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Abstract. In this paper, we present some theoretical results of Sobolev spaces
of functions defined on an open subset of an arbitrary time scale T

n, where
n ≥ 1 is a positive integer. As an application, we consider a class of semilinear
Dirichlet problems on time scales T

n of the form8<
:

−�u + λuσ = |uσ |p−2 uσ ,

u ≥ 0, u ∈ H1
0,Δ(ΩT),

where ΩT is a domain of (Tκ)n and �u =
Pn

i=1 D2
i,Δu is the Laplace operator.

Under certain conditions, the sufficient and necessary condition of the existence
of a nontrivial solution is established by using the mountain pass theorem.
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1. Introduction

A time scale T is an arbitrary nonempty closed subset of the real numbers and
has the topology inherited from the real numbers with the standard topology. Since
time scale calculus can be used to model dynamic processes whose time domains are

1991 Mathematics Subject Classification. Primary 37J45, 34N05, 35J05; Secondary 37C25.
Key words and phrases. compact embedding theorem, time scales, semilinear Dirichlet prob-

lem, mountain pass theorem, critical point.

c©2015 International Press

241



242 YOU-HUI SU, JINGHUA YAO, AND ZHAOSHENG FENG

more complicated than the set of integers or real numbers, it plays a crucial role in
various equations and systems arising in economy, biology, ecology and astronomy
[7, 14, 22], etc. During the last decade, there has been an explosion of interest
in the study of dynamic equations on time scales and the research in this area is
rapidly growing, see [15, 17, 19, 18, 20, 16, 21, 27] and the references therein.
On the other hand, in real and functional analysis Sobolevs spaces are regarded
as one of most fundamental tools, especially in the use of variational methods to
solve boundary value problems in ordinary and partial differential equations and
difference equations [11, 9, 28, 26]. In spite of this, the theory for functions defined
on an arbitrary bounded interval of the real numbers has been well established
[12, 23], but for functions defined on an arbitrary time scale, it appears that the
study just started.

In this paper, we study theoretical properties of Sobolev spaces of functions
defined on an open subset of an arbitrary time scale T

n endowed with the Lebesgue
Δ-measure. As an application, we consider the following semilinear Dirichlet prob-
lem on time scales T

n:

(1.1)

{ −�u(t) + λuσ(t) = |uσ(t)|p−2
uσ(t),

u(t) ≥ 0, u(t) ∈ H1
0,Δ(ΩT),

where ΩT is a domain of (Tκ)n and where �u =
∑n

i=1 D2
i,Δu is the Laplace oper-

ator. The sufficient and necessary condition of the existence of nontrivial solution
is obtained by using the mountain pass theorem. Such result on the existence of
nontrivial solution of the semilinear Dirichlet problem is also sharp for the corre-
sponding difference equation (T = Z) in the general time scale setting.

The paper is organized as follows. In Section 2, we introduce some basic notions
and briefly present the Mean Value Theorem on time scales. In Section 3, we
discuss the Divergence Theorem on time scales. In Section 4, we prove the Rellich’s
Compactness Theorem and the generalized Poincaré inequalities on time scales.
Section 5 presents some properties of differentiable functions on time scales. Section
6 is dedicated to the existence of nontrivial solutions of the problem (1.1) on time
scales.

2. Preliminaries

In order to discuss the theory of Sobolev spaces on time scales T
n, we start

with some basic notions and the related propositions [3, 10] that help to better
understand our main results and proofs described in next several sections. Some
other relevant terminologies and concepts can be found in the references [2, 1, 4,
5, 6, 8, 13] etc.

Let n be a positive integer. For each i ∈ {1, 2, · · · }, let Ti denote a time scale,
that is, Ti is a nonempty closed subset of the real numbers R. Set

T
n = T1 × T2 × · · · × Tn

= {t = (t1, · · · , tn) : ti ∈ Ti, i = 1, 2, ..., n}.
We call T

n an n-dimensional time scale. The set T
n is a complete metric space

with the metric d defined by

d(t, s) =

(
n∑

i=1

|ti − si|2
) 1

2

for t, s ∈ T
n.
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Let σi and ρi denote the forward and backward jump operators in Ti, respec-
tively. Specifically, for u ∈ Ti, the forward jump operator σi : Ti → Ti is defined
by

σi(u) = inf{v ∈ Ti : v > u};
and the back jump operator ρi : Ti → Ti is defined by

ρi(u) = inf{v ∈ Ti : v < u}.
In this definition we put σi(max Ti) = max Ti if Ti has a finite maximum, and
ρ(min Ti) = min Ti if Ti has a finite minimum. If σi(u) > u, then we say that
u is right-scattered (in Ti), while any u with ρi(u) < u is called left-scattered (in
Ti). Moreover, if u < max Ti and σ(u) = u, then u is called right-dense (in Ti),
and if u > min Ti and ρi(u) = u, then u is called left-dense (in Ti). If Ti has a
left-scattered maximum M , then we define T

κ
i = Ti \ {M}, otherwise T

κ
i = Ti. If

Ti has a right-scattered minimum m, then we define (Ti)κ = (Ti) \ {m}, otherwise
(Ti)κ = Ti.

Let f : T
n → R be a function. The partial delta derivative of f with respect to

ti ∈ (Tn)κ is defined as

lim
si→ti, si �=σi(ti)

f(t1, · · · , ti−1, σi(ti), ti+1, · · · , tn) − f(t1, · · · , ti−1, si, ti+1, · · · , tn)
σi(ti) − si

,

provided that this limit exists, and denoted by ∂f(t)
Δiti

. The second order partial

delta derivatives of f is denoted as ∂2f(t)
Δit2i

, or ∂2f(t)
ΔjtjΔiti

. Higher order partial delta
derivatives are similarly defined. The partial nabla derivative of f with respect to
ti ∈ (Tn)κ is defined as

lim
si→ti, si �=ρi(ti)

f(t1, · · · , ti−1, ρi(ti), ti+1, · · · , tn) − f(t1, · · · , ti−1, si, ti+1, · · · , tn)
ρi(ti) − si

,

provided that the limit exists, and denoted by ∂f(t)
∇iti

. In a similar way, we can define
higher order partial nabla derivatives, and the mixed derivatives can be obtained
by combining both delta and nabla differentiations. For instance, a second order
mixed derivative is defined as ∂2f(t)

Δiti∇jtj
or ∂2f(t)

∇jtjΔiti
.

Definition 2.1. For each n-tuple α = (α1, · · · , αn) of nonnegative integers,
we denote the Dα

Δ partial derivative by

Dα1
1,Δ · · ·Dαn

n,Δf =
∂|α|f

Δ1t
α1
1 · · ·Δntαn

n

of the order |α| = α1 + · · · + αn, where Di,Δf = ∂f
Δiti

and ∂f
Δiti

is denoted as the
first Δ-derivative of the function f with respect to ti. If |α| = 0, then D0

Δ = I

(identity). Moreover, D2
i,Δf and ∂2f

Δit2i
are denoted as the second Δ-derivative of the

function f with respect to ti. The partial nabla derivatives are similarly defined.

