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Trace formulas for fourth order operators on unit interval, II
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Abstract. We consider self-adjoint fourth order operators on the unit interval
with the Dirichlet type boundary conditions. For such operators we determine

few trace formulas, similar to the case of Gelfand–Levitan formulas for second

order operators.
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1. Introduction and main results

1.1. Introduction. We consider a self-adjoint operator H on L2(0, 1) given
by

(1.1) Hy = (∂4 + 2∂p∂ + q)y, where ∂ =
d

dx
,

under the Dirichlet type boundary conditions

(1.2) y(0) = y′′(0) = y(1) = y′′(1) = 0.

We assume that the functions p, q are real and satisfy p, q ∈ L1(0, 1). Note that any
self-adjoint fourth order operator with real coefficients may be transformed to the
form (1.1). It is well known (see, e.g., [N, Ch. I.2, I.4]) that the spectrum of the

1991 Mathematics Subject Classification. 47E05, 34L20.
Key words and phrases. fourth order operator, trace formula, eigenvalue asymptotics.

Dedicated to the memory of Professor Yuri Safarov, 1958-2015.

c©2015 International Press

217



218 ANDREY BADANIN AND EVGENY KOROTYAEV

operator H consists of the real eigenvalues μn, n ∈ N, of multiplicity � 2 labeled
by

μ1 � μ2 � μ3 � ...,

counted with multiplicities, and they satisfy

μn = (πn)4 + O(n2) as n → ∞.

We recall the famous Gelfand–Levitan trace formula for a second order operator
h with the Dirichlet boundary conditions on the interval [0, 1] given by

(1.3) hy = −y′′ − py, y(0) = y(1) = 0.

All eigenvalues αn, n ∈ N, of this operator are simple and labeled by

α1 < α2 < α3 < ...

It is well known (see e.g., [FP] or (2.2)), that in the case p, p′′ ∈ L1(0, 1) the
eigenvalues αn satisfy αn = (πn)2 − p0 + O(n−2) as n → ∞, where p0 =

∫ 1

0
p(t)dt.

In this case Gelfand and Levitan [GL] determined the famous trace formula given
by

(1.4)
∞∑

n=1

(
αn − (πn)2 + p0

)
=

p(0) + p(1)
4

− p0

2
,

where the series converges absolutely.
There are a lot of other results about trace formulas for second order operators,

see the book of Levitan – Sargsyan [LS] and references therein. Due to application
to the KdV equation on the circle there are a lot of papers about an operator
−∂2 − p on the circle: Dubrovin [Du] and Its – Matveev [IM] determined trace
formulas for so called finite band potentials, McKean – van Moerbeke [MvM] and
Trubowitz [T] considered the case of sufficiently smooth potentials; Korotyaev [K]
determined the trace formula for the case p ∈ L2(0, 1). Note that the corresponding
trace formulas for the Boussinesq equation were determined by McKean [M] and
for the Camassa – Holm equation by Badanin, Klein and Korotyaev [BKK].

Describe briefly results about trace formulas for fourth and higher order oper-
ators. The trace formulas for operators (∂2 + p)m, p ∈ C∞

R
[0, 1] with integer m � 2

were determined by Gelfand [G] and Dikii [D1], [D2]. Sadovnichii [S1], [S2] ob-
tained trace formulas for even order operators, using Dikii’s approach [D1], [D2].
Among recent papers, nearest to our subject, we mention results of Badanin – Ko-
rotyaev [BK5], Gül [Gu], Nazarov-Stolyarov-Zatitskiy [NSZ], see also the review
of Sadovnichii–Podol’skii [SP] and references therein.

Eigenvalue asymptotics are important for trace formulas: their proof and the
convergence in trace formulas, see e.g., (2.2) and (1.4). Eigenvalue asymptotics for
fourth and higher order operators on the finite interval are much less investigated
than for second order operators. An operator ∂4 + ∂p∂ + q under the 2-periodic
boundary conditions was considered by Badanin and Korotyaev [BK2], [BK4] (for
the simpler case ∂4 + q see [BK1]). The sharp eigenvalue asymptotics for the op-
erator H in the class of complex coefficients was determined in [BK6]. Moreover,
there was determined the eigenvalue asymptotics for the Euler-Bernoulli operator
b−1(af ′′)′′, a, b > 0, on the unit interval. This operator is related with the descrip-
tion of the bending vibrations of thin beams and plates. Eigenvalue asymptotics
for an operator ∂2n + q was determined by Akhmerova [Ah], Mikhailets–Molyboga
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[MM]. Badanin and Korotyaev [BK3] determined the eigenvalue asymptotics for
a general case of 2n order operators under the 2-periodic boundary conditions.

We discuss some other results for fourth and higher order operators. Numerous
results about higher order operators with different types of boundary conditions are
expounded in the books of Atkinson [At] and Naimark [N]. Many papers are de-
voted to the inverse spectral problems for these operators, see Barcilon [B], Caudill,
Perry and Schueller [CPS], Hoppe, Laptev and Östensson [HLO], McLaughlin
[Mc], Papanicolaou [P], Yurko [Yu] and so on.

The main goal of the present paper is to determine trace formulas for fourth
order operators on the unit interval. In fact, our paper is a second part of our
previous results from [BK5], where we determined trace formulas for fourth order
operators on the circle.

There is a significant difference between trace formulas for fourth order oper-
ators and for second order operators. Indeed, we have two coefficients p, q in the
fourth order operator, which corresponds to perturbation by second order opera-
tors. It is possible to determine the following trace formulas:

1) for fix p in terms of q,
2) for fix q in terms of p,
3) in terms of p, q.

The case 1) is simpler, since a perturbation is a function q. The perturbation in
the cases 2) and 3) is a second order operator and it is stronger, than in the case
1). Therefore, the cases 2) and 3) are more difficult, than the case 1).

1.2. Perturbations by second order operators. We determine trace for-
mulas for the cases 2) and 3), where perturbations of the fourth order operators
are second order operators.

Introduce the Sobolev spaces Hm and H 0
m, m � 0, by

Hm =
{

f ∈ L1(0, 1) : f (m) ∈ L1(0, 1)
}

, H 0
m =

{
f ∈ Hm :

∫ 1

0

f(t)dt = 0
}

.

Recall the following results from [BK6]. Let (p, q) ∈ H3×H1. Then the eigenvalues
μn of the operator H satisfy the asymptotics

(1.5) μn = ((πn)2 − p0)2 − P + p2
0

2
+ q0 − V̂cn + O(n−2),

uniformly on any bounded subset of (p, q) ∈ H3 × H1, where

(1.6) f0 =
∫ 1

0

f(t)dt, P =
∫ 1

0

(p′′(t) + p2(t))dt,

(1.7) V̂cn =
∫ 1

0

V (t) cos(2πnt)dt ∀ n ∈ Z, V = q − p′′

2
.

Now we formulate our main results on the trace formulas for the operator
H = ∂4+2∂p∂+q. The perturbation in these formulas is the second order operator
2∂p∂ + q, depending on two functions p and q.

