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ABSTRACT. In this paper we develop a new theory for the existence, local-
ization and multiplicity of positive solutions for a class of non-variational,
quasilinear, elliptic systems. In order to do this, we provide a fairly general
abstract framework for the existence of fixed points of nonlinear operators
acting on cones that satisfy an inequality of Harnack type. Our methodology
relies on fixed point index theory. We also provide a non-existence result and
an example to illustrate the theory.
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1. Introduction

In this paper we develop a new theory for the existence, localization and mul-
tiplicity of nonnegative weak solutions to the following Dirichlet problem for (p, q)-
Laplacian systems

—Apu = f(z,u,v) inQ,
(1.1) —Agv =g(z,u,v) in,
u,v =10 on 0f),
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where © C R™ is a bounded domain of class C17 for some y € (0,1), f,g: QxR% —
R, are continuous functions, and p,q > 2n/(n +1).

The existence of positive solutions of these types of problems has been inves-
tigated by means of different methodologies. The most common approach is topo-
logical, for example Schauder fixed point theorem was used in [12], Schaefer fixed
point theorem was employed in [14], Leray-Shauder degree theory was exploited
in [4, 5, 25], fixed point index on cones was applied in [16, 23] and continuation
methods were used in [3]. Variational methods, making use of the Nehari manifold,
have been used in [1, 21|, super and subsolution methods were applied in [7, 11]
and monotone techniques in [9].

The multiplicity of solutions was studied in [1, 21, 25], nonexistence was in-
vestigated in [5, 23, 25], a priori estimates were given in [3, 25], regularity results
were obtained in [7] and qualitative properties of the solutions have been studied
in [18].

Localization results have been given in [16], where the authors proved the
existence of one positive solution in the case p = ¢, and in [4], where the authors
dealt with the existence of radially symmetric solutions in a ball.

Here we develop a new method that deals with the existence, localization and
multiplicity of solutions in cones, for systems of two (or more) abstract equations.
This method can be applied, as a special case, to deal with the existence of positive
solutions of the system (1.1). Our approach is purely topological and is based on
an abstract Harnack-type inequality and on the fixed point index theory. In order
to do this, we fully exploit the recent theory developed by Precup in [19, 20] for
the case of one equation, where the author has obtained some Krasnosel’skii-type
results. We remark that our results are not a trivial extension of the ones in [19, 20]
to the case of systems. In fact, we fully benefit of the richer structure of the system
and we improve the theory, even in the case of one equation, by allowing better
constants and a more precise localization of the solutions.

In the case of the system (1.1) we obtain existence, localization, multiplicity and
non-existence of positive weak solutions. We also provide an example to illustrate
the theoretical results.

Our results are new and improve and complement earlier ones in literature.

2. Operator equations on Cartesian products

Let X; (i = 1,2) be Banach spaces with norms | - |; ordered by cones K? and
let || - ||; be seminorms on X;. Denote by <; the partial order relation associated
with K?. Assume that both norms and seminorms are monotone, i.e.

0 <;u<;v implies |ul; <|v|; and |Ju|; < vl

for u,v € X;. In what follows, for simplicity, we shall use the same symbols
Il, Ill, < to denote |-|,, ||[|;, <i for both i =1,2.
Let x; € K? be fixed such that |x;|| > 0. Define the cones K; C K? by the
formula
Ki={ue K] u>|ulx}

and assume that there exist points inside them with positive seminorms, which is
equivalent to the assumption ||x;|| < 1. Hence, we can choose

(2.1) ¢ € Ky, |¢il =1, |ldsll > 0.
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In particular we may take

g =
Xl
Let us observe that the seminorm || - ||; is continuous in K; with respect to the
topology induced by the norm | - |;, since one has:
1
(2.2) u > |lullxe, ve K, = |ul| < il lu|, ve K;.
K2

In what follows by compactness of a continuous operator we mean the relative
compactness of its range. By complete continuity of a continuous operator we mean
the relative compactness of the image of every bounded set of the domain.

We set

XZ:Xl XXQ, KI:K1XK2,
and we seek the fixed points of a completely continuous operator
N = (Nl,NQ)I K HK,

that is (u,v) € K with N (u,v) = (u,v). Note that the cone-invariance of N
is equivalent to the fact that the operators N; satisfy an abstract weak Harnack
inequality of the type

Ni(u,v) = ||Ni(u,v)lIxi, (i =1,2).

We shall discuss not only existence, but also localization and multiplicity of
solutions of the nonlinear equation N (u,v) = (u,v). In order to do this, we utilize
the Granas fixed point index, inde(f,U) (for more information on the index and
its applications we refer the reader to [6, 10]).

The next Proposition describes some of the useful properties of the index, for
details see Theorem 6.2, Chapter 12 of [10].

PROPOSITION 2.1. Let C' be a closed convex subset of a Banach space, U C C
be open in C and f: U — C be a compact map with no fived points on the boundary
OU of U. Then the fixed point index has the following properties:

(i) (Existence) If indc(f,U) # 0 then fix(f) # 0, where fixf = {x € U :

flx) =}
(ii) (Additivity) If fixf € Uy UUs C U with Uy, Uy open in C and disjoint,
then

iIldc(f, U) = indC(fa Ul) + indC(ﬁ UQ)
(iii) (Homotopy invariance) If h: U x [0,1] — C is a compact homotopy such
that h(u,t) # u for uw € OU and t € [0,1] then
ind¢(h(.,0),U) = indc(h(.,1),U).
(iv) (Normalization) If f is a constant map, with f(u) = ug for every u € U,
then
1, ifuyeU
0, Zf () ¢ U

In particular, inde(f,C) = 1 for every compact function f : C — C, since f is
homotopic to any ug € C, by the convexity of C' (take h (u,t) = tf (u)+ (1 —t) up).

indC(fa U) = {
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2.1. Solutions with at least one nonzero component. We begin with
four theorems on the existence and localization of one solution of the operator
equation N(u,v) = (u,v). The first two ones assume that the operator N leaves
invariant the set

C ={(u,v) € K:|u| <Ry, |[v| < Rs},
for some fixed numbers Ry, Rs.

THEOREM 2.2. Assume that there exist numbers r; > 0 and R; > 0 with

(2.3) ri < ||oillllxal[ R (i =1,2),
such that
. T1 . T2

2.4 inf Ny(u,v)|| > , inf No(u,v)|| > ——,
(2.4) Wt [ N1 (u, v)| T Wt ([ N2 (u, v)| Tl

lull=r1,lvl|<rs lull <7y, llv][=r2
and
(2.5) sup |N;(uw,v)| <R; (i=1,2).