For a Δ-measurable set ET ⊂ T
n and a Δ-measurable function f : ET → R,

the corresponding Lebesgue Δ-integral of f over ET will be denoted by∫
ET

f(t1, t2, · · · , tn)Δt1Δt2 · · ·Δtn or
∫

ET

f(t)Δt.

All theorems of the general Lebesgue integration theory, including the Lebesgue’s
dominated convergence theorem, hold for Lebesgue Δ-integrals on T

n.
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We state the mountain pass theorem for the study of the semilinear Dirichlet
problem on time scales T

n.

Lemma 2.2. [24] Let X be a Hilbert space. Suppose that ϕ ∈ C2(X, R), e ∈ X
and r > 0 such that ‖e‖ > r and

b := inf
‖u‖=r

ϕ(u) > ϕ(0) ≥ ϕ(e).

Then for every ε > 0, there exists u ∈ X such that
(i) c − ε ≤ ϕ(u) ≤ c + ε,
(ii) ‖ϕ′(u)‖ < 2ε,

where
c = inf

g∈Γ
max

s∈[0,1]
ϕ(γ(s)),

and
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

If ϕ satisfies the (PS)c condition, Then c is a critical value of ϕ.

The following is the mean value theorem on time scales T
n.

Lemma 2.3. (Mean Value Theorem) Let (a1, a2, · · · , an) and (b1, b2, · · · , bn) be
any two points in T1 × T2 × · · · × Tn. Set

αi = min{ai, bi} and βi = max{ai, bi}, i = 1, 2, · · · , n.

Let f be a continuous function on [a1, b1]× [a2, b2]× · · · × [an, bn] that has the first
order partial delta derivatives ∂f

Δiti
for each ti ∈ [αi, βi)T. Then there exist constants

ξi, ηi ∈ [αi, βi)T such that

∂f(ξ1, a2, · · · , an)
Δ1t1

(a1 − b1) +
∂f(b1, ξ2, a3 · · · , an)

Δ2t2
(a2 − b2)

+ · · · + ∂f(b1, b2, · · · , bn−1, ξn)
Δntn

(an − bn)

≤ f(a1, a2, · · · , an) − f(b1, b2, · · · , bn)

≤ ∂f(η1, a2, · · · , an)
Δ1t1

(a1 − b1) +
∂f(b1, η2, a3 · · · , an)

Δ2t2
(a2 − b2)

+ · · · + ∂f(b1, b2, · · · , bn−1, ηn)
Δntn

(an − bn).(2.1)

By virtue of Lemma 2.3, we can derive that

Lemma 2.4. Let f be a continuous function on T1 × T2 × · · · × Tn that has
the first order partial derivatives ∂f

Δ1t1
, ∂f

Δ2t2
, · · · and ∂f

Δntn
for (t1, t2, · · · , tn) ∈

T
κ
1 ×T2 × · · · ×Tn, (t1, t2, · · · , tn) ∈ T1 ×T

κ
2 × · · · ×Tn, · · · , and (t1, t2, · · · , tn) ∈

T1 × T2 × · · · × T
κ
n, respectively. If these derivatives are identically zero, then f is

a constant function on T1 × T2 × · · · × Tn.

3. Divergence Theorem

Let ΩTn be an open subset of T
n (n ≥ 1). The set C(ΩTn) of continuous real-

valued functions defined on ΩTn is an infinite dimensional vector space with the
usual definitions of addition and scalar multiplication:

(i) (f + g)(t) = f(t) + g(t) for f, g ∈ C(ΩTn), t ∈ ΩTn ;
(ii) (αf)(t) = αf(t) for α ∈ R and f ∈ C(ΩTn), t ∈ ΩTn .
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Let C0 (ΩTn) be a subspaces of C(ΩTn) which consists of those functions that
are continuous in ΩTn and has compact support in ΩTn . The support of a function
f is defined on ΩTn as the closure of the set {x ∈ ΩTn : f(x) 	= 0}, denoted by
supp(f).

For the integers m ≥ 0, let Cm (ΩTn) be the collection of all f ∈ C(ΩTn)
such that Dαf ∈ C(ΩTn) for any multi-index α with the length |α| ≤ m. We say
f ∈ C∞ (ΩTn) if and only if f ∈ Cm (ΩTn) for any nonnegative integer m. For
m ≥ 0, we define Cm

0 (ΩTn) = Cm (ΩTn) ∩ C0 (ΩTn). Obviously, the spaces

Cm (ΩTn) , C∞ (ΩTn) , C1
0 (ΩTn) , C1 (ΩTn)

are subspaces of the vector space C(ΩTn).
Let ΩT be a nonempty open set in T

n. Assume ϕ ∈ Cm(ΩT) and u ∈ Cm
0 (ΩT).

It follows from integration by parts that

(3.1)
∫

ΩTn

uDα
ΔϕΔt = (−1)|α|

∫
ΩTn

vϕσΔt, |α| ≥ m,

where v = Dα
Δu.

For p ∈ R and p ≥ 1, let the space

Lp
Δ(ΩTn , R) =

{
f : ΩTn → R

∣∣∣∣
∫

ΩTn

|f(t)|pΔt < +∞
}

be equipped with the norm

(3.2) ‖f‖Lp
Δ(ΩTn ,R) =

[∫
ΩTn

|f(s)|p Δs

] 1
p

.

We know that the space Lp
Δ(ΩTn , R) is a Banach space with the norm defined

as formula (3.2). Moreover, L2
Δ(ΩTn , R) is a Hilbert space with the inner product

given by

〈f, g〉L2
Δ(ΩTn ,RN ) =

∫
ΩTn

(f(t), g(t))Δt,

where (f, g) is the usual scalar product in R
n.

For p ∈ [1,∞), we denote f ∈ Lp
loc,Δ(ΩTn , R) if and only if f ∈ Lp

Δ(KTn , R) for
each compact set KTn .

Definition 3.1. Assume u ∈ L1
loc,Δ(ΩTn , R). A function v ∈ L1

loc,Δ(ΩTn , R) is
called the α-th weak derivative of u if it satisfies

(3.3)
∫

ΩTn

uDα
ΔϕΔt = (−1)|α|

∫
ΩTn

vϕσΔt for all ϕ ∈ C
|α|
0 (ΩTn).

It is easy to see that the weak derivative is well-defined. Thus we use v = Dα
Δu

to indicate that v is the α-th weak derivative of u. If a function u has an ordinary
α-th derivative in L1

loc,Δ(ΩTn), then the α-th weak derivatives coincide with the
ordinary derivatives.