Theorem 1.1. Let (p, q) ∈ H4 × H 0
2 and let μn, n ∈ N, be the eigenvalues of

the operator H. Then the following trace formula holds true:

(1.8)
∑
n�1

(
μn − ((πn)2 − p0)2 + 1

2 (P + p2
0)

)
= − 1

4 (P − p2
0 + V (0) + V (1)),
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where the series converge absolutely and uniformly on any bounded subset of H4 ×
H 0

2 .
In particular, if p = p0 = const, then

(1.9)
∞∑

n=1

(
μn − (πn)4 + 2(πn)2p0

)
= − 1

4 (q(0) + q(1)),

if q = 0, then

(1.10)
∑
n�1

(
μn − ((πn)2 − p0)2 + 1

2 (P + p2
0)

)
= − 1

4 (P − p2
0) + 1

8 (p′′(0) + p′′(1)).

Remark. In the proof of Theorem 1.1 we use the presentation H = h2 + q − p′′ −
p2, where h2 is the unperturbed operator given by (1.3). The proof follows our
approach from [BK5] and is based on the asymptotic analysis of the difference of
the resolvents of the perturbed operator H and the unperturbed operator h2.

Theorem 1.1 implies a trace formula for the operator h2. This trace formula is
known due to Dikii–Gelfand [D1], [D2], [G]. In the following corollary we extend
the Dikii–Gelfand trace formula onto a larger class of coefficients p.

Corollary 1.2. Let p ∈ H4 and let αn, n ∈ N, be the eigenvalues of the operator
h labeled by α1 < α2 < α3 < .... Then the following trace formula holds true:

(1.11)

∑
n�1

(
α2

n − (
(πn)2 − p0

)2 − P − p2
0

2

)

=
P + p2

0

4
− p2(0) + p2(1)

4
− p′′(0) + p′′(1)

8
,

where the series converges absolutely and uniformly on any bounded subset of H4.

Remark. 1) For the case p ∈ C∞[0, 1] the trace formula (1.11) was determined by
Dikii [D1], [D2] and Gelfand [G]. Dikii [D1] determined this formula without any
additional restrictions. Unfortunately, the results from [D1] contain some mistakes
(see [FP, Remark 5 in Sect 4] and our discussion in Section 3). In the second paper
[D2] Dikii determined trace formula (1.11) under additional conditions p(2j−1)(0) =
p(2j−1)(1) = 0 for all j ∈ N. The proof of Dikii [D1], [D2] uses the analysis of the
zeta function of the operator.

Gelfand [G] determined the trace formula (1.11) under stronger conditions:
p = 0 in some neighborhoods of the points 0 and 1. His proof is based on the analysis
of an expansion of a trace of the resolvent in powers of the spectral parameter.

2) There is an open problem to give a transparent proof of the Dikii–Gelfand
trace formulas for the operators hm,m � 2, and, more widely, for the polynomials
of h. Corollary 1.2 makes only the first step in this direction.

Using the trace formula (1.8) we can recover the coefficient of the operator H
by the other coefficients and the spectrum. Recall that there are trace formulas
for second order operators, see [Du] for finite band potentials, [T], [L] for smooth
potentials, [K] for potentials from L2(0, 1). Let p ∈ L2(0, 1) be an 1-periodic
function and p0 = 0. For any τ ∈ T, T = R/Z, consider the shifted operator
hτ = −∂2 − p(· + τ) on the interval (0, 1) with the Dirichlet boundary conditions
y(0) = y(1) = 0. Let αn(τ), n ∈ N, be the eigenvalues of the operator hτ labeled by
α1(τ) < α2(τ) < .... Each function αn(τ), n ∈ N, is 1-periodic and α′′

n ∈ L2(0, 1).
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Consider an operator h̃ = −∂2 − p on the circle 2T. Its spectrum is eigenvalues
α+

0 , α±
n , n ∈ N labeled by

α+
0 < α−

1 � α+
1 < α−

2 � α+
2 < ....

It is well-known that αn(τ) ∈ [α−
n , α+

n ] for each (n, τ) ∈ N × T. Moreover, αn(τ)
runs through the interval [α−

n , α+
n ], making n complete revolutions in unit time,

and the following trace formula holds true:

(1.12) α+
0 + lim

N→∞

N∑
n=1

(
α−

n + α+
n − 2αn(τ)

)
= −p(τ), τ ∈ T,

where the sum converges in L2 sense. If we know αn(τ) for all (n, τ) ∈ N×T, then
we can recover p.

Recall that the functions αn(τ), n ∈ N, satisfy so called Dubrovin system of
differential equations [Du]:

α′
n(τ) =

√
f(αn(τ))
gn(τ)

, n � 1,

with the initial conditions S = {αn(0), sign α′
n(0), n � 1}, where f, gn are given

by

f(λ) = (λ − α+
0 )

∏
j�1

(λ − α−
j )(λ − α+

j )
(πj)4

, gn(τ) =
1

2(πn)2
∏

j�1,j �=n

αj(τ) − αn(τ)
(πj)2

(see p. 324 in [T]). Here sign
√

f(αn(0)) = (−1)n+1 sign α′
n(0) for all n � 1.

For given the 2-periodic spectrum α+
0 , α±

n , n ∈ N and the initial conditions, the
Dubrovin system has the unique 1-periodic solution αn(τ) for all (τ, n) ∈ T×N and
then, using the trace formula (1.12) we recover p ∈ L2(0, 1). The open problem is
to extend these results for fourth order operators even with smooth coefficients.

Consider the fourth order operators. Introduce the Sobolev spaces Hm,per and
H 0

m,per, m � 0, of periodic functions, by

Hm,per =
{

f ∈ L1(T) : f (m) ∈ L1(T)
}

, H 0
m,per =

{
f ∈ Hm,per :

∫ 1

0

f(t)dt = 0
}

.

Let (p, q) ∈ H4,per × H 0
2,per. For any τ ∈ T we define the shifted operator Hτ on

L2(0, 1) by

Hτ = ∂4 + ∂p(x + τ)∂ + q(x + τ)

with the boundary conditions (1.2). Let μn(τ), n ∈ N, be the eigenvalues of the
shifted operator Hτ labeled by μ1(τ) � μ2(τ) � ..., counted with multiplicities. We
formulate our trace formula (1.13) for the operator Hτ . This formula determines
the function V (τ), τ ∈ T, by μn(τ). Unfortunately, analysis of the corresponding
Dubrovin equations for fourth order operators is still not carried out. The problem
is that the eigenvalues can have multiplicity 2, and we have no sufficient information
how they move when τ runs through the interval [0, 1].