(u,v)eC

Then N has at least one fived point (u,v) € K such that |u| < Ry, |v| < Ry and
either ||ul| > 71 or ||v|| > ra.

PROOF. The assumption (2.5) implies that N(C) C C. Therefore, by Proposi-
tion 2.1, inde(N,C) = 1. Let

U:={(u,v) € C:|ul]| <r, ||v] <ra}.
The boundary U of U with respect to C' is equal to QU = A; U A, where
Ar = {(w0) € Ot lul =7y, [lol] <o},
Ay = {(w,0) € C:lul] <7y, [lof = 72}
If there is a fixed point (u,v) of N on 9U, then (u,v) satisfies the assertion. If
not, the indices indo(N,U) and inde(N,C \ U) are well defined and their sum,
by the additivity property of the index, is equal to one. Therefore, it suffices to

prove that indo(N,U) = 0. Take h = (R1¢1, Ra¢2) € C and consider the homotopy
H:Cx[0,1 —C,

H (u,v,t) :=th+ (1 —t)N(u,v).
We claim that H is fixed point free on OU. Since

(2.6) [Rignll = Rull¢all = Rullgnll Ixall > 1,
[Ragall = Rall¢2ll = Ry |l [xall > 2,

we have that (u,v) # h = H (u,v,1) for all (u,v) € OU. It remains to show that
H (u,v,t) # (u,v) for (u,v) € U and t € (0,1) . Assume the contrary. Then there
exists (u,v) € Ay U Ay and t € (0,1) such that

(2.7) (u,v) =th+ (1 —t)N(u,v).
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Suppose that (u,v) € Aj. Then, exploiting the first coordinate of the equation
(2.7), we obtain

u = tRigr+ (1= t)Ni(u,v) = tRa¢nllx1 + (1 = 1)[[N1(u, v)[xa
(2.8) = ((tRl||¢1|| + (-1 inf ||N1(u7v)||>><1

(u,w)eC
lull=r1,llv]|<r2

(tR1||<b1|| +(1-1) ||>2|) e

Using the monotonicity of || - || and (2.3) we obtain that

1
Qmwm+u wxw)mu

Y%

Y

1

tRy||p1l Ixall + (L =)y > try + (1 = t) 7y = 71,

which is impossible. Similarly we derive a contradiction if (u,v) € As.
By the homotopy invariance of the index we obtain that ind¢ (N, U) = inda(h, U).
From (2.6) we have h ¢ U, hence ind¢(N,U) = indg(h,U) = 0, as we wished. [

REMARK 2.3. We observe that, using the relation (2.2), a lower bound for
the solution in terms of the seminorm provides a lower bound for the norm of the
solution, namely

ull 21 = [ul = r1]xal-

In the next result we replace, in the spirit of Lemma 4 of [13], the assumption
(2.4) with a different one. The two conditions are not comparable and are used, in
a combined way, in Theorem 2.14.

THEOREM 2.4. Assume that there exist numbers r; > 0 and R; > 0 with

(2.9) ri <|loillllxallR: (@ =1,2),
such that
(2.10) sup |N;(u,v)| < R; (i=1,2),
(u,v)eC
and
(2.11) Lt Mol 2 or | inf ([N, > e

where A is a subset of the set
U={(u,v) € C: ||ul]| <ri, ||| <r}CC.

Then N has at least one fived point (u,v) € K such that |u| < Ry, |v| < Ry and
(u,v) & A.

PROOF. Since N is a completely continuous mapping in the bounded closed
convex set C, by Schauder’s fixed point theorem, it possesses a fixed point (u,v) €
C. We now show that the fixed point is not in A. Suppose on the contrary that
(u,v) = N(u,v) and (u,v) € A. Suppose that the first inequality from (2.11) is
satisfied. Then

1> [Jul| = [[ Ny (u, v) || = 71,
which is impossible. Similarly we arrive at a contradiction, if the second inequality
from (2.11) is satisfied. O
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The next theorems do not assume the invariance condition N (C) C C' and
use instead Leray-Schauder type conditions. The first result requires the Leray-
Schauder condition componentwise.

THEOREM 2.5. Assume that there exist numbers r; > 0 and R; > 0 with
(2.12) ri <[ @allllxallRs - (i =1,2),
such that the strengthened condition (2.4):

-1
inf <max{|N1](;“’)|71}) IN: (u, )| >
1

< Dall’
(2.13) HiEre i »
N.
inf max{|2(u’v)|, 1}) 1N (u, )| > 2,
(u,w)eC Ry Izl

llul[<ry,ljv]|=r2

and the weakened condition (2.5):

|u| = Ry, |v| < Ry implies N(u,v) # (Au,v), for all X > 1;
(2.14) |u| < Ry, |v| = Ry implies N(u,v) # (u, \v), for all A > 1;

|u| = Ry, |v] = R implies N(u,v) # (A1u, A\av),

for all A1, Ao > 1 with A\ A > 1,
hold. Then N has at least one fized point (u,v) € K such that |u| < Ry, |v| < Ra
and either ||u|| > ry or [jv]| > 7.
PRrOOF. Consider the retraction 7: K — C, w(u,v) = (71 (u), m2(v)), where

U if \u| < R;
it K= Oy ={uveK,;:|ul <R}, mu) = o N
i - {u [ul boomi(u) {fzu if |u| > R;.

Now we define the operator N by the formula

N(u,v) = m(N(u,v)) = (m1 (N1 (u, 0)), 2 (N2 (u, ).

Then N(C) C C, i.e. N satisfies (2.5). Now, let (u,v) € C be such that ||ju| =
r1, ||v|| < ro. Observe that

Ni(u,v) = 1 (N3 (u,v)) = <max{|ng’”), 1}) - Ny (u,v),

which in view of (2.13) shows that
~ 7"1

[N (w, 0)[| =
Il
A similar estimate holds for Ny, which shows that N satisfies (2.4). By Theorem 2.2
we obtain a fixed point (u,v) of N in the set C'\ U. Therefore (N (u,v)) = (u,v).
If [Ny (u,v)| < Ry, then 71 (N7 (u,v)) = Ni (u,v) and so Ny (u,v) = u. Similarly, if
| N2 (u,v)| < Ra, then N3 (u,v) = v, and the proof is complete. Otherwise, we have
|N1 (u,v)| > Ry or |[Na (u,v)| > Ry. Assume |Ny (u,v)| > Ry. Then

Ry
T (Nl (U,U)) = le ('LL, 'U) = Uu.
It follows that N (u,v) = Wu and |u] = Ry which, in view of the first

implication from (2.14), is impossible if |v| < Rs. Hence |v| = Rg, which implies that
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Ns (u,v) = Agv for some Ay > 1. Since N; (u,v) = Aju, where A\; = W > 1
and |u| = Ry, we contradict the third condition from (2.14). Thus the inequality
[Ny (u,v)| > Ry is not possible. By symmetry, the inequality |Ng (u,v)| > R is
also not possible. Consequently, 7(N(u,v)) = N (u,v) = (u,v) . O

REMARK 2.6. Notice that under condition (2.5), (2.14) is satisfied and (2.13)
reduces to (2.4).

