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Abstract. The purpose of this work is to investigate the pullback asymp-
totic behaviors of solutions for non-autonomous micropolar fluid flows in two-
dimensional bounded domains. On the base of the known results concerning
the global well-posedness of the solutions, we apply the technique of enstrophy
equality, combining with the estimates on the solutions, to prove the existence
and regularity of the pullback attractors for the generated evolution process for
the universe of fixed bounded sets and for another universe with a tempered
condition in different phase spaces. Then we use the estimates of the solu-
tions to analyze the tempered behavior and H2-boundedness of the pullback
attractors.
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1. Introduction

The purpose of this work is to investigate the pullback asymptotic behaviors
of solutions for the micropolar fluid model. The micropolar fluid model were firstly
established by Eringen [11] in 1966, which describe fluids consisting of randomly
oriented particles suspended in a viscous medium. According to [11], the model
equations for micropolar fluid flows can be described by the following system:

∂u

∂t
− (ν + νr)Δu − 2νrrotω + (u · ∇)u + ∇p = g,(1.1)

∇ · u = 0,(1.2)
∂ω

∂t
− (ca + cd)Δω + 4νrω + (u · ∇)ω − (c0 + cd − ca)∇divω − 2νrrotu = g̃,(1.3)

where u = (u1, u2, u3) is the velocity, p represents the pressure, ω = (ω1, ω2, ω3)
is the microrotation field interpreted as the angular velocity field of rotation of
particles. g = (g1, g2, g3) and g̃ = (g̃1, g̃2, g̃3) are external force and moments,
respectively. The positive parameters ν, νr, c0, ca, cd, represent viscosity coefficients.
In fact, ν represents the usual Newtonian viscosity and νr is called the microrotation
viscosity. From [11, 23], we see that system (1.1)-(1.3) expresses the balance of
momentum, mass, and moment of momentum. If νr = 0 and ω = 0, then equations
(1.1) and (1.2) reduce to the Navier-Stokes equations. Therefore, the micropolar
fluid model can be regarded as an essential generalization of the Navier-Stokes
model in the sense that it takes into account the microstructure of the fluid [24].

Due to the wide applications in the real world, the micropolar fluid flows have
drawn much attention from mathematicians and physicists and have been well
studied. Here we only illustrate some known results. First, we must mention that
�Lukaszewicz has obtained fruitful results in his monograph [23], including the ex-
istence and uniqueness of solutions for the stationary problems; the existence of
weak and strong solutions for the nonstationary problems, as well as the global
existence of solution for the heat-conducting flows; the applications of the microp-
olar fluids in lubrication theory and in porous media, etc. Also, numerous papers
are devoted to the existence and uniqueness of solutions for the micropolar flu-
ids, see, e.g. [12, 13, 14, 18, 20, 21, 22, 23, 24, 25]. At the same time, the
long time behavior of solutions for the micropolar fluids has been investigated from
various aspects. For example, the estimates of Hausdorff and fractal dimension of
the L2-global attractor was studied in [24]; the existence of H2-compact global
attractor was proved in [6]; the global and uniform attractor on unbounded do-
main was verified in [10] and [26, 32, 38], respectively; the uniform attractors of
non-homogeneous micropolar fluid flows in non-smooth domains was proved in [7];
the H1-pullback attractor was obtained in [8, 27]. The existence of L2-pullback
attractor for the micropolar fluid flows in a Lipschitz bounded domain with non-
homogeneous boundary conditions was established in [9]. However, the pullback
asymptotic behaviors of the micropolar fluid flows as studied in this paper have not
been considered so far.

In this work, we will concentrate on studying the pullback asymptotic behaviors
of solutions for system (1.1)-(1.3) in two-dimensional bounded domains. More
precisely, we consider a cross section x3 = constant of the three-dimensional domain
Ω×R when the external fields and the flow itself do not depend on the x3 coordinate.
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Then, we may assume that the velocity component u3 in the x3 direction is zero
and the axes of rotation of particles are parallel to the x3 axis. In this case,
the fields u, ω, g, g̃ are of the form u = (u1, u2, 0), ω = (0, 0, ω3), g = (g1, g2, 0),
g̃ = (0, 0, g̃3) and system (1.1)-(1.3) can be reduced to the following two-dimensional
non-autonomous incompressible micropolar fluid flow

∂u

∂t
− (ν + νr)Δu − 2νr∇× ω + (u · ∇)u + ∇p = g(x, t),(1.4)

∇ · u = 0,(1.5)
∂ω

∂t
− αΔω + 4νrω − 2νr∇× u + (u · ∇)ω = g̃(x, t),(1.6)

where t > τ for some τ ∈ R, α := ca + cd, x := (x1, x2) ∈ Ω ⊂ R
2, u := (u1, u2),

g := (g1, g2), ω and g̃ are scalar functions;

∇× u :=
∂u2

∂x1
− ∂u1

∂x2
and ∇× ω := (

∂ω

∂x2
,− ∂ω

∂x1
).

In addition, we impose the following boundary and initial conditions:

u|∂Ω = 0, ω|∂Ω = 0,(1.7)

u|t=τ = uτ , ω|t=τ = ωτ ,(1.8)

where uτ (·) and ωτ (·) are given functions of x. Our goal is to study the existence
and reveal some properties of the pullback attractors for the processes associated
with equations (1.4)-(1.8). For simplicity, we assume Ω is a bounded smooth domain
such that the following Poincaré inequality holds

(1.9) λ1‖ϕ‖2
L2(Ω) � ‖∇ϕ‖2

L2(Ω), ∀ϕ ∈ H1
0 (Ω),

where λ1 > 0 is the first eigenvalue of the operator −Δ in L2(Ω) with domain
H1

0 (Ω) ∩ H2(Ω) and satisfies the Dirichlet boundary condition. Note that λ1 is a
constant depending only on Ω.

We remark that the existence of the pullback attractor of Navier-Stokes equa-
tions in space V (for definition, see Section 2) and its tempered behavior were
studied in [16]. Motivated by this work and following its main idea, we generalize
their results to micropolar fluid flows. In contrast to the Navier-Stokes equations
(ω = 0, νr = 0), we emphasize that the micropolar fluid flows consist the angular
velocity field ω of the micropolar particles, which leads to a different nonlinear term
B(u, w) and an additional term N(u) in the abstract equation (see (2.8)). Due to
these differences, more delicate estimates and analysis for the solutions are required
in our study.

The paper is organized as follows.
In section 2, we recall the known results concerning the global existence and

uniqueness of solutions for equations (1.4)-(1.8). According to the estimates on
the solutions, we see that the evolution process generated by the solution maps is
continuous, which possesses a family of bounded pullback absorbing sets.

In section 3, we prove the existence and regularity of the pullback attractors in
L2 and H1 norms for the universe of fixed bounded sets and for another universe
with a tempered condition, respectively. Note that �Lukaszewicz and Tarasińska
proved, using a method based on the concept of the Kuratowski measure of non-
compactness of a bounded set as well as some new estimates of solutions, the
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existence of the H1-pullback attractors for nonautonomous micropolar fluid equa-
tions in a bounded domain ([27]). Here our key steps are to verify the existence
of the pullback absorbing set and the asymptotical compactness of the generated
evolution process. To establish the existence of the pullback absorbing set, we
use the Galerkin approximate solutions and combine the embedding between func-
tional spaces (see Lemma 3.1) to prove the higher regular estimates of the solutions.
Then we employ these estimates and the method of enstrophy equality to verify
the asymptotical compactness of the generated evolution process.

In sections 4 and 5, using the regular estimates of the Galerkin approximate
solutions and the embedding between the relevant functional spaces, we prove the
tempered behaviors of the pullback attractors as the initial time tends to −∞ in
Ĥ, V̂ and (H2(Ω))3 norms, respectively, as well as the boundedness of the pullback
attractors in V̂ and (H2(Ω))3 norms, respectively. Note that the above spaces Ĥ, V̂
and (H2(Ω))3 will be introduced in Section 2. We want to point out that the earlier
research on the H2 global attractor (see [6]) was from the viewpoint of measuring
noncompactness, and the semidistance in the attracting property of the H2 compact
global attractor are still in Ĥ space. Here the regularity of the obtained pullback
attractor, as well as it’s tempered behaviors and boundedness in (H2(Ω))3 norm,
illustrates the pullback asymptotic smoothing effect of the addressed miropolar
fluid flows in the sense that the solutions become eventually more regular (lying in
(H2(Ω))3) than the initial data (lying in Ĥ).

2. Global existence and uniqueness of solutions

In this section, we will establish the global existence and uniqueness of solutions
for system (1.4)-(1.8). To state our investigations in a clear way, we first introduce
the following notations.