Corollary 1.3. Let (p, q) ∈ H4,per × H 0
2,per and let μn(τ), n ∈ N, be the

eigenvalues of the operator Hτ . Then there exists N = N(p, q) ∈ N such that the
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functions
∑N

n=1 μn(τ) and each μn(τ), n > N , belong to the space C1(T). Moreover,
they satisfy

(1.13)
∑
n�1

(
μn(τ)−(

(πn)2−p0

)2 + 1
2 (P +p2

0)
)

= − 1
4

(
P −p2

0 +2V (τ)
) ∀ τ ∈ T,

where the series converges absolutely and uniformly on τ ∈ T and P =
∫ 1

0
p2(t)dt.

In particular, assume that we know μn(τ) for all (n, τ) ∈ N × T. Then
a) If we know p, then we can recover q.
b) If we know q, p0 and

∫ 1

0
p2dt, then we can recover p.

Remark. Asymptotics (1.5) shows that each eigenvalue μn(τ) with n large enough
is simple, and then it is a smooth function of τ ∈ T. The situation with other
eigenvalues is complicated: we don’t know how they depend on τ . However, due to
Rouché’s theorem, we can control their sum, then it is smooth.

1.3. Perturbations by functions. Now we determine trace formulas for the
simplest case: the perturbation by q for fixed p. In fact, we consider a more general
situation, perturbations of the operator H, given by (1.1), (1.2), by functions Q ∈
H2. Let λn, n ∈ N, be the eigenvalues of H + Q labeled by λ1 � λ2 � λ3 � ...,
counted with multiplicity.

Theorem 1.4. Let (p, q,Q) ∈ H4 × H2 × H2. Let μn and λn, n ∈ N, be the
eigenvalues of the operator H and H + Q, respectively. Then the following trace
formula holds true:

(1.14)
∑
n�1

(λn − μn) = − 1
4 (Q(0) + Q(1) − 2Q0),

where the series converges absolutely and uniformly on any bounded subset of H4×
H2 × H2.

Remark. 1) Sadovnichii [S1] determined the trace formula (1.14) for the simplest
case ∂4 + Q, where Q ∈ C∞[0, 1] and Q(2j−1)(0) = Q(2j−1)(1) = 0 ∀ j ∈ N (see
also Remark in Section 4). Nazarov, Stolyarov and Zatitskiy [NSZ] extended the
results of Sadovnichii onto the larger class of higher order operators (see Remark
in Section 2).

2) Note that perturbations by second order operators in Theorem 1.1 are
stronger, than perturbations by functions in Theorem 1.4. Therefore, we need
to analyze more terms of the perturbation series in the proof of Theorem 1.1, than
in the proof of Theorem 1.4.

Now we apply Theorem 1.4 to the case H = h2, where the operator h is given
by (1.3). Let νn, n ∈ N, be the eigenvalues of the operator h2 + Q labeled by
ν1 � ν2 � ... counting with multiplicities.

Corollary 1.5. i) Let (p, Q) ∈ H4 × H2. Let νn and αn, n ∈ N, be the
eigenvalues of the operators h2 + Q and h respectively. Then the following trace
formula holds true:

(1.15)
∑
n�1

(νn − Q0 − α2
n) = − 1

4

(
Q(0) + Q(1) − 2Q0

)
,

where the series converges absolutely and uniformly on any bounded subset of H4×
H2.
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ii) Let (p, Q) ∈ H4 ×H 0
2,per. Let νn(τ), n ∈ N, τ ∈ T, be the eigenvalues of the

operators h2 + Q(· + τ), labeled by ν1(τ) � ν2(τ) � ..., counted with multiplicities.
Then there exists N = N(Q) ∈ N such that the functions

∑N
n=1 νn(τ) and each

νn(τ), n > N , belong to the space C1(T). Moreover, they satisfy

(1.16)
∑
n�1

(
νn(τ) − α2

n

)
= − 1

2Q(τ) ∀ τ ∈ T,

where the series converges absolutely and uniformly on τ ∈ T.
In particular, if we know αn, νn(τ) for all (n, τ) ∈ N×[0, 1], then we can recover

Q.

Remark. Assume that we know αn, νn(τ) for all (n, τ) ∈ N × [0, 1]. Then we
recover the coefficient Q. Remark that, in the second order case all eigenvalues
αn, n ∈ N do not determine p, since we need so-called norming constants, e.g. [LS],
[T]. Thus, in order to recover Q we don’t need to know p, it is sufficiently to know
all αn, n � 1. Of course, the coefficient p determines all eigenvalues αn, n ∈ N, and
then we recover Q.

The plan of the paper is as follows. In Section 2 we consider the perturbation by
the function and prove Theorem 1.4. In Section 3 we determine the trace formula
for the operator h2. In fact, this is a simplified version of the trace formula for the
operator H. Some technical proofs are replaced from Section 3 into Section 5. In
Section 4 we determine the trace formula for the operator H and prove Theorem 1.1.

2. The proof of Theorem 1.4

Let B1, B2 be the sets of all trace class and Hilbert-Schmidt class operators
on L2(0, 1) equipped with the norms ‖ · ‖1, ‖ · ‖2, respectively. Let (p, q,Q) ∈
H2 × H0 × H0. In order to prove Theorem 1.4 we need to study the resolvents
defined by

(2.1)
R1(λ) =

(
H + Q − λ

)−1
, R(λ) =

(
H − λ

)−1
,

R(λ) = (h2 − λ)−1, R0(λ) =
(
h2

0 − λ
)−1

,

where h0 = −∂2 is equal to h at p = 0. It is well known (see [FP, (4.21)]), that in
the case p, p′′ ∈ L1(0, 1) the eigenvalues αn of the operator h satisfy

(2.2) αn = (πn)2 − p0 +
P − p2

0

(2πn)2
+

O(1)
n4

,

then

(2.3) α2
n = ((πn)2 − p0)2 +

P − p2
0

2
+

O(1)
n2

as n → ∞. Due to asymptotics (2.2), (2.3), all resolvents satisfy

R1(λ), R(λ),R(λ), h0R0(λ) ∈ B1

on the corresponding resolvent sets. A proof of the following results repeats the
arguments for the periodic case, see [BK5, Lemma 2.1].

Lemma 2.1. Let (p, q,Q) ∈ H4 × H2 × H2. Then the following asymptotics
hold true:

(2.4) ‖R0(λ)‖2 + ‖R(λ)‖2 + ‖R(λ)‖2 + ‖R1(λ)‖2 = O(k−3),
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(2.5) ‖h0R0(λ)‖2 = O(k−1),

(2.6)
∮

Γk

Tr
(
R0(λ)(h0p + ph0)R0(λ)q

)
dλ = o(1),

as integer k → ∞, uniformly on the contours Γk given by

Γk =
{
λ ∈ C : |λ| 14 = π

(
k + 1

2

)}
.

In the space L2(0, 1) we introduce the scalar product (f, g) =
∫ 1

0
f(x)g(x)dx,

the norm ‖f‖2 = (f, f) and the Fourier coefficients

f0 =
∫ 1

0

f(x)dx, f̂cn = (f, cos 2πnx), f̂sn = (f, sin 2πnx), n ∈ N.