If instead of the retraction m, we consider the retraction p : K — C given by

o= (s {22 11Y o,

we obtain the following existence theorem under the Leray-Schauder condition act-
ing this time, uniformly on the two components u, v.

THEOREM 2.7. Assume that there exist numbers r; > 0 and R; > 0 with

(2.15) ri < |oillllxall R (i =1,2),
such that the strengthened condition (2.4):
- |N1(u,v)| [Na(u,v) ! T
R e e kBt
llull=r1.lfoll<rs
210 [Ni(u,0)] [ Na(u,v)| )7
. 1(u, v 2\u, v T2
inf max , 1 No(u,v)|| > ——,
(u,v)eC { Rl R2 }) || 2( )” ||X2||

llul[<ry,l[v]=r2
and the weakened condition (2.5):
(2.17) N(u,v) # Mu,v), for (u,v) € 0C, \>1,

hold. Then N has at least one fized point (u,v) € K such that |u] < Ry, |v] < R
and either ||u]| > ry or [jv]| > 7.

PROOF. The assumption (2.16) guarantees that the map N (u,v) = p(N(u,v)),
that has the property N(C) C C, also satisfies condition (2.4). By Theorem 2.2, N
has a fixed point (u,v) in C'\ U. If N (u,v) € C, then p(N (u,v)) = N (u,v)
and we are done. Otherwise, |N7 (u,v)| > Ry or |Na(u,v)| > Ry, and then

A= mam{lNll(:‘,l"’v)‘7 ‘NQI(;;’U”J} > 1, N (u,v) = A(u,v) and (u,v) € IC, which

1

is excluded by (2.17). O

REMARK 2.8. Note that, in the case of one equation, the retractions m and p
coincide with the one used in [19, Theorem 2.1], but are used differently.

2.2. Solutions with both nonzero components. In the previous results
one of the components of the solution can be 0. The next three theorems avoid this
situation.

THEOREM 2.9. Assume that there exist numbers r; > 0 and R; > 0 with

(2.18) re < ||gillllxallRi (i =1,2),
such that
(2.19) inf [ Ni(u,0)] > — inf (| Ny(u,0)] > —
. m u,v)|| 2 —, m u,v)|| = —,
(uw)eC ! x| (uv)eC ? lIxzll

lull=ry; fv[Zrs lwllZry, [[v]l=r2
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and
(2.20) sup |N;(w,v)| <R; (i=1,2).
(u,v)eC
Then N has at least one fized point (u,v) € K such that |u| < Ry, |[v] < Ra,
[ull = ry and o] = 7.

PROOF. As before, the assumption (2.20) implies that N(C) C C. Thus,
inde (N, C) = 1. In order to finish the proof, it is sufficient to show that inde (N, V') =
0, where

Vi={(u,v) € C: |jul| <rior |v] <ra}.
We have 0V = By U By, where
Br = {(w0) € C:|lul =7y, [Jol] = o},
By = {(u,v) € C:|ul| = r1, [[o] =ra}.
If N has a fixed point (u,v) € JV, we are finished. Thus, assume that N (u,v) #

(u,v) for (u,v) € OV, and consider the same homotopy as in the proof of Theorem
2.2, that is

H (u,v,t) =th+ (1 —t)N(u,v), where h = (Ri¢1, Rags).

We claim that H is fixed point free on dV. From the previous assumption we
have H (u,v,0) # (u,v) for (u,v) € IV. Also, as in the proof of Theorem 2.2,
H (u,v,1) = h # (u,v) on dV. It remains to show that H (u,v,t) # (u,v) for
(u,v) € OV and t € (0,1) . Assume the contrary. Then, there exists (u,v) € B1UDBs
and t € (0,1) such that

(2.21) (u,v) =th+ (1 —t)N(u,v).

Suppose that (u,v) € Bj. Then, exploiting the first coordinate of the equation
(2.21), we obtain

u=tRip1 + (1 —t)N1(u,v) > tRy[|d1|x1 + (1 — )| Ni(u,v)|[x1

222) > (Rla+0-n i N )]
lull=r1,llv]|>7rs

. (tR1||¢1|| +(1 —t)n;I) .

thus, as in the proof of Theorem 2.2, we obtain the contradiction r; > ry. The case
(u,v) € By is similar. Therefore ind¢(N,V) = indc(h, V) = 0 since in view of
(2.6), h ¢ V. O

Theorem 2.9 can be generalized in the spirit of Theorems 2.5 and 2.7.

THEOREM 2.10. Assume that there exist numbers r; > 0 and R; > 0 with

(2.23) ri < llgillllxall R (i=1,2),
such that
, |Ny (u, )] ! -
(u}gfec maX{Rl,l}) [INy (u, v)]| > Tl
(2.24) llull=r1, o] > B
inf max{wu’v)',l}) [Ny (u, v)|| > 2,
(u,v)€C Ry X2l

llulZry,l[v][=r2
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and

|u| = Ry, |v| < Ry implies N(u,v) # (Au,v), for allX > 1;
(2.25) |u| < Ry, |v| = Ry implies N(u,v) # (u, \v), for allA > 1;
|u| = Ry, |v| = Ry implies N(u,v) # (A1u, A\av),
for allA1, Ao > 1T with A1 Ay > 1.

Then N has at least one fized point (u,v) € K such that |u| < Ry, |v| < Ra,
[lu]] > r1 and ||Jv|| > ro.

