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Abstract. We prove global well-posedness, scattering and blow-up results for

energy-subcritical focusing nonlinear Schrödinger equations on the hyperbolic
space. We show in particular the existence of a critical element for scattering

for all energy-subcritical power nonlinearities. For mass-supercritical nonlin-
earity, we show a scattering vs blow-up dichotomy for radial solutions of the

equation in low dimension, below natural mass and energy thresholds given by
the ground states of the equation. The proofs are based on trapping by mass

and energy, compactness and rigidity, and are similar to the ones on the Eu-
clidean space, with a new argument, based on generalized Pohozaev identities,

to obtain appropriate monotonicity formulas.
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1. Introduction

The nonlinear Schrödinger equations on manifolds have been intensively studied
in the last decades. Most works concern local existence, blow-up in finite time, small
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data scattering and existence of wave operators. Recently, results on scattering for
all solutions in the defocusing case were obtained on hyperbolic space [6, 28, 27],
more general rotationally symmetric manifolds [4], flat manifolds such as exterior
domains [45, 29, 46, 35] and product spaces R× T2, Rn ×T [22, 52]. Let us also
note the recent work on long range effects on R×Tn [23]. The purpose of this work
is to initiate the study of “large” data - that is out of the perturbative framework
of the small data theory - for focusing NLS on manifolds. More precisely, we are
interested with the focusing NLS on the hyperbolic space Hn:

(1) i∂tu+ΔHnu+ |u|p−1u = 0, u�t=0 = u0 ∈ H1(Hn),

where n ≥ 2, ΔHn is the (negative) Laplace-Beltrami operator on Hn and the power
p is energy-subcritical: 1 < p < 1 + 4

n−2 (1 < p < ∞ if n = 2).

It follows from Strichartz estimates that equation (1) is locally well-posed in
the Sobolev space H1 = H1(Hn) [3]: for u0 ∈ H1, there exists a unique maximal
solution

u ∈ C0
(
(−T−(u0), T+(u0)), H

1
)

satisfying the following blow-up criterion:

(2) T+(u0) < ∞ =⇒ lim
t→T+(u0)

‖u(t)‖H1 = +∞.

The mass of a solution

(3) M(u(t)) =

∫
Hn

|u(t, x)|2dμ(x),

(where μ is the standard measure on Hn) and its energy

(4) E(u(t)) =
1

2

∫
Hn

|∇Hnu(t, x)|2dμ(x)−
1

p+ 1

∫
Hn

|u(t, x)|p+1dμ(x),

are conserved.
In the defocusing case (equation (1) with a minus sign in front of the nonlin-

earity), it was proved in [6, 4, 28] that all solutions with initial data in H1 scatter
to a solution of the linear Schrödinger equation in both time directions (see also
[27] for the energy-critical case in space dimension 3). Note that this holds for all
p such that 1 < p ≤ 1 + 4

n−2
, in contrast with the Euclidean setting scattering

results where a lower bound larger than 1 is imposed on p. This is a consequence
of the stronger long-time dispersion for the linear Schrödinger equation in Hn com-
pared to Rn, which translates into a wider range of exponents for the Strichartz
estimates. More precisely, global Strichartz estimates on Hn are available for all
exponents of Strichartz estimates on Rd, d ≥ n [6, 28, 2]. Using this fact the scat-
tering results are proved for all the range of exponents p allowed on Rd, d ≥ n, so
for 1 < p ≤ 1 + 4

n−2 .
In the focusing case, for the same reasons as above, scattering remains valid

for small data in H1, and wave operators also exist for all energy-subcritical p.
However, solutions with larger initial data do not always scatter. If p ≥ 1 + 4

n
,

blow-up in finite time may occur [3, 38]. Furthermore, for any p > 1, there exist
nonzero time-periodic solutions of (1). The aim of this article is to obtain sharp
global existence, scattering and blow-up results in terms of geometric objects that
are specific to Hn. Before stating our main results, we recall known ones on the
focusing Schrödinger equation on Rn, n ≥ 1:

i∂tu+ΔRnu+ |u|p−1u = 0, u�t=0 = u0 ∈ H1(Rn),
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where 4
n + 1 < p, and, if n ≥ 3, p < 4

n−2 + 1. Fixing μ < 0, the equation

−Δf − μf = |f |p−1f, x ∈ Rn

has a unique radial, positive solution in H1(Rn) that we will denote by Rμ. Let
sc = n

2 −
2

p−1 ∈ (0, 1) be the critical Sobolev exponent, M(u) and E(u) be the

invariant masses and energy, defined as in (3), (4) with the integrals on Rn. Then
(see [50, 25, 26, 14, 15, 21, 1]):

Theorem A. Assume 1 + 4
n < p, and p < 1 + 4

n−2 if n > 3. Let u0 ∈ H1(Rn)
be such that

(5) E(u0)
scM(u0)

1−sc < E(Rμ)
scM(Rμ)

1−sc .

Let, for t in the maximal interval of existence of u,

δ(u(t)) = ‖∇u(t)‖sc

L2‖u(t)‖
1−sc

L2 − ‖∇Rμ‖
sc

L2‖Rμ‖
1−sc

L2 .

Then δ(u(t)) 	= 0, and the sign of δ(u(t)) is independent of t. Furthermore,

(a) If δ(u0) < 0 then u scatters in both time directions.
(b) If δ(u0) > 0 and either u0 is radial and p ≤ 5, or

∫
|x|2|u0|

2 < ∞ then u
blows up in finite time.

Our aim is to obtain a scattering/blow-up dichotomy for equation (1), in the
spirit of the above theorem, under an optimal mass/energy threshold. Our main
motivation is to clarify the influence of the geometry on the dynamics of focusing
Schrödinger equations.

Note that the choice of the ground state, i.e. of the parameter μ < 0 in the
above theorem is not relevant. Indeed,

R−1(x) = |μ|
1

p−1 Rμ(
√
|μ|x),

and conditions (5), as well as δ(u(t)) do not depend on μ. This scaling invariance
is lost for the equation and Hn, and we will get a family of conditions, depending
on a real parameter λ, which are not equivalent.

Let us recall that the spectrum of ΔHn is
(
−∞, (n−1)2

4

]
, and that the following

sharp Poincaré-Sobolev inequality in Hn is valid for all f ∈ H1(Hn) (see e.g. [39]),

(6)

(∫
Hn

|f |p+1

) 2
p+1

≤ D(p, n)

(∫
Hn

|∇Hnf |2 −
(n− 1)2

4

∫
Hn

|f |2
)

.

As a consequence, for all λ < (n−1)2

4
and f ∈ Hn, the following inequality holds

(7)

(∫
Hn

|f |p+1

) 2
p+1

≤ Dλ

(∫
Hn

|∇Hnf |2 − λ

∫
Hn

|f |2
)

.

The best constant in (7) is attained for a positive, radial function Qλ ∈ H1(Hn),
solution of the equation

−ΔQλ − λQλ = |Qλ|
p−1Qλ

which we will call ground state (see [39] and §2.3 for details). This ground state is
not always known to be unique if n = 2: when it is not we will denote by Qλ one
of the ground states corresponding to p and λ. In all cases, we let Qλ the set of
all ground states, that is the set of all solutions of the above equation that are also
positive, radial minimizers for (7).
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Before stating our main results, we introduce some notations. If f ∈ H1(Hn),
we denote by

‖f‖2Hλ
=

∫
Hn

|∇Hnf |2dμ− λ

∫
Hn

|f |2dμ,

which, for any λ < (n−1)2

4
, is a norm on H1(Hn) equivalent to the usual H1 norm.