Below we need the following simple result.

Lemma 2.2. Let Q ∈ H 0
2 , k ∈ N. Then the following identity holds true:

(2.7) lim
k→∞

1
2πi

∮
Γk

Tr QR0(λ)dλ =
Q(0) + Q(1)

4
.

Proof. We have the Fourier series

(2.8) Q(x) = 2
∞∑

n=1

(
Q̂cn cos 2πnx + Q̂sn sin 2πnx

)
.

Let sn =
√

2 sin πnx, n ∈ N. Then

Tr QR0(λ) =
∞∑

n=1

(Qsn, sn)
(πn)4 − λ

=
∞∑

n=1

Q̂cn

λ − (πn)4
,

since (Qsn, sn) = −Q̂cn, n � 1. This implies

(2.9)
1

2πi

∮
Γk

Tr QR0(λ)dλ =
k∑

n=1

Q̂cn

for all k � 1. Then (2.8) and Q ∈ H 0
2 yield (2.7).

Introduce the norm
‖f‖∞ = sup

x∈[0,1]

|f(x)|.

Proof of Theorem 1.4. The series
∑

n�1(λn − μn) converges absolutely and
uniformly in (p, q,Q) due to asymptotics (1.5). We have for integer k:

(2.10)
∑
n�1

(λn − μn) = − 1
2πi

lim
k→∞

∮
Γk

λ Tr
(
R1(λ) − R(λ)

)
dλ.

The resolvent identity gives

(2.11) R1 − R = −RQR + R1QRQR.

Estimates (2.4) imply∣∣ Tr
(
R1(λ)QR(λ)QR(λ)

)∣∣ � ‖R1(λ)‖2‖R(λ)‖2
2‖Q‖2

∞ = O(k−9)

uniformly on Γk, which yields

(2.12)
∮

Γk

λ Tr
(
R1(λ)QR(λ)QR(λ)

)
dλ = O(k−1) as k → ∞.
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Substituting (2.11) into (2.10) and using (2.12) we obtain∑
n�1

(λn − μn) =
1

2πi
lim

k→∞

∮
Γk

λ Tr QR2(λ)dλ.

Since R2(λ) = R′(λ), the integration by parts gives

(2.13)
∑
n�1

(λn − μn) =
1

2πi
lim

k→∞

∮
Γk

λ Tr QR′(λ)dλ = − 1
2πi

lim
k→∞

∮
Γk

Tr QR(λ)dλ.

The resolvent identity together with the relations H = h2 − v, v = p′′ + p2 − q
implies

(2.14) R(λ) = R(λ) + R(λ)vR(λ).

Estimates (2.4) give∣∣ Tr
(
R(λ)vR(λ)Q

)∣∣ � ‖R(λ)‖2‖R(λ)‖2‖v‖∞‖Q‖∞ = O(k−6)

uniformly on Γk, which yields

(2.15)
∮

Γk

Tr
(
R(λ)vR(λ)Q

)
dλ = O(k−2) as k → ∞.

Substituting (2.14) into (2.13) and using (2.15) we obtain

(2.16)
∑
n�1

(λn − μn) = − 1
2πi

lim
k→∞

∮
Γk

Tr QR(λ)dλ.

The resolvent identity together with h2 = (h0 − p)2 = h2
0 − h0p − ph0 + p2

implies

(2.17) R = R0 −R0AR0 + RAR0AR0,

where A = −h0p − ph0 + p2. Let k → ∞. Estimates (2.4) give∣∣ Tr
(R0(λ)p2R0(λ)Q

)∣∣ � ‖R0(λ)‖2
2‖p‖2

∞‖Q‖∞ = O(k−6)

uniformly on Γk. This asymptotics and asymptotics (2.6) yield

(2.18)

∮
Γk

Tr
(R0(λ)AR0(λ)Q

)
dλ

=
∮

Γk

Tr
(
R0(λ)(−h0p − ph0 + p2)R0(λ)Q

)
dλ = o(1).

Estimates (2.4), (2.5) give

‖AR0(λ)‖2 � 2‖p‖∞‖h0R0(λ)‖2 + ‖p2‖∞‖R0(λ)‖2 = O(k−1),

then ∣∣ Tr
(R(λ)AR0(λ)AR0(λ)Q

)∣∣ � ‖R(λ)‖2‖AR0(λ)‖2
2‖Q‖∞ = O(k−5)

uniformly on Γk, which yields

(2.19)
∮

Γk

Tr
(
R(λ)AR0(λ)AR0(λ)Q

)
dλ = O(k−1).

Substituting (2.17) into (2.16) and using (2.18), (2.19) we obtain∑
n�1

(λn − μn) = − 1
2πi

lim
k→∞

∮
Γk

Tr QR0(λ)dλ.



226 ANDREY BADANIN AND EVGENY KOROTYAEV

Identity (2.7) implies the trace formula (1.14) for Q ∈ H 0
2 . The trace formula for

Q ∈ H2 follows.

Remark. Nazarov, Stolyarov and Zatitskiy [NSZ] determined some trace formulas
for the operator H̃ + Q, where H̃ is a higher order operator with complex coeffi-
cients on the unit interval and Q ∈ L1(0, 1) is a complex function. Authors of
[NSZ] determined limN→∞

∑N
n=1(λn −λ0

n − q0) = X, where λ0
n, λn, n ∈ N, are the

eigenvalues of the operators H̃, H̃ + Q respectively, and X is expressed in terms
of q and boundary conditions, the explicit expression is rather complicated. Note
that there are no any control on a type of convergence of the series s.

Proof of Corollary 1.5 i). Let H = h2. Then λn = νn, μn = α2
n and the trace

formula (1.14) gives (1.15).

3. Dikïı–Gelfand trace formula

Our proof of Theorem 1.1 is based on the identity H = h2 + q − p′′ − p2.
In Theorem 3.3 we will determine the trace formula for the unperturbed operator
h2 = (∂2 + p)2. In fact, the result of Theorem 3.3 extends the result of Corollary
1.2 onto the larger class p ∈ H3. Our proof is based on the identity

h2 = (∂2 + p)2 = ∂4 + 2∂p∂ + p′′ + p2.

We analyze asymptotics of the difference of the resolvents of the perturbed operator
h2 and the unperturbed operator ∂4. Note that we don’t use the results and
methods from [D1], [D2], [G] in our proof.

Let p ∈ H2. Introduce the resolvents

r(z) = (h − z)−1, r0(z) = (h0 − z)−1.

Due to asymptotics (2.2) the resolvents (on the corresponding resolvent sets) satisfy
r(z), r0(z) ∈ B1. Moreover,

(3.1) ‖r0(z)‖2 + ‖r(z)‖2 = O(k−1)

as k → ∞ uniformly on the contours γk ⊂ C, k ∈ N, given by

γk =
{
z ∈ C : |z| 12 = π

(
k + 1

2

)}
.

