρ

4(T−t)
1

1+α
, inserting (1.3) into (1.2), and using (2.6) with

4L = ρ(T − t)−
1

1+α , we have

(T − t)
2α

1+α p(x0 + y(T − t)
1

1+α , t) =

= −
1

N
|u(y)|2+

+ p.v.

∫
RN

Kij

(
x0 + y(T − t)

1
1+α − z

)
φρ(z − x0) (uiuj)

(
z − x0

(T − t)
1

1+α

)
dz

+ (T − t)
2α

1+α

∫
RN

Kij

(
x0 + y(T − t)

1
1+α − z

)
(1 − φρ(z − x0)) (vivj)(z, t) dz

= −
1

N
|u(y)|2 + p.v.

∫
RN

Kij(y − z)φ

(
z

ρ(T − t)−1/(1+α)

)
(uiuj)(z)dz + p̃(y, t),

= I(y) − Ĩ(y, t) + p̃(y, t),

with φρ(z) = φ( z
ρ) (introduced below (2.5)),

p̃(y, t) := (T − t)
2α

1+α

∫
RN

Kij

(
x0 + y(T − t)

1
1+α − z

)(
1 − φρ(z − x0)

)
(vivj)(z, t) dz,
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and

Ĩ(y, t) :=

∫
|z|≥M

(
K̃ij(y, z) − Kij(y − z)

)
φ

(
z

ρ(T − t)−1/(1+α)

)
uiuj(z) dz

+

∫
RN

K̃ij(y, z)

(
1 − φ

(
z

ρ(T − t)−1/(1+α)

))
uiuj(z) dz.

On the other hand, thanks to (2.15), we see that

(2.19) (T − t)
2α

1+α p(x0 + y(T − t)
1

1+α , t) = q(y) + d(t)

with d(t) := (T − t)
2α

1+α c(t). Hence, by virtue of (2.18)-(2.19), we see that

(2.20) |h(y) − d(t)| ≤ |p̃(y, t)| + |Ĩ(y, t)|, ∀|y| ≤
ρ

4(T − t)
1

1+α

.

For p̃, due to that z ∈ Bc
ρ
2
(x0) and (T − t)

1
1+α y ∈ Bρ

4
(0), we see that

∣∣Kij(x0 +

y(T − t)
1

1+α − z)
∣∣ � 1

ρN , and thus

(2.21) |p̃(y, t)| � (T − t)
2α

1+α ‖v‖2
L2 � (T − t)

2α
1+α .

For Ĩ , by arguing as (2.7)-(2.10) (with L = 1
4ρ(T − t)−

1
1+α ), we get

(2.22) |Ĩ(y, t)| �

{
(T − t)−

2δ
1+α , if 1 � |u(z)| � |z|δ, δ ∈ [0, 1[,

(T − t)
2N

p(1+α) , if u ∈ Lp(RN ), p ∈]2,∞[.

Since α > −1, δ ∈ [0, 1[ and the above estimates hold for all y ≤ ρ
4(T−t)1/(1+α) , we

infer that the order of harmonic polynomial h(y) is at most one (if not, |h(y)| �

(T −t)−
2

1+α for some |y| ≤ ρ
4(T−t)1/(1+α) , which is not compatible with (2.20)-(2.22))

and

(2.23) |d(t)| �

{
1 + (T − t)

2α
1+α + (T − t)−

2δ
1+α , if 1 � |u(z)| � |z|δ, δ ∈ [0, 1[,

1 + (T − t)
2α

1+α + (T − t)
2N

p(1+α) , if u ∈ Lp(RN), p ∈]2,∞[,

which proves (2.2). In particular, if α > −1/2, δ ∈ [0, 1/2[ or α > −1
2 , u ∈ Lp(RN )

(p ∈]2,∞[), h(y) moreover should be a uniform constant. �

Lemma 2.2. Assume that u ∈ C1
loc(R

N ; RN) is a locally regular vector field.
Suppose u additionally satisfies that

|u(y)| � |y|δ, ∀|y| ≥ M, with 0 ≤ δ < 1 and∫
|y|≤L

|u(y)|2 dy � Lb, ∀L ≥ M, with 0 ≤ b ≤ N + 2δ,
(2.24)

and M > 0 a fixed number. Let q be a scalar field defined from u by that for every
|y| ≤ L,

q(y) = c0|u(y)|2 + A · y + p.v.