Suppose that
−→
F =

−→
F (x1, x2, · · · , xn) is a differentiable vector-valued function

defined on ΩT. At each point t = (t1, t2, · · · , tn) ∈ ∂ΩT (we also assume ∂ΩT is
C1), let −→n = −→n (t1, t2, · · · , tn) be the outward unit normal vector. Recall that

Div
−→
F =

∂
−→
F

Δ1t1
+

∂
−→
F

Δ2t2
+ · · · + ∂

−→
F

Δntn
.
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The divergence formula is

(3.4)
∫

ΩTn

Div
−→
F Δt =

∫
∂ΩTn

−→
F .−→n ds,

where ds denotes the surface measure on ∂ΩTn . Let
−→
F (x1, x2, · · · , xn) be a vector-

valued function of the form
−→
F = v ·�u, where u and v are scalar functions defined

on ΩTn . Here, �u denotes the gradient of u given by

�u =

⎛
⎜⎜⎜⎝

D1,Δu
D2,Δu
...

Dn,Δu

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂u
Δ1t1
∂u

Δ2t2
...
∂u

Δntn

⎞
⎟⎟⎟⎠ .

Then we have

Div
−→
F = vσ�u + � v. � u,

where vσ = v(σ(t)). According to (3.4), we have

(3.5)
∫

ΩTn

(vσ�u + � v. � u) Δt =
∫

∂ΩTn

v
∂u

∂n
ds,

where ∂u
∂n denotes the normal derivative of u on ∂ΩTn given by

∂u

∂n
= �u.−→n .

The formula (3.5) is regarded as Green’s Identity-I on time scales.
Rewrite identity (3.5) as

(3.6)
∫

ΩTn

�v. � uΔt = −
∫

ΩTn

vσ�uΔt +
∫

∂ΩTn

v
∂u

∂n
ds.

Exchanging u and v gives

(3.7)
∫

ΩTn

�u. � vΔt = −
∫

ΩTn

uσ�vΔt +
∫

∂ΩTn

u
∂v

∂n
ds.

Combining (3.6) and (3.7) yields∫
ΩTn

(uσ�vΔt − vσ�u) Δt =
∫

∂ΩTn

(
u

∂v

∂n
− u

∂v

∂n

)
ds,

which is called Green’s Identity-II on time scales.

4. Embedding Theorem

For p ≥ 1 and a nonnegative integer k, let

W k,p
Δ (ΩTn) = {u : ΩTn → R |uσ ∈ Lp

Δ(ΩTn) and Dα
Δu ∈ Lp

Δ(ΩTn), 0 < |α| ≤ k } .

When k = 0, W k,p
Δ (ΩTn) means Lp

Δ(ΩTn). It is obvious that W k,p
Δ (ΩTn) is a

vector space.
The corresponding norm is defined by

‖u‖k,p,Δ = ‖u‖W k,p
Δ (ΩTn )

=

⎛
⎝∫

ΩT

⎛
⎝|uσ|p +

∑
0<|α|≤k

|Dα
Δu|p

⎞
⎠Δt

⎞
⎠

1
p

.(4.1)
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If 1 ≤ p < ∞, the space W k,p
Δ (ΩTn) is called the Sobolev space on time sales of

order k.
We define the space W k,p

0,Δ(ΩTn) as the closure of D(ΩTn) in W k,p
Δ (ΩTn) with

respect to the norm ‖u‖k,p,Δ, and it is also a Sobolev space of order k, where

D(ΩT) = {u : ΩT → R : u ∈ C∞ and supp u is compact } .

Note that when p = 2, W k,p
Δ (ΩTn) and W k,p

0,Δ(ΩTn) are Hilbert spaces with the
inner product defined by

(u, v)k,2 = (u, v)W k,p
Δ (ΩTn )

=
∫

ΩT

⎛
⎝|uσ.vσ| +

∑
0<|α|≤k

Dα
ΔuDα

Δv

⎞
⎠Δt.

We will deal mostly with these spaces in the sequel, as well as the following notations

Hk
Δ (ΩTn) = W k,2

Δ (ΩTn) and Hk
0,Δ (ΩTn) = W k,2

0,Δ (ΩTn)

and

H1
Δ(Tn) =

{
u : T

N → R
∣∣uσ ∈ L2

Δ(Tn) and � u ∈ L2
Δ(Tn)

}
.

So H1
Δ(Tn) is a Hilbert space with the inner product

(uσ, vσ)1,Δ :=
∫

RN

(�u. � v + |uσvσ|) Δt

and the induced norm

‖uσ‖1,Δ =
(∫

TN

[| � u|2 + |uσ|2]Δt

) 1
2

.

Let ΩT be an open subset of T
n. The space H1

0,Δ(ΩT) is the closure of D(ΩT)
in H1

Δ(Tn). Let N ≥ 3 and 2∗ := 2N
N−2 . The space

D1,2
Δ (Tn) =

{
u : T

N → R

∣∣∣uσ ∈ L2∗
Δ (Tn) and � u ∈ L2

Δ(Tn)
}

is a Hilbert space with the inner product

(u, v) :=
∫

RN

�u. � vΔt

and the induced norm

‖u‖D1,2
Δ (Tn) =

(∫
TN

| � u|2Δt

) 1
2

.

The space D1,2
0,Δ(Tn) is the closure of D(Tn) in D1,2

Δ (Tn).
In order to prove the Rellich’s compactness theorem on time scales, we introduce

the following definition.

Definition 4.1. Let η be a nonnegative real-valued function in C∞
0,rd(T

n) with
the properties

η(t) = 0 for |t| ≥ 1
and ∫

Tn

η(t)Δt = 1.
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For ε > 0, the function ηε(t) = ε−nη
(

t
ε

)
is nonnegative, smooth and radial such

that

ηε(t) = 0, if |t| ≥ ε and
∫

Tn

ηε(t)Δt = 1,

where ηε is called a mollifier and the convolution

ηε ∗ u(t) = uε(t) =
∫

Tn

ηε(t − y)u(y)Δy

is called the mollification or regularization of u.

There exist three other forms in which uε can be represented as

uε(t) =
∫

Tn

ηε(t − y)u(y)Δy

=
∫

B(t,ε)

ηε(t − y)u(y)Δy

=
∫

B(0,1)

η(y)u(t − εy)Δy.

Notice that uε vanishes outside the (open) ball B(t, ε) leading to the last equality
and the value of uε(t) depends only on the value of u on the ball B(t, ε). In
particular, if dist(t, supp(u)) ≥ ε, then uε(t) = 0.

A series of preliminary results will be needed to prove the Rellich’s compact-
ness theorem on time scales. We first present the Gagliardo-Nirenberg-Sobolev
inequality on time scales.