Let us denote by Lp(Ω) and Wm,p(Ω) the usual Lebesgue space and Sobolev
space (see [1, 3]) endowed with norms ‖ · ‖p and ‖ · ‖m,p, respectively,

‖ϕ‖p := (
∫

Ω

|ϕ|pdx)1/p and ‖ϕ‖m,p := (
∑

|β|�m

∫
Ω

|Dβϕ|pdx)1/p.

Especially, we denote Hm(Ω) := Wm,2(Ω) and H1
0 (Ω) the closure of {ϕ ∈ C∞

0 (Ω)}
with respect to H1(Ω) norm. Then we introduce the following functions spaces:

V := {ϕ ∈ C∞
0 (Ω) × C∞

0 (Ω)|ϕ = (ϕ1, ϕ2),∇ · ϕ = 0} ,

H := closure of V in L2(Ω) × L2(Ω), with norm ‖ · ‖H and dual space H∗,

V := closure of V in H1(Ω) × H1(Ω), with norm ‖ · ‖V and dual space V ∗,

Ĥ := H × L2(Ω) with norm ‖ · ‖
bH and dual space Ĥ∗,

V̂ := V × H1
0 (Ω) with norm ‖ · ‖

bV and dual space V̂ ∗.

Note that ‖ · ‖H , ‖ · ‖V , ‖ · ‖
bH and ‖ · ‖

bV are defined by

‖(u, v)‖H := (‖u‖2
2 + ‖v‖2

2)
1/2, ‖(u, v)‖V := (‖u‖2

H1 + ‖v‖2
H1)1/2,

‖(u, v, w)‖
bH := (‖(u, v)‖2

H + ‖w‖2
2)

1/2, ‖(u, v, w)‖
bV := (‖(u, v)‖2

V + ‖w‖2
H1)1/2.

Throughout this article, we simplify the notations ‖ · ‖2, ‖ · ‖H and ‖ · ‖
bH by the

same notation ‖ · ‖, if there is no confusion. According to the above notations, we
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further denote

Lp(I; X) := space of strongly measurable functions on the closed interval I,
with values in a Banach space X, endowed with norm

‖ϕ‖Lp(I;X) := (
∫

I

‖ϕ‖p
Xdt)1/p, for 1 � p < ∞;

C(I; X) := space of continuous functions on the interval I, with values
in the Banach space X, endowed with the usual norm;

L2
loc(I; Ĥ) := space of locally integrable functions from the interval I to Ĥ;

W 1,2
loc (I; Ĥ) := {G| G ∈ L2

loc(I; Ĥ) and G′ ∈ L2
loc(I; Ĥ)}, here “ ′ ” means the

derivative with respect to time variable.

In addition, we denote by (·, ·) the inner product in L2(Ω), H or Ĥ, and by 〈·, ·〉
the dual pairing between V and V ∗ or between V̂ and V̂ ∗.

To write equations (1.4)-(1.6) into the abstract form, we further introduce the
following three operators:

〈Aw,ϕ〉 := (ν + νr)(∇u,∇Φ) + α(∇ω,∇φ), ∀w = (u, ω) ∈ V̂ , ∀ϕ = (Φ, φ) ∈ V̂ ,

〈B(u, w), ϕ〉 := ((u · ∇)w,ϕ), ∀u ∈ V, w ∈ V̂ , ∀ϕ ∈ V̂ ,

N(w) := (−2νr∇× ω,−2νr∇× u + 4νrω), ∀w = (u, ω) ∈ V̂ .

From the above definitions, one can check that A is a linear continuous operator
both from V̂ to V̂ ∗ and from D(A) := V̂ ∩ (

H2(Ω)
)3 to Ĥ; B(·, ·) is continuous

from V × V̂ to V̂ ∗ and N(·) is continuous from V̂ to Ĥ. Some useful estimations
for the operators A,B(·, ·) and N(·) have been established in the works [24, 26].
For completeness, we recall them as following.

Lemma 2.1.

(1) There are two positive constants c1 and c2 such that

c1〈Aw,w〉 � ‖w‖2
bV

� c2〈Aw,w〉, ∀w ∈ V̂ .(2.1)

Furthermore, for any w ∈ D(A), there holds

min{ν + νr, α}‖∇w‖2 � 〈Aw,w〉 � ‖w‖‖Aw‖ � λ
− 1

2
1 ‖∇w‖‖Aw‖.(2.2)

(2) There exists a positive constant λ which depends only on Ω, such that for
any (u, w, ϕ) ∈ V × V̂ × V̂ there holds

|〈B(u, w), ϕ〉| � λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖w‖ 1
2 ‖∇w‖ 1

2 ‖∇ϕ‖.(2.3)

Moreover, if (u, w, ϕ) ∈ V × D(A) × D(A), then

|〈B(u, w), Aϕ〉| � λ‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇w‖ 1
2 ‖Aw‖ 1

2 ‖Aϕ‖.(2.4)

(3) There exists a positive constant c(νr) such that

‖N(w)‖ � c(νr)‖w‖
bV , ∀w ∈ V̂ .(2.5)
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In addition, there holds

−〈N(w), Aw〉 �

⎧⎪⎨
⎪⎩

1
2
‖Aw‖2 + 2c2(νr)‖w‖2

bV
;

1
4
‖Aw‖2 + c2(νr)‖w‖2

bV
,

∀w ∈ D(A),(2.6)

〈Aw,w〉 + 〈N(w), w〉 �δ‖w‖2
bV
, ∀w ∈ V̂ ,(2.7)

hereinafter δ := min{ν, α}.
According to the above notations, we can formulate the weak version of equa-

tions (1.4)-(1.8) as following (see [38]):

∂w

∂t
+ Aw + B(u, w) + N(w) = G(x, t), w = (u, ω) ∈ V̂ , t > τ,(2.8)

w|t=τ = wτ = (uτ , ωτ ), τ ∈ R,(2.9)

hereinafter G(x, t) := (g(x, t), g̃(x, t)) and (2.8) is understood in the D′([τ, t]; V̂ ∗)
distribution sense. Therefore, given τ ∈ R, we say that a function w = (u, ω) ∈
C([τ, T ]; Ĥ) ∩ L2([τ, T ]; V̂ ) for T > τ is a weak solution of system (1.4)-(1.8) if
w|t=τ = wτ = (uτ , ωτ ) and (2.8) holds in the D′([τ, T ]; V̂ ∗) distributions sense.

The following global existence and uniqueness result of weak solutions can be
found in [24].

Proposition 2.1. Assume G(x, t) ∈ L2
loc(R; Ĥ).

(1) If wτ ∈ Ĥ, then system (2.8)-(2.9) has a unique solution w satisfying

w ∈ L∞([τ,∞); Ĥ) ∩ C([τ,∞); Ĥ) ∩ L2
loc([τ,∞); V̂ ), w′ ∈ L2

loc([τ,∞); V̂ ∗).

Moreover, the solution w depends continuously on the initial value wτ with
respect to the Ĥ norm.

(2) If wτ ∈ V̂ , then system (2.8)-(2.9) has a unique solution w satisfying

w ∈ L∞([τ,∞); V̂ ) ∩ C([τ, +∞); V̂ ) ∩ L2
loc([τ,∞);D(A)), w′ ∈ L2

loc([τ,∞); Ĥ).

Furthermore, the solution w depends continuously on the initial value wτ

with respect to the V̂ norm.

Remark 2.1. Let w be the solution of system (2.8)-(2.9) with initial value
wτ ∈ V̂ , then w satisfies the following “enstrophy equality”:

1
2

d
dt

〈Aw,w〉 + ‖Aw‖2 + 〈B(u, w), Aw〉 + 〈N(w), Aw〉 = (G(t), Aw).(2.10)

This enstrophy equality will play an important role in establishing the pullback
asymptotic compactness of the process in space V̂ . In fact, since the uniqueness
of the strong solution to problem (2.8)-(2.9), equation (2.9) can be obtained by
passing limit n → ∞ in equation (3.18). Here we omit the detailed proof.

According to Proposition 2.1, we see that the maps defined by

(2.11) U(t, τ) : wτ 
−→ U(t, τ ; wτ ) = w(t), t � τ,

where w(t) is the weak solution of system (2.8)-(2.9), generate a continuous process
{U(t, τ)}t�τ in Ĥ and V̂ , respectively.
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3. Existence and regularity of pullback attractors

In this section, we will prove that the process {U(t, τ)}t�τ defined by (2.11)
possesses pullback attractors for universe of fixed bounded sets and for another
universe given by a tempered condition in spaces Ĥ and V̂ , respectively. Also, we
reveal the regularity result of the pullback attractors by showing that these two
attractors coincide with each other.