This is due to the spectrum of ΔHn, implying ‖∇f‖22 ≥
(n−1)2

4 ‖f‖22. We define

Eλ(f) =
1

2
‖f‖2Hλ

−
1

p+ 1
‖f‖p+1

Lp+1 .

In particular E0 = E. Note that Eλ(u(t)) is independent of t for any solution u of
(1). We denote also

δλ(f) = ‖f‖
2
Hλ
− ‖Qλ‖

2
Hλ

.

When the ground state Qλ is not unique, δλ does not depend on the choice of
Qλ ∈ Qλ (see (19), (20)).

Theorem 1 (Trapping and global existence). Let n ≥ 2, λ < (n−1)2

4 and

u0 ∈ H1(Hn). If 1 < p < 1 + 4
n−2

and Eλ(u0) ≤ Eλ(Qλ) then δλ(u(t)) does not
change sign. Moreover, under these hypothesis,

(a) If δλ(u0) = 0, then there exists θ ∈ R and an hyperbolic isometry h such
that u0 = eiθQ(h·), Q ∈ Qλ.

(b) If δλ(u0) < 0 then the solution u is global in time.
(c) If δλ(u0) > 0 then the solution u does not scatter in any time direction.

We refer to §2.1 below for the definition of the group of hyperbolic isometries.

Remark 1.1. The statement about global existence in Theorem 1 is relevant
only if p ≥ 1 + 4

n . If 1 < p < 1 + 4
n , it follows from the Gagliardo-Nirenberg

inequality on Hn (which is the same than on Rn) that all solutions of (1) are global
in time.

Remark 1.2. In the mass-critical case p = 1+ 4
n
a sharp global existence result

based on the mass is known. On the one hand, global existence occurs for initial data
of mass less than 1/CG−N where CG−N is the best constant of Gagliardo-Nirenberg
inequality on Hn. On the other hand blow-up solutions can be constructed as in
[5, 47] from the Euclidean ground state, hence of mass the inverse of the best
constant of Gagliardo-Nirenberg inequality on Rn. Very recently the two constants
have been proved to coincide, yielding a mass threshold for blow-up [42].

Remark 1.3. We note that in the case p > 1 + 4
n , the analog of Theorem 1

is valid on Rn with almost the same proof. One can prove, for example, a global
existence condition similar to Theorem 1 (b) for the NLS equation on Rn depending
on a parameter μ < 0 and using the ground states Rμ defined above. However,
fixing an initial data u0 and using the scaling to obtain the optimal value for μ, one
would exactly obtain the scale-invariant criteria of Theorem A. In this sense, the
conditions of Theorem 1 are the natural analogs, for the hyperbolic space, of the
conditions of Theorem A.

We conjecture that in the context of Theorem 1, with the stronger assumptions
Eλ(u0) < Eλ(Qλ), and p ≥ 1 + 4

n
, solutions such that δλ(u0) < 0 are global and

scatter, whereas solutions such that δλ(u0) > 0 blow up in finite time. This is false
if 1 < p < 1+ 4

n : all solutions are global, and there exist values of λ and initial data
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u0 such that Eλ(u0) < Eλ(Qλ), δλ(u0) < 0, and the corresponding solution u does
not scatter (see Proposition 1.5 below).

In this work we prove the conjecture in space dimensions n = 2 and n = 3, for
radial data (i.e. depending only on the distance to the origin of Hn):

Theorem 2. Assume n ∈ {2, 3}, p ≥ 3 if n = 2, 7
3
≤ p < 5 if n = 3. Let

λ < (n−1)2

4 and u0 ∈ H1
rad(H

n). Assume Eλ(u0) < Eλ(Qλ). Then

(a) If δλ(u0) < 0 then the solution u is global and scatters in both time direc-
tions.

(b) If δλ(u0) > 0, and∫
Hn

r2|u0|
2 dμ < ∞ or 1 +

4

n
< p ≤ 5

then the solution u blows up in finite positive and negative times.

Let us note that Theorem 2 implies that for p, n as in the theorem, the ground
states are (orbitally) unstable: indeed, one can check as a consequence of this
theorem that the solution with initial data αQλ blows up in finite time if α > 1,
and scatters if α ∈ (0, 1).

Let us say a few words about the proof of Theorem 2. To prove the scattering
result, we use the compactness-rigidity method initiated in [31]. The compactness
step consists in proving the existence of a nonscattering solution of (1) with minimal
energy. More precisely:

Theorem 3 (Existence of the critical element). Assume 1 < p < 1+ 4
n−2

(p > 1

if n = 2) and λ < (n−1)2

4
. There exists a global radial solution vc of equation (1)

such that

{vc(t, ·), t ∈ R}

has compact closure in H1(Hn),

Eλ(vc(0)) ≤ Eλ(Qλ), ‖vc(0)‖Hλ
≤ ‖Qλ‖Hλ

,

and, for any u0 ∈ H1(Hn) radial, if

Eλ(u0) < Eλ(vc(0)), ‖u0‖Hλ
≤ ‖Qλ‖Hλ

,

then the solution u of equation (1) scatters in both time directions.

We stated Theorem 3 in a radial setting. A nonradial version is available (see
Proposition 3.12 p. 78).

Remark 1.4. Note that vc exists in all dimensions and for all energy-subcritical
exponent p. Again, this contrasts with the Euclidean case where for p close to one
there is no small data scattering, and thus no critical solution in the above sense.

The proof of Theorem 3 follows the line of the corresponding proof on Rn (see
[33, 31, 51, 25]). The main ingredient of the proof is a profile decomposition
adapted to the energy-subcritical equation (1). We construct this profile decompo-
sition in Section 3.2, using Fourier analysis on the hyperbolic spaces, in the spirit
of the analogous construction in the energy-critical setting, given in [27].

The rigidity step in the proof of Theorem 2 (a) consists in proving that the
critical element vc given by Theorem 3 (under the assumptions on n and p in
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Theorem 2), satisfies Eλ(vc) = Eλ(Qλ) (see Proposition 4.1 p. 82). Similarly to
the Euclidean case, we use a localized version of the following virial-type identity:

(8) ∂2
t

∫
|u(t, x)|2r2 dμ(x) = G(u(t)),

where, r is the distance to the origin of Hn, and, if f is radial,

G(f) = 8‖f‖2H + 2(n− 1)(n − 3)

∫
Hn

|f |2
r cosh r − sinh r

sinh3 r
dμ(x)

−
4(p− 1)

p+ 1

∫
Hn

|f |p+1

(
1 + (n− 1)

r cosh r

sinh r

)
dμ(x).

A crucial property of G is that it is positive for solutions satisfying the assumptions
of Theorem 2 (a). However, unlike in the Euclidean setting where the analogous
property follows quite easily from the characterization of the ground states Rμ as
maximizers for the Gagliardo-Nirenberg inequality and the trapping of solutions
below the ground state mass and energy, the proof of this property is quite intricate
(see Section 4). The key new ingredient of this proof is a generalized Pohozaev
identity satisfied by the minimizers of G(f) under the constraint Eλ(f) = Eλ(Qλ).
It is in this part of the proof that the assumption n = 2, 3 is needed.