Identity

Tr
(
r(z) − r0(z)

)
=

∞∑
n=1

( 1
αn − z

− 1
(πn)2 − z

)
yields

(3.2) − 1
2πi

∫
γk

z2 Tr
(
r(z) − r0(z)

)
dz =

k∑
n=1

(
α2

n − (πn)4
)

for all k ∈ N large enough. The following two lemmas give asymptotics of the
integral in (3.2).

Lemma 3.1. Let p ∈ H2, k ∈ N. Then the following asymptotics holds true:

(3.3) − 1
2πi

∫
γk

z2 Tr
(
r(z) − r0(z)

)
dz =

5∑
j=1

Jj(k) + O(k−1),
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as k → ∞ uniformly on any bounded subset of H2, where

(3.4) Jj(k) =
1

πij

∫
γk

z Tr(r0(z)p)jdz ∀ j ∈ N.

Proof. Estimates (3.1) give

|Tr(r0(z)p)6r(z)| � ‖p‖6
∞‖r0(z)‖6

2‖r(z)‖2 = O(k−7)

as k → ∞ on all contours. Using the resolvent identity

r(z) − r0(z) =
5∑

j=1

(
r0(z)p

)j
r0(z) +

(
r0(z)p

)6
r(z)

we obtain (3.3), where

Jj(k) = − 1
2πi

∫
γk

z2 Tr(r0(z)p)jr0(z)dz.

Identities

Tr(r0(z)p)jr0(z) = Tr p
(
r0(z)p

)j−1
r2
0(z)

= Tr p
(
r0(z)p

)j−1
r′0(z) =

1
j

Tr
((

r0(z)p
)j

)′

imply

Jj(k) = − 1
2πij

∫
γk

z2 Tr
((

r0(z)p
)j

)′
dz.

The integration by parts gives (3.4).

The technical proof of the following lemma see in Section 4.

Lemma 3.2. Let p ∈ H2, k ∈ N. Then the sequences Jj(k), j = 1, ..., 5 satisfy

(3.5) J1(k) = −
k∑

n=1

(
2p0(πn)2 − p′(1) − p′(0)

2

)
− 1

2

k∑
n=1

(p̂′′)cn,

(3.6) J2(k) = k
‖p‖2 + p2

0

2
− ‖p‖2 − p2

0

4
−

k∑
n=1

(p̂2)cn + O(k−1),

(3.7) J3(k) = O(k− 2
3 ), J4(k) = O(k− 4

5 ), J5(k) = O(k−1)

as k → ∞ uniformly on any bounded subset of H2.

We prove the Dikii–Gelfand trace formula in our class of coefficients.

Theorem 3.3. Let p ∈ H3 and let αn, n ∈ N, be the eigenvalues of the operator
h. Then the trace formula (1.11) holds true, where the series converges absolutely
and uniformly on any bounded subset of H3.
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Proof. Asymptotics (2.3) shows that the series in (1.11) converges absolutely and
uniformly on any bounded subset of H3. Substituting (3.5), (3.6), (3.7) into (3.3)
we obtain

− 1
2πi

∫
γk

z2 Tr(r(z) − r0(z))dz

= −
k∑

n=1

(
2p0(πn)2 − P + p2

0

2

)
− ‖p‖2 − p2

0

4
− 1

2

k∑
n=1

(p̂′′)cn −
k∑

n=1

(p̂2)cn + O(k− 4
5 )

as k → ∞. This asymptotics and (3.2) imply

(3.8)

k∑
n=1

(
α2

n − (πn)4 + 2p0(πn)2 − P + p2
0

2

)

= −‖p‖2 − p2
0

4
− 1

2

k∑
n=1

(p̂′′)cn −
k∑

n=1

(p̂2)cn + O(k− 4
5 ).

Using the Fourier series for p ∈ H3

p2(x) = ‖p‖2 + 2
∞∑

n=1

(
(p̂2)cn cos 2πnx + (p̂2)sn sin 2πnx

)
,

p′′(x) = p′(1) − p′(0) + 2
∞∑

n=1

(
(p̂′′)cn cos 2πnx + (p̂′′)sn sin 2πnx

)
,

we obtain

(3.9)

∞∑
n=1

(p̂2)cn =
p2(0) + p2(1)

4
− ‖p‖2

2
,

∞∑
n=1

(p̂′′)cn =
p′′(0) + p′′(1)

4
− p(1) − p′(0)

2
.

Substituting identities (3.9) into (3.8) we obtain (1.11).

Remark. Let p ∈ C∞[0, 1]. Dikii [D1, p. 189-190] determined the following
asymptotics

(3.10) αn = (πn)2 − p0 +
P̃

(2πn)2
+ ...,

and trace formula

(3.11)

∞∑
n=1

(
α2

n − (πn)4 + 2p0(πn)2 − P̃ + 2p2
0

2

)

=
P̃ + 2p2

0

4
+

p′′(0) + p′′(1)
8

− p2(0) + p2(1)
4

,

where

(3.12) P̃ = ‖p‖2 − 4p2
0 +

1
3
(
p′(1) − p′(0)

)
.

Asymptotics (3.10) is in a disagreement with (2.2). The coefficients 4 and 1
3 in

(3.12) are mistaken, see also [FP, Remark 4.5].
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Assume, in addition, that p0 = 0, p(2j−1)(0) = p(2j−1)(1) = 0 for all j ∈ N.
Then P̃ = ‖p‖2 and (3.11) gives

(3.13)
∞∑

n=1

(
α2

n − (πn)4 − ‖p‖2

2

)
=

‖p‖2

4
+

p′′(0) + p′′(1)
8

− p2(0) + p2(1)
4

.

On the other hand, for this case Dikii [D2, id. (6.4))] determined the following
trace formula

(3.14)
∞∑

n=1

(
α2

n − (πn)4 − ‖p‖2

2

)
=

‖p‖2

4
− p′′(0) + p′′(1)

8
− p2(0) + p2(1)

4
.

The last two identities are in a disagreement: the signs before 1
8 (p′′(0) + p′′(1))

are not coincide. Theorem 3.3 shows that the signs in (3.11), (3.13) are incorrect.
Thus, the trace formula (3.11) contains two mistakes: the coefficients in P̃ and the
sign before 1

8 (p′′(0)+p′′(1)) are incorrect, whereas the trace formula (3.14) is valid.

4. The proof of Theorem 1.1

We prove the main result of our paper.

Proof of Theorem 1.1. We have the identity

(4.1) H = h2 + Q, Q = q − p′′ − p2.

The trace formula (1.15) and the identity Q0 = −P give

(4.2)
∑
n�1

(
μn + P − α2

n

)
= −Q(0) + Q(1) + 2P

4
.

Introduce the sums S = S(p, q), S0 = S0(p) given by

(4.3)

S =
∑
n�1

(
μn − ((πn)2 − p0)2 +

P + p2
0

2

)
,

S0 =
∑
n�1

(
α2

n − ((πn)2 − p0)2 − P − p2
0

2

)
,

where the series converges absolutely and uniformly on p, q due to asymptotics
(1.5), (2.3). The trace formula (1.11) gives

(4.4) S0 =
P + p2

0

4
− p2(0) + p2(1)

4
− p′′(0) + p′′(1)

8
.