For convenience, in the sequel, we denote by X the space Ĥ or V̂ , and by
P(X) the family of all nonempty subsets of X. Let D be a given nonempty class
of families parameterized in time D̂ = {D(t)| t ∈ R} ⊆ P(X). We will denote by
D a universe in P(X), if D̂1 ∈ D and D2(t) ⊂ D1(t) for all t ∈ R, then D̂2 ∈ D.
Furthermore, we introduce some definitions related to the pullback attractors. One
can refer to [5, 15, 16, 29, 30, 34] for general definitions and theory, as well as
the applications of the theory to [2, 17, 28, 27, 31, 37].

Definition 3.1.
(1) A family of sets D̂0 = {D0(t)| t ∈ R} ⊆ P(X) is called pullback D-

absorbing for the process {U(t, τ)}t�τ in X if for any t ∈ R and any
D̂ = {D(t)| t ∈ R} ∈ D, there exists a τ0(t, D̂) � t such that U(t, τ)D(τ) ⊆
D0(t) for all τ � τ0(t, D̂).

(2) The process {U(t, τ)}t�τ is said to be pullback D̂0-asymptotically compact
in X if for any t ∈ R, any sequences {τn} ⊆ (−∞, t] and {xn} ⊆ X
satisfying τn → −∞ as n → ∞ and xn ∈ D0(τn) for all n, the sequence
{U(t, τn; xn)} is relatively compact in X. {U(t, τ)}t�τ is called pullback
D-asymptotically compact in X if it is pullback D̂-asymptotically compact
for any D̂ ∈ D.

(3) A family of sets ÂD = {AD(t)| t ∈ R} ⊆ P(X) is called a pullback D-
attractor for the process {U(t, τ)}t�τ on X if it has the following proper-
ties:

• Compactness: for any t ∈ R,AD(t) is a nonempty compact subset
of X;

• Invariance: U(t, τ)AD(τ) = AD(t), ∀ t � τ ;
• Pullback attracting: ÂD is pullback D-attracting in the following

sense:

lim
τ→−∞distX (U(t, τ)D(τ),AD(t)) = 0, ∀D̂ = {D(s)| s ∈ R} ∈ D, t ∈ R,

where distX(Y, Z) := sup
y∈Y

inf
z∈Z

distX(y, z) means the Hausdorff semi-

distance
from Y ⊆ X to Z ⊆ X in the metric space X.

• Minimality: the family of sets ÂD is minimal in the sense that if
Ô = {O(t)| t ∈ R} ⊆ P(X) is another family of closed sets such that

lim
τ→−∞distX(U(t, τ)D(τ), O(t)) = 0, for any D̂ = {D(t)| t ∈ R} ∈ D,

then AD(t) ⊆ O(t) for t ∈ R.

To guarantee the existence of pullback attractors, we need the function G(x, t)
satisfies the following assumption:
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(H1) G(x, t) ∈ L2
loc(R; Ĥ) and

∫ 0

−∞
ec3s‖G(s)‖2ds < +∞.

It is not difficult to check that the second condition of (H1) is equivalent to∫ t

−∞
e−c3(t−s)‖G(s)‖2ds < +∞, ∀ t ∈ R.(3.1)

3.1. Preliminary results.
Before to prove the existence of pullback attractors, we first recall and estab-

lish some useful lemmas in the subsection, which play important roles in proving
the existence, regularity, tempered behavior and H2 boundedness of the pullback
attractors.

Lemma 3.1. (See [33].) Let X, Y be two Banach spaces such that X is reflexive,
and the inclusion X ⊂ Y is continuous. Assume that {un} is a bounded sequence
in L∞([t0, T ];X) such that un ⇀ u weakly in Lq([t0, T ];X) for some q ∈ [1, +∞)
and u ∈ C([t0, T ];Y ). Then u(t) ∈ X and ‖u(t)‖X � lim inf

n→∞ ‖un‖L∞([t0,T ];X) for all

t ∈ [t0, T ].

Lemma 3.2. Let G ∈ L2
loc(R; Ĥ) and w be the solution of equations (2.8)-(2.9)

with initial value wτ ∈ Ĥ, then

‖w(t)‖2 � ‖wτ‖2e−c3(t−τ) + c4e−c3t

∫ t

τ

ec3s‖G(s)‖2ds, for t � τ,(3.2)

‖w(t)‖2 + δ

∫ t

τ

‖w(s)‖2
bV
ds � ‖wτ‖2 + c4

∫ t

τ

‖G(s)‖2ds, for t � τ,(3.3)

where c3 and c4 are positive constants depending only on ν, α and Ω.

Proof. Let w(t) be the solution of equations (2.8)-(2.9) with initial value
wτ ∈ Ĥ. Following the same derivation of (2.22) in [24], we can also obtain the
inequality

d
dt

‖w(t)‖2 + c3‖w(t)‖2 � c4‖G(t)‖2,(3.4)

where
c3 := min{νλ̃1, αλ1} and c4 := max{ν−1λ̃−1

1 , α−1λ−1
1 },

and λ̃1 > 0 is the first eigenvalue of the Stokes operator −PΔ in H (see [35]).
Note that P is the orthogonal projection from L2(Ω) × L2(Ω) to H with domain
V ∩ (H2(Ω))2, and λ̃1 a constant depending only on Ω. Changing the variable t of
(3.4) by s, multiplying it by e−c3(t−s), and integrating it from s = τ to s = t, we
have

‖w(t)‖2 � ‖wτ‖2e−c3(t−τ) + c4e−c3t

∫ t

τ

ec3s‖G(s)‖2ds.(3.5)

Hence, the inequality (3.2) holds. The inequality (3.3) can be proved similarly as
that of (2.24) in [24]. Here we omit the details. �

From now on, we use D bH to denote the class of all families of nonempty subsets
D̂ = {D(t)| t ∈ R} ⊆ P(Ĥ) such that

lim
τ→−∞

(
ec3τ sup

w∈D(τ)

‖w‖2
)

= 0.(3.6)
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Also, we denote by D bH
F the class of families D̂ = {D(t) = D| t ∈ R} with D a fixed

nonempty bounded subset of Ĥ. Evidently, we have D bH
F ⊆ D bH .

Lemma 3.3. Assume (H1) holds. Then for any t ∈ R and D̂ = {D(t)| t ∈
R} ∈ D bH , there exists some τ0(D̂, t) < t − 3, such that for any τ � τ0(D̂, t) and
wτ ∈ D(τ), there hold

‖w(r; τ, wτ )‖2 � ρ1(t), ∀r ∈ [t − 3, t],(3.7)

‖w(r; τ, wτ )‖2
bV

� ρ2(t), ∀r ∈ [t − 2, t],(3.8) ∫ r

r−1

‖Aw(θ; τ, wτ )‖2dθ � ρ3(t), ∀r ∈ [t − 1, t],(3.9) ∫ r

r−1

‖w′(θ; τ, wτ )‖2dθ � ρ4(t), ∀r ∈ [t − 1, t],(3.10)

where

ρ1(t) := 1 + c4ec3(3−t)

∫ t

−∞
ec3θ‖G(θ)‖2dθ,(3.11)

ρ2(t) := max
r∈[t−2,t]

{
c2c5

(
ρ1(r) +

∫ r

r−1

‖G(θ)‖2dθ
)

× exp
{
c6

[(
ρ1(r) +

∫ r

r−1

‖G(θ)‖2dθ
)2 + 1

]}}
,(3.12)

ρ3(t) := c7

(
2ρ2(t) + ρ1(t)ρ2

2(t) +
∫ t

t−2

‖G(θ)‖2dθ
)
,(3.13)

ρ4(t) := max{4, 2c−1
1 , c8}

(
ρ2(t) + ρ2(t)ρ3(t) +

∫ t

t−2

‖G(θ)‖2dθ
)
,(3.14)

and all ci are positive constants.