We think that the radiality assumption and the assumption n = 2, 3 are techni-
cal, and that Theorem 2 remains valid for any n ≥ 2, without symmetry, provided
p ≥ 1 + 4

n
. On the other hand, the hypothesis p ≥ 1 + 4

n
is crucial, as emphasized

by the following proposition:

Proposition 1.5. If n ≥ 3 and 1 < p < 1 + 4
n , there exists λ <

(n−1)2

4 such
that Eλ(vc(0)) < Eλ(Qλ).

We do not know what is vc in this case (a ground state Qν with ν 	= λ, or some
other type of solution).

Proposition 1.5 follows from the fact that if p < 1 + 4
n , for some λ < (n−1)2

4

the solution eitλQλ is stable (in the set of orbits of the minimizers of the energy at
this mass). It is an open question if all ground states are stable if p < 1 + 4

n
(this

is stated in [11], but with a gap in the proof, see Remark 2.15 below).
The proof of the blow-up part of Theorem 2 follows the classical proof of the

so-called Glassey criterion on Rn [53, 18], using the virial identity (8). For this, we
prove that G is negative for solutions of (1) satisfying the assumptions of Theorem
2 (b), using arguments that are similar to the ones of the proof of the positivity of
G in the other regime of Theorem 2.

We refer to [3] and [38] for other blow-up criteria, recalled in Proposition 5.1 p.
88. Note that in these criteria, the threshold given by Qλ does not appear. In [38] a
variant of virial identity (8) is used, based on another weight than r2. Unfortunately
this different weight does not seem useful in the setting of Theorem 2. It is also
possible to construct blow-up solutions with an explicit behavior, starting from the
Euclidean ground state: see [4], [47], [7], [19] for the construction of conformal and
log-log type blow-up solutions on Hn or on related manifolds.

The outline of the article is as follows. In Section 2, we prove Theorem 1,
after some preliminaries and reminders on the hyperbolic space, Cauchy theory
for equation (1) and ground states. Section 3 is dedicated to the existence of the
critical solution (Theorem 3 and its nonradial analog). Following a standard scheme,
we construct an adapted profile decomposition (see §3.2), which follows from an
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improved Sobolev inequality, proved in §3.1. The critical solution is constructed
in §3.3. Proposition 1.5 is proved in §3.4. In Section 4, we conclude the proof of
Theorem 2 (a) (scattering) by proving the rigidity part of the argument. Section 5
concerns the proof Theorem 2 (b) (blow-up).

Acknowledgment. The authors would like to thank Benôıt Pausader for very
useful clarifications on spectral projectors on the hyperbolic space.

2. Local and global well-posedness

2.1. Notations and preliminaries on the hyperbolic space. Recall that
Hn is defined as

Hn =
{

x ∈ Rn+1 : [x, x] = 1 and x0 > 0
}
,

where [·, ·] is the bilinear form

[x, y] = x0y0 − x1y1 − . . .− xnyn

on Rn+1. The hyperbolic space Hn is endowed with the metric g induced by the
Minkowski metric −(dx0)

2 + (dx1)
2 + . . .+ (dxn)

2. We will denote by 0 the origin
(1, 0, . . . , 0) of Hn, and dμ the induced measure.

We shall use often radial coordinates on the hyperbolic space,

x = (cosh r, sinh r ω)

where r = d(x, 0Hn), ω ∈ Sn−1. In such coordinates, the Laplacian writes

ΔHn = ∂2
r + (n − 1)

cosh r

sinh r
∂r +

1

sinh2 r
ΔSn−1 .

To lighten notations, we will often write Δ instead of ΔHn.
We denote by G = SO(n, 1) the group of hyperbolic isometries, that is the

group of (n + 1) × (n + 1) matrices that leave the form [·, ·] invariant. For any
h ∈ G, the mapping x 
→ h · x restricts to an isometry of Hn. The group G acts
transitively on Hn.

We introduce the following notation, which is the quadratic form associated to
the so-called shifted Laplacian on hyperbolic space, whose bottom of the spectrum
is zero,

(9) ‖f‖2H =

∫
Hn

|∇Hnf |2 −
(n − 1)2

4

∫
Hn

|f |2.

By (6), ‖ · ‖H is a norm on C∞c (Hn). We will denote by H the closure of C∞c (Hn)
in Lp+1(Hn) for the norm ‖ · ‖H. It is a Hilbert space which is included in Lp+1.

2.2. Cauchy theory. We give here some results related to well-posedness and
scattering for equation (1). We omit most of the proofs, that are classical.

2.2.1. Strichartz estimates on the hyperbolic space. We will denote by q′ the
conjugate exponent of q ∈ [1,∞]. We recall from [6, 2, 28] the wider range of
Strichartz estimates on the hyperbolic space:

Theorem 2.1. Let, for j = 1, 2,

(qj, rj) ∈
{
(q, r) ∈ [2,∞)× (2,∞) :

2

q
≥

n

2
−

n

r

}
∪
{
(∞, 2)

}
.
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If u0 ∈ L2(Hn), F ∈ Lq′2(R, Lr′2 (Hn)), then, denoting by u the solution of

i∂tu+Δu = F, u�t=0 = u0,

we have

‖u‖Lq1(Rt,Lr1(Hn)) ≤ C‖u0‖L2 + C‖F ‖
Lq′2(R,Lr′2(Hn)

.

Let I be an interval. If 1 < p ≤ 1 + 4
n
, we define

S0(I) = Lp+1(I, Lp+1(Hn))

S1(I) =
{

u ∈ S0(I) : ∇u ∈ S0(I)
}

N0(I) = L
p+1

p (I, L
p+1

p (Hn))

N1(I) =
{

u ∈ N0(I) : ∇u ∈ N0(I)
}

.

Note that p+1
p = (p+ 1)′.

If 1 + 4
n ≤ p < 1 + 4

n−2 , we let (following [15])

a =
2(p− 1)(p + 1)

4− (n− 2)(p− 1)
, b =

2(p− 1)(p+ 1)

n(p− 1)2 + (n − 2)(p− 1)− 4
, q =

4(p+ 1)

n(p− 1)
,

(so that pb′ = a), and

S0(I) = La(I, Lp+1(Hn))

S1(I) =
{

u ∈ Lq(I, Lp+1(Hn)) : ∇u ∈ Lq(I, Lp+1(Hn))
}

N0(I) = Lb′ (I, L
p+1

p (Hn))

N1(I) =
{

u ∈ Lq′(I, L
p+1

p (Hn)) : ∇u ∈ Lq′(I, L
p+1

p (Hn))
}

.

One easily checks that the definitions coincide when p = 4
n
+ 1.

If I = (a, b), we will write S0(a, b) instead of S0((a, b)), and similarly for S1,
N0, N1.