Lemma 4.2. (Gagliardo-Nirenberg-Sobolev inequality on time scales) Assume
1 ≤ p < ∞. Then there is a constant C depending only on p and n, such that

‖u‖
Lp∗

Δ (Tn)
≤ C‖ � u‖Lp

Δ(Tn) for all u ∈ C1
0,Δ(Tn).(4.2)

Proof. Firstly, assume that p = 1. Since u has compact support, we have

u(t) =
∫

(−∞,ti)T

∂u

∂Δti
u(t1, · · · , ti−1, yi, ti+1, · · · , tn)Δyi for each i = 1, 2, · · · , n,

which gives

|u(t)| ≤
∫

(−∞,∞)T

|�u(t1, · · · , ti−1, yi, ti+1, · · · , tn)|Δyi, i = 1, 2, · · · , n.

Then, we have

(4.3) |u(t)| n
n−1 ≤

n∏
i=1

(∫
(−∞,∞)T

|�u(t1, · · · , ti−1, yi, ti+1, · · · , tn)|Δyi

) 1
n−1

.



SOBOLEV SPACES ON TIME SCALES AND APPLICATIONS 249

Integrating inequality (4.3) with respect to t1 over (−∞, ∞)T gives∫
(−∞,∞)T

|u(t)| n
n−1 Δt1

≤
∫

(−∞,∞)T

n∏
i=1

(∫
(−∞,∞)T

|�u|Δyi

) 1
n−1

Δt1

≤
(∫

(−∞,∞)T

|�u|Δy1

) 1
n−1 ∫

(−∞,∞)T

n∏
i=2

(∫
(−∞,∞)T

|�u|Δyi

) 1
n−1

Δt1

≤
(∫

(−∞,∞)T

|�u|Δy1

) 1
n−1

(
n∏

i=2

∫
(−∞,∞)T

∫
(−∞,∞)T

|�u|Δt1Δyi

) 1
n−1

.(4.4)

The last inequality results from the extended Hölder’s inequality on time scales.
Integrating inequality (4.4) with respect to t2∈T over (−∞, ∞)T yields∫

(−∞,∞)T

∫
(−∞,∞)T

|u(t)| n
n−1 Δt1Δt2

≤
(∫

(−∞,∞)T

∫
(−∞,∞)T

|�u|Δt1Δy2

) 1
n−1 ∫

(−∞,∞)T

n∏
i=1,i �=2

I
1

n−1
i Δt2,

where
I1 =

∫
(−∞,∞)T

|�u|Δy1

and
Ii =

∫
(−∞,∞)T

∫
(−∞,∞)T

|�u|Δt1Δyi for i = 3, 4, · · · , n.

Applying Hölder’s inequality on time scales again, we have∫
(−∞,∞)T

∫
(−∞,∞)T

|u(t)| n
n−1 Δt1Δt2

≤
(∫

(−∞,∞)T

∫
(−∞,∞)T

|�u|Δt1Δy2

) 1
n−1

(∫
(−∞,∞)T

∫
(−∞,∞)T

|�u|Δt2Δy1

) 1
n−1

n∏
i=3

(∫
(−∞,∞)T

∫
(−∞,∞)T

∫
(−∞,∞)T

|�u|Δt1Δt2Δyi

) 1
n−1

.

Continuing to perform integration with respect to t3, · · · , tn and applying
Hölder’s inequality on time scales, we arrive at∫

Tn

|u| n
n−1 Δt ≤

n∏
i=1

(∫
(−∞,∞)T

· · ·
∫

(−∞,∞)T

|�u|Δt1 · · ·Δyi · · ·Δtn

) 1
n−1

=
(∫

Tn

|�u|Δt

) n
n−1

.(4.5)

That is,
‖u‖

L
n

n−1
Δ (Tn)

≤ C‖ � u‖L1
Δ(Tn),

which implies that the estimate (4.2) holds when p = 1.
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Next, we show that the estimate (4.2) holds if 1 < p < n.
Set v = |u|γ , where γ > 1 is to be determined. Note that

(Di,Δ|u|γ)2 =

{ (
γuγ−1Di,Δu

)2 for u ≥ 0
− (

γ(−u)γ−1Di,Δu
)2 for u ≤ 0

=
(
γ|u|γ−1Di,Δu

)2
,

which implies v ∈ C1
0 (Tn). From formula (4.5) and by Hölder’s inequality on time

scales, we have(∫
Tn

|u| γn
n−1 Δt

)n−1
n

≤
∫

Tn

|�|u|γ |Δt

= γ

∫
Tn

|u|γ−1| � u|Δt

= γ

(∫
Tn

|u| p(γ−1)
p−1 |Δt

) p−1
p
(∫

Tn

�u|pΔt

) 1
p

.(4.6)

Choose γ such that
γn

n − 1
=

p(γ − 1)
p − 1

,

that is,

γ =
p(n − 1)
n − p

> 1,

and
γn

n − 1
=

p(γ − 1)
p − 1

=
np

n − p
= p∗.

Consequently, the estimate (4.5) becomes(∫
Tn

|u|p∗
Δt

) 1
p∗

≤ C

(∫
Tn

| � u|pΔt

) 1
p

.

�

Using Theorem 2.19 in [25], one can prove the following Lemma.

Lemma 4.3. Let ΩTn ⊂ T
n be a bounded open set with ΩTn ⊂⊂ Ω′

Tn and
k ≥ 1. If ∂ΩTn ∈ Ck, then any function u(t) ∈ W k,p

Δ (ΩTn) has an extension
U(x) ∈ W k,p

Δ (Ω′
Tn) into Ω′

Tn with compact support. Moreover, it holds

‖U‖W k,p
Δ (Ω′

Tn ) ≤ c2‖u‖W k,p
Δ (ΩTn ),

where the constant c2 > 0 does not depend on u.

Similarly, we have

Lemma 4.4. Let ΩTn ⊂ T
n be a bounded open set with ∂ΩTn ∈ C1. Assume

that 1 ≤ p < n and u ∈ W 1,p
Δ (ΩTn). Then u ∈ Lp∗

Δ (ΩTn), and there is a constant C1

depending only on p, n and ΩTn , such that

‖u‖
Lp∗

Δ (ΩTn )
≤ C1‖u‖W 1,p

Δ (ΩTn ).(4.7)
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Proof. Since ∂ΩTn ∈ C1, by virtue of Lemma 4.3, for any u ∈ W 1,p
Δ (ΩTn)

there exists u = u ∈ W 1,p
Δ (Tn) such that{

u = u in ΩTn , u has compact support ,
‖u‖W 1,p

Δ (Tn) ≤ C2‖u‖W 1,p
Δ (ΩTn ),

(4.8)

where C2 is a positive constant. Moreover, since u has compact support, there
exists um ∈ C∞

0,rd(T
n) such that

um → u in W 1,p
Δ (Tn).(4.9)

It follows from Lemma 4.2 that(∫
Tn

|um − ul|p∗
Δt

) 1
p∗

≤ C

(∫
Tn

| � um −�ul|pΔt

) 1
p

≤ C‖um − ul‖W 1,p
Δ (Tn) for any l,m ≥ 1.(4.10)

Formula (4.9) implies that {um} is a Cauchy sequence in W 1,p
Δ (Tn) and in-

equality (4.10) indicates that {um} is Cauchy in Lp∗
Δ (Tn). So we have

um → u in Lp∗
Δ (Tn).(4.11)

By using the Gagliardo-Nirenberg-Sobolev inequality on time scales, we obtain

‖um‖
Lp∗

Δ (Tn)
≤ C‖ � um‖Lp

Δ(Tn),(4.12)

which, together with (4.9), (4.11) and (4.12), yields

‖u‖
Lp∗

Δ (Tn)
≤ C‖ � u‖Lp

Δ(Tn).(4.13)

Consequently, combining (4.8) and (4.13) leads to inequality (4.7). �
We state and prove the Rellich’s compactness theorem on time scales.