Proof. Obviously, (3.7) can be deduced from (3.2). To prove (3.8)-(3.10),
we need a higher regularity of the solutions. Hence, we consider the Galerkin
approximate solutions. For each integer n � 1, let us denote by

wn(t) = wn(t; τ, wτ ) :=
n∑

j=1

ξnj(t)ej ,(3.15)

the Galerkin approximation of the solution w(t) of equations (2.8)-(2.9), where
ξnj(t) is the solution of the following Cauchy problem of ODEs:

d
dt

(wn(t), ej) + 〈Awn(t) + B(un(t), wn(t)) + N(wn(t)), ej〉 = (G(t), ej),(3.16)

(wn(τ), ej) = (wτ , ej), j = 1, 2, · · · , n,(3.17)

here {ej : j � 1} ⊆ D(A), which forms a Hilbert basis of V̂ and is orthonormal in
Ĥ. Multiplying equation (3.16) by Aξnj(t) and summing them for j = 1 to n, we
can obtain

1
2

d
dt

〈Awn, wn〉 + ‖Awn‖2 + 〈B(un, wn), Awn〉 + 〈N(wn), Awn〉
= (G(t), Awn).(3.18)
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By (2.4) and the facts

‖un‖2 � ‖wn‖2 and ‖∇un‖2 � ‖wn‖2
bV
,(3.19)

we can use the Young inequality to obtain

−〈B(un, wn), Awn〉 � |〈B(un, wn), Awn〉| � λ‖un‖ 1
2 ‖∇un‖ 1

2 ‖∇wn‖ 1
2 ‖Awn‖ 3

2

� 1
4
‖Awn‖2 + λ4‖wn‖2‖wn‖4

bV
.(3.20)

Replacing the variable t with θ, we follows from (2.6) and (3.18)-(3.20) that

1
2

d
dθ

〈Awn, wn〉 � −3
4
‖Awn‖2 + ‖G(θ)‖2 − 〈B(un, wn), Awn〉 − 〈N(wn), Awn〉

� −3
4
‖Awn‖2 + ‖G(θ)‖2 +

1
4
‖Awn‖2 + λ4‖wn‖2‖w‖4

bV

+ 2c2(νr)‖wn‖2
bV

+
1
2
‖Awn‖2

= ‖G(θ)‖2 + ‖wn‖2
bV

(
λ4‖wn‖2‖wn‖2

bV
+ 2c2(νr)

)
.(3.21)

By (2.1) and (3.21), we have

d
dθ

〈Awn, wn〉 � 2‖G(θ)‖2 + 〈Awn, wn〉
(
2c2λ

4‖w‖2‖wn‖2
bV

+ 4c2c
2(νr)

)
.(3.22)

Let us set

Hn(θ) := 〈Awn(θ), wn(θ)〉, I(θ) := 2‖G(θ)‖2

Kn(θ) := 2c2λ
4‖wn(θ)‖2‖wn(θ)‖2

bV
+ 4c2c

2(νr).

Then (3.22) can be written as

d
dθ

Hn(θ) � Kn(θ)Hn(θ) + I(θ).(3.23)

Using Gronwall inequality to (3.23), for all τ � r − 1 � s � r, we have

Hn(r) �
(
Hn(s) +

∫ r

r−1

I(θ)dθ
)
exp

{ ∫ r

r−1

Kn(θ)dθ
}
.(3.24)

Integrating (3.24) from s = r − 1 to s = r, we can obtain

Hn(r) �
( ∫ r

r−1

Hn(s)ds +
∫ r

r−1

I(θ)dθ
)
exp

{ ∫ r

r−1

Kn(θ)dθ
}
.(3.25)

In addition, by (2.1) and (3.3), we have∫ r

r−1

Hn(s)ds +
∫ r

r−1

I(θ)dθ =
∫ r

r−1

〈Awn(s), wn(s)〉ds +
∫ r

r−1

2‖G(θ)‖2dθ

� c1
−1

∫ r

r−1

‖wn(s)‖2
bV
ds + 2

∫ r

r−1

‖G(θ)‖2dθ

� c5

(‖wn(r − 1)‖2 +
∫ r

r−1

‖G(θ)‖2dθ
)
,(3.26)
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where c5 := max{c−1
1 δ−1, 2 + c4c

−1
1 δ−1}. Also, by (3.3), we see that∫ r

r−1

Kn(θ)dθ =
∫ r

r−1

(
2c2λ

4‖wn(θ)‖2‖wn(θ)‖2
bV

+ 4c2c
2(νr)

)
dθ

� 2c2λ
4

∫ r

r−1

[(‖wn(r − 1)‖2

+ c4

∫ r

r−1

‖G(θ)‖2dθ
)‖wn(θ)‖2

bV

]
dθ + 4c2c

2(νr)

� 2c2λ
4
(‖wn(r − 1)‖2 + c4

∫ r

r−1

‖G(θ)‖2dθ
) ∫ r

r−1

‖wn(θ)‖2
bV
dθ + 4c2c

2(νr)

� 2c2λ
4
(‖wn(r − 1)‖2 + c4

∫ r

r−1

‖G(θ)‖2dθ
)

× (‖wn(r − 1)‖2

δ
+ c4δ

−1

∫ r

r−1

‖G(θ)‖2dθ
)

+ 4c2c
2(νr)

� c6

[(‖wn(r − 1)‖2 +
∫ r

r−1

‖G(θ)‖2dθ
)2 + 1

]
,(3.27)

where c6 := max
{
2c2λ

4 · max
{
1, δ−2, c2

4δ
−2, c2

4

}
, 4c2c

2(νr)
}
. Then, by (2.1) and

(3.25)-(3.27), we conclude that for any r ∈ [t − 2, t] and τ � τ0(D̂, t),

‖wn(r)‖2
bV

� c2Hn(r) � c2c5

(‖wn(r − 1)‖2 +
∫ r

r−1

‖G(θ)‖2dθ
)

× exp
{
c6

[(‖wn(r − 1)‖2 +
∫ r

r−1

‖G(θ)‖2dθ
)2 + 1

]}
.(3.28)

On the other hand, by (2.6) and (3.18)-(3.20), we have, replacing the variable
t with θ,

1
2

d
dθ

〈Awn, wn〉 � 1
4
‖Awn‖2 + ‖G(θ)‖2 − ‖Awn‖2 − 〈B(un, wn), Awn〉 − 〈N(wn), Awn〉

� −3
4
‖Awn‖2 + ‖G(θ)‖2 +

1
4
‖Awn‖2 + λ4‖wn‖2‖wn‖4

bV

+
1
4
‖Awn‖2 + c2(νr)‖wn‖2

bV

= −1
4
‖Awn‖2 + ‖G(θ)‖2 + λ4‖wn‖2‖wn‖4

bV
+ c2(νr)‖wn‖2

bV
,

which implies

2
d
dθ

〈Awn, wn〉 + ‖Awn‖2 � 4‖G(θ)‖2 + 4λ4‖wn‖2‖wn‖4
bV

+ 4c2(νr)‖wn‖2
bV
.(3.29)

Integrating (3.29) from r − 1 to r and using (2.1), we have∫ r

r−1

‖Awn(θ)‖2dθ � c7

(
1 + sup

θ∈[r−1,r]

‖wn(θ)‖2‖wn(θ)‖2
bV

) ∫ r

r−1

‖wn(θ)‖2
bV
dθ

+ c7

∫ r

r−1

‖G(θ)‖2dθ + c7‖wn(r − 1)‖2
bV
,(3.30)

for τ � r − 1, where c7 := max{4λ4, 4c2(νr), 4, 2c−1
1 }.
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Finally, multiplying equation (3.16) by ξ′nj(t), summing them from j = 1 to n
and replacing the variable t with θ, we obtain

‖w′
n(θ)‖2 +

1
2

d
dθ

〈Awn(θ), wn(θ)〉 + 〈B(un(θ), wn(θ)), w′
n(θ)〉 + 〈N(wn(θ)), w′

n(θ)〉

= (G(θ), w′
n(θ)) � 1

4
‖w′

n(θ)‖2 + ‖G(θ)‖2.(3.31)

Moreover, by (2.2), (2.4) and the fact (3.19), we obtain

−〈B(un(θ), wn(θ)), w′
n(θ)〉 � λ‖un(θ)‖ 1

2 ‖∇un(θ)‖ 1
2 ‖∇wn(θ)‖ 1

2 ‖Awn(θ)‖ 1
2 ‖w′

n(θ)‖

� λ√
δ1

√
λ1

‖un(θ)‖ 1
2 ‖∇un(θ)‖ 1

2 ‖Awn(θ)‖‖w′
n(θ)‖

� λ√
δ1

√
λ1

‖wn(θ)‖
bV ‖Awn(θ)‖‖w′

n(θ)‖

� 1
4
‖w′

n(θ)‖2 +
λ

δ1

√
λ1

‖wn(θ)‖2
bV
‖Awn(θ)‖2,(3.32)

where δ1 := min{ν + νr, α}. Also, by (2.6), we have

−〈N(wn(θ)), w′
n(θ)〉 � 1

4
‖w′

n(θ)‖2 + c2(νr)‖wn(θ)‖2
bV
.(3.33)