Proposition 2.2. If t0 ∈ R ∪ {±∞},∥∥eitΔu0

∥∥
Sj(R)∩L∞(R,H1)

≤ C‖u0‖H1 , j = 0, 1,(10) ∥∥∥∥∫ t

t0

ei(t−s)Δf(s)ds

∥∥∥∥
S0(R)

≤ C‖f‖N0(R)(11) ∥∥∥∥∫ t

t0

ei(t−s)Δf(s)ds

∥∥∥∥
S1(R)∩L∞(R,H1)

≤ C‖f‖N1(R)(12)

and t 
→

∫ t

t0

ei(t−s)Δf(s)ds ∈ C0(R, H1), if f ∈ N1(R),∥∥∥∥∫ +∞

0

e−isΔf(s)ds

∥∥∥∥
H1

≤ C‖f‖N1(0,∞).(13)

Proposition 2.3.∥∥|u|p−1u− |v|p−1v
∥∥

N0(I)
≤ C‖u− v‖S0(I)

(
‖u‖p−1

S0(I) + ‖v‖
p−1
S0(I)

)
(14) ∥∥|u|p−1u

∥∥
N1(I)

≤ C‖u‖S1(I)‖u‖
p−1
S0(I).(15)
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Remark 2.4. If p > 2, we can of course obtain a Lipschitz bound similar to
(14) for the N1-norm.

Sketch of proof of Proposition 2.2. The inequalities are obtained from
Theorem 2.1 as follows. If p < 1 + 4

n , the pair (p + 1, p + 1) is not an Euclidean
admissible but it enters the wider range of Strichartz exponents on the hyperbolic
space from Theorem 2.1. This yields inequalities (10)-(13) if p < 1 + 4

n
.

In the case 1 + 4
n ≤ p < 1 + 4

n−2 , the Proposition follows from the Euclidean-

type Strichartz estimates and Sobolev inequalities, as for instance in [15]. The only
delicate point is the Strichartz estimate for non-admissible couples (11); these can
be obtained from dispersion in the spirit of Lemma 2.1 in [9] (see also [16]). We
sketch it (with t0 = 0) for completeness. By Lemma 3.3 of [28],

∀t 	= 0,
∥∥eitΔu0

∥∥
Lp+1 ≤

C

|t|
2
q

‖u0‖
L

p+1
p

.

Thus

∀t 	= 0,

∥∥∥∥∫ t

0

ei(t−s)Δf(s) ds

∥∥∥∥
L

p+1
p

≤ C

∫ t

0

1

|t− s|
2
q

‖f(s)‖
L

p+1
p

ds,

and the result follows from the classical Riesz potential inequality (see e.g. Ch. 5
of [49]).

�

Proposition 2.3 follows immediately from Hölder inequality and we omit it.
In view of Propositions 2.2 and 2.3, the well-posedness of equation (1) in H1 is

classical (see [30]). Recall that a solution u of (1), defined on a maximal interval
of existence (T−(u), T+(u)) satisfies the following blow-up criterion

T+(u) <∞ =⇒ lim
t→T+(u)

‖u(t)‖H1 = 0.

2.2.2. Scattering results.

Proposition 2.5 (Existence of wave operators). Let v0 ∈ H1(Hn). Then there
exists a solution u of (1) such that T+(u) = +∞ and

lim
t→∞

∥∥eitΔv0 − u(t)
∥∥

H1 = +∞.

This follows by a fixed point in the closed subset of S0(T,+∞):

BT,ε =
{
u ∈ S1(T,+∞) ∩ S0(T,+∞) : ‖u‖S1(T,+∞) + ‖u‖S0(T,+∞) ≤ ε

}
,

for T large, ε > 0 small, using again Propositions 2.2 and 2.3. We omit the details
of the classical proof.

Proposition 2.6 (Sufficient condition for scattering). Let u be a solution of
(1) with maximal time of existence T+ and such that

‖u‖S0(0,T+) < ∞.

Then T+ = +∞ and u scatters forward in time to a linear solution: there exists
v0 ∈ H1 such that

lim
t→+∞

∥∥eitΔv0 − u(t)
∥∥

H1 = 0.

We skip the standard proof.
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Proposition 2.7 (Long time perturbation theory). Let M > 0. There exists
constants ε0 > 0, C > 0 depending on M with the following properties. Let 0 <
T ≤∞ and

u0 ∈ H1, ũ ∈ C0((0, T ), H1) ∩ S0(0, T ), e ∈ N0(0, T )

such that

i∂tũ+Δũ+ |ũ|p−1ũ = e.

Assume

‖ũ‖S0(0,T ) ≤M, ‖e‖N0(0,T ) +
∥∥eitΔ(u0 − ũ(0))

∥∥
S0(0,T )

= ε ≤ ε0.

Then the solution u of (1) with initial data u0 is defined on (0, T ) and ‖u −
ũ‖S0(0,T ) ≤ Cε.

This type of result that goes back to [12, Lemma 3.10], is by now standard. In
the case p > 1+ 4

n , in view of the Strichartz estimates of Proposition 2.2, the proof
is exactly the same as in [15, Proposition 4.7] (simply replacing Rn by Hn). In the
case 1 < p ≤ 1 + 4

n , it can be easily adapted, using Propositions 2.2 and 2.3. We

apply the preceding proposition with ũ = eitΔu0 to get:

Corollary 2.8 (Small data theory). There exists ε1 such that if u0 ∈ H1

satisfies

‖eitΔu0‖S0(R) = ε ≤ ε1

then the corresponding solution u of (1) is global and satisfies

‖u− eitΔu0‖S0(R) ≤ Cεp.

2.3. Ground states on the hyperbolic space. We review here results on
ground states for NLS on the hyperbolic space and additional variational properties.
Most of these results come from [39], see also [54]. See [41] for a previous work in
space dimension 2 and [11] for similar existence results.

Consider the equation on Hn

(16) ΔHnf + λf + |f |p−1 = 0,

Positive solutions to (16) can be constructed as solution to the followingminimizing
problems:

(17)
1

Dλ
= min

f∈H1\{0}
‖f‖2Hλ

‖f‖2
Lp+1

Then (Theorems 5.1 and 5.2 of [39]):

Theorem 2.9. The minimizing problem (17) has a solution if

(18) (n = 2 or 1 < p < 1 +
4

n− 2
) and λ <

(n− 1)2

4
.

In this case, any minimizer is radial up to hyperbolic symmetries, positive up to
multiplication by a unit complex number, and satisfies equation (16).

We will denote by Qλ the set of positive, radial minimizers for (17) that are
solutions to equation (16), and Qλ an arbitrary element of Qλ. We note that Qλ

is not always known to be unique (see below), however our statements will never
depend on the choice of Qλ.
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Let Q ∈ Qλ. Multiplying (16) by ϕ(εr)Q (where ϕ is a radial smooth compactly
supported function equal to 1 around 0), integrating by parts and letting ε → 0, we
get

(19) ∀Q ∈ Qλ, ‖Q‖
2
Hλ

= ‖Q‖
p+1
Lp+1

As a consequence,

(20) ∀Q ∈ Qλ, Dλ =
‖Q‖

2
Lp+1

‖Q‖
2
Hλ

= ‖Q‖
1−p
Lp+1 .

In particular, the values of Eλ(Q), ‖Q‖Hλ
and ‖Q‖Lp+1 do not depend on the choice

of Q in Qλ.
The following theorem follows from Theorems 1.2 and 1.3 of [39]:

Theorem 2.10 (Uniqueness). Assume (18). If n ≥ 3, or n = 2 and λ ≤ 2(p+1)
(p+3)2

equation (16) has only one positive solution up to hyperbolic isometries.