PROOF. Define the retractions m; and the operator N as in the proof of Theo-
rem 2.5. Then N(C) C C, i.e. N satisfies (2.20). Now, let (u,v) € C be such that
|lw]l = 71, ||v]] > r2. Observe that

Ny (u, v) = 71 (N1 (u, ) = (max{'ngi’v), 1}) - Ny (u,v),

which shows that
!
[Ixall
A similar estimate holds for Ny which shows that N satisfies (2.19). By Theorem

2.9 we obtain a fixed point (u,v) of N in the set C'\ V. Therefore (N (u,v)) = (u,v).
In the proof of Theorem 2.5 it was shown that (2.25) yields N(u,v) = (u,v). O

IV (, )| >

Similarly, using the method presented in the proof of Theorem 2.7 and exploit-
ing Theorem 2.9, we obtain the following fact.

THEOREM 2.11. Assume that there exist numbers r; > 0 and R; > 0 with

(2.26) ri <[ @allllxallRs (i =1,2),
such that
(u,iil)fec max INlj(%ul,v)l’ Isz(%u27v>71}) 1 | Ny (u, v)|| > ”;711”
(2.27) llull=rylv][>r2 B
aint (e {20 I 1) > 2
llullZry,llvll=rs
and
(2.28) N(u,v) # Au,v), for (u,v) €9C, A>1.

Then N has at least one fized point (u,v) € K such that |u| < Ry, |v| < Ra,
lu]] > r1 and ||Jv|| > ro.

PROOF. Let the mapping N be defined as in the proof of Theorem 2.7. The
assumption (2.27) guarantees that N, having the property N(C) C C, also satisfies
condition (2.19). By Theorem 2.9, N has a fixed point (u,v) in C'\ V. It was shown
in the proof of Theorem 2.7 that (2.28) implies N (u,v) = (u,v). O
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2.3. Multiplicity results. Recall that the seminorms || - ||; are continuous
in K; with respect to the topology induced by | - |;, which implies that there exist
constants ¢; > 0 such that [Jul|; < ¢|u|; for all u € K.

THEOREM 2.12. Assume that there exist numbers p;,r;, R; with

(2.29) 0 <cipi <ri <|oillllxillRi (i =1,2),
such that
. T1 . T2

2.30 inf Ny(u,v)|| > —, in No(u,v)|| > —,
@30 Jate MGl e Nl gy

llull=r1, l[v]|>r2 llul>r1, [lv]l=r2
(2.31) sup |Ni(u,v)] <R; (i=1,2),

(u,v)eC

and
(2.32)

N(u,v) # Mu,v), for X>1 and (Ju| = p1, |v| < p2 or |u| < p1, [v] = p2).
Then N has at least three fived points (u;,v;) € C' (i = 1,2,3) with

lur] < p1, |v1] < p2  (possibly the zero solution) ;
[|uzl| < 71 or ||vo|| < 7Ta; |ue| > p1 or |ve| > p2  (possibly one component zero) ;

lusl| > 71, |lvsll > r2  (both solution components nonzero) .

PROOF. Let V be as in the proof of Theorem 2.9. Strict inequalities in (2.30)
guarantee that IV is fixed point free on 9V. According to the proof of Theorem 2.9
we have indg(N,C) =1, inde (N, V) = 0 and therefore by the additivity property,
indc(N,C\ V) = 1. Let

W= {(u,v) € C:|u|l < p1, |v] < pa}.

For every (u,v) € W, we have
1
lull < erlul <cipr<er(—m ) =n
1

and, similarly, ||v|| < ro. Hence (u,v) € V, which proves that W < V. Con-
dition (2.32) shows that N is homotopic with zero on W. Thus indc(N,W) =
indc (0, W) = 1. Then indg(N,V \ W) = 0 — 1 = —1. Consequently, there exist at
least three fixed points of N, in W, V \ W and C' \ V. O

If we assume the following estimates of the | N;(u,v)|| :
1 T2

(2.33) inf || Ny (u,v)| > inf || Na(u,v)|| > Tl
2

(u,v)eC HXl || ’ (u,w)eC

llull=r1 lvll=r2
then we can obtain a more precise localization for the solution (ug,v2) in Theorem
2.12, the Figure 1 illustrates this fact.

THEOREM 2.13. Suppose that all the assumptions of Theorem 2.12 are satisfied
with the condition (2.30) replaced by (2.33). Then N has at least three fized points
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V=R V=R
2 2
—® | v
33 ERES
2 2
Vi=r,l Ivli=r,
[VI<R [VI<R
2 2
M=p, \)\ vi=p, \)\
\ (u,v)
1
lu=p, llull=r =R, lu=p,  luli=r, =R,
|ul<R, <R,

FIGURE 1. Localization of the three solutions (u;,v;) from Theo-
rem 2.12 (on the left) and 2.13 (on the right).

(ui,v;) € C (i =1,2,3) with

lui| < p1, |vi] < p2 (possibly the zero solution);
lluall < 71, [Jual] <o |ua| > p1 or |va| > pa (possibly one component zero);
llusll > 71, [Jusl] > re  (both solution components nonzero).
PROOF. The assumption (2.33) implies both (2.4) and (2.19) and that there
are no fixed points of N on 90U and OV. Hence, as in the proofs of Theorems 2.2

and 2.9, the indices ind¢(N,U) and inde (N, V) are well defined and equal 0. An
analysis similar to that in the proof of Theorem 2.12 shows that

inde(N,W) =1, indg(N,U\ W) = —1, indc(N,C\V) =1,

which completes the proof. ([

In order to ensure that the solution (u1, v1) from the theorems above is nonzero,
and thereby to obtain three nonzero solutions, we use some additional assumptions
on N.

THEOREM 2.14. Assume that all the conditions of Theorem 2.12 or Theorem
2.13 are satisfied. Consider 0 < g; < ||os|[|lx:illpis i =1, 2.

(i) If
(2.34)
inf 1N ()| > 2, inf N2 (u, )| > —2
(u,0) €K, [u|<p1,|v|<p2 Ixill” (uw)ek,lu[<pr,lv|<ps x|
[[ul|=01,|v]|> 02 [[ul|>o1,||v]|=02

and
|N7;(’LL,’U>| < pi Jor |u| < p1, ‘U| < p2 (Z = 152)7

then we can assume that the solution (ui,v1) from Theorem 2.12 or 2.13 satisfies
llur]| > 01 and |jvi|| > o2;
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(ii) if
(2.35)
inf Ni(u,v)|| > inf No(u,v)|| >
()€K, [ul<pu 0] <7 [N v)ll 2 &1 (u,v)eKJu\sm,\vKﬁzH 2(w,0)l] 2 ez
lull<er,llv]I<e2 [lul <eo1,[lv]|<e2

for some p1 < p1, p2 < pa, then we can assume that the solution (uy,v1) from
Theorem 2.12 or 2.13 satisfies ||ui| > o1 or |[vi]| = 02 or [u1| > p1 or [v1] > pa.