Then it follows from equations (3.31)-(3.33) and the Cauchy inequality that

‖w′
n(θ)‖2 +

1
2

d
dθ

〈Awn(θ), wn(θ)〉

� 1
4
‖w′

n(θ)‖2 + ‖G(θ)‖2 +
1
4
‖w′

n(θ)‖2 +
λ

δ1

√
λ1

‖wn(θ)‖2
bV
‖Awn(θ)‖2

+
1
4
‖w′

n(θ)‖2 + c2(νr)‖wn(θ)‖2
bV

=
3
4
‖w′

n(θ)‖2 + ‖G(θ)‖2 + c2(νr)‖wn(θ)‖2
bV

+
λ

δ1

√
λ1

‖wn(θ)‖2
bV
‖Awn(θ)‖2,

that is

‖w′
n(θ)‖2 + 2

d
dθ

〈Awn(θ), wn(θ)〉
� 4‖G(θ)‖2 + c8‖wn(θ)‖2

bV

(
1 + ‖Awn(θ)‖2

)
,(3.34)

where c8 := max
{

4c2(νr), 4λδ−1
1 λ

− 1
2

1

}
. Integrating (3.34) from r−1 to r and using

(2.1), we see that∫ r

r−1

‖w′
n(θ)‖2dθ � 2

c1
‖wn(r − 1)‖2

bV
+ 4

∫ r

r−1

‖G(θ)‖2dθ

+ c8 sup
θ∈[r−1,r]

‖wn(θ)‖2
bV

(
1 +

∫ r

r−1

‖Awn(θ)‖2dθ
)
,(3.35)

for any r ∈ [t − 1, t] and τ � τ0(D̂, t). Note that reference [24] has proved the
facts that wn(·; τ, wτ ) ⇀ w(·; τ, wτ ) weakly in L2([t − 3, t];D(A)), w′

n(·; τ, wτ ) ⇀

w′(·; τ, wτ ) weakly in L2([t − 3, t]; Ĥ), and w(·; τ, wτ ) ∈ C([t − 3, t];V ). By Lemma
3.1, we can pass to the limit in (3.28), (3.30) and (3.35) to obtain the inequalities
(3.8)-(3.10). The proof is complete. �
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Note that if (H1) hold, then we have lim
t→−∞ ec3tρ1(t) = 0.

3.2. Pullback attractors in space Ĥ.
We now prove the existence and regularity of the pullback attractors for the

process {U(t, τ)}t�τ in space Ĥ.

According to the estimate (3.2), we can easily obtain the following lemma.

Lemma 3.4. Assume (H1) holds. Then the family of sets D̂0 = {D0(t)| t ∈ R}
with D0(t) = B

bH

(
0,R 1

2
bH
(t)

)
is pullback D bH-absorbing for the process {U(t, τ)}t�τ

in Ĥ, where

B̄
bH

(
0,R 1

2
bH
(t)

)
:=

{
w ∈ Ĥ| ‖w‖ � R 1

2
bH
(t)

}
(3.36)

is a closed ball in Ĥ and

R
bH(t) := 1 + c4e−c3t

∫ t

−∞
ec3s‖G(s)‖2ds.(3.37)

Lemma 3.5. Assume (H1) holds. Then the process {U(t, τ)}t�τ is pullback
D bH-asymptotically compact in Ĥ.

Proof. The proof is similar to that of Lemma 3.8 in §3.3 and we omit the
details here. �

By Lemmas 3.4 and 3.5, we can use the abstract result of [16] to obtain the
existence of the pullback attractors for the process {U(t, τ)}t�τ in space Ĥ.

Theorem 3.6. Assume (H1) holds. Then the process {U(t, τ)}t�τ defined by
(2.11) in Ĥ possesses the minimal pullback D bH

F - and D bH-attractors

ÂDcH
F

= {ADcH
F

(t)| t ∈ R} and ÂDcH = {ADcH (t)| t ∈ R} ∈ D bH ,

respectively. Furthermore,

ADcH
F

(t) ⊆ ADcH (t) ⊆ B
bH

(
0,R 1

2
bH
(t)

)
, ∀t ∈ R.

3.3. Pullback attractors in space V̂ .
Hereinafter, we will use D bH,bV to denote the class of all families D̂

bV of elements
of P(V̂ ) of the form

D̂
bV = {D

bV (t) = D(t) ∩ V̂ | t ∈ R} with D̂ = {D(t)| t ∈ R} ∈ D bH .

Also, we use DbV
F to denote the universe of nonempty fixed bounded subsets of V̂ .

It is clear that both classes D bH,bV and DbV
F are universes in P(V̂ ) and DbV

F ⊆ D bH,bV .

Moreover, let us denote by
{B̄

bH

(
0, ρ

1
2
1 (t)

)| t ∈ R
}

the family of closed balls in Ĥ

centered at zero and with radius ρ
1
2
1 (t), then{B̄

bH

(
0, ρ

1
2
1 (t)

)| t ∈ R
} ∈ D bH .

According to the above notations and Lemma 3.3, we can easily derive the fol-
lowing existence of bounded family of pullback D bH,bV -absorbing sets for {U(t, τ)}t�τ

in space V̂ .
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Lemma 3.7. Assume (H1) holds, then the family of sets

D̂0,bV :=
{
D0,bV (t) = B̄

bH

(
0, ρ

1
2
1 (t)

) ∩ V̂ | t ∈ R
} ∈ D bH,bV .(3.38)

Furthermore, for any t ∈ R, D̂V̂ = {D
bV (t) = D(t) ∩ V̂ | t ∈ R} ∈ D bH,bV with any

D̂ = {D(t)| t ∈ R} ∈ D bH , there exists a τ1(D̂, t) < t such that

(3.39) U(t, τ)D(τ) ⊆ D̂0,bV (t), ∀τ � τ1(D̂, t).

Next, we prove the pullback asymptotically compact of {U(t, τ)}t�τ in V̂ for
the universe D bH,bV by using the enstrophy equality.

Lemma 3.8. Assume (H1) holds, then the process {U(t, τ)}t�τ is pullback
D bH,bV -asymptotically compact in space V̂ .

Proof. Let us fix some t ∈ R and consider any family D̂
bV = {D

bV (t) =
D(t)∩ V̂ | t ∈ R} ∈ D bH,bV , any sequences {τn} ⊆ (−∞, t] and {wτn} ⊆ V̂ , satisfying
τn → −∞ as n → +∞, and wτn

∈ D
bV (τn) = D(τn) ∩ V̂ for all n. Our goal is to

show that the sequence {w(n)(t)} defined by

w(n)(·) := w(n)(·; τn, wτn) = U(·, τn; wτn).(3.40)

is relatively compact in V̂ .

By Lemma 3.3 we see that there exist a τ0(D̂bV , t) < t− 3 such that the subse-
quence {w(n)(·)| τn � τ0(D̂bV , t)} is uniformly bounded in

L∞([t − 2, t]; V̂ ) ∩ L2([t − 2, t];D(A)),

and {(w(n))′(·)} is uniformly bounded in L2([t − 2, t]; Ĥ). Then, following the
standard diagonal procedure, there exists a function w(·) such that (by extracting
a subsequence if necessary)

w(n)(·) ⇀∗ w(·) weakly star in L∞([t − 2, t]; V̂ ),(3.41)

w(n)(·) ⇀ w(·) weakly in L2([t − 2, t];D(A)),(3.42)

(w(n))′(·) ⇀ w′(·) weakly in L2([t − 2, t]; Ĥ).(3.43)

By the Aubin-Lions compactness theorem (see, e.g. [19, 4, 36]) and the compact
embedding D(A) ↪→ V̂ ↪→ Ĥ, it follows from (3.42)-(3.43) that

w(n)(·) −→ w(·) strongly in V̂ , a.e. on [t − 2, t],(3.44)

w(n)(·) ∈ C(
[t − 2, t]; V̂

)
, w(·) ∈ C(

[t − 2, t]; V̂
)
,(3.45)

and {wn(·)} is uniformly bounded in C([t− 2, t]; V̂ ). According to (3.41)-(3.44), we
see that w satisfies equation (2.8). Since

w(n)(s2) − w(n)(s1) =
∫ s2

s1

(w(n))′(r)dr in Ĥ, ∀s1, s2 ∈ [t − 2, t],(3.46)

and {(w(n))′} is uniformly bounded in L2([t−2, t]; Ĥ), we conclude that {w(n)(·)} is
equicontinuous on the interval [t−2, t] with values in Ĥ. Thus, by the Ascoli-Arzelá
theorem, we have

w(n)(·) −→ w(·) strongly in C([t − 2, t]; Ĥ).(3.47)



DYNAMICS OF PDE 279

Then, by the uniform boundedness of {w(n)(·)} in C([t−2, t]; V̂ ) and (3.47), for any
sequence {sn} ⊆ [t − 2, t] with sn → s∗ as n → ∞, there holds

w(n)(sn) ⇀ w(s∗) weakly in V̂ .(3.48)

Next, we claim that

w(n)(·) −→ w(·) strongly in C([t − 1, t]; V̂ ),(3.49)

which implies the relative compactness of w(n)(t) in V̂ . Suppose (3.49) is false, then
there exists an ε0 > 0 and a sequence {tn} ⊂ [t − 1, t] satisfying tn → t∗ such that