∫
|y|≤M

Kij(y − z)ui(z)uj(z) dz +

+

{∫
|z|≥M

(
Kij(y − z) − Kij(z)

)
uiuj(z) dz, if δ ∈ [0, 1

2 [,∫
|z|≥M

(
Kij(y − z) − Kij(z) − y · ∇Kij(z)

)
uiuj(z) dz, if δ ∈ [ 12 , 1[,

(2.25)
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with c0 ∈ R, A ∈ R
N and Kij(z) (i, j = 1, · · · , N) some Calderón-Zygmund kernel,

then we have

(2.26)

∫
|y|≤L

|q(y)||u(y)| dy �

{
Lb+δ + L

N+b
2 +1, if (b, δ) �= (N + 1, 1

2),

L
N+3

2 [log2 L], if (b, δ) = (N + 1, 1
2).

In particular, if δ ∈ [0, 1
2 [ and A = 0, we also have

(2.27)

∫
|y|≤L

|q(y)||u(y)| dy �

⎧⎪⎨⎪⎩
Lb+δ, if b ≥ N − 2δ, (b, δ) �= (N, 0),

LN [log2 L], if (b, δ) = (N, 0),

L
N+b

2 , if b ≤ N − 2δ, (b, δ) �= (N, 0).

Proof of Lemma 2.2. We decompose q(y) as

(2.28) q(y) = c0|u(y)|2 + q1(y, L) + q2(y, L) + q3(y, L) + q4(y, L)

with

q1(y, L) = A · y, q2(y, L) = p.v.

∫
|y|≤2L

Kij(y − z)ui(z)uj(z) dz,

q3(y, L) =

{∫
|z|≥2L

(
Kij(y − z) − Kij(z)

)
ui(z)uj(z) dz, if δ ∈ [0, 1

2 [∫
|z|≥2L

(
Kij(y − z) − Kij(z) − y · ∇Kij(z)

)
ui(z)uj(z) dz, if δ ∈ [ 12 , 1[,

q4(y, L) =

{
−

∫
M≤|z|≤2L

Kij(z)ui(z)uj(z) dz, if δ ∈ [0, 1
2 [,

−
∫

M≤|z|≤2L

(
Kij(z) + y · ∇Kij(z)

)
ui(z)uj(z) dz, if δ ∈ [ 12 , 1[.

We first directly have
∫
|y|≤L

|u(y)|3 dy � Lb+δ, and∫
|y|≤L

|q1(y, L)||u(y)| dy ≤ |A|LN/2+1
(∫

|y|≤L

|u(y)|2 dy
)1/2

� |A|L
N+b

2 +1.

For the term involving q2(y, L), by the Hölder inequality and Calderón-Zygmund
theorem, we get∫

|y|≤L

|q2(y, L)||u(y)| dy ≤
(∫

|y|≤L

|q2(y, L)|
3
2 dy

) 2
3
(∫

|y|≤L

|u(y)|3 dy
) 1

3

�

∫
|y|≤2L

|u(y)|3 dy � Lb+δ .

For the term containing q3(y, L), using the support property and the dyadic decom-
position again, we infer that if δ ∈ [0, 1/2[,∫

|y|≤L

|q3(y, L)||u(y)| dy � LN+δ sup
|y|≤L

|q3(y, L)|

� LN+δ sup
|y|≤L

( ∞∑
k=1

∫
2kL≤|z|≤2k+1L

|y|

|z|N+1
|u(z)|2 dz

)

� LN+δ+1
∞∑

k=1

1

(2kL)N+1

∫
|z|≈2kL

|u(z)|2 dz

� LN+δ+1
∞∑

k=1

(2kL)b−N−1 � Lb+δ ,
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and if δ ∈ [1/2, 1[,∫
|y|≤L

|q3(y, L)||u(y)| dy � LN+δ sup
|y|≤L

|q3(y, L)|

� LN+δ sup
|y|≤L

( ∞∑
k=1

∫
2kL≤|z|≤2k+1L

|y|2

|z|N+2
|u(z)|2 dz

)

� LN+δ+2
∞∑

k=1

1

(2kL)N+2

∫
|z|≈2kL

|u(z)|2 dz

� LN+δ+2
∞∑

k=1

(2kL)b−N−2 � Lb+δ .