PrOOF. (i) The inequality follows from Theorem 2.9 applied in the case of
r; = 0; and R; := p;.
(ii) From Theorem 2.4 applied in the case of r; := g;, R; := p; and

A =A{(u,v) : [Jull <o, lv]l < o2, ul < pr,[v] < pa},
we obtain that there are no fixed points in NV in A, which ends the proof. O

The next Remark illustrates how Theorem 2.9 can be used to prove the exis-
tence of n nontrivial solutions.

REMARK 2.15. If N satisfies the conditions of Theorem 2.9 for all pairs of radii
<ol RS for i=1,2, j=1,2,...,n,
satisfying
R <rit for i=1,2,j=1,2,...,n—1,
then N possesses at least n nontrivial solutions (u;,v;) with
luj| < Ry, Jojl < Ry, Nlugll =g, [logll > 3.
Moreover, if the conditions

J J

inf N, 0) || > inf N2 (u, 0)[| > 2
(u,0) €K Jul <R |v| <R} Ixall” (uw)er jul<ry jo|<Rj [Ixzll
llull=r{, [lv]>73 lull=ri, [lvll=rs
sup N (u,v)] < R (i=1,2),
(u,w) €K, [u|<R],|v|<Rj
hold, then we have n — 1 additional solutions (@;, 9;), j = 1,...,n — 1 such that

- U - i+1. - J = J. (15 j+1 - j+1
;| < Ry, o5l < Ry™5 Jugl > Ry or o] > Ry; lug|l <ri™ or [lugf <y
The first conclusion follows from Theorem 2.9 applied n times, whereas the second

follows from Theorem 2.12 applied n — 1 times.

REMARK 2.16. Assume that between the cones K; C K? and the norms ||,
(i = 1,2) there is a strong compatibility, expressed by the following condition:
(2.36)
there exists hY € K;, |h?} =1, such that hY > u for every u € K; with |u| < 1.

Then the localization theory for fixed points of a given operator N = (N, Na) :
K — K can be developed without assuming the Harnack type inequality “u >
lu]l x:” for the definition of K and without specifying the elements x;, ¢;. This
is based on a different way of proving that the homotopy H(u,v,t) = th + (1 —
t)N (u,v) is fixed point free on the boundary. Here we choose h = (Ryh{, R2h9) .
For instance, the corresponding version of Theorem 2.2 is the following:
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THEOREM 2.17. Assume that condition (2.36) holds, that N : K — K s
completely continuous and that for some numbers 0 < r; < ||h?|| R;, the conditions

2.37 inf Ni(u,v)|| > ry, inf No(u,v)|| >r
(237) St N >, i N ) >
llull=ry,lv][<rs lull<ry,llvll=r2

and

sup |N;(u,v)| <R; (1=1,2)
(u,v)eC

hold. Then N has at least one fized point (u,v) € K such that |u| < Ry, |v| < Ry

and either ||u]| > ry or [|v]| > 7.

Proor. Following the proof of Theorem 2.2 and assuming that there exists
(u,v) € OU and t € (0,1) with H(u,v,t) = (u,v), in case that (u,v) € A;, we have

u= Ni (u,v) +t(h — Ny (u,v)) > Ny (u,v).
Therefore, making use of the first inequality from (2.37), we obtain
1= |lull = [|Ny (w, 0)[| > 71,

a contradiction. The same argument can be used if (u,v) € Ay. Note that h ¢ U
because of the condition r; < Hh?“ R, (i=1,2). O

We underline that, although the Harnack inequality is not used in the above
proof, it is essential to obtain the estimates from below of the type (2.37) in the
applications.

REMARK 2.18. We stress that the abstract results obtained in this section can
be generalized to the case of systems of more than two equations. The idea is
to consider the product space X = II}" ; X; of the Banach spaces X;, endowed
with the norms | - |;, seminorms || - ||;, and the cones K; C K? C X; such that
¢; € Ki :={ue K?: u>|ulix;} for fixed x; and ¢; satisfying (2.1),i = 1,2, ..., n.
In this setting we are interested in the existence and localization of fixed points of
a given operator N: K — K, where K = II"; K;. For example, let us consider the
sets

C:{UGKI |U1|1 SRl,...,|un\n SRn},
U={uel: |lu|1 <ri,..||Juplln <rn}

for given radii r;, R; with 7; < ||é:|l:||xilliRiy, 1 =1,...,n. If

sup |[N;(u)|; < R;, i=1,2,...,n
ueC

and
inf [Nl > i, i=1,2,.0n
(u,0)€T [l Il
lwilli=mr;

then N has at least one fixed point in C'\ U.
As a consequence, results analogous to ones obtained later in Section 3, can be
established for systems with more than two differential equations.
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2.4. Case of isotone operators. Let us now turn our attention to the case
when N satisfies a monotonicity condition with respect to the order induced by
cones K?. Precisely, assume that the operator N is isotone, that is

0<u<u, 0<v<v implies Ni(u,v) < Ny(u',v"), Na(u,v) < Na(u',v),

and that condition (2.36) is satisfied.

Let us examine the condition (2.4). If (u,v) € C, ||u|| = 71, |[v]] < r2, then
u > |Jullx1 = rix1 and ||Ni(u,v)|| > |[N1(r1x1,0)|]. Therefore the condition (2.4)
is implied by the simpler one:

r r
(2.4) IN1(rix, 0)]| > i, [IN2(0, r2x2)l| > s
lIx1l X2l
Similarly, the condition (2.19) is implied by the following one:
r r
(2.19) N1 (rixa, rex2) | >, IN2(rixa, raxe)ll >
[l Izl

Let us now examine the condition (2.5). If |u| < Ry and |v] < Ry then u <
RihY, v < Roh$ and |N;(u,v)| < |N;j(Rih{, Rah9)|, i = 1,2. This shows that the
condition

IN;(R1hY, Roh9)| < Ry (i =1,2)
implies (2.5).

3. Applications to (p,¢)-Laplacian systems

3.1. Existence results. We now turn our attention back to the existence and
localization of nonnegative weak solutions of the (p, ¢)-Laplace system (1.1). By a
nonnegative solution we mean a solution (u,v) with u > 0 and v > 0. A nonnegative
solution (u,v) is said to be nontrivial if either u # 0 or v # 0, and is called positive
if both functions u, v are different from zero, equivalently, if u > 0 and v > 0.