Theorem 4.5. (Rellich’s compactness theorem on time scales) Let ΩTn ⊂ T
n

be a bounded open set, and ∂ΩTn ∈ C1. Assume that 1 ≤ p < n, then

W 1,p
Δ (ΩTn) ↪→ Lq

Δ(ΩT) for 1 ≤ q < p∗

is compact.

Proof. It suffices to show that for any bounded sequence {um} in W 1,p
Δ (ΩTn),

there exists a subsequence of {um} which is strongly convergent in Lq
Δ(ΩT).

Step 1. It follows from Lemma 4.4 that

W 1,p
Δ (ΩTn) ↪→ Lq

Δ(ΩT) for 1 ≤ q ≤ p∗ =
np

n − p
,

and

‖u‖Lq
Δ(Tn) ≤ C‖ u‖W 1,p

Δ (ΩTn ).

Step 2. (Using extension) Without loss of generality, we assume that ΩT = T
n

and {um} has compact support in some large open set VT ⊂ T
n. Since {um} is

bounded in W 1,p
Δ (ΩTn), we have

sup
m

‖um‖W 1,p
Δ (VTn ) ≤ M < ∞.(4.14)

Step 3. (Using mollifier) We assume that {uε
m(t)} has compact support in set

VT ⊂ T
n, which is guaranteed by Step 2.

Step 4. We claim that uε
m(t) → um(t) in Lq

Δ(VTn) uniformly on m as ε → 0.
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Since

|uε
m(t) − um(t)| =

∣∣∣∣∣
∫

B(0,1)

η(y) (um(t − εy) − um(t)) Δy

∣∣∣∣∣
=

∣∣∣∣∣
∫

B(0,1)

η(y)
∫

[0,1]T

∂

Δx
um(t − εxy)ΔxΔy

∣∣∣∣∣
=

∣∣∣∣∣ε
∫

B(0,1)

η(y)
∫

[0,1]T

DΔum(t − εxy)yΔxΔy

∣∣∣∣∣ ,
for um(t) ∈ W 1,p

Δ (VTn), we have∫
VTn

|uε
m(t) − um(t)|Δt ≤ ε

∫
B(0,1)

η(y)
∫

[0,1]T

∫
VTn

|DΔum(t − εxy)|ΔtΔxΔy

≤ ε

∫
VTn

|DΔum(z)|Δz.(4.15)

It follows from inequality (4.14) and Hölder’s inequality on time scales that

‖uε
m − um‖L1

Δ(VTn ) ≤ ε‖DΔum‖L1
Δ(VTn )

≤ C∗ε‖DΔum‖Lp
Δ(VTn )

≤ εC∗M,(4.16)

where C∗ is constant. Inequality (4.16) means that

uε
m → um in L1

Δ(VTn) uniformly on m as ε → 0.

For 1 ≤ q < p∗ and 1
q = θ

1 + 1−θ
p∗ , using the interpolation and inequality (4.14),

we have

‖uε
m − um‖Lq

Δ(VTn ) ≤ ‖uε
m − um‖θ

L1
Δ(VTn )‖uε

m − um‖1−θ

Lp∗
Δ (VTn )

≤ M1−θ‖uε
m − um‖θ

L1
Δ(VTn ),

which implies that

uε
m → um in Lq

Δ(VTn) uniformly on m as ε → 0.

Step 5. We claim that for each fixed ε > 0, {uε
m} is uniformly bounded and

equicontinuous.
Indeed, if t ∈ T

n, for any fixed ε > 0 we have

|uε
m(t)| ≤

∫
B(x,ε)

ηε(t − y) |um(y)| dy

≤ ‖ηε‖L∞(Tn)

∫
B(x,ε)

|um(y)| dy

≤ ‖ηε‖L∞(Tn) ‖um‖L1
Δ(VTn )

≤ ε−nM < ∞ for m = 1, 2, · · · .
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Similarly, we have

|DΔuε
m(t)| ≤

∫
B(x,ε)

|DΔηε(t − y)| |um(y)| dy

≤ ‖DΔηε‖L∞(Tn)

∫
B(x,ε)

|um(y)| dy

≤ ‖DΔηε‖L∞(Tn) ‖um‖L1
Δ(VTn )

≤ ε−(n+1)M < ∞ for m = 1, 2, · · · .

Step 6. For a fixed δ > 0, there exists a subsequence {umj
} of {um} such that

lim sup
j,k→∞

‖umj − umk
‖Lq

Δ(VTn ) ≤ δ.

By Step 4, we can choose ε > 0 such that

(4.17) ‖uε
m − um‖Lq

Δ(VTn ) ≤
δ

2
, m = 1, 2, · · · .

Notice that {uε
m} has compact support in some fixed bounded set VTn ⊂ R

n,
and {uε

m} is smooth because it is mollification of {um}. It follows from Arzelà-
Ascoli’s theorem on time scales that there is a subsequence {uε

mj
} ⊂ {uε

m} which
converges uniformly on VTn . In particular, we have

(4.18) lim
j,k→∞

sup ‖uε
mj

− uε
mk

‖Lq
Δ(VTn ) = 0.

According to (4.17) and (4.18), we have

lim
j,k→∞

sup ‖umj − umk
‖Lq

Δ(VTn ) ≤ δ.

Step 7. Choose δ = 1, 2, · · · in Step 6 and use a diagonal argument to extract
a subsequence {uml

}∞l=1 ⊂ {um}∞m=1 such that

lim
l,k→∞

sup ‖uml
− umk

‖Lq
Δ(VTn ) = 0.

Therefore, the proof is completed. �

The following two Lemmas can be regarded as the generalized versions of
Poincaré inequalities on time scales.

Lemma 4.6. Let ΩT be a bounded open subset of T
n with the C1 boundary.

Assume that 1 ≤ p ≤ ∞, then there exists C = C(p, n, ΩT) such that

‖u − u‖Lp
Δ(ΩTn ) ≤ C‖DΔu‖Lp

Δ(ΩTn ) for u ∈ W 1,p(ΩTn),(4.19)

where u = 1
|ΩTn |

∫
ΩTn

u(t)Δt.