For the last term, from Hölder’s inequality and the dyadic decomposition we deduce
that if δ ∈ [0, 1

2 [,∫
|y|≤L

|q4(y, L)||u(y)| dy � LN/2
(∫

|y|≤L

|u(y)|2 dy
)1/2(

sup
|y|≤L

|q4(y, L)|
)

� L
N+b

2

[log2
L
M ]∑

k=−1

∫
L

2k+1≤|z|≤
L

2k

1

|z|N
|u(z)|2 dz

� L
N+b

2

[log2
L
M ]∑

k=−1

( L

2k

)−N+b

�

⎧⎪⎨⎪⎩
L

3b−N
2 , if b > N,

LN [log2 L], if b = N,

L
N+b

2 , if b < N,

�

⎧⎪⎨⎪⎩
Lb+δ, if b ≥ N, (b, δ) �= (N, 0),

LN [log2 L], if (b, δ) = (N, 0),

L
N+b

2 , if b < N,

and if δ ∈ [ 1
2
, 1[,∫

|y|≤L

|q4(y, L)||u(y)| dy �

�LN/2
(∫

|y|≤L

|u(y)|2 dy
)1/2(

sup
|y|≤L

|q4(y, L)|
)

�L
N+b

2

[log2
L
M ]∑

k=−1

∫
L

2k+1≤|z|≤
L

2k

( 1

|z|N
+

L

|z|N+1

)
|u(z)|2 dz

�L
N+b

2 +1

[log2
L
M ]∑

k=−1

( L

2k

)−N−1+b

�

⎧⎪⎨⎪⎩
L

3b−N
2 , if b > N + 1,

LN+ 3
2 [log2 L], if b = N + 1,

L
N+b

2 +1, if b < N + 1,

�

⎧⎪⎨⎪⎩
Lb+δ, if b ≥ N + 1, (b, δ) �= (N + 1, 1

2
),

LN+ 3
2 [log2 L], if (b, δ) = (N + 1, 1

2
),

L
N+b

2 +1, if b < N + 1.

Collecting the above estimates leads to (2.26). �
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3. Proof of the main result

As mentioned in the introduction section, the starting point of the main proof
is the following local energy inequality of the profiles (u, q):∣∣∣∣ 1

lN−2α
2

∫
|y|≤l2

|u(y)|2φ
( y

l2

)
dy −

1

lN−2α
1

∫
|y|≤l1

|u(y)|2φ
( y

l1

)
dy

∣∣∣∣ ≤
≤C

∫
1
2 l1≤|y|≤l2

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy,

(3.1)

where 0 < l1 < l2, and φ ∈ C∞c (RN) is a cutoff function such that 0 ≤ φ ≤ 1, φ ≡ 1
on B1/2(0) and φ ≡ 0 on Bc

1(0). This inequality (3.1) is derived from the energy
equality of the original velocity,∫

RN

|v(t2, x)|2χ(x) dx −

∫
RN

|v(t1, x)|2χ(x) dx =

=

∫ t2

t1

∫
RN

(
|v|2v + 2(p − d(t))v

)
· ∇χ(x) dxdt,

(3.2)

where 0 < t1 < t2 < T and χ ∈ C∞c (RN ) is a test function. By considering (3.2) on
the region of self-similarity, and inserting the self-similar scenario (1.3)-(1.4) into
(3.2), and through changing of variables, we can show (3.1) (e.g. see [5]). Notice

that li = (T − ti)
− 1

1+α , i = 1, 2 in (3.1).

3.1. Proof of Theorem 1.1-(1). First we consider the case −1 < α < −δ.
Note that from (1.6), we have that in this case

1

l2
N−2α

∫
|y|≤l2

|u(y)|2dy � l2
2δ+2α −→ 0, as l2 → ∞.

Thus by letting l1 = 2L � 1 and l2 → ∞ in (3.1), we get∫
|y|≤L

|u(y)|2dy ≤ CLN−2α

∫
|y|≥L

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy,(3.3)

where q takes the formula as (2.3). By the dyadic decomposition, we infer that

CLN−2α
∞∑

k=0

∫
2kL≤|y|≤2k+1L

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy

≤
C

L

∞∑
k=0

2−k(N−2α+1)

∫
2kL≤|y|≤2k+1L

(
|u(y)|3 + |q(y)||u(y)|

)
dy

(3.4)

By using the following estimate

(3.5)

∫
|y|≤L

|u(y)|2 dy � LN+2δ , ∀L � 1,

the estimate (2.26) in Lemma 2.2 ensures that∫
|y|≤2k+1L

|u(y)||q(y)| dy �

{
(2kL)N+3δ + (2kL)N+δ+1 , if δ �= 1

2 ,

(2kL)N+ 3
2 [log2(2

kL)], if δ = 1
2 ,

�

⎧⎪⎨⎪⎩
(2kL)N+3δ , if δ > 1

2 ,

(2kL)N+ 3
2+ε, if δ = 1

2
,

(2kL)N+δ+1 , if δ < 1
2 ,
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with 0 < ε � 1/2 a small number. Thus for all −1 < α < −δ, we first obtain a
rough bound∫

|y|≤L

|u|2dy ≤

{
C
L

∑∞
k=0 2−k(N−2α+1)(2kL)max{N+3δ,N+1+δ} , if δ �= 1

2
,

C
L

∑∞
k=0 2−k(N−2α+1)(2kL)N+ 3

2+ε, if δ = 1
2 ,

≤

{
CLN+3δ−1, if δ ∈] 1

2
, 1[,

CLN+δ+ε, if δ ∈]ε0,
1
2 ].