The trace formula (4.2) and the definitions (4.3) imply

(4.5) S − S0 =
∑
n�1

(
μn + P − α2

n

)
= −Q(0) + Q(1) + 2P

4
.

Substituting identities (4.1), (4.4) into (4.5) we get

S = −P − p2
0

4
+

p′′(0) + p′′(1)
8

− q(0) + q(1)
4

,

which yields (1.8).
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Remark. Sadovnichii [S1, p. 308-309] considered the operator H = ∂4 +2∂p∂ + q,
where
(4.6)
p, q ∈ C∞[0, 1], p(j)(0) = p(j)(1) = q(2j−1)(0) = q(2j−1)(1) = 0 ∀ j ∈ N,

and wrote (without a proof) the following asymptotics

(4.7) μn = (πn)4 − 2p0(πn)2 + q0 +
c1

n2
+

c2

n4
+ ...

as n → ∞, and trace formula

(4.8)
∞∑

n=1

(
μn − (πn)4 + 2p0(πn)2 − q0

)
=

q0

2
− q(0) + q(1)

4
,

where c1, c2 are some undetermined constants. Assume that the operator H has
the form H = (−∂2 − p)2, where p satisfies (4.6). Then q = p′′ + p2 and q satisfies
(4.6). In this case asymptotics (4.7) gives

(4.9) μn = (πn)4 − 2p0(πn)2 + ‖p‖2 +
c1

n2
+

c2

n4
+ ...

On the other hand, asymptotics (2.3) yields

(4.10) μn = α2
n = (πn)4 − 2p0(πn)2 +

‖p‖2 + p2
0

2
+

O(1)
n2

.

The third term in asymptotics (4.9) is in a disagreement with the corresponding
term in (4.10). Therefore, the term q0 in (4.7) is incorrect. Then the trace formula
(4.8) is not correct also. Theorem 1.1 shows that if p, q satisfy (4.6) and q0 = 0,
then the correct trace formula has the form

∞∑
n=1

(
μn − (πn)4 + 2p0(πn)2 +

‖p‖2 − p2
0

2

)
= −‖p‖2 − p2

0

4
− q(0) + q(1)

4
.

The trace formula (1.11) is proved in Theorem 3.3. Now we deduce this result
immediately from Theorem 1.1.

Proof of Corollary 1.2. Put q = p′′ + p2 − P ∈ H 0
2 in Theorem 1.1, then

H = h2 − P and μn = α2
n − P . Substituting these identities into (1.8) we obtain

(1.11).

In order to prove Corollaries 1.3, 1.5 ii) we need the following results.

Lemma 4.1. Let (p, q) ∈ H2 ×H 0
0 . Then there exists N = N(‖p‖H2 , ‖q‖H0)

such that the operator H has exactly N eigenvalues, counting with multiplicities, in
the disc {|λ| < π4(N + 1

2 )4} and for each integer n > N it has exactly one simple
eigenvalue in the domain {|λ1/4 − πn| < π

4 }. There are no other eigenvalues.

Proof. The proof is based on Rouché’s theorem and repeats the arguments from
the proof of Lemma 2.5 in [BK6].

Proof of Corollary 1.3. Let (p, q) ∈ H4,per × H2,per. Introduce the function
F (τ) =

∑N
n=1 μn(τ), τ ∈ T, where N is given in Lemma 4.1, and the resolvents
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Rτ (λ) = (Hτ − λ)−1. Then we have

F (τ1) − F (τ2) =
1

2πi

∮
ΓN

λ Tr
(
Rτ1(λ) − Rτ2(λ)

)
dλ,

μn(τ1) − μn(τ2) =
1

2πi

∮
�n

λ Tr
(
Rτ1(λ) − Rτ2(λ)

)
dλ ∀ n > N,

where the contours ΓN and 	n are given by

ΓN =
{
λ ∈ C : |λ| 14 = π

(
N + 1

2

)}
, 	n =

{
λ ∈ C : {|λ 1

4 − πn| = π
4 }

}
.

Using the identities

Rτ1(λ) − Rτ2(λ) = Rτ1(λ)
(
Hτ2 − Hτ1

)
Rτ2(λ)

= Rτ1(λ)
(
∂(pτ2 − pτ1)∂ + qτ2 − qτ1

)
Rτ2(λ),

where fτ = f(· + τ), we obtain∣∣F (k)(τ1) − F (k)(τ2)
∣∣ � C

(
‖p(k+1)

τ2
− p(k+1)

τ1
‖∞ + ‖p(k)

τ2
− p(k)

τ1
‖∞ + ‖q(k)

τ2
− q(k)

τ1
‖∞

)
for some constant C > 0 and k = 0, 1, where f (0) = f, f (k) = dkf

dτk . These estimates
imply F ∈ C1(T). The similar arguments show that μn ∈ C1(T) for all n > N .
The trace formula (1.8) yields (1.13).

Proof of Corollary 1.5 ii). Repeating the arguments from the proof of Corollary
1.3 we deduce that the functions

∑N
n=1 νn(τ) and νn(τ), n > N , belong to C1(T).

The trace formula (1.15) yields (1.16).

5. Asymptotics of Jj

In this Section we will consider the integrals Jj , j = 1, ..., 5 given by

(5.1) Jj(k) =
1

πij

∫
γk

z Tr(r0(z)p)jdz, k ∈ N,

see (3.4), and prove Lemma 3.2. Now we will determine asymptotics of the sequence
J1. Introduce the functions

sn =
√

2 sin πnx, cn =
√

2 cos πnx, n ∈ N.

Proof of identity (3.5) in Lemma 3.2. Substituting the identity

Tr pr0(z) =
∞∑

n=1

(psn, sn)
(πn)2 − z

,

into (5.1) we obtain

J1(k) =
1
πi

∫
γk

z Tr p
(
r0(z)

)
dz

=
1
πi

∫
γk

z

∞∑
n=1

(psn, sn)
(πn)2 − z

dz = −2
k∑

n=1

(πn)2(psn, sn).

Using the identities

(psn, sn) = p0 − p̂cn = p0 − p′(1) − p′(0) − (p̂′′)cn

(2πn)2
,
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we obtain (3.5).

Introduce the coefficients

κn = (p, cn), n ∈ N.

Then

(5.2) (psn, sm) =
κn−m − κm+n√

2
∀ m,n ∈ N.

The integration by parts gives

κn =
1

(πn)2
(√

2
(
p′(0) − (−1)np′(1)

)
+ (p′′, cn)

)
∀ n ∈ N,

which yields the estimate

(5.3) |κn| � C

n2
∀ n ∈ N,

where
C =

1
π2

(√
2
(|p′(0)| + |p′(1)|) + max

n∈N

|(p′′, cn)|
)
.