Proof. If inequality (4.19) is not true, for each integer k there exists a function
uk such that

‖uk − uk‖Lp
Δ(ΩTn ) > k‖DΔuk‖Lp

Δ(ΩTn ).(4.20)

Define

vk =
uk − uk

‖uk − uk‖Lp(ΩTn )
, k = 1, 2, · · · .
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Then it gives

vk =
1

|ΩTn |
∫

ΩTn

uk(t) − uk(t)
‖uk(t) − uk(t)‖Lp(ΩTn )

Δt

=
1

|ΩTn |‖uk(t) − uk(t)‖Lp(ΩTn )

(∫
ΩTn

uk(t)Δt −
∫

ΩTn

uk(t)Δt

)

=
1

|ΩTn |‖uk(t) − uk(t)‖Lp(ΩTn )

(∫
ΩTn

uk(t)Δt −
∫

ΩTn

uk(t)Δt

)
= 0.

That is,

vk = 0 and ‖vk‖Lp
Δ(ΩTn ) = 1.(4.21)

It follow from (4.20) that

‖DΔvk‖Lp
Δ(ΩTn ) <

1
k

.(4.22)

Hence, for any k = 1, 2, · · · , we have

‖vk‖W 1,p
Δ (ΩTn ) ≤ ‖DΔvk‖Lp

Δ(ΩTn ) + ‖vk‖Lp
Δ(ΩTn )

≤ 1 +
1
k

,(4.23)

which implies that
{
‖vk‖W 1,p

Δ (ΩTn )

}
is bounded. According to the Rellich’s com-

pactness theorem on time scales, there exists a subsequence
{
vkj

}
of {vk} and a

function v ∈ Lp
Δ(ΩTn) such that

vkj
→ v in Lp

Δ(ΩTn).(4.24)

From (4.21), we obtain

v = 0 and ‖v‖Lp
Δ(ΩTn ) = 1.(4.25)

However, according to (4.23), for any i = 1, 2, · · · , n and any φ ∈ C∞
c (ΩTn), we

have ∫
ΩTn

v
∂φ

Δiti
Δt = lim

kj→∞

∫
ΩTn

vkj

∂φ

Δiti
Δt

= − lim
kj→∞

∫
ΩTn

∂vkj

Δiti
φ(σ(t))Δt.

It follows from Hölder’s inequality on time scales and inequality (4.22) that

∣∣∣∣
∫

ΩTn

v
∂φ

Δiti
Δt

∣∣∣∣ ≤ lim
kj→∞

(∫
ΩTn

∣∣∣∣∂vkj

Δiti

∣∣∣∣
p

Δt

) 1
p
(∫

ΩTn

|φ(σ(t))| p
p−1 Δt

) p−1
p

= 0.

So we have

v ∈ W 1,p
Δ (ΩTn) with DΔv = 0 a.e. on ΩTn .
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Since ΩTn is bounded and

DΔv =

⎛
⎜⎜⎜⎝

∂v
Δ1t1
∂v

Δ2t2
...
∂v

Δntn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ ,

it follows from Lemma 2.4 that

v ≡ constant.

In view of v ≡ 0, we have v ≡ 0 and

‖v‖LΔ(ΩTn ) = 0,

which yields a contradiction with formula (4.25). �

Similarly, we can obtain

Lemma 4.7. Let ΩT be a bounded open subset of T
n. Assume that 1 ≤ p ≤ ∞,

then there exists a constant C = C(p, n, ΩT) such that

‖u‖Lp
Δ(ΩTn ) ≤ C‖DΔu‖Lp

Δ(ΩTn ) for u ∈ W 1,p
0 (ΩTn).(4.26)

From Lemmas 4.6 and 4.7, we have the following remarks.

Remark 4.8. If |ΩT| < ∞, then

(4.27) λ1(ΩT) := inf
u ∈ H1

0,Δ(ΩT)
‖u‖L2

Δ(ΩTn ) = 1

‖ � u‖2
L2

Δ(ΩTn ) > 0

is achieved.

Remark 4.9. (i) It is notable that H1
0,Δ(ΩT) ⊂ D1,2

Δ (ΩT).
(ii) If |ΩT| < +∞, the Poincaré’s inequality implies H1

0,Δ(ΩT) = D1,2
Δ (ΩT).

5. Differentiable Functions

Lemma 5.1. Let ΩT be an open subset of T
n and 1 ≤ p < ∞. If vn → u in

Lp
Δ(ΩT), then there exists a subsequence {ωn} of {vn} and g ∈ Lp

Δ(ΩT) such that

ωn(t) → u(t) a.e. on ΩT,

and
|u(t)| ≤ g(t) and |ωn(t)| ≤ g(t) a.e. on ΩT.

Proof. Assume that vn(t) → u(t) a.e. on ΩT. There is a subsequence {ωn}
of {vn} such that

‖ωj+1(t) − ωj(t)‖Lp
Δ(ΩTn ) ≤ 2−j for j ≥ 1.

Define

g(t) := |ω1(t)| +
∞∑

j=1

|ωj+1(t) − ωj(t)| .

So we get g ∈ Lp
Δ(ΩT) and

|ωn(t)| ≤ g(t) a.e. on ΩT,
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and
|u(t)| ≤ g(t) a.e. on ΩT.

�

Lemma 5.2. Let ΩT be an open subset of T
n and |ΩT| < ∞. Suppose that

1 ≤ p, r < ∞ and f ∈ C(ΩT × R) satisfies

|f(t, u)| ≤ c
(
1 + |u| p

r

)
.

Then, for any u ∈ Lp
Δ(ΩT) and f(., u) ∈ Lr

Δ(ΩT), the operator

T : u �→ f(t, u)

is continuous.

Proof. Suppose that u ∈ Lp
Δ(ΩT). Since

|f(t, u)|r ≤ cr
(
1 + |u| p

r

)r

∈ L1
Δ(ΩT),

this implies that
f(., u) ∈ Lr

Δ(ΩT).
Assume that un → u ∈ Lp

Δ(ΩT) and {ωn} is a subsequence of {un}. Let {ωn}
and g be given as in Lemma 5.1. Then we have

|f(t, ωn) − f(t, u)|r ≤
(
2c
(
1 + |u| p

r

))r

= 2rcr
(
1 + |g| p

r

)r

∈ L1
Δ(ΩT).