(3.6)

Next we will use (3.6) to show a more refined bound. By using Lemma 2.2 again,
and noting that

(3.7) max

{
b + δ,

N + b

2
+ 1

}
=

{
b + δ, if b ≥ N + 2(1 − δ),
N+b

2 + 1, if b < N + 2(1 − δ),

we get

(3.8)

∫
|y|≤2k+1L

|u(y)||q(y)| dy �

⎧⎪⎨⎪⎩
(2kL)N+4δ−1 , if δ ∈ [ 3

5
, 1[,

(2kL)N+ 3δ+1
2 , if δ ∈] 12 , 3

5 ],

(2kL)N+ δ+ε
2 +1, if δ ∈]ε0,

1
2 ],

Plugging it into (3.4), we have

∫
|y|≤L

|u(y)|2 dy ≤

⎧⎪⎨⎪⎩
C
L

∑∞
k=0 2−k(N−2α+1)(2kL)N+4δ−1, if δ ∈ [ 3

5
, 1[,

C
L

∑∞
k=0 2−k(N−2α+1)(2kL)N+ 3δ+1

2 , if δ ∈] 1
2
, 3

5
],

C
L

∑∞
k=0 2−k(N−2α+1)(2kL)N+ δ+ε

2 +1, if δ ∈]ε0,
1
2 ],

≤

⎧⎪⎨⎪⎩
CLN+4δ−2, if δ ∈ [ 35 , 1[,

CLN+ 3δ−1
2 , if δ ∈] 1

2
, 3

5
],

CLN+ δ+ε
2 , if δ ∈]ε0,

1
2 ].

(3.9)

We can repeat the above process for n + 1 times to show that

∫
|y|≤L

|u(y)|2 dy ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLN+2δ+(n+1)(δ−1), if δ ∈ [n+2
n+4 , 1[,

CLN+
2δ+n(δ−1)

2 , if δ ∈ [n+1
n+3 , n+2

n+4 ],

CLN+
2δ+(n−1)(δ−1)

22 , if δ ∈ [ n
n+2 , n+1

n+3 ],

· · · · · ·

CLN+ 2δ+(δ−1)
2n , if δ ∈] 1

2
, 3

5
],

CLN+ δ+ε
2n , if δ ∈]ε0,

1
2 ].

(3.10)

For each δ ∈]ε0,
1
2 ], and for n sufficiently large, we get that

(3.11)

∫
|y|≤L

|u(y)|2 dy ≤ LN+ε0 ,

where ε0 is just the number appearing in (1.11); while for each δ ∈] 1
2
, 1[, there is

some m ∈ N
+ so that δ ∈]m+1

m+3 , m+2
m+4 ], thus after repeating the above process for

m + n + 1 times, we get∫
|y|≤L

|u(y)|2 dy ≤ CLN+ 2δ+m(δ−1)

2n+1 , for δ ∈

]
m + 1

m + 3
,
m + 2

m + 4

]
,
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and for n large enough, we infer that (3.11) also holds true. But this obviously
contradicts with the following estimate from the condition (1.11)

(3.12)

∫
|y|≤L

|u(y)|2 dy �

∫
M≤|y|≤L

|y|2ε0 dy � LN+2ε0 ,

which means that there is no possibility to admit nontrivial velocity profiles in the
case −1 < α < −δ.

Next we consider the case α ≥ −δ, and for all α ≥ −δ and δ ∈]ε0, 1[, we shall
prove

(3.13)

∫
|y|≤L

|u(y)|2 dy ≤ CLN−2α, ∀L � 1,

which, combined with (3.12), ensures that the range of α admitting possible nontriv-
ial profiles belongs to {α : −δ ≤ α ≤ −ε0}. By letting l1 = 2M and l2 = 2L � 1,
we begin with (3.1) to get

(3.14)

∫
|y|≤L

|u(y)|2dy ≤ CLN−2α + CLN−2α

∫
M≤|y|≤2L

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy.