‖w(n)(tn) − w(t∗)‖bV � ε0, ∀n � 1.(3.50)

Since the norm ‖w‖
bV is equivalent to the norm induced by 〈Aw,w〉 (see (2.1)), we

can assume that

〈A(w(n)(tn) − w(t∗)), w(n)(tn) − w(t∗)〉 � ε0, ∀n � 1.(3.51)

Then, by (3.48) we have

〈Aw(t∗), w(t∗)〉 � lim inf
n→∞ 〈Aw(n)(tn), w(n)(tn)〉.(3.52)

On the other hand, similar to the derivation of (3.29) and using the enstrophy
equality as that as (2.10) for w(n) and w, we have

〈Aw(n)(s2), w(n)(s2)〉 +
1
2

∫ s2

s1

‖Aw(n)(θ)‖2dθ

� 〈Aw(n)(s1), w(n)(s1)〉 + 2
∫ s2

s1

‖G(θ)‖2dθ + 2c2(νr)
∫ s2

s1

‖w(n)(θ)‖2
bV
dθ

+ 2λ4

∫ s2

s1

‖w(n)(θ)‖2‖w(n)(θ)‖4
bV
dθ

� 〈Aw(n)(s1), w(n)(s1)〉 + c9

∫ s2

s1

‖G(θ)‖2dθ + c9

∫ s2

s1

‖w(n)(θ)‖2
bV
dθ

+ c9

∫ s2

s1

‖w(n)(θ)‖4
bV
dθ, for t − 2 � s1 � s2 � t,(3.53)

and

〈Aw(s2), w(s2)〉 +
1
2

∫ s2

s1

‖Aw(θ)‖2dθ

� 〈Aw(s1), w(s1)〉 + 2
∫ s2

s1

‖G(θ)‖2dθ + 2c2(νr)
∫ s2

s1

‖w(θ)‖2
bV
dθ

+ 2λ4

∫ s2

s1

‖w(θ)‖2‖w(θ)‖4
bV
dθ

� 〈Aw(s1), w(s1)〉 + c9

∫ s2

s1

‖G(θ)‖2dθ + c9

∫ s2

s1

‖w(θ)‖2
bV
dθ

+ c9

∫ s2

s1

‖w(θ)‖4
bV
dθ,(3.54)

where c9 := max
{
2, 2c2(νr), 2λ4ρ1(t)

}
. Now, for s ∈ [t − 2, t], let us define
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Γn(s) :=
〈
Aw(n)(s), w(n)(s)

〉
− c9

∫ s

t−2

‖G(θ)‖2dθ − c9

∫ s

t−2

‖w(n)(θ)‖2
bV
dθ

− c9

∫ s

t−2

‖w(n)(θ)‖4
bV
dθ,(3.55)

Γ(s) := 〈Aw(s), w(s)〉 − c9

∫ s

t−2

‖G(θ)‖2dθ − c9

∫ s

t−2

‖w(θ)‖2
bV
dθ

− c9

∫ s

t−2

‖w(θ)‖4
bV
dθ.(3.56)

It is obvious from the regularity of w and all w(n) that Γn(·) and Γ(·) are continuous
on [t − 2, t]. By (3.53), for any t − 2 � s1 � s2 � t, we have

Γn(s2) − Γn(s1)

=
〈
Aw(n)(s2), w(n)(s2)

〉
− 〈Aw(n)(s1), w(n)(s1)〉 − c9

∫ s2

s1

‖G(θ)‖2dθ

− c9

∫ s2

s1

‖w(n)(θ)‖2
bV
dθ − c9

∫ s2

s1

‖w(n)(θ)‖4
bV
dθ

� −1
2

∫ s2

s1

‖Aw(n)(θ)‖2dθ � 0.(3.57)

Thus, for each n, Γn(·) is non-increasing on [t− 2, t]. Similarly, using the definition
of Γ(·) and (3.54), we see that the function Γ(s) is also non-increasing on [t − 2, t].
Then, from (3.44), we obtain when n → ∞ that

‖w(n)(·)‖2
bV
−→ ‖w(·)‖2

bV
, ‖w(n)(·)‖4

bV
−→ ‖w(·)‖4

bV
, a.e. on [t − 2, t].(3.58)

Since, w(n)(·) is a bounded sequence in L∞([t−2, t]; V̂ ), we see that both ‖w(n)(·)‖2
bV

and ‖w(n)(·)‖4
bV

are bounded in L∞([t − 2, t]). Then, by the Lebesgue dominated
convergence theorem, it follows that∫ s

t−2

‖w(n)(θ)‖2
bV
dθ −→

∫ s

t−2

‖w(θ)‖2
bV
dθ, a.e. s ∈ [t − 2, t], n → ∞,(3.59) ∫ s

t−2

‖w(n)(θ)‖4
bV
dθ −→

∫ s

t−2

‖w(θ)‖4
bV
dθ, a.e. s ∈ [t − 2, t], n → ∞.(3.60)

By (3.44), (3.59), (3.60) and again the equivalence between the norm ‖w‖
bV and

the norm induced by 〈Aw,w〉, we have

Γn(s) −→ Γ(s) a.e. s ∈ [t − 2, t], n → ∞.(3.61)

Therefore, there exists an increasing sequence {t̃k} ⊆ [t − 2, t∗] such that

lim
k→∞

t̃k = t∗ and lim
n→∞Γn(t̃k) = Γ(t̃k), for all k ∈ N.(3.62)

By the continuity of Γ(·), for any ε > 0, there exists some kε such that

|Γ(t̃k) − Γ(t∗)| < ε/2, for all k � kε.(3.63)
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Also, by the non-increasing property of Γn and (3.62), for each n > n(kε) we may
choose tn > t̃kε

such that

Γn(tn) − Γ(t∗) � Γn(t̃kε) − Γ(t∗)

� |Γn(t̃kε) − Γ(t̃kε)| + |Γ(t̃kε
) − Γ(t∗)| <

ε

2
+

ε

2
= ε.(3.64)

Then we obtain

lim sup
n→∞

Γn(tn) = lim sup
n→∞

(〈Aw(n)(tn), w(n)(tn)〉 − c9

∫ tn

t−2

‖G(θ)‖2dθ

− c9

∫ tn

t−2

‖w(n)(θ)‖2
bV
dθ − c9

∫ tn

t−2

‖w(n)(θ)‖4
bV
dθ

)

� Γ(t∗) = 〈Aw(t∗), w(t∗)〉 − c9

∫ t∗

t−2

‖G(θ)‖2dθ

− c9

∫ t∗

t−2

‖w(θ)‖2
bV
dθ − c9

∫ t∗

t−2

‖w(θ)‖4
bV
dθ.(3.65)

By (3.44) and (3.59)-(3.60), we further obtain∫ tn

t−2

‖w(n)(θ)‖2
bV
dθ −→

∫ t∗

t−2

‖w(θ)‖2
bV
dθ, n → ∞,(3.66)

∫ tn

t−2

‖w(n)(θ)‖4
bV
dθ −→

∫ t∗

t−2

‖w(θ)‖4
bV
dθ, n → ∞.(3.67)

Hence, it follows from (3.65)-(3.67) and the fact
∫ tn

t−2

‖G(θ)‖2dθ →
∫ t∗

t−2

‖G(θ)‖2dθ

that

〈Aw(t∗), w(t∗)〉 � lim sup
n→∞

〈Aw(n)(tn), w(n)(tn)〉.(3.68)

Since V̂ is a Hilbert space, (3.52) and (3.68) give a contradiction with (3.51). Hence
the claim (3.49) follows and the proof is complete. �

Combining the results of Lemmas 3.7, 3.8 and the abstract result of [16], we
can obtain the main result of this section as follows.

Theorem 3.9. Assume (H1) holds, then the process {U(t, τ)}t�τ possesses the
minimal pullback DbV

F - and D bH,bV -attractors

ÂD bV
F

= {AD bV
F

(t)| t ∈ R} and ÂDcH, bV = {ADcH, bV (t)| t ∈ R},
respectively. Furthermore, the following statements hold.