Now we determine asymptotics of the sequences Jj(k), j = 3, 4, 5.

Proof of asymptotics (3.7) in Lemma 3.2. Let k ∈ N. Identity (5.1) gives

(5.4) J3 =
1

3πi

∫
γk

z Tr
(
r0(z)p

)3
dz =

A1 + A2

3πi
,

where

A1 =
∫

γk

z Tr
(
pr0(z)

(
r0(z)p

)2
)
dz,

A2 = −
∫

γk

z Tr
(
[p, r0(z)]

(
r0(z)p

)2
)
dz,

[a, b] = ab − ba. Moreover, the integration by parts gives

A2 = −
∫
γk

z Tr
(
r0(z)[p, h0]r2

0(z)pr0(z)p
)
dz = −

∫
γk

z Tr
(
[p, h0]r′0(z)

(
pr0(z)

)2
)
dz

= −1
3

∫
γk

z Tr
(
[p, h0]r0(z)

(
pr0(z)

)2
)′

dz =
1
3

∫
γk

Tr
(
[p, h0]r0(z)

(
pr0(z)

)2
)
dz.

Let k → ∞. The identity [p, h0] = −2p′∂ − p′′ and the uniform on γk estimate∣∣∣ Tr
(
p′′r0(z)

(
pr0(z)

)2
)∣∣∣ � ‖p′′‖∞‖p‖2

∞‖r0(z)‖3
2 = O(k−3)

give

(5.5) A2 = −2
3

∫
γk

Tr
(
r0(z)

(
pr0(z)

)2
p′∂

)
dz + O(k−1).

Using the estimate ‖∂r0(z)‖2 = O(1) we obtain

(5.6)
∣∣∣ Tr

(
r0(z)

(
pr0(z)

)2
p′∂

)∣∣∣ � ‖∂r0(z)‖2‖p‖2
∞‖p′‖∞‖r0(z)‖2

2 = O(k−2)

uniformly on γk. The estimate ‖r0(z)‖ � k−α for | Im z| � kα, α > 0, gives

(5.7)
∣∣∣ Tr

(
r0(z)

(
pr0(z)

)2
p′∂

)∣∣∣ � ‖∂r0(z)‖2‖p‖2
∞‖p′‖∞‖r0(z)‖2 = O(k−2α)
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as | Im z| � kα. The length of part | Im z| < kα of the contour γk is O(kα),
then estimate (5.6) shows that its contribution to the integral (5.5) is O(k−2+α).
Moreover, estimate (5.7) yields that the contribution of the rest part of the contour
γk to the integral (5.5) is O(k−2α+2). Let α = 4

3 . Then (5.5) gives

(5.8) A2 = O(k− 2
3 ).

Furthermore,

A1 =
∫

γk

z Tr
(
pr2

0(z)pr0(z)p
)
dz =

∫
γk

z Tr
(
pr′0(z)pr0(z)p

)
dz

=
1
2

∫
γk

z
(

Tr
(
pr0(z)

)2
p
)′

dz = −1
2

∫
γk

Tr
((

pr0(z)
)2

p
)
dz,

where we have used the integration by parts. Using the identity

Tr
((

pr0(z)
)2

p
)

=
∞∑

m,n=1

αmn

(z − zm)(z − zn)

where

(5.9) zn = (πn)2, αmn = (p2sm, sn)(psm, sn),

we obtain

A1 = −1
2

∫
γk

∞∑
m,n=1

αmn

(z − zm)(z − zn)
dz =

k∑
m=1

∞∑
n=k+1

αmn

zn − zm

= − 1
2π2

k∑
m=1

∞∑
n=k+1

αmn

n2 − m2
.

Estimates
1

n2 − m2
� 1

(k + 1)2 − k2
� 1

2k
∀ 1 � m � k, n � k + 1,

imply

(5.10) |A1| � 1
2π2k

k∑
m=1

∞∑
n=k+1

|αmn|.

Substituting (5.2) into (5.9) we obtain

αmn =
1
2
(κ̃n−m − κ̃n+m)(κn−m − κn+m), where κ̃n = (p2, cn),

which yields
k∑

m=1

∞∑
n=k+1

|αmn| � 2
∞∑

m,n=1

|κ̃m||κn| < ∞.

Then estimate (5.10) gives A1 = O(k−1) as k → ∞. This asymptotics and (5.8)
and (5.4) give the first asymptotics in (3.7).

We show the second asymptotics in (3.7). Identities (5.1) imply

(5.11) |J4| � 1
4π

∫
γk

|z||Tr(r0(z)p)4||dz|.
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Let k → ∞. Asymptotics (3.1) gives

(5.12) |Tr(r0(z)p)4| � ‖r0(z)‖4
2‖p‖4

∞ = O(k−4)

on the contours γk. Using the estimate ‖r0(z)‖ � k−β for | Im z| � kβ , β > 0, we
obtain

(5.13) |Tr(r0(z)p)4| � ‖r0(z)‖4‖p‖4
∞ = O(k−4β)

as | Im z| � kβ . Since the length of the part | Im z| < kβ of the contour γk is O(kβ),
estimate (5.12) shows that its contribution to the integral (5.11) is O(k−2+β). More-
over, estimate (5.13) yields that the contribution of the rest part of the contour is
O(k−4β+4). Let β = 6

5 . Then (5.11) yields the second asymptotics in (3.7).
We prove the third asymptotics in (3.7). Asymptotics (3.1) gives∣∣ Tr

(
r0(z)p

)5∣∣ � ‖r0(z)‖5
2‖p‖5

∞ = O(k−5)

as k → ∞ on the contours γk. Then identities (5.1) imply

|J5(k)| � 1
5π

∫
γk

|z|∣∣ Tr
(
r0(z)p

)5∣∣|dz| = O(k−1)

as k → ∞, which yields the last asymptotics in (3.7).

Introduce the coefficients

(5.14) amn = (psn, sm)2 =
(κn−m − κm+n)2

2
, m, n ∈ N,

where we have used (5.2). In order to determine the asymptotics of J2(k) we need
the following preliminary results.

Lemma 5.1. Let p ∈ H3. Then
i) The following identity holds true:

(5.15) J2 = A1 − A2,

where
(5.16)

A1 = k‖p‖2 −
k∑

n=1

(p̂2)cn, A2 =
k∑

m=1

∞∑
n=k+1

amnθmn, θmn =
n2 + m2

n2 − m2
.

ii) The coefficient A2 satisfies:

(5.17) A2 =
2k + 1

4
B0 + B1 + B2 + B3,

where
(5.18)

B0 =
k∑

�=1

κ
2
� , B1 =

k∑
m=1

∞∑
n=m+k+1

amnθmn,

B2 =
1
2

k∑
m=1

m+k∑
n=k+1

(κ2
m+n − 2κn−mκm+n)θmn, B3 =

1
4

k∑
�=1

κ
2
�

k+�∑
n=k+1

	

2n − 	
.