In view of the dyadic decomposition, we infer that

CLN−2α

∫
M≤|y|≤2L

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy

≤ CLN−2α

[log2
L
M ]∑

k=−1

∫
L

2k+1 ≤|y|≤
L

2k

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy

≤
C

L

[log2
L
M ]∑

k=−1

2k(N−2α+1)

∫
L

2k+1≤|y|≤
L

2k

(
|u(y)|3 + |q(y)||u(y)|

)
dy.

(3.15)

By using (1.10), (3.5) and (2.26) in Lemma 2.2, we have a rough bound:∫
|y|≤L

|u(y)|2 dy ≤

≤

⎧⎪⎨⎪⎩
CLN−2α + C

L

∑[log2
L
M ]

k=−1 2k(N−2α+1)
((

L
2k

)N+3δ

+
(

L
2k

)N+δ+1)
, if δ �= 1

2 ,

CLN−2α + C
L

∑[log2
L
M ]

k=−1 2k(N−2α+1)
(

L
2k

)N+3/2

[log L
2k ], if δ = 1

2
,

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CLN−2α[log2 L], if α ≤ −3δ−1

2 , δ ∈] 12 , 1[,

CLN+3δ−1, if α > −3δ−1
2 , δ ∈] 12 , 1[,

CLN−2α[log2 L]2, if α ≤ − δ
2
, δ ∈]ε0,

1
2
],

CLN+δ+ε, if α > − δ
2
, δ ∈]ε0,

1
2
],

(3.16)

with 0 < ε � δ a small number. If {α ≤ −3δ−1
2

, δ ∈] 1
2
, 1[} or {α ≤ − δ

2
, δ ∈]ε0,

1
2
]},

we can improve the bound to drop the additional logarithmic term: indeed, let
0 < ε < 1 be a small number chosen later (cf. (3.18)), then we get∫

|y|≤L

|u(y)|2 dy ≤ CεL
N−2α+ε, if

{
α ≤ −3δ−1

2
, δ ∈] 1

2
, 1[, or

α ≤ − δ
2 , δ ∈]ε0,

1
2 ],
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and inserting this estimate into (3.15) yields that for all such (α, δ),∫
|y|≤L

|u(y)|2 dy �

� LN−2α +
1

L

[log2
L
M ]∑

k=−1

2k(N−2α+1)

(( L

2k

)N−2α+ε+δ

+
( L

2k

)N−α+ ε
2+1

)

� LN−2α + LN−2α+ε+δ−1

[log2
L
M ]∑

k=−1

2k(1−ε−δ) + LN−α+ ε
2

[log2
L
M ]∑

k=−1

2k(−α− ε
2 )

� LN−2α + LN−2α+ε+δ−1

(
L

M

)1−ε−δ

+ LN−2α+ ε
2

(
L

M

)−α− ε
2

� LN−2α,

(3.17)

as long as 0 < ε < min{1 − δ,−2α} (the scope of ε guarantees the third line of
(3.17)), which can be satisfied by choosing

(3.18) ε =

{
1−δ
2

, for δ ∈] 1
2
, 1[,

δ
2 , for δ ∈]ε0,

1
2 ].

If α > −3δ−1
2 for δ ∈] 12 , 1[ or α > − δ

2 for δ ∈]ε0,
1
2 ], we shall use the iterative

method to reduce the power of L in the right-hand-side of (3.16). Thanks to (2.26)
in Lemma 2.2, we get an estimate similar to (3.8) only with L

2k in place of 2k+1L

and 2kL, and by inserting it into (3.15), we find∫
|y|≤L

|u(y)|2 dy �

�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
LN−2α + 1

L

∑[log2
L
M ]

k=−1 2k(N−2α+1)
(

L
2k

)N+4δ−1

, if α > −3δ−1
2

, δ ∈ [ 3
5
, 1[,

LN−2α + 1
L

∑[log2
L
M ]

k=−1 2k(N−2α+1)
(

L
2k

)N+ 3δ−1
2 +1

, if α > −3δ−1
2 , δ ∈] 12 , 3

5 ],

LN−2α + 1
L

∑[log2
L
M ]

k=−1 2k(N−2α+1)
(

L
2k

)N+ δ+ε
2 +1

, if α > − δ
2 , δ ∈]ε0,

1
2 ],

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LN−2α[log2 L], if α ∈] − 3δ−1
2

,−(2δ − 1)], δ ∈ [ 3
5
, 1[,

LN+4δ−2, if α > −(2δ − 1), δ ∈ [ 35 , 1[,

LN−2α[log2 L], if α ∈] − 3δ−1
2 ,−3δ−1

22 ], δ ∈] 12 , 3
5 ],

LN+ 3δ−1
2 , if α > −3δ−1

22 , δ ∈] 1
2
, 3

5
],

LN−2α[log2 L], if α ∈] − δ
2 ,− δ+ε

22 ], δ ∈]0, 1
2 ],

LN+ δ+ε
2 , if α > − δ+ε

22 , δ ∈]ε0,
1
2
].