Remark 2.11. Uniqueness in the case n = 2, 2(p+1)
(p+3)2 < λ ≤ 1

4 is an open

question.

Theorem 2.12 (Nonexistence). If p > 1, λ ≥ (n−1)2

4 , then equation (16) has

no positve solution in H1.

Let us mention that for the critical value λ =
(n−1)2

4 , equation (16) has a

solution which is in H (see (9)), but not in H1, and solution to the minimization

problem (17). For λ > (n−1)2

4
the nonexistence theorem 2.12 remains valid if H1 is

replaced by H.
We next give a result that is specific to the mass-critical case, and will be needed

in the proof of Proposition 1.5.

Proposition 2.13. Assume 1 < p < 1+ 4
n . Then there exists α0 > 0 such that

for all α > α0, the infimum

(21) inf
u∈H1(Hn)

‖u‖2
L2=α2

1

2
‖u‖2H −

1

p+ 1
‖u‖p+1

Lp+1 = e(α)

is attained by a radial, positive function. If n ≥ 3, this function is equal to Qλ

for some λ < (n−1)2

4
. Finally, any radial minimizing sequence converges (up to a

subsequence) to a radial minimizer.

Proof. First we note that Gagliardo-Nirenberg inequality implies the infimum
in (21) to be finite if 1 < p < 1 + 4

n . By a rearrangement procedure ([13] and [11,
Section 3]) or moving planes technics [39, Section 2] , the infimum in (21) can be
restricted to H1 radial functions such that ‖u‖L2 = α. Using as in [11] the change

of functions v =
(

sinh r
r

)n−1
2 u, we are reduced to minimize∫

Rn

1

2
|∇v|2+

(n − 1)(n− 3)

8

∫
Rn

|v|2
r2 − sinh2 r

r2 sinh2 r
−

1

p+ 1

∫
Rn

|v|p+1
( r

sinh r

) (p−1)(n−1)
2

,

on all radial function in H1(Rn) such that ‖v‖L2 = α. Since ‖∇|u|‖L2 ≤ ‖∇u‖L2,
with strict inequality if u is not positive up to a constant factor, minimizers are
positive (up to a constant factor). Using, as in [11], the concentration-compactness
method, or simply the compactness of the radial embedding ofH1 in Lp, it is easy to
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prove that if e(α) < 0, the infimum is attained. Fixing u ∈ H1(Hn) with ‖u‖L2 = 1,
we obtain

lim
α→∞

α2

2
‖u‖2H −

αp+1

p+ 1
‖u‖p+1

Lp+1 = −∞.

Thus e(α) is negative for large α, concluding the proof of the existence of a minimizer
Sα for (21). The compactness of minimizing sequences also follows. Since Sα is
solution to the minimization problem (21), there exists a Lagrange multiplier λ
such that

−ΔSα − λSα = |Sα|
p−1Sα.

By the considerations above, we can assume that Sα is radial and positive. If n ≥ 3,

using Theorems 2.12 and 2.10, we obtain λ < (n−1)2

4 and Sα = Qλ, concluding the
proof. �

Remark 2.14. In [11, Section 5], it is claimed that the infimum (21) is attained
for all α > 0. This cannot be true, since it would contradict the small data scattering
for equation (1) for 1 < p < 1+ 4

n , proved in [6, Section 4]. Note that for small α > 0,
one can prove (using Poincaré-Sobolev (6) and Gagliardo-Nirenberg inequalities)
that e(α) = 0, whereas it is claimed and used in the proof of [11] than e(α) < 0 for
any α > 0.

Remark 2.15. One can deduce from Proposition 2.13, following [8], the orbital
stability of the set of all solutions eitλQλ of (1), with Qλ minimizer for (21), that
is of mass α = ‖Qλ‖L2 (see [11, Section 6]). Note that the proof of Proposition
2.13 does not imply that any Qλ is a minimizer for the problem (21). In particular,
Proposition 2.13 and the method of [8] do not yield stability for all ground states
solutions eitλQλ as seems to say [11, Proposition 6.3]. We refer to [37] for the study
of ground states stability for wave maps on the hyperbolic plane: in this case also
the situation is quite different from the Euclidean setting. Let us also mention that
uniqueness of minimizers for (21) and uniqueness of a minimal mass ground state
are open questions. A similar issue appears in the context of combined power-type
nonlinear Schrödinger equation [34].

2.4. Trapping and global well-posedness. In this section we prove Theo-
rem 1. We use a classical trapping argument, that goes back to [44] in the context
of the Klein-Gordon equation (see e.g. [50] for NLS). We start by proving the
following stationary lemma:

Lemma 2.16. Assume p > 1, λ < (n−1)2

4 , and 1 < p < 1 + 4
n−2 if n ≥ 3. Then

if Eλ(f) ≤ Eλ(Qλ) and ‖f‖2Hλ
≤ ‖Qλ‖

2
Hλ

we have

(22) ‖f‖2Hλ
≤

Eλ(f)

Eλ(Qλ)
‖Qλ‖

2
Hλ

.

In particular there is no function f such that Eλ(f) < Eλ(Qλ) and ‖f‖2Hλ
=

‖Qλ‖
2
Hλ

.
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Proof. Recall from subsection 2.3 the variational definition of Dλ. By (19),
(20)

‖Qλ‖
2
Hλ

= ‖Qλ‖
p+1
Lp+1

Dλ = ‖Qλ‖
2(1−p)

p+1

Hλ
(23)

Eλ(Qλ) = ‖Qλ‖
2
Hλ

p − 1

2(p+ 1)
.(24)

Therefore

(25) Eλ(f) =
1

2
‖f‖2Hλ

−
1

p+ 1
‖f‖p+1

Lp+1 ≥
1

2
‖f‖2Hλ

−
D

p+1
2

λ

p+ 1
‖f‖p+1

Hλ
= a

(
‖f‖2Hλ

)
,

where (in view of (23))

a(x) =
1

2
x−

‖Qλ‖
1−p
Hλ

p+ 1
x

p+1
2 .

In particular,

b(x) = a(x)−
p− 1

2(p+ 1)
x

vanishes at x = 0 and at x = ‖Qλ‖
2
Hλ
, increases on

[
0,
(

2
p+1

) 2
p−1

‖Qλ‖
2
Hλ

]
and

decreases on

[(
2

p+1

) 2
p−1

‖Qλ‖
2
Hλ

, ‖Qλ‖
2
Hλ

]
so it is a positive function on the whole

interval [0, ‖Qλ‖
2
Hλ
]. Since ‖f‖2Hλ

≤ ‖Qλ‖
2
Hλ
, combining with (25) we have obtained

that

Eλ(f) ≥ a
(
‖f‖2Hλ

)
≥

p− 1

2(p+ 1)
‖f‖2Hλ

.