In order to apply the abstract theorems from the previous section, we choose
X1 = X5 = L®(Q), and KY = K = K° := {u € L>®(Q) : u > 0}. Thus the two
norms ||, , ||y coincide with the usual norm of L> (), simply denoted by |-|. Let
S, : L* (Q) — C}(2) be the operator which assigns to any v € L> () the unique
weak solution u of the problem

{—Aru =wv in ),

3.1
(3:-1) u=>0 on 0,

ie. S, = (—A,)"L It is known (see [2]) that S, is well defined, completely contin-
uous, isotone and positive. Also consider the superposition operators F,G: K° x
K() — KO

F(u,v)(z) = f(z,u(z),v(x)), G(u,v)(@)=g(z,u(z),v(z)),
and define the operator N = (N1, Na) by
Ni(u,v) = Sp(F(u,v)), Na(u,v) = S,(G(u,v)).

Note that a pair (u,v) is a nonnegative weak solution of (1.1) if and only if it
is a fixed point of N in K° x K% In Remark 3.11 we shall give some additional
information on the regularity of the solution.

We recall a local weak Harnack inequality for nonnegative p-superharmonic
functions due to Trudinger, see [22, Theorem 1.2], in the following form, similar to
the one presented by Lindqvist, [17, Corollary 3.18]:
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THEOREM 3.1. For each s € [1, ”5517:;)) if p<norsé€ll,o0) if p>n and for

each p > 0 such that Bs, C Q, there exists a constant C = C (n,p,s) > 0 such that

1
infu > Cp*% / uw’dx
B, Bay

for every nonnegative p-superharmonic function u in ).

Following a reasoning based on finite cover by balls of any compact set (see the
proof of Corollary 1.2.9 in [15] or Theorem 1.3 in [19]), we obtain a variant of the
Harnack inequality, stated in [20], which plays a crucial role in our investigation.

THEOREM 3.2. For each s as in Theorem 3.1 and each compact D C €1, there
is a constant M = M (n,p, s, D,) > 0 such that

1

(3.2) infu>M (/ usd:v> -
D D

for every nonnegative p-superharmonic function u in ).

By means of the Trudinger-type inequality (3.2) we shall obtain the existence,
localization, and multiplicity of nonnegative solutions for the problem (1.1).

Let us now consider two compact sets of nonzero Lebesgue measure Dy, Dy C )
and their characteristic functions xp,, xp,, which we denote by xi, x2. Since
p,q > 2n/(n+ 1), by Theorem 3.2 we obtain that there are numbers s1,s; > 1 and
constants My, M7 > 0 such that

N
uszda:>

(3.3) igfu > ||lull = M,y (/ usldx) ' , iva > vz := My </
1 Dy 2 D

for every nonnegative p-superharmonic function v and g-superharmonic function v.
Using the natural partial order in L°°(€2) we can rewrite the inequalities (3.3) in
the following way:

2

(3-4) w2 fullixi, v = vllaxe.

The nonnegativity of f and g gives that Ni(u,v) and Nao(u,v) are superharmonic
for any u,v € K. Therefore we obtain in a similar way as in the case of one
equation studied in [20], that

N (K° x K% C K, No(K° x K°) C Ko,
where
Ki={uve K*:u>|ul,xi}, xi=xp, (i=12).
Therefore, N : Ky x Ky — K x K». In addition, the complete continuity of .S, and
S, guarantees that N is completely continuous.

REMARK 3.3. Note that the assumption (2.36) is satisfied in our context of
differential equations, since the constant function hY = 1 satisfies (2.36). Indeed,
since the constant function 1 is p (g)-superharmonic in €2, one has h? € K;. Also,
the conditions |h?’ =1 and u < AY for every u € K; with |u| < 1 are trivially
satisfied. Therefore we can use Remark 2.16. This yields that, instead of the
relation (2.3) between radii, we can consider the relation

(3.5) ri < |1k (i=1,2),
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and we can improve the constants r;/[|x;|| in (2.4), (2.13), (2.16), (2.19), (2.33),
(2.34), replacing them by r;.

Notice that if in our case, ¢; is chosen to be x;/|xi| = xi, then the relation
(2.3) becomes 1; < ||1||z2 R;, which is more restrictive than (3.5).

We can now state a result for the existence and localization of a nonnegative
solution of the system 1.1 with both nonzero components (i.e. a positive solution).

THEOREM 3.4. Let r1,79, Ry, Ry satisfy (3.5). Assume that the following con-
ditions hold:

_max fla,7,0)
(2.m) €00, Ra) [0, oA L
6 A T ER T EET
(3.6) e P
(z,7,0)€Q%[0,R1] x [0, Ra] A 1
B = A= g,
and
(Qﬁ,T,o‘)EDlirl[ql};lle]X[(LRZ]f(x77—, U) . | 1
¢ I CYC
3.7
(37 min g(z,7,0)
(2.7,7)€ D2 X [0, R ] X [r2, Ra] By By L
rg_l q TS0l

Then there exists a positive solution (u,v) of (1.1) such that |u| < Ry, |v| < Ra,
llul| > 71 and [jv]| > 7.

PRrROOF. If (u,v) € C and = € Q, then 0 < u(z) < Ry, 0 < v(z) < Ry and
therefore
F(u,v)(2) = f(z,u(x),v(x)) < a1 RY .
By the isotonicity of S, and the monotonicity of | - | we have
INi(, 0)] < 18p(@r R < 0PV R[S, (1)] < Ra.

A similar estimate is true for Ny. Hence, the condition (2.20) from Theorem 2.9
is satisfied. Now, let (u,v) € C be such that ||u|| = r1. For € D;, we have
u(x) > |Jul| = r1 and, as a consequence,

Flu,0)(@) = f(a, u(e),o(@)) > Bird "

By the isotonicity of S, and the monotonicity of || - | we have

N1 (. 0) | = |

Sp(Birt )| = B r 18,00l > 7.

A similar estimate is true for Ny. Hence, the condition (2.19) from Theorem 2.9,
modified in accordance with Remark 2.16, is satisfied.
The assertion now follows from Theorem 2.9 and Remark 3.3. O

We now present the relationship between the constants that arise in Theo-
rem 3.4.
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PROPOSITION 3.5. Let A1, be the first eigenvalue of the p-Laplace operator
—A, under the Dirichlet condition. The following relations hold

(38) Ap S )‘1’17 S Bl,p and Aq S )‘1,11 S Bg’q.