(3.19)

If
{
α ∈] − 3δ−1

2
,−(2δ − 1)], δ ∈ [ 3

5
, 1[

}
, or

{
α ∈] − 3δ−1

2
,−3δ−1

22 ], δ ∈] 1
2
, 3

5
],

}
or{

α ∈] − δ
2
,− δ+ε

22 ], δ ∈]ε0,
1
2
]
}
, we can also improve the above bound by removing

the logarithmic term: indeed, this is as the treating in (3.17), and we only need to
choose 0 < ε < 1 so that ε < min{1 − δ,−2α}, e.g., setting

ε =

{
1−δ
2

, for δ ∈ [ 3
5
, 1[,

δ
22 , for δ ∈]ε0,

3
5 [,
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then the bound of
∫
|y|≤L |u(y)|2 dy can be likewise improved from CεL

N−2α+ε to

the expected CεL
N−2α. If

{
α > −(2δ − 1), δ ∈ [ 3

5
, 1[

}
, or

{
α > −3δ−1

22 , δ ∈] 1
2
, 3

5
]
}
,

or
{
α > − δ+ε

22 , δ ∈]ε0,
1
2
]
}
, we can further improve the bound in an identical fashion

as obtaining (3.19) from (3.16). In conclusion, after repeating the above process for
n + 1 times, we infer
(3.20)

∫
|y|≤L

|u|2 dy ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLN+2δ+(n+1)(δ−1), if α > − (n+3)δ−(n+1)
2

, δ ∈ [n+2
n+4

, 1[,

CLN+ 2δ+n(δ−1)
2 , if α > − (n+2)δ−n

22 , δ ∈ [n+1
n+3

, n+2
n+4

],

CLN+
2δ+(n−1)(δ−1)

22 , if α > − (n+1)δ−(n−1)
23 , δ ∈ [ n

n+2
, n+1

n+3
],

· · · · · ·

CLN+ 2δ+(δ−1)
2n , if α > −3δ−1

2n+1 , δ ∈] 1
2
, 3

5
],

CLN+ δ+ε
2n , if α > − δ+ε

2n+1 , δ ∈]ε0,
1
2
],

CLN−2α, if for other scopes of (α, δ).

From (3.20), by arguing as the deduction after (3.10), we deduce that if (α, δ) is
not in the scope so that

∫
|y|≤L |u(y)|2 dy is bounded by CLN−2α, then the scope

of such α will eventually exceed the range {−δ ≤ α ≤ −ε0} and the quantity∫
|y|≤L

|u(y)|2dy will be bounded by CLN+ε0 , which thus is not compatible. Hence

for all −δ ≤ α ≤ −ε0 and δ ∈]0, 1[, we obtain (3.13).
At last we prove (1.12), and in order to do that, it suffices to prove the following

inequality for all −δ ≤ α ≤ −ε0,

(3.21)

∫
|y|≤L

|u(y)|2dy � LN−2α, ∀L � 1.

Suppose it is not true, then there exists a sequence of numbers Lk � 1 such that

1

LN−2α
k

∫
|y|≤Lk

|u(y)|2 dy → 0, as Lk → ∞.

Thus by setting l2 = Lk → ∞ and l1 = 2L > 0 in (3.1), we get

(3.22)

∫
|y|≤L

|u(y)|2dy ≤ CLN−2α

∫
|y|≥L

|u(y)|3 + |q(y)||u(y)|

|y|N−2α+1
dy.