It follows from the Lebesgue’s dominated convergence theorem on time scales that

Tωn → Tu in Lr
Δ(ΩT)

and
Tun → Tu in Lr

Δ(ΩT).
This implies that the operator

T : u �→ f(t, u)

is continuous. �

Lemma 5.3. Assume that ΩT be an open subset of T
n and let 2 < p ≤ ∞. The

functionals defined by

ψ(uσ) =
∫

ΩT

|uσ|pΔt

and

χ(uσ) =
∫

ΩT

|(uσ)+|pΔt

belong to C2 (Lp
Δ (ΩT) , R) and the following two relations hold:

〈ψ′(uσ), hσ〉 = p

∫
ΩT

|uσ|p−2uσhσΔt

and

〈χ′(uσ), hσ〉 = p

∫
ΩT

|(uσ)+|p−1hσΔt.
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Proof. We only consider the functional ψ, because the discussion for the
functional χ can be done in an analogous way.

Firstly, we show the existence of the Gateaux derivative.
Let uσ, hσ ∈ Lp

Δ (ΩT). Given t ∈ T
n and 0 < |λ| < 1, it follows from the mean

value theorem on time scales that there exists τ1 ∈ [0, 1] such that

(5.1)
|uσ + λhσ|p − |uσ|p

|λ| ≤ p [|uσ| + |hσ|]p−1 |hσ| .

Since uσ, hσ ∈ Lp
Δ (ΩT), using Hölder’s inequality on time scales leads to∫

ΩT

[|uσ| + |hσ|]p−1 |hσ|Δt ≤
[∫

ΩT

[|uσ| + |hσ|]p Δt

] p−1
p
[∫

ΩT

|hσ|p Δt

] 1
p

,

which implies
[|uσ| + |hσ|]p−1 |hσ| ∈ L1

Δ (ΩT) .

By formula (5.1) and the Lebesgue’s dominated convergence theorem on time
scales, we derive that

〈ψ′(uσ), hσ〉 : = lim
λ→0

1
λ

[ψ (uσ + λhσ) − ψ (uσ)]

= lim
λ→0

p

∫
ΩT

|uσ + λτ1h
σ|p−2 |uσ + λτ1h

σ| |hσ|Δt

= p

∫
ΩT

|uσ|p−2uσhσΔt.

Secondly, we consider the continuity of the Gateaux derivative.
Let f(uσ) = p|uσ|p−2uσ. Assume that uσ

n → uσ in Lp
Δ (ΩT). By Lemma 5.2,

we get
f(uσ

n) → f(uσ) in Lq
Δ(ΩT),

where q = p
p−1 . Using Hölder’s inequality on time scales again gives

|〈ψ′(uσ
n) − ψ′(uσ), hσ〉| ≤

∫
ΩT

|f(uσ
n) − f(uσ)| |hσ|Δt

≤
(∫

ΩT

|f(uσ
n) − f(uσ)|q Δt

) 1
q
(∫

ΩT

|hσ|pΔt

) 1
p

≤ ‖f(uσ
n) − f(uσ)‖Lq

Δ(ΩT) ‖hσ‖Lp
Δ(ΩT).

Hence, we have

‖ψ′(uσ
n) − ψ′(uσ)‖ ≤ ‖f(uσ

n) − f(uσ)‖Lq
Δ(ΩT)

→ 0 as n → ∞.

In the following, we prove the existence of the second Gateaux derivative.
Let uσ, hσ, vσ ∈ Lp

Δ (ΩT). Given t ∈ T
N and 0 < |λ| < 1, it follows from the

mean value theorem on time scales that there exists τ2 ∈ [0, 1] such that

|[f (uσ + λhσ) − f (uσ)] vσ|
|λ|

= p(p − 1) |uσ + λτ2h
σ|p−2 |hσ| |vσ|

≤ p(p − 1) [|uσ| + |hσ|]p−2 |hσ| |vσ| .
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Since uσ, hσ, vσ ∈ Lp
Δ (ΩT), using Hölder’s inequality on time scales we have∫

ΩT

[|uσ| + |hσ|]p−2 |hσvσ|Δt

≤
[∫

ΩT

[|uσ| + |hσ|]p Δt

] p−2
p
[∫

ΩT

|hσ|p Δt

] 1
p
[∫

ΩT

|vσ|p Δt

] 1
p

,

which implies

[|uσ| + |hσ|]p−2 |hσvσ| ∈ L1
Δ (ΩT) .

It follows from the Lebesgue’s dominated convergence theorem on time scales that

〈ψ′′(uσ)hσ, vσ〉 : = lim
λ→0

1
λ

[f (uσ + λhσ) − f (uσ)]

= lim
λ→0

p(p − 1)
∫

ΩT

|uσ + λτ1h
σ|p−2

hσvσΔt

= p(p − 1)
∫

ΩT

|uσ|p−2hσvσΔt.

Finally, we show the continuity of the second Gateaux derivative.
Let

g(uσ) = p(p − 1)|uσ|p−2.

Assume that uσ
n → uσ in Lp

Δ (ΩT). By Lemma 5.2, we get

g(uσ
n) → g(uσ) in Lr

Δ(ΩT),

where r = p
p−2 . Using Hölder’s inequality on time scales we deduce that

|〈(ψ′′(uσ
n) − ψ′′(uσ)) hσ, vσ〉|

≤
∫

ΩT

|g(uσ
n) − g(uσ)| |hσ||vσ|Δt

≤
(∫

ΩT

|f(uσ
n) − f(uσ)|r Δt

) 1
r
(∫

ΩT

|h|pΔt

) 1
p
(∫

ΩT

|vσ|pΔt

) 1
p

≤ ‖f(uσ
n) − f(uσ)‖Lr

Δ(ΩT) ‖hσ‖Lp
Δ(ΩT)‖vσ‖Lp

Δ(ΩT).

Consequently, we obtain

‖ψ′′(uσ
n) − ψ′′(uσ)‖ ≤ ‖f(uσ

n) − f(uσ)‖r,Δ

→ 0, as n → ∞.

�

In view of Lemmas 4.5 and 5.3, we have the following corollary immediately.

Corollary 5.4. (i): Let 2 < p ≤ ∞ if n = 1, 2 or let 2 < p ≤ 2∗ if
n ≥ 3. The functionals ψ and χ are of class C2

(
H1

0,Δ (ΩT) , R
)
.

(ii): Let N ≥ 3 and p = 2∗, then the functionals ψ and χ are of class
C2

(
D1,2

0,Δ (ΩT) , R
)

.
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6. Existence of Solutions

In this section, we state and prove our results on the existence of nontrivial
solutions of equation (1.1) on time scales.

Theorem 6.1. Assume that |ΩT| < ∞ and 2 < p < 2∗ hold. Then the problem
(1.1) has at least one nontrivial solution if and only if λ > −λ1(ΩT), where λ1(ΩT)
is defined by formula (4.27).

Proof. For necessity, we assume that u is a nontrivial solution of the problem
(1.1). Let e1 be an eigenfunction of −� corresponding to λ1(ΩT) with e1 > 0 on
ΩT. Due to u > 0, we have

λ

∫
ΩT

uσe1Δt =
∫

ΩT

(
(uσ)p−1 + �u

)
e1Δt

>

∫
ΩT

�ue1Δt

= −λ1(ΩT)
∫

ΩT

uσe1Δt,

which implies that λ > −λ1(ΩT).
For sufficiency, we let

f1(u) :=
(
u+

)p−1 and F (u) :=
(u+)p

p
.