PROOF. Let u > 0 be a positive eigenfunction corresponding to the eigenvalue
A1 p. Then —A,u = A puP~! and since S, is homogeneous of degree 1/(p — 1), we
have o)
_ 1/(p—1 _
u=Sp (Apu” 1) = )‘1,pp Sp (uP 1) :
a) Assume that |u| = 1. Then 0 < u < 1 and, by the isotonicity of S, and the

monotonicity of the norm, we have
1= [ul = MV S, (1) < APV 18,01
ul = A7 S (uP )] < [1Sp(1)]-

Lp
This implies that A, < A1 .
b) Now assume that ||u|| = 1. Then, by the Harnack inequality, we have u >
XD, - By the isotonicity of S, and the monotonicity of the semi-norm we obtain

1= [full = APV 8, (@) || = APV 118, (e, )I-

Lp
This implies that By , > A1 p. Similarly one can prove that A; < Ay < By, O

REMARK 3.6. Proposition 3.5 can be seen as an analogue of a result proved,
in the context of ODEs, by Webb and Lan [24, Theorem 2.8]. Note that the
inequalities (3.8) can be strict, see for example [24, Example 5.2].

THEOREM 3.7. Let r1,79, R, Ry satisfy (3.5) and let Ry < Ry, Ry < Ry.
Assume that the condition (3.6) is satisfied and that

min - flz,7,0)
(z,7,0)€D1 x[0,R1]Xx[0,R2]
! 7;71 2 =:031 > B1, or
(3.9) !
min - g(z,7,0)
(z,7,0)€D2x[0,R1]X[0,R2]
rq71 =: ﬁé > Bqu.

Then there exists a nontrivial nonnegative solution (u,v) of (1.1) such that |u] <

Ry, |v] < Ry and
(3.10) ul| > 71 or ||| >ry or|ul >Ry or|v] > Ra.

In particular, if Ry = Ry and Ry = Ry, then there exists a nontrivial nonnegative
solution (u,v) with either ||u|| > r1 or ||v|| > ra.

PROOF. As in the previous proof we know that the condition (2.10) from The-
orem 2.4 is satisfied. Let

(w.0) € Ai={ (o) Jull < 7o, ol <ra, Jul < Ra, ol < Ra}.
Assume that the first inequality in (3.9) holds. Then for x € Dy we have
F(u,v)(z) = f(z,u(z),v(x)) = Br{ "
and by the isotonicity of S, and the monotonicity of || - ||,
1N (o)l = [|Sp (817~ x| = 8177 r 1Sy el > 7

A similar estimate holds for No. Hence, the condition (2.11) from Theorem 2.4,
modified in accordance with Remark 2.16, is satisfied. Therefore, we can apply
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Theorem 2.4 and Remark 3.3, and obtain a solution (u,v) ¢ A. Clearly, this is
equivalent to (3.10). O

REMARK 3.8. The importance of Theorem 3.7 consists in the fact that the
assumption (3.9) involves only one component of the system nonlinearity (f,g).
Therefore, it allows different kinds of growth of f and g near the origin. A similar
remark also applies to the following theorem.

THEOREM 3.9. Let p;, i, R; satisfy 0 < p; <r; <||1|:R; (i =1,2). Assume
that:

_max f(.l?, T, U) _max g(g;7 T, 0-)
(2,7,0) €0x[0,~1] x[0. Re) (@,7,0)€0x [0, R1] X [0, Ra]
(3.11) R < Ay, o < A,
_max f(.l?, T, U) _max g(x’ T, 0-)
(312) (m,T,U)GQX[Oyﬁl];:[g-,Pﬂ < Apv ($177U)€Q><[O,p111>i[§)7p2] - Aq)
1 P2
min .7,
(z,7,0)€D1 x[r1,R1]%x[0,R2] f( T U) B
T > D1 p,
(3.13) ]
(#,7.0)€D gl[énR]X[ R]Q(I,T,o)
x,T,0 2 Ay 2,112
1 > B27q.

e
T2
Then there exist three nonnegative solutions (u;,v;) (i = 1,2,3) of the system (1.1)
with
lur] < p1, |vi] < p2 (possibly the zero solution);
lluall < 71, ||vall < ro; |ua| > p1 or |va| > pa  (possibly one component zero) ;

llusll > 71, [Jusl] > re  (both solution components nonzero).

Moreover, having given numbers 0 < o; < ||1||p; (i =1,2),

(i) if
min L,T0
(a:,T,o’)ED1X[QlaP;]:<1[07p2]f( ) > Bl,P and
(3.14) i )
Dlil[lgl - ]g(l’,T,U)
(2,m,0)ED2 X [0,p1 <oz e > By
: ;
%)
then ||u1|| > o and [u1| > ox;
(ii) 4f
min x, 7,0
(z,7,0)€D1%[0,p1]x[0,p2] I )
) >Bl,p or
(3.15) i )
T T A
\T50 2X10,p1 P2
(z,7.0)€ Pl > Baq
: ,
%)

for some p1 < p1, p2 < p2, then ||ur]| > o1 or ||vi| > 02 or |ui| > p1 or |vi| > po.
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PROOF. Observe that (2.2) implies that the constants ¢; that occur in the
statement of the Theorem 2.12 are equal to 1.

The assumptions (3.11), (3.12) and (3.13) imply the conditions (2.31), (2.32),
(2.30), modified according to Remark 2.16. Hence, the first part of the assertion
follows from Theorem 2.13, combined with Remark 3.3.

The second part follows, in a similar way, from Theorem 2.14, combined with
Remark 3.3. O

REMARK 3.10. If the functions f,g do not depend on x and are monotone
(increasing or decreasing) in each of the two variables u, v, then the minima and
maxima in all inequalities from Theorems 3.4-3.9 are reached on some boundary
point of the corresponding rectangular domain. Combining the two kinds of mono-
tonicity on the two variables wu,v, for our functions f (u,v),g(u,v), we see that
sixteen cases are possible. For example, in the case of Theorem 3.4, we may have
the following situations:

(1) f,g increasing in both variables; then the conditions (3.6) and (3.7) read as

F(Ry,Ry) < AyRP™Y g(Ry, Ry) < A RI™
f(r1,0) > BLprp_l g(0,79) > BQ,ng_l;

(2) f increasing in u and decreasing in v, and ¢ increasing in both w, v; then
the conditions (3.6) and (3.7) become

f(R1,0) < A,RT™Y  g(Ry,Ry) < AgRET
f(ri,Re) > Bl,prf_l g (0,79) > BQ,ng_l-

REMARK 3.11. It is worth mentioning that the solutions (u,v) of the system
(1.1) are continuously differentiable. This follows from the fact that S,.(L> (Q)) C
CH(Q), 7 > 1 (see [2]). Moreover, as a consequence of the Harnack inequality (see
[22]), if u > 0 and u # 0, then

u(z) >0 for z€Q

(the same for v). Indeed, the Harnack inequality implies that the set {z € Q :
u(x) = 0} is open. Being also closed in €, it is equal either to () or to . The latter
is excluded by the assumption u # 0.