From (3.13), and by using the decomposition (3.4) and (2.26) in Lemma 2.2 with
b = N − 2α, we have∫

|y|≤L

|u(y)|2 dy ≤

≤

{
C
L

∑∞
k=0

1
2k(N−2α+1) (2kL)max{N−2α+δ,N−α+1}, if α �= −1

2
, δ �= 1

2
,

C
L

∑∞
k=0

1
2k(N−2α+1) (2kL)

3
2 [log2(2

kL)], if α = −1
2
, δ = 1

2
,

≤

⎧⎪⎨⎪⎩
CLN−2α+δ−1, if α ∈ [−δ, δ − 1], δ ∈] 12 , 1[,

CLN+ 1
2+ε, if α = −1

2 , δ = 1
2 ,

CLN−α, if α ∈ [δ − 1,−ε0], δ ∈]ε0, 1 − ε0], (α, δ) �= (−1
2 , 1

2)



LOCALLY SELF-SIMILAR SOLUTIONS FOR EULER EQUATIONS 339

with 0 < ε � 1/2 a small number. Using this improved estimate and Lemma 2.2
again, similarly as above we find∫

|y|≤L

|u(y)|2 dy ≤

≤

⎧⎪⎨⎪⎩
C
L

∑∞
k=0

1
2k(N−2α+1) (2kL)N−2α+2δ−1, if α ∈ [−δ, 3

2(δ − 1)], δ ∈ [ 35 , 1[,
C
L

∑∞
k=0

1
2k(N−2α+1) (2kL)N−α+ δ−1

2 +1, if α ∈ [ 32 (δ − 1), δ − 1], δ ∈] 12 , 1[,
C
L

∑∞
k=0

1
2k(N−2α+1) (2kL)N+−α+ε

2 +1, if α ∈ [δ − 1,−ε0], δ ∈]ε0, 1 − ε0],

≤

⎧⎪⎨⎪⎩
LN−2α+2δ−2, if α ∈ [−δ, 3

2
(δ − 1)], δ ∈ [ 3

5
, 1[,

LN−α+ δ−1
2 , if α ∈ [ 32 (δ − 1), δ − 1], δ ∈] 12 , 1[,

LN+−α+ε
2 , if α ∈ [δ − 1,−ε0], δ ∈]ε0, 1 − ε0],

By repeating the above process for n + 1 times leads to∫
|y|≤L

|u(y)|2 dy ≤

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

LN−2α+(n+1)(δ−1), if α ∈ [−δ, n+2
2 (δ − 1)], δ ∈ [n+2

n+4 , 1[,

LN−α+ n
2 (δ−1), if α ∈ [n+2

2 (δ − 1), n+1
2 (δ − 1)], δ ∈ [n+1

n+3 , 1[,

· · · · · ·

LN− α

2n−1 + 1
2n (δ−1), if α ∈ [ 3

2
(δ − 1), (δ − 1)], δ ∈] 1

2
, 1[,

LN+−α+ε
2n , if α ∈ [δ − 1,−ε0], δ ∈]ε0, 1− ε0].

(3.23)

From (3.23), we claim that for all −δ ≤ α ≤ −ε0 and ε0 < δ < 1,

(3.24)

∫
|y|≤L

|u(y)|2 dy � LN+ε0 , ∀L � 1,

Indeed, we divide into three cases: if δ ∈]ε0,
1
2 [, then the scope [−δ,−ε0] ⊂ [δ −

1,−ε0], and thus for n large enough, we get (3.24) for all −δ ≤ α ≤ −ε0; if δ ∈
[n+1
n+3

, n+2
n+4

[ for some n ∈ N
+ and δ ≤ 1 − ε0, then −δ > n+2

2
(δ − 1), and α ∈

[−δ,−ε0] ⊂ [n+2
2

(δ − 1), n+1
2

(δ − 1)] ∪ · · · ∪ [ 3
2
(δ − 1), δ − 1] ∪ [δ − 1, ε0], thus after

repeating the above process for m + n + 1 times, we get for all −δ ≤ α ≤ −ε0,

∫
|y|≤L

|u(y)|2 dy �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
LN+−α

2m +
n(δ−1)

2m+1 , if α ∈ [n+2
2 (δ − 1), n+1

2 (δ − 1)],

· · · · · ·

LN+ −α

2m+n−1 +
(δ−1)

2m+n , if α ∈ [ 32 (δ − 1), (δ − 1)],

LN+ −α+ε

2m+n , if α ∈ [δ − 1,−ε0],

� LN+ε0 , ∀L � 1,

(3.25)

where in the second line we have chosen m large enough; finally, if δ ∈ [n+1
n+3 , n+2

n+4 [

for some n ∈ N
+ and δ > 1 − ε0, then −δ > n+2

2 (δ − 1), δ − 1 > −ε0, and

α ∈ [−δ,−ε0] ⊂ [n+2
2 (δ − 1), n+1

2 (δ − 1)] ∪ · · · ∪ [ 32(δ − 1), δ − 1], we can obtain
(3.24) similarly as deriving (3.25) for all −δ ≤ α ≤ −ε0. However, the estimate
(3.24) clearly contradicts with (3.12) obtained from the assumption (1.11), and
thus (3.21) is not compatible and the desired estimate (1.12) is followed.
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3.2. Proof of Theorem 1.1-(2). Since δ < 1
2 and α > −1