Dividing this estimate by the value (24) of Eλ(Qλ) we obtain (22). �

Proof of Theorem 1. Let u0 be as in Theorem 1.
If δλ(u0) = 0, then by (22), Eλ(u0) = Eλ(Qλ). Thus u0 is a minimizer for

Poincaré-Sobolev inequality and by Theorem 2.9,

u0(x) = eiθQ(h(x)),

for some Q ∈ Qλ, θ ∈ R, and h ∈ G, which gives Case (a).
As a consequence of Case (a), if δλ(u0) 	= 0, then δλ(u(t)) 	= 0 for all t in the

domain of existence of u, which proves by continuity that δλ(u(t)) does not change
sign.

We next assume that δλ(u0) is negative, and thus that δλ(u(t)) is negative for all
t. This ensures that the H norm of u(t) is bounded in time. By mass conservation
we deduce that the H1 norm of u is bounded and global well-posedness follows from
the blow-up criterion (2) mentioned in the introduction. This proves case (b).

In case (c) δλ(u(t)) > 0 for all t in the domain of existence of u and thus

Eλ(u0) ≤ Eλ(Qλ) =
1

2
‖Qλ‖

2
Hλ
−

1

p+ 1
‖Qλ‖

p+1
Lp+1 <

1

2
‖u(t)‖2Hλ

−
1

p+ 1
‖Qλ‖

p+1
Lp+1 .

If the solution u scatters for positive times, then

lim
t→∞ ‖u(t)‖Lp+1 = 0,
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and for any ε > 0 there exists t large such that

1

2
‖u(t)‖2Hλ

< Eλ(u(t)) + ε = Eλ(u0) + ε,

so we get a contradiction by taking ε = 1
2(p+1)

‖Qλ‖
p+1
Lp+1 . �

3. Construction of the critical solution

3.1. Some spaces of functions and inequalities.

3.1.1. Preliminaries on Fourier analysis on hyperbolic space. We will mostly
use the notations of [27]. We refer to this article for more details.

We define the Fourier transform on Hn, following the general definition of the
Fourier transform on symmetric spaces given in [24]. For ω ∈ Sn−1, λ ∈ R, we
define the Fourier transform of f ∈ L1(Hn) by

f̂(λ, ω) =

∫
Hn

f(x)[x, (1, ω)]iλ−ρdμ(x), ρ =
n− 1

2
.

We have

Δ̂Hnf(λ, ω) = −
(
λ2 + ρ2

)
f̃(λ, ω).

The Fourier inversion formula reads

(26) f(x) =

∫ ∞
−∞

∫
Sn−1

f̂(λ, ω)[x, (1, ω)]−iλ−ρ|c(λ)|−2dλdω,

where the Harish-Chandra function c(λ) is defined by

|c(λ)|−2 =
1

2

|Γ(ρ)|2

|Γ(2ρ)|2
|Γ(ρ+ iλ)|2

|Γ(iλ)|2
.

We note that |c(λ)|−2 is of the order λn−1 as λ →∞, and λ2 as λ → 0.
A version of Plancherel theorem is also available on Hn: the Fourier transform

f 
→ f̂ extends to an isometry of L2(Hn) onto L2
(
(−∞,∞)× Sn−1), |c(λ)|−2dλdω

)
,

and, for f, g ∈ L2(Hn),∫
Hn

f(x)g(x)dμ =

∫ ∞
−∞

∫
Sn−1

f̂(λ, ω)ĝ(λ, ω)|c(λ)|−2dλdω.

We will use the spectral projectors Pm, m > 0 defined as follows

(27) Pm = −
1

m2
Δe

1
m2 Δ,

that is

P̂mf(λ, ω) =
1

m2

(
λ2 + ρ2

)
e−

λ2+ρ2

m2 f̂(λ, ω).

For s ∈ R, we define the Sobolev space Hs(Hn) as the closure of C∞0 (Hn) for the
norm

‖f‖Hs =
∥∥∥(−Δ)s/2f

∥∥∥
L2

.

Note that

‖f‖2Hs ≈

∫ ∞

−∞

∫
Hn

(
ρ2 + λ2

)s ∣∣∣f̂(λ, ω)
∣∣∣2 |c(λ)|−2dλdω.
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3.1.2. A refined subcritical Sobolev inequality. Recall from (27) the definition
of the spectral projector Pm. For s ∈ (0, n/2], we define the Banach space Bs as

the closure of C∞0 (Hn) for the B
−( n

2−s),∞
∞ Besov-type norm:

‖u‖Bs = sup
m≥1

ms−n/2‖Pmf‖L∞(Hn).

Lemma 3.1. For 0 < s ≤ n/2, there exists C > 0 such that for all f ∈ Hs, one
has f ∈ Bs and

‖f‖Bs ≤ C‖f‖Hs(28)

∀m > 0, |Pmf(x)| ≤ C

(
1

m2
+m

n
2−s

)
e−

ρ2

m2 ‖f‖Hs .(29)

Proof. Let f ∈ Hs. By the definition of Pm and Fourier inversion formula
(26),

(30)

|Pmf(x)| ≤

∫ ∞
−∞

∫
Sn−1

1

m2

(
λ2 + ρ2

)
e−

λ2+ρ2

m2

∣∣∣f̂(λ, ω)
∣∣∣ |c(λ)|−2[x, (1, ω)]−ρ dλ dω

≤

√∫ ∞

−∞

∫
Sn−1

(λ2 + ρ2)
s
∣∣∣f̂(λ, ω)

∣∣∣2 |c(λ)|−2dλ dω

×

√
2

∫ ∞
0

1

m4
(λ2 + ρ2)

2−s
e−

2(λ2+ρ2)

m2 |c(λ)|−2dλ

∫
Sn−1

[x, (1, ω)]−2ρ dω.

Using that |c(λ)|−2 ∼ λ2 as λ→ 0, we obtain

(31)

∫ 1

0

(
λ2 + ρ2

)2−s
e−

2(λ2+ρ2)

m2

m4|c(λ)|2
dλ ≤

e−
2ρ2

m2

m4

∫ 1

0

λ2
(
λ2 + ρ2

)2−s
dλ ≤ C

e−
2ρ2

m2

m4
,

Furthermore, using |c(λ)|−2 ∼ λn−1 as λ →∞

(32)

∫ ∞

1

(
λ2 + ρ2

)2−s
e−

2(λ2+ρ2)

m2

m4|c(λ)|2
dλ ≤ Ce−

2ρ2

m2

∫ ∞

1

e−
2λ2

m2 λ4−2s λn−1

m4
dλ

≤ Ce−
2ρ2

m2 mn−2s

∫ ∞
1/m

e−2σ2

σ3−2s+ndσ ≤ Cmn−2se−
2ρ2

m2 .

Finally, we claim that the spherical function-like integral∫
Sn−1

[x, (1, ω)]−2ρdω = C

∫ π

0

(cosh |x| − sinh |x| cosα)−2ρ sinn−2 α dα,

is uniformly bounded in |x|. Indeed, we have (for some constant cn > 0)

F (r) = cn

∫ π

0

(cosh r − cos θ sinh r)
1−n

sinn−2 θ dθ

= cn

∫ π

0

(cosh r − sinh r + (1− cos θ) sinh r)
1−n

sinn−2 θ dθ

= cn

∫ π

0

e(n−1)r (1 + er sinh r(1− cos θ))
1−n

sinn−2 θ dθ.
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We have maxr∈[0,1] F (r) < ∞. Assuming r ≥ 1, we obtain:

F (r) ≤ cn

∫ π

0

e(n−1)r
(
1 + C−1e2rθ2

)1−n
θn−2 dθ

≤ cn

∫ erπ

0

(
1 +

σ2

C

)1−n

σn−2 dσ,

by the change of variable σ = erθ. This concludes the proof since

2(1− n) + n− 2 = −n ≤ −2.