3.2. Non-existence results. We now present some sufficient conditions for
the non-existence of positive solutions of the system (1.1).

THEOREM 3.12. Assume that (u,v) is a nonnegative solution of the system (1.1).
If one of the following conditions holds:

(3.16) f(z,u,v) < A\ puP™t, for every (z,u,v) € Q x (0,00) x [0,00),
(3.17) flz,u,v) > )\Lpupfl, for every (z,u,v) € Q x (0,00) x [0, 00),
(3.18) f(z,u,v) > By puP ™!, for every (z,u,v) € Dy x (0,00) x [0, 00),

then uw = 0. Similarly, if one of the following conditions holds:

(3.19) gz, u,v) < A\ it for every (z,u,v) € Q x [0,00) x (0, 00),
(3.20) g(z,u,v) > Al,qvqfl, for every (z,u,v) € Q x [0,00) x (0,00),
(3.21) g(x,u,v) > Ba it for every (z,u,v) € Dy x [0,00) x (0,00),
then v = 0.
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PROOF. Let us observe that —A,u = f(z,u,v) > 0. Suppose on the contrary
that « # 0. Then u(z) > 0 for z € Q (see Remark 3.11) and |lu|| > 0.

Assume that the inequality (3.16) holds. Then f(z,u(x),v(x)) < i puP~'(z)
almost everywhere in 2 and consequently

)\Lp/ul’g/ \Vu|p:/f(x,u,v)~u<)\1,p/up*1u,
Q Q Q Q

a contradiction.
Assume now that (3.17) holds. Then

(3.22) —Apu = Ap puP "+,

where the function h(z) := f(z,u(z),v(x)) — A\ puP~!(x) is positive almost every-
where in €2 and is obviously in the space L>(2). This contradicts the fact from [8],
which states that (3.22) has no solutions.

Assume now that the inequality (3.18) holds. Set r := |lu|| > 0. Then, since
u € Ky, we have that u(x) > r for x € D;. Therefore

F(u,v)(2) = f(z,u(@),v(x)) > Byyu(@)’™" = By
By the continuity of f, u and v (see Remark 3.11) and the compactness of D we
deduce that F(u,v)(z) > By ,r?"" for some r; > r and all # € D;. This implies

that F(u,v) > Bl,pr{’_lxl. Then, by the isotonicity of .S}, the monotonicity of the
seminorm and the definition of By ,, we derive

— 1 -1
r = llull = [Ni(u, 0)|| = IS, (w,v) | 2 [1Sp(Buprt ™D = By ™Vl Sy (xa)ll = 4,

a contradiction.
The second assertion can be proved analogously. O

COROLLARY 3.13. (i) If one of the inequalities (3.16)-(3.21) holds, then there
are no positive solutions of the system (1.1).

(ii) If one of the inequalities (3.16)-(3.18) holds and one of the inequalities
(3.19)-(3.21) holds, then there are no nontrivial nonnegative solutions of the system

(1.1).
3.3. Example. Let
u?

flz,u,v) = p(z,u,v) - g(x,u,v) = ¥(x,u,v) - arctan® v,

44+ ud’
where ¢ and 9 are continuous functions such that
for every (z,u,v) € Q X [0,400) x [0,+00) and some fixed constants a,b,c,d €
(0, +00).

PRrOPOSITION 3.14. Under the above assumptions, there exists a constant Xy
(depending on a,b,c,d and ) such that for each X\ > Ao, the problem

—Au = Af(z,u,v) inQ,
(3.23) —Av = Ag(z,u,v) in Q,
u,v =0 on 052,

has at least two nontrivial nonnegative solutions.
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PRrROOF. We shall apply Theorem 3.9. To this end, consider any compact subset
D C Q and put Dy := D, Dy := D. In order to simplify our notation we denote

A=Ay, B:=Bys= By, ®(x)=12%/(4+2%) and ¥(x) = arctan®z.

Note that ®(z) < 1y := 1/3, U(z) < Iy := 72 /4, ¥ is increasing, while ® is increasing
in [0,2] and decreasing in [2,00). Therefore, if p; < 2 then the conditions (3.11),
(3.12) and (3.13) are implied by the following ones:

(3.24) Aib < ARy, Alad < AR,
P(p1) A W(p2) A
2 — —
(3:25) o W T S
\J B
(3.26) Namin{®(r), o(R)} > Br, 2 B
9 e
If we put

Ri(\) = A1b/A and  Ry(N) := Mod/A,

then the condition (3.24) is satisfied and the condition (3.26) has the form
Bb  U(r,) B

10 min{®(ry), ®(R1)} >hL—— =17,

3.27 =
( ) 1 Aa o - Ac

Fix r9 > 0. There exists Ay such that the second inequality from (3.27), as well as
ro < ||1||R2()), are satisfied for A > A;. Let us put

r = ’/‘1(/\) = 1/\/R1(>\).

Then there exists As > Ay such that r1(A\) < ||1||Ri(A) for A > Ag. The first
inequality from (3.27) becomes

i d _BOOVEY RO | 9
1+4Ri(\)Ri(\) 4+ RN Ri(\)

If X — oo, then the left-hand side of (3.28) tends to 1/4 and the right-hand side of
(3.28) tends to 0. Therefore, there exists Ag > Ao such that (3.28) is satisfied for
A > Ag. Having defined r; and R; for A > Ao, let us choose p; < r1 and py < 7y
that satisfy (3.25). This is possible because ®(z) = o(z) and ¥(z) = o(z) in 0. By
Theorem 3.9 we obtain the existence of at least two nontrivial nonnegative solutions
to (3.23) for A > Ag.

Let us observe that for a fixed A > Ay, the nontrivial nonnegative solutions
(u1,v1) and (ug,v2) given by Theorem 3.9, satisfy

(3.28)

luil < Ri(A), vl < Re(N)  (i=1,2), [luall > r1(N), [loa]] > 72,
lluall < 71(A), |lvzf] <72 and |ug| > p1(A) or |va| > pa(A).

Note that both components of the first solution are positive. O
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