2 , we have A = 0 in
the formula of q (2.3), and we can use the better estimate (2.27) instead of (2.26)
in the above proof. We first consider the case −1 < α < −δ. Similarly as above,
we also begin with (3.3), and by virtue of (3.5) and (2.27), we get∫

|y|≤2k+1L

|u(y)||q(y)| dy � (2kL)N+3δ ,

and ∫
|y|≤L

|u(y)|2 dy ≤
C

L

∞∑
k=0

1

2k(N−2α+1)
(2kL)N+3δ ≤ CLN+3δ−1.

We can repeatedly use this process to show that∫
|y|≤L

|u(y)|2 dy ≤ CLN+2δ−(n+1)(1−δ),

as long as N + 2δ − n(1 − δ) ≥ N − 2δ, that is, n ≤ 4δ
1−δ . Set n0 = [ 4δ

1−δ ], then we
obtain ∫

|y|≤L

|u(y)|2 dy ≤ CLN+2δ−(n0+1)(1−δ) ≤ CLN−2δ,

which clearly contradicts with the estimation from the condition (1.13)

(3.26)

∫
|y|≤L

|u(y)|2 dy �

∫
M≤|y|≤L

1 dy � LN ,

and guarantees that the case −1 < α < −δ is not compatible.
Next we consider the case α ≥ −δ to prove (3.13). We similarly begin with

(3.14), and from (3.15) and (2.27), we see that∫
|y|≤ L

2k

|u(y)||q(y)| dy �
( L

2k

)N+3δ

,

and ∫
|y|≤L

|u(y)|2 dy ≤ CLN−2α +
C

L

[log2
L
M ]∑

k=−1

2k(N−2α+1)
( L

2k

)N+3δ

≤

{
CLN+3δ−1 , if α > −3δ−1

2 ,

CLN−2α[log2 L], if α ≤ −3δ−1
2 .

(3.27)

For α ≤ −3δ−1
2 , we can replace the bound by CεL

N−2α+ε with 0 < ε < 1 − δ, then
by repeating this process once more, we obtain

(3.28)

∫
|y|≤L

|u|2 dy � LN−2α +
1

L

[log2
L
M ]∑

k=−1

2k(N−2α+1)
( L

2k

)N−2α+δ+ε

� LN−2α.

For α > −3δ−1
2

, and if δ < 1
3
, we see that (3.27) contradicts with (3.26), and such

a case is incompatible; otherwise, if δ ≥ 1
3 , we can further improve the bound by
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iteration:∫
|y|≤L

|u(y)|2dy � LN−2α +
1

L

[log2
L
M ]∑

k=−1

2k(N−2α+1)
( L

2k

)N+4δ−1

�

{
LN+4δ−2 , if α > −(2δ − 1),

LN−2α[log2 L], if α ∈]− 3δ−1
2 ,−(2δ − 1)].

For α ∈] − 3δ−1
2 ,−(2δ − 1)], we can similarly obtain (3.28) in this case; while for

α > −(2δ − 1), the bound CLN+4δ−2 contradicts with (3.26) due to δ < 1
2
, which

means such a case is incompatible. Therefore, for all α ≥ −δ and δ < 1
2 , we have

(3.29)

∫
|y|≤L

|u(y)|2 dy ≤ CLN−2α, ∀L � 1.

Combined with (3.26), we furthermore infer that the scope of α admitting possible
nontrivial velocity profiles is {α : −δ ≤ α ≤ 0}.

In the end we prove (1.12) for all −δ ≤ α ≤ 0, and it suffices to prove (3.21) for
α in this range. We prove by contradiction, and similarly as above, we begin with
(3.22) to get∫

|y|≤L

|u(y)|2 dy ≤
C

L

∞∑
k=0

1

2k(N−2α+1)
(2kL)N−2α+δ ≤ CLN−2α+δ−1.

By iteration, we can show that, as long as N + 2α − n(1 − δ) ≥ N − 2δ, we have∫
|y|≤L

|u(y)|2 dy ≤ CLN−2α−(n+1)(1−δ).

Set n′0 = [ 2α+2δ
1−δ ], thus we find∫

|y|≤L

|u(y)|2 dy ≤ CLN−2α−(n′0+1)(1−δ) ≤ CLN−2δ,

which contradicts with the estimate (3.26), and thus concludes (3.21) and (1.12) for
−δ ≤ α ≤ 0.
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