(1) For any t ∈ R, we have

AD bV
F

(t) ⊆ ADcH
F

(t) ⊆ ADcH (t) = ADcH, bV (t),(3.69)

where ÂDcH
F

= {ADcH
F

(t)| t ∈ R} and ÂDcH = {ADcH (t)| t ∈ R} are the min-

imal pullback D bH
F - and D bH-attractors of {U(t, τ)}t�τ in space Ĥ, which

are obtained in Theorem 3.6.
(2) For any t ∈ R and D̂ ∈ D bH , there holds

lim
τ→−∞dist

bV

(
U(t, τ)D(τ),ADcH (t)

)
= 0.(3.70)
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(3) Suppose G satisfies

sup
s�0

(
e−c3s

∫ s

−∞
ec3θ‖G(θ)‖2dθ

)
< +∞.(3.71)

Then, for any t ∈ R and fixed bounded subset B of Ĥ, we have

AD bV
F

(t) = ADcH
F

(t) = ADcH (t) = ADcH, bV (t)(3.72)

and

lim
τ→−∞dist

bV

(
U(t, τ)B,ADcH

F

(t)
)

= 0.(3.73)

Proof. By [16, Theorem 3.11 and Corollary 3.13] and Lemmas 3.3, 3.7-3.8,
we can obtain the existence of the minimal pullback attractors ÂD bV

F
and ÂDcH, bV .

Also, (3.69) follows form [16, Corollary 3.13 and Theorem 3.15] and Lemma 3.7.
Obviously, (3.70) can be obtained immediately from (3.69). Moreover, if G satisfies
(3.71), then the equality ADcH

F

(t) = ADcH (t) is a corollary of [16, Remark 3.14] and
(3.11). Again, by [16, Theorem 3.15] and (3.69)-(3.70), we have AD bV

F
(t) = ADcH

F

(t)
and (3.73) follows obviously. The proof is complete. �

4. Tempered behaviors of the pullback attractors

In this section, we will investigate the tempered behaviors of the pullback at-
tractor ÂDcH with respect to the norms of Ĥ, V̂ and (H2(Ω))3 as t tends to −∞.

First, we consider the tempered behavior of ÂDcH in Ĥ norm. Since ÂDcH ∈ D bH ,
by Theorem 3.6, we see that the tempered behavior is given by

lim
t→−∞

(
ec3t sup

w∈ADcH
(t)

‖w‖2
)

= 0.(4.1)

Next, for the tempered behavior of ÂDcH in V̂ , we have the following result.

Theorem 4.1. Assume (H1) and (3.71) hold, then

lim
t→−∞

(
ec3t sup

w∈ADcH
(t)

‖w‖2
bV

)
= 0.(4.2)

Proof. First, by [39, Theorem 4.1], we see that the condition (3.71) is equiv-
alent to

sup
s�0

∫ s

s−1

‖G(θ)‖2dθ < +∞.(4.3)

According to the equivalence, it is easy to verify that the tempered behavior (4.2)
is a consequence of the invariance of the pullback attractor ÂDcH and the estimates
(3.8), (3.11) and (3.12). The proof is complete. �

Finally, we study the tempered behavior of ÂDcH in (H2(Ω))3. To investigate
the tempered behavior, we further assume G satisfies the condition:

(H2) G ∈ W 1,2
loc (R; Ĥ) satisfies (3.71), and

lim
t→−∞

(
ec3t‖G(t)‖2

)
= 0 and lim

t→−∞
(
ec3t

∫ t

t−1

‖G′(θ)‖2dθ
)

= 0.(4.4)

First, we establish some estimates of a higher regularity of the solutions.
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Lemma 4.2. Assume (H1) and (H2) hold. For any t ∈ R, D̂ = {D(t)| t ∈ R} ∈
D bH , there exists a τ2(D̂, t) < t − 3 such that for all r ∈ [t − 1, t], there hold

‖w′(r; τ, wτ )‖2 � ρ5(t), ∀ τ � τ2(D̂, t), wτ ∈ D(τ),(4.5)

‖Aw(r; τ, wτ )‖2 � ρ6(t), ∀ τ � τ2(D̂, t), wτ ∈ D(τ),(4.6)

where

ρ5(t) :=
(
ρ4(t) + δ−1(λ−1/2

1 + λ̃
−1/2
1 )

∫ t

t−2

‖G′(θ)‖2dθ
) · exp

(
4λ4δ−1ρ2

2(t)
)
,(4.7)

ρ6(t) := c11

(
ρ5(t) + max

r∈[t−1,t]
‖G(r)‖2 + ρ2(t) + ρ1(t)ρ2

2(t)
)
,(4.8)

c11 := max{8, 4λ4, 4c2(νr)}.

Proof. Let wn(t) = wn(t; τ, wτ ) be the Galerkin approximate solution defined
by (3.15). Differentiating equation (3.16) with respect to t, multiplying the resulting
equalities by ξ′nj(t) and summing them from j = 1 to n, we have

1
2

d
dθ

‖w′
n(θ)‖2 + δ‖w′

n(θ)‖2
bV

+ 〈B(u′
n(θ), wn(θ)), w′

n(θ)〉
+ 〈B(un(θ), w′

n(θ)), w′
n(θ)〉

� 1
2

d
dθ

‖w′
n(θ)‖2 + 〈Aw′

n(θ), w′
n(θ)〉 + 〈N(w′

n(θ)), w′
n(θ)〉

+ 〈B(u′
n(θ), wn(θ)), w′

n(θ)〉 + 〈B(un(θ), w′
n(θ)), w′

n(θ)〉
= (G′(θ), w′

n(θ))

� δλ̃
1/2
1

2
‖u′

n(θ)‖2 +
δλ

1/2
1

2
‖ω′

n(θ)‖2 +
1
2δ

(λ̃−1/2
1 + λ

−1/2
1 )‖G′(θ)‖2

� δ

2
‖w′

n(θ)‖2
bV

+
1
2δ

(λ̃−1/2
1 + λ

−1/2
1 )‖G′(θ)‖2,(4.9)

where we have also used (2.7) and the Pioncaré inequality. Also, by (2.3) and the
facts ‖u′

n‖ � ‖w′
n‖, ‖∇u′

n‖ � ‖w′
n‖bV , we can obtain

|〈B(u′
n(θ), wn(θ)), w′

n(θ)〉| � λ‖u′
n(θ)‖ 1

2 ‖∇u′
n(θ)‖ 1

2 ‖wn(θ)‖ 1
2 ‖∇wn(θ)‖ 1

2 ‖∇w′
n(θ)‖

� λ‖w′
n(θ)‖ 1

2 ‖w′
n(θ)‖ 1

2
bV
‖wn(θ)‖ 1

2 ‖wn(θ)‖ 1
2
bV
‖w′

n(θ)‖
bV

� λ‖w′
n(θ)‖ 1

2 ‖wn(θ)‖
bV ‖w′

n(θ)‖ 3
2
bV

� δ

4
‖w′

n(θ)‖2
bV

+
λ4

δ
‖w′

n(θ)‖2‖wn(θ)‖4
bV
.(4.10)

Similarly, we have

|〈B(un(θ), w′
n(θ)), w′

n(θ)〉| � δ

4
‖w′

n(θ)‖2
bV

+
λ4

δ
‖w′

n(θ)‖2‖wn(θ)‖4
bV
.(4.11)
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Then, for a.e. θ > τ , it follows from (4.9)-(4.11) that

d
dθ

‖w′
n(θ)‖2 � δ‖w′

n(θ)‖2
bV

+
1
δ
(λ̃−1/2

1 + λ
−1/2
1 )‖G′(θ)‖2 + δ‖w′

n(θ)‖2
bV

+
4λ4

δ
‖w′

n(θ)‖2‖wn(θ)‖4
bV
− 2δ‖w′

n(θ)‖2
bV

=
1
δ
(λ̃−1/2

1 + λ
−1/2
1 )‖G′(θ)‖2 +

4λ4

δ
‖w′

n(θ)‖2‖wn(θ)‖4
bV
.(4.12)

Integrating (4.12), for τ � r − 1 � s � r, we have

‖w′
n(r)‖2 � ‖w′

n(s)‖2 +
1
δ
(λ̃−1/2

1 + λ
−1/2
1 )

∫ r

r−1

‖G′(θ)‖2dθ

+
4λ4

δ

∫ r

s

‖w′
n(θ)‖2‖wn(θ)‖4

bV
dθ.(4.13)

Applying Gronwall inequality to (4.13), we see that

‖w′
n(r)‖2 �

(‖w′
n(s)‖2 +

1
δ
(λ̃−1/2

1 + λ
−1/2
1 )

∫ r

r−1

‖G′(θ)‖2dθ
)

× exp
(4λ4

δ

∫ r

r−1

‖wn(θ)‖4
bV
dθ

)
.(4.14)

Furthermore, integrating (4.14) with respect to s for s ∈ [r − 1, r], we obtain

‖w′
n(r)‖2 �

( ∫ r

r−1

‖w′
n(s)‖2ds +

1
δ
(λ̃−1/2

1 + λ
−1/2
1 )

∫ r

r−1

‖G′(θ)‖2dθ
)

× exp
(4λ4

δ

∫ r

r−1

‖wn(θ)‖4
bV
dθ

)
.(4.15)

Hence, by (3.8), (3.10), (4.15) and the fact that wn(·; τ, wτ ) ⇀ w(·; τ, wτ ) weakly
in L2([t − 1, t]; V̂ ) and w(·; τ, wτ ) ∈ C([t − 1, t]; V̂ ), the inequality (4.5) follows.