Define the functional A : E → R by

A(uσ) : =
∫

ΩT

(
1
2
| � u|2 +

λ

2
(uσ)2

)
Δt −

∫
ΩT

F (uσ) Δt

=
1
2
〈Luσ, uσ〉 − ψ(uσ),

where E := H1
0,Δ(ΩT), and define the inner product by

(uσ, vσ)E,Δ :=
∫

RN

(�u. � v + λvσvσ) Δt,

with the corresponding norm

‖uσ‖E,Δ =
(∫

ΩT

[| � u|2 + λ|uσ|2]Δt

) 1
2

.

Let

c1 = 1 + min
(

0,
λ

λ1(ΩT)

)
.

By the Poincaré inequality on time scales we have∫
ΩT

[| � u|2 + λ|uσ|2]Δt ≥ c1

∫
ΩT

| � u|2Δt.

Hence, E is a Hilbert space. It follows from Corollary 5.4 that A(uσ) ∈ C2
(
H1

0,Δ (ΩT) , R
)
.
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For any vσ ∈ E and 0 < |ε| < 1, we have

1
ε

[A(uσ + εvσ) − A(uσ)] =
∫

ΩT

1
2

(�u + ε � v)2 − (�u)2

ε
Δt

−λ

2

∫
ΩT

(uσ + εvσ)2 − (uσ)2

ε
Δt +

∫
ΩT

((uσ)+ + ε(vσ)+)p − ((uσ)+)p

εp
Δt.

By the dominated convergence theorem on time scales and the divergence formula
(3.4) we get

〈A′(uσ), vσ〉 = lim
ε→0

1
ε

[A(uσ + εvσ) − A(uσ)]

=
∫

ΩT

(�u � v + λuσvσ) Δt −
∫

ΩT

f1 (uσ) vσΔt

= −
∫

ΩT

(�uvσ − λuσvσ) Δt −
∫

ΩT

f1 (uσ) vσΔt.(6.1)

Equality (6.1) implies that A′(uσ) = 0 if and only if uσ is a solution of the equation

−�u + λuσ = f1(uσ).

By the definition of the functional A and its properties, it suffices to show that
all the conditions of Lemma 2.2 hold with respect to A.

Firstly, we verify that the (PS)c condition holds. That is, if any sequence
{uσ

n} ⊂ H1
0,Δ(ΩT) satisfies

sup
n

A(uσ
n) < ∞, A′(uσ

n) → 0,

then {uσ
n} contains a convergent subsequence.

In the case of sufficiently large n, we have

sup
n

A(uσ
n) + 1 + ‖uσ

n‖E,Δ ≥ A(uσ
n) − 1

p
〈A′(uσ

n), uσ
n〉

=
(

1
2
− 1

p

)(∫
ΩT

[| � un|2 + λ|uσ
n|2

]
Δt

)

=
(

1
2
− 1

p

)
‖uσ

n‖2
E,Δ,(6.2)

which indicates that ‖uσ
n‖ is bounded. So there exists a subsequence (still denoted

by {uσ
n}) and we assume that there is a point uσ

0 ∈ H1
0,Δ(ΩT) such that uσ

n ⇀

uσ
0 in H1

0,Δ(ΩT). By Lemma 4.5, we have uσ
n → uσ

0 in Lp
Δ (ΩT) . It follows from

Lemma 5.2 that f1(uσ
n) → f1(uσ

0 ) in Lq
Δ (ΩT) , where q = p

p−1 . This gives∣∣∣∣
∫

ΩT

[f1(uσ
n) − f1(uσ

0 )] (uσ
n − uσ

0 )Δt

∣∣∣∣
≤

(∫
ΩT

|f1(uσ
n) − f1(uσ

0 )|q Δt

) 1
q
(∫

ΩT

|uσ
n − uσ

0 |p Δt

) 1
p

→ 0 as n → ∞.

Moreover, we have

〈A′(uσ
n) − A′(uσ

0 ), uσ
n − uσ

0 〉 → 0 as n → ∞,
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and

〈A′(uσ
n) − A′(uσ

0 ), uσ
n − uσ

0 〉
=

∫
ΩT

[| � un −�u0|2 + λ|uσ
n − uσ

0 |2
]
Δt −

∫
ΩT

[f1(uσ
n) − f1(uσ

0 )] (uσ
n − uσ

0 )Δt

= ‖un − u0‖E,Δ −
∫

ΩT

[f1(uσ
n) − f1(uσ

0 )] (uσ
n − uσ

0 )Δt,

which implies that
‖uσ

n − uσ
0‖E,Δ → 0 as n → ∞.

Consequently, {uσ
n} has a convergent sequence in H1

0,Δ(ΩT).
Secondly, we show that the remaining conditions of Lemma 2.2 hold with re-

spect to the functional A.
It follows from Lemma 4.5 that there exists a constant C1 > 0 such that

‖u‖Lp
Δ(ΩTn ) ≤ C1‖u‖E,Δ for u ∈ H1

0,Δ(ΩT).

It leads to

A(uσ) ≥ 1
2
‖uσ‖2

E,Δ − 1
p
‖uσ‖p

Lp
Δ(ΩTn )

≥ 1
2
‖uσ‖2

E,Δ − C2
1

p
‖uσ‖p

E,Δ.

Thus, we obtain that there exists a r > 0 such that

r = inf
‖u‖E,Δ

A(uσ)

> A(0)
= 0.

Let uσ ∈ H1
0,Δ(ΩT) with uσ > 0 in ΩT. For any constant μ ≥ 0, we obtain that

A(μuσ) =
1
2
μ2

∫
ΩT

(| � u|2 + λ|uσ|2)Δt − μp

p

∫
ΩT

|uσ|p Δt

=
1
2
μ2‖uσ‖2

E,Δ − μp

p
‖uσ‖p

Lp
Δ(ΩTn )

.

Since p > 2, there exists e := μuσ such that

‖e‖E,Δ > r and A(e) ≤ 0.

Hence, all conditions of the mountain pass theorem are satisfied. It follows
from Lemma 2.2 that the problem

(6.3)

{ −�u + λuσ = f(u),

u ∈ H1
0,Δ(ΩT),

has a nontrivial solution uσ. Considering the problem (6.3) on (uσ)−, multiplying
equation (6.3) by (uσ)− and integrating it over ΩT, we obtain

0 = −
∫

ΩT

(�u−(uσ)− − λ|(uσ)−|2)Δt

=
∫

ΩT

(| � u−|2 + λ|(uσ)−|2)Δt

= ‖(uσ)−‖E,Δ,
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which implies that
(uσ)− = 0.

Consequently, uσ is a solution of the problem (1.1). �
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