Moreover,

(5.19)
B0(k) = ‖p‖2 − p2

0 + O(k−3),

B1(k) = O(k−2), B2(k) = O(k−1), B3(k) = O(k−1)
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as k → ∞ uniformly on any bounded subset of H2.
iii) The sequence A2(k) satisfies the asymptotics

(5.20) A2(k) = (2k + 1)
‖p‖2 − p2

0

4
+ O(k−1)

as k → ∞ uniformly on any bounded subset of H2.

Proof. i) Substituting the identity

Tr
(
r0(z)p

)2 =
∞∑

m,n=1

amn

(z − zn)(z − zm)
, zn = (πn)2,

into (5.1) we obtain

(5.21)

J2 =
1

2πi

∫
γk

z Tr
(
r0(z)p

)2
dz =

1
2πi

∫
γk

z

∞∑
m,n=1

amn

(z − zn)(z − zm)
dz

=
1

4πi

∫
γk

∞∑
m,n=1

amn

( 1
z − zn

+
1

z − zm
+

zn + zm

(z − zn)(z − zm)

)
dz

= F1 + F2 + F3,

where

F1 =
k∑

m,n=1

amn +
1
2

k∑
m,n=1:

m �=n

amn(zn + zm)
( 1

zm − zn
+

1
zn − zm

)
=

k∑
m,n=1

amn,

F2 =
1
2

k∑
m=1

∞∑
n=k+1

amn

(
1 +

zn + zm

zm − zn

)
,

F3 =
1
2

k∑
n=1

∞∑
m=k+1

amn

(
1 +

zn + zm

zn − zm

)
= F2.

Using these identities and (5.21), we obtain (5.15), where A2 is defined by the
second identity in (5.16) and

A1 =
k∑

m=1

∞∑
n=1

amn =
k∑

m=1

∞∑
n=1

(psm, sn)2.

The Parseval identity
∑∞

n=1(f, sn)2 = ‖f‖2 gives

A1 =
k∑

m=1

‖psm‖2 =
k∑

m=1

(‖p‖2 − (p̂2)cm),

which shows that A1 satisfies the first identity in (5.16).
ii) Definition (5.14) and the definition of A2 in (5.16) give

(5.22) A2 =
1
2

k∑
m=1

m+k∑
n=k+1

κ
2
n−mθmn + B1 + B2,
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and using the new variable n − m = 	 we obtain

k∑
m=1

m+k∑
n=k+1

κ
2
n−mθmn =

k∑
m=1

k∑
�=k+1−m

κ
2
�

(m + 	)2 + m2

	(	 + 2m)

=
k∑

�=1

κ
2
�

k∑
m=k+1−�

(m

	
+

m + 	

	 + 2m

)
.

Due to the identities
k∑

m=k+1−�

m

	
=

2k + 1 − 	

2
,

k∑
m=k+1−�

m + 	

	 + 2m
=

k+�∑
n=k+1

n

2n − 	
=

	

2
+

1
2

k+�∑
n=k+1

	

2n − 	
,

we get

(5.23)
k∑

m=1

m+k∑
n=k+1

κ
2
n−mθmn =

2k + 1
2

k∑
�=1

κ
2
� +

1
2

k∑
�=1

κ
2
�

k+�∑
n=k+1

	

2n − 	
.

Substituting this identity into (5.22) we obtain (5.17).
We will prove the first asymptotics in (5.19). The Parseval identity ‖f0‖2 +∑∞

n=1(f, cn)2 = ‖f‖2 implies
∞∑

�=1

κ
2
� = ‖p‖2 − p2

0.

Estimate (5.3) gives∣∣∣ ∞∑
�=k+1

κ
2
�

∣∣∣ � C2
∞∑

�=k+1

1
n4

� C2

∫ ∞

k

dx

x4
=

C2

3k3
.

Then the definition of B0 in (5.18) yields the first asymptotics in (5.19).
We will prove the second asymptotics in (5.19). We have the estimates

θmn = 1 +
2m2

n2 − m2
� 1 +

2k2

(m + k + 1)2 − m2
� 3, 1 � m � k � n − m − 1.

Moreover, definition (5.14) implies

amn � κ
2
m−n + κ

2
m+n ∀ m,n ∈ N.

Then the definition of B1 in (5.18) and estimate (5.3) give

0 � B1 � 3
k∑

m=1

∞∑
n=m+k+1

(κ2
n−m + κ

2
m+n) = 3

( k∑
m=1

∞∑
�=k+1

κ
2
� +

k∑
m=1

∞∑
�=2m+k+1

κ
2
�

)

� 6
k∑

m=1

∞∑
�=k+1

κ
2
� = 6k

∞∑
�=k+1

κ
2
� � 6kC2

∞∑
�=k+1

1
n4

� 6kC2

∫ ∞

k

dx

x4
=

2C2

k2
,

which yields the second asymptotics in (5.19).
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We will prove the third asymptotics in (5.19). The definition of B2 in (5.18)
and estimate (5.3) imply

|B2| � 1
2

k∑
m=1

m+k∑
n=k+1

|κm+n|(|κm+n| + 2|κn−m|)θmn

� C2

2

k∑
m=1

m+k∑
n=k+1

1
(n − m)2

( 1
(n + m)2

+
2

(n − m)2
)
θmn.

Using the estimates

1
(n − m)2

( 1
(n + m)2

+
2

(n − m)2
)
θmn =

(3n2 + 3m2 + 2mn)(n2 + m2)
(n − m)3(n + m)5

� 3(n2 + m2)2

(n − m)3(n + m)5
� 3

(n − m)3(n + m)
, 1 � m < n,

we obtain

|B2| � 3C2

2

k∑
m=1

m+k∑
n=k+1

1
(n − m)3(n + m)

=
3C2

2

k∑
m=1

k∑
�=k+1−m

1
	3(	 + 2m)

=
3C2

2

k∑
�=1

1
	3

k∑
m=k+1−�

1
	 + 2m

� 3C2

2(k + 2)

k∑
�=1

1
	3

k∑
m=k+1−�

1 =
3C2

2(k + 2)

k∑
�=1

1
	2

,

which yields the third asymptotics in (5.19).
We will prove the fourth asymptotics in (5.19). The definition of B3 in (5.18)

and the estimate
k+�∑

n=k+1

1
2n − 	

� 	

k + 1
∀ 1 � 	 � k,

imply

0 � B3 � 1
4(k + 1)

k∑
�=1

	2κ
2
� � C2

4(k + 1)

k∑
�=1

1
	2

.

where we have used (5.3). This asymptotics yields the fourth asymptotics in (5.19).
iii) Asymptotics (5.19) and identity (5.17) yield (5.20).

Remark. If p is a trigonometric polynomial, then κn = 0 for all n ∈ N large
enough, hence B1 = B2 = 0 for all k ∈ N large enough.

Proof of asymptotics (3.6) in Lemma 3.2. Substituting the definition of A1

in (5.16) and asymptotics (5.20) into (5.15) we obtain (3.6).
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