Next, we prove the inequality (4.6). Similar to (3.18), we have

(w′
n(r), Awn(r)) + ‖Awn(r)‖2 + 〈B(un(r), wn(r)), Awn(r)〉

+ 〈N(wn(r)), Awn(r)〉
= (G(r), Awn(r)) � 2‖G(r)‖2 +

1
8
‖Awn(r)‖2.(4.16)

By (2.4) and (2.6), we easily get

|〈B(un(r), wn(r)), Awn(r)〉| � 1
4
‖Awn(r)‖2 + λ4‖wn(r)‖2‖wn(r)‖4

bV
,(4.17)

|〈N(wn(r)), Awn(r)〉| � 1
4
‖Awn(r)‖2 + c2(νr)‖wn(r)‖2

bV
.(4.18)

From (4.16)-(4.18) and the fact

|(w′
n(r), Awn(r))| � ‖w′

n(r)‖‖Awn(r)‖ � 2‖w′
n(r)‖2 +

1
8
‖Awn(r)‖2,

we can obtain

‖Awn(r)‖2 �
(
4λ4‖wn(r)‖2‖wn(r)‖2

bV
+ 4c2(νr)

)
‖wn(r)‖2

bV

+ 8‖G(r)‖2 + 8‖w′
n(r)‖2.(4.19)
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Since the embedding W 1,2
loc (R; Ĥ) ↪→ C(R; Ĥ) is continuous, we see that G ∈

C(R; Ĥ). According to (3.7)-(3.8), (4.5) and (4.19), we have for all r ∈ [t−1, t] that

‖Awn(r; τ, wτ )‖2 � ρ6(t), ∀ τ � τ2(D̂, t), ∀wτ ∈ D(τ),(4.20)

where ρ6(t) is given by (4.8). Then, combining Lemma 3.1, (4.20), (H2) and the
fact that wn(·; τ, wτ ) ⇀ w(·; τ, wτ ) weakly in L2([t − 1, t]; V̂ ), and w(·; τ, wτ ) ∈
C([t − 1, t]; V̂ ), we can obtain the inequality (4.6). The proof is complete. �

Theorem 4.3. Assume (H1) and (H2) hold. Then we have

lim
t→−∞

(
ec3t sup

w∈ADcH
(t)

‖w‖2
(H2(Ω))3

)
= 0.(4.21)

Proof. Obviously, we have for all r ∈ [t − 1, t] that

‖G(r)‖ � ‖G(t − 1)‖ +
( ∫ t

t−1

‖G′(θ)‖2dθ
) 1

2 .(4.22)

Then, combining Lemmas 3.3,4.2, Theorem 4.1, the equivalence between (3.71) and
(4.3), and the invariance of ÂDcH (t), we have (4.21). �

5. H2-boundedness of the pullback attractors

In this section, we will use the estimates of the Galerkin approximate solutions
sequence {wn(t; τ, wτ )}n�1 defined by (3.15) to show the H2-boundedness of the
pullback attractors.

Lemma 5.1. Assume (H2) holds. For any τ ∈ R, ε > 0, t > τ + ε and bounded
set B ⊂ Ĥ, we have the following properties:

(1) {wn(r; τ, wτ )| r ∈ [τ + ε, t], wτ ∈ B}n�1 is a bounded subset of V̂ ;
(2) {wn(·; τ, wτ )|wτ ∈ B}n�1 is a bounded subset of L2([τ + ε, t];D(A));
(3) {w′

n(·; τ, wτ )|wτ ∈ B}n�1 is bounded subset of L2([τ + ε, t]; Ĥ);
(4) {w′

n(r; τ, wτ )| r ∈ [τ + ε, t], wτ ∈ B}n�1 is a bounded subset of Ĥ;
(5) {wn(r; τ, wτ )| r ∈ [τ + ε, t], wτ ∈ B}n�1 is a bounded subset of D(A).

Proof. We can obtain, with small modifications on the interval [τ + ε, t],
the similar estimates as (3.7)-(3.10) and (4.5)-(4.6) for the Galerkin approximate
solution wn(t; τ, wτ ) defined by (3.15). Hence, the properties of parts (1)-(5) follow
from theses estimates directly. The proof is complete. �

Lemma 5.2. Assume (H2) holds. Then for any τ ∈ R, ε > 0, t > τ + ε and
bounded set B ⊂ Ĥ, the set

⋃
s∈[τ+ε,t]

U(s, τ)B is bounded in V̂ .

Proof. In [24], the authors had proved that for any wτ ∈ B ⊂ Ĥ, the
Galerkin approximate solutions {wn(·; τ, wτ )}n�1 converge weakly to w(·; τ, wτ )
in L2([τ, t]; V̂ ) and w(·; τ, wτ ) ∈ C([τ, t]; Ĥ). Then, the desired result is a straight-
forward consequence of Lemma 3.1 and part (1) of Lemma 5.1. The proof is com-
plete. �

Summing up the above lemmas, we have the following results.

Theorem 5.3. Assume (H1) and (H2) hold.



286 CAIDI ZHAO, WENLONG SUN, AND CHENG HSIUNG HSU

(1) For any τ ∈ R, ε > 0, t > τ + ε and bounded set B ⊂ Ĥ, the set⋃
s∈[τ+ε,t]

U(s, τ)B is a bounded subset of D(A) = V̂ ∩ (
H2(Ω)

)3.

(2) For any T1, T2 ∈ R with T1 < T2, the set
⋃

t∈[T1,T2]

ADcH
F

(t) is a bounded

subset of V̂ ∩ (
H2(Ω)

)3.

Proof. (1) According to [24], one can see that for all wτ ∈ B ⊂ Ĥ, the
Galerkin approximate solutions {wn(·; τ, wτ )}n�1 converge weakly to w(·; τ, wτ ) in
L2([τ, t]; V̂ ) and w(·; τ, wτ ) ∈ C([τ + ε, t]; V̂ ). Hence, it follows from Lemma 3.1,
part (5) of Lemma 5.1 that the assertion holds.

(2) It is easy to see that if τ < T1 − 1 is fixed, then⋃
t∈[T1,T2]

ADcH
F

(t) ⊆
⋃

t∈[τ+1,T2]

U(t, τ)ADcH
F

(τ).

Hence, combining Lemma 5.2 and the result of part (1), we obtain the boundedness
result. The proof is complete. �
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31. P. Maŕın-Rubio, J. Real, J. Valero, Pullback attractors for a two-dimensional Navier-Stokes
model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.

32. B. Nowakowski, Long-time behavior of micropolar fluid equations in cylindrical domains,
Nonlinear Anal.-RWA, 14 (2013), 2166-2179.

33. J. C. Robinson, Infinite-Dimensional Dynamical System, Cambridge Univ. Press, Cambridge,
2001.

34. H. Song, H. Wu, Pullback attractors of nonautonomous reaction-diffusion equations, J. Math.
Anal. Appl., 325 (2007), 1200-1215.

35. R. Temam, Navier-Stokes Equations (Theory and Numerical Analysis), North-Holland, Am-

sterdam, 1984.
36. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer,

Berlin, 1988.
37. C. Zhao, S. Zhou, Pullback attractors for nonautonomous incompressible non-Newtonian fluid,

J. Differential Equations, 238 (2007), 394-425.
38. C. Zhao, S. Zhou, X. Lian, H1-uniform attractor and asymptotic smoothing effect of solutions

for a nonautonomous micropolar fluid flow in 2D unbounded domains, Nonlinear Anal.-RWA,

9 (2008), 608-627.
39. C. Zhao, G. Liu, W. Wang, Smooth pullback attractors for a non-autonomous 2D non-

Newtonian fluid and their tempered behavior, J. Math. Fluid Mech., 16 (2014), 243-262.



288 CAIDI ZHAO, WENLONG SUN, AND CHENG HSIUNG HSU

Caidi Zhao:Department of Mathematics and Information Science, Wenzhou Univer-

sity, Wenzhou, Zhejiang, 325035, P. R. China

E-mail address: zhaocaidi2013@163.com

Wenlong Sun: Department of Mathematics and Information Science, Wenzhou Uni-

versity, Wenzhou, Zhejiang, 325035, P. R. China

E-mail address: wenlongsun1988@163.com

Cheng Hsiung Hsu: Department of Mathematics, National Central University,

Chung-Li, 32001, Taiwan

E-mail address: chhsu@math.ncu.edu.tw.