Combining this with (30), (31) and (32), we obtain (29). Inequality (28) follows. �

We next prove a refined Sobolev inequality which generalizes [27, Lemma 2.2,ii)]
which treats the case s = 1, n = 3. It is in the spirit of the refined Sobolev
embedding on Euclidean space in [17]. More precisely, the inequality we prove is
the analog on the hyperbolic space of the inequality

‖f‖Lα(Rn) ≤ C‖f‖
2
α

H
n
2
−

n
α (Rn)

‖f‖
1− 2

α

B
−

n
α

,∞

∞ (Rn)
, 2 < α <∞.

Proposition 3.2. Let 0 < s < min{2, n/2} and α such that 1
α = 1

2 −
s
n . There

is a constant C > 0 such that for all f ∈ Hs,

(33) ‖f‖Lα ≤ C‖f‖
2
α

Hs‖f‖
1− 2

α

Bs .

Proof. We use a method based on spectral calculus that goes back to [10].
By the definition (27) of Pm

(34)

∫ A

0

1

m
P̂m(f) dm =

∫ A

0

1

m3
(λ2 + ρ2)e−

λ2+ρ2

m2 f̂ dm =
1

2
e−

λ2+ρ2

A2 f̂ ,

for any A > 0.
Step 1. Low-frequency bound. Here we prove the desired estimate for the low

frequencies part eΔf =
∫ 1

0
1
m

Pm(f) dm. Since ‖etΔf‖L∞ ≤ ‖f‖L∞ (see for instance

[20]) and ‖etΔf‖L2 ≤ e−ρ2t‖f‖L2 (this follows from (−Δf, f)L2 ≥ ρ2‖f‖2L2), we get

‖etΔf‖Lα ≤ e−ct‖f‖Lα ,

where c = 2ρ2

α . Then

‖eΔf‖Lα ≤ C

∫ 1

0

1

m
‖Pm(f)‖Lα dm ≤ C

∫ 1

0

1

m3

∥∥∥e( 1

m2− 1
2 )ΔP√2(f)

∥∥∥
Lα

dm

≤ C

∫ 1

0

ec( 1
2− 1

m2 )

m3
‖P√2(f)‖Lα dm ≤ C‖P√2(f)‖Lα ≤ C‖P√2(f)‖

2
α

L2‖P√2(f)‖
1− 2

α

L∞ ,

and we conclude (33) by noting that since we are at low frequencies, ‖P√2(f)‖L2 ≤

C‖f‖Hs .
Now we shall treat the high frequencies. We let

(35) g = 2

∫ ∞
1

1

m
Pm(f) dm = f − eΔf

in view of (34). To complete the proof of the proposition, in view of Step 1, we
need to prove

‖g‖Lα ≤ C‖f‖
2
α

Hs‖f‖
1− 2

α

Bs ,

which we will do in two steps. We first introduce some notations.
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Let, for R > 0,

AR =

(
R
(

n
2 − s

)
4‖f‖Bs

) 2
n−2s

.

We write
g = g≤AR

+ g>AR
,

where, if AR ≥ 1,

g≤AR
= 2

∫ AR

1

1

m
Pm(f) dm, g>AR

= 2

∫ ∞
AR

1

m
Pm(f) dm.

and if AR < 1, g≤AR
= 0, g>AR

= g.
Step 2. In this step, we prove:

(36) ‖g‖α
Lα ≤ C

∫ ∞
0

Rα−3 ‖g>AR
‖
2
L2 dR.

Indeed, if AR ≥ 1, by the definition of Bs and g≤AR

|g≤AR
| ≤ 2

∫ AR

0

1

m
m

n
2−s‖f‖Bs dm =

4A
n
2−s
R

n− 2s
‖f‖Bs =

R

2
.

This inequality remains valid if AR < 1 since the left-hand side is zero. Thus

μ ({|g| > R}) ≤ μ ({|g>AR
| > R/2}) ≤

4

R2
‖g>AR

‖2L2 .

‖g‖
α
Lα = α

∫ ∞

0

Rα−1μ ({|g| > R}) dR ≤ C

∫ ∞

0

Rα−3 ‖g>AR
‖
2
L2 dR.

Hence (36).
Step 3. By (34) and the definition of g>AR

,

g̃>AR
(λ, ω) =

(
1− e

−λ2+ρ2

B2
R

)
f̃(λ, ω),

where BR = max(AR, 1). By (36),

(37) ‖g‖α
Lα ≤ C

∫ ∞
0

Rα−3

∫ ∞

0

∫
Sn−1

(
1− e

− λ2+ρ2

B2
R

)2 ∣∣∣f̂(λ, ω)
∣∣∣2 |c(λ)|−2dω dλ dR

= C

∫ ∞

0

∫
Sn−1

∣∣∣f̂(λ, ω)
∣∣∣2 |c(λ)|−2

∫ ∞

0

Rα−3

(
1− e

−λ2+ρ2

A2
R

)2

dRdω dλ.

By the definition of AR and the change of variable in R

r =
R(n

2
− s)

4‖f‖Bs(λ2 + ρ2)
n−2s

4

=

(
A2

R

λ2 + ρ2

)n−2s
4

,

we deduce

(38)

∫ ∞

0

Rα−3

(
1− e

−λ2+ρ2

A2
R

)2

dR

≤ C‖f‖α−2
Bs (λ2 + ρ2)

n−2s
4 (α−2)

∫ ∞

0

rα−3

(
1− e−r

−
4

n−2s

)2

dr.
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Note that α− 3 > −1 and, as r goes to infinity,

rα−3

(
1− e−r

−
4

n−2s

)2

≈ r
4s−8
n−2s

−1,

which proves (using that s < n
2
and s < 2) that the integral at the right-hand side

of (38) is finite. Going back to (37), we obtain

‖g‖α
Lα ≤ C‖f‖α−2

Bs

∫ ∞
0

∫
Sn−1

(λ2 + ρ2)s|f̂(λ, ω)|2|c(λ)|−2dω dλ = C‖f‖α−2
Bs ‖f‖

2
Hs

which concludes the proof. �

3.1.3. An interpolation inequality.

Proposition 3.3. There exists θ ∈ (0, 1) and a constant C > 0, both depending
on p, such that

(39) ‖eitΔf‖S0(R) ≤ C
∥∥eitΔf

∥∥θ

L∞t Bs ‖f‖
1−θ
Hs ,

where s = n
2 −

n
p+1 ∈ (0, 1).

Proof. First case: 1 < p ≤ 4
n + 1.

In this case, S0(R) = Lp+1(R×Hn). By the refined Sobolev inequality (33),

‖eitΔf‖L∞t Lp+1
x

≤ C‖eitΔf‖
2

p+1

L∞t Hs‖e
itΔf‖

1− 2
p+1

L∞t Bs ,

where by definition, s = n
2 −

n
p+1 ∈ (0, (1 + 2/n)−1). Hence

(40) ‖eitΔf‖L∞t Lp+1
x

≤ C‖f‖
2

p+1

Hs ‖e
itΔf‖

1− 2
p+1

L∞t Bs .

Moreover, by the Strichartz inequalities on Hn (see Theorem 2.1), for all γ with
2 < γ < 2 + 4

n ,

(41)
∥∥eitΔf

∥∥
Lγ

t Lγ
x∩Lγ

t Lβ
x
≤ C‖f‖L2 ,

where β = 2nγ
nγ−4

. Note that

lim
γ→2

β =

{
+∞ if n = 2
2n

n−2
if n ≥ 3

.

Choosing γ > 2 close enough to 2, we obtain 2 < γ < p+ 1 < β. For these value of
γ, (41) implies

(42)
∥∥eitΔf

∥∥
Lγ

t Lp+1
x

≤ C‖f‖L2 .

Combining (40), (42), and Hölder’s inequality we obtain (39) with

θ =

(
1−

2

p + 1

)(
1−

γ

p+ 1

)
.

Second case: 4
n + 1 < p and p < 1 + 4

n−2 if n ≥ 3. In this case

S0(R) = La(R, Lp+1) where a =
2(p− 1)(p+ 1)

4− (n− 2)(p− 1)
.

By Strichartz estimates (Theorem 2.1),

(43) ‖eitΔf‖Lγ
t Lp+1

x
≤ C‖f‖L2 ,
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where γ = 4(p+1)
n(p−1) < a if p > 1 + 4

n . By the generalized Sobolev inequality (33),

with α = p+ 1, s = n
2 −

n
p+1 ∈ (0, 1),

∀t, ‖eitΔf‖Lp+1 ≤ C‖eitΔf‖
2

p+1

Hs ‖e
itΔf‖

1− 2
p+1

Bs .

Hence

(44) ‖eitΔf‖L∞t Lp+1
x

≤ C‖f‖
2

p+1

Hs ‖e
itΔf‖

1− 2
p+1

L∞t Bs .

Combining (43) and (44) and using γ < a, we obtain (39) in this case also. �

3.2. Profile decomposition.

3.2.1. Linear profile decomposition. Recall from §3.1.1 the definition of the
isometry group G. We denote by d the geodesic distance on Hn. Define, for f ∈ H1,

‖f‖Σ = sup
m≥1,t∈R

m1−n/2

log(m+ 2)
‖PmeitΔf‖L∞(Hn).

In particular we have for all s ∈ (0, 1), for all t ∈ R,

(45) ‖eitΔf‖Bs ≤ Cs‖f‖Σ.

By (29),
‖f‖Σ ≤ C‖f‖H1 .

Proposition 3.4 (Subcritical profile decomposition). Let (fk)k be a bounded
sequence in H1(Hn). Then there exists a subsequence of (fk)k (that we still denote
by (fk)k), a family (ϕj)j≥1 of functions in H1(Hn) and, for each j ≥ 1, a sequence(
(tj,k, hj,k)

)
k

in R×G such that∑
j≥1

‖ϕj‖
2
H1 < ∞(46)

j 	= j′ =⇒ lim
k→∞

d(hj,k · 0, hj′,k · 0) + |tj,k − tj′,k| = +∞(47)

∀j ≥ 1, e−itj,kΔfk(h
−1
j,k·) −−−−⇀k→∞

ϕj weakly in H1(48)

and, denoting by

rJ,k = fk −

J∑
j=1

eitj,kΔϕj(hj,k·)

we have

(49) lim
J→∞

lim
k→∞

‖rJ,k‖Σ + ‖e
itΔrJ,k‖S0(R) = 0.

We refer for example to [40], [32] for profile decompositions for the Schrödinger
equation on Rn. The H1-critical profile decomposition on the space H3 was con-
structed in [27] (see also [36] for the analogous result for the wave equation on Hn).
In this setting, profiles might concentrate at one point of Hn, and become solutions
of the Schrödinger equation on the Euclidean space. In our case, this is prevented
by the subcriticality of the problem.

Notation 3.5. In what follows, we will often extract subsequences from a given
sequence. To lighten notations, we will always, as in the preceding proposition, use
the same notation for the extracted subsequence and the original sequence.

Remark 3.6. It follows from (48) that if the fk are all radial, then we can
assume that hj,k is the identity of Hn for all j, k, and that all profiles ϕj are radial.
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Definition 3.7. If (ϕj ; (tj,k, hj,k)k)j≥1 satisfies the conclusions of Proposition

3.4, we say that it is a profile decomposition for the sequence (fk)k.

We postpone the proof of the profile decomposition, and state the following
Pythagorean expansions, to be proved at the end of this section:

Proposition 3.8. Let λ < (n−1)2

4 . Let (fk)k be a bounded sequence in H1 that
admits a profile decomposition (ϕj ; (tj,k, hj,k)k)j≥1. Then

∀J ≥ 1, lim
k→∞

‖fk‖
2
Hλ
−

J∑
j=1

‖ϕj‖
2
Hλ
− ‖rJ,k‖

2
Hλ

= 0(50)

lim
k→∞

‖fk‖
p+1
Lp+1 −

+∞∑
j=1

∥∥e−itj,kΔϕj

∥∥p+1

Lp+1 = 0.(51)

To prove Proposition 3.4 and Proposition 3.8, we need the following lemma:

Lemma 3.9. Let f, g ∈ H1(Hn), (tk, hk)k and (t′k, h′k) two sequences in R × G

such that

lim
k→∞

d(hk · 0, h
′
k · 0) + |tk − t′k| = +∞.

Then

∀λ <
(n− 1)2

4
, lim

k→∞

(
eitkΔf(hk·), e

it′kΔg(h′k·)
)
Hλ

= 0(52)

lim
k→∞

∫ ∣∣eitkΔf(hkx)
∣∣ ∣∣∣eit′kΔg(h′kx)

∣∣∣p dx = 0.(53)

Proof. Proof of (52). By density we can assume, without loss of generality,
f, g ∈ C∞0 (Hn). We have(

eitkΔf(hk ·), e
it′kΔg(h′k·)

)
Hλ

= −
(
(Δ + λ)eitkΔf(hk ·), e

it′kΔg(h′k·)
)

L2

=
(
−(Δ + λ)f, ei(t′k−tk)Δg(h′k ◦ h−1

k ·)
)

L2
.

If |tk − t′k| → ∞ as k → ∞, then ‖ei(t′k−tk)Δg‖L∞ → 0 and the result follows. If
not, we can assume without loss of generality:

lim
k→∞

t′k − tk = θ ∈ R,

and (52) is equivalent to

(54) lim
k→∞

(
(Δ + λ)f, (eiθΔg)(h′k ◦ h−1

k ·)
)
L2 = 0.

Furthermore

(55) limd(0, h′k ◦ h−1
k · 0) = +∞.

If θ = 0, the support of (Δ + λ)f and (eiθΔg)(h′k ◦ h−1
k ·) are disjoint for large k

and (54) follows. If not, one can approximate eiθΔg, in L2, by compactly supported
functions which yields (54), arguing again on the supports.

Proof of (53). Note that by Sobolev embeddings and conservation of the H1-
norm for the linear equation, the sequences(

‖eitkΔf‖Lp+1

)
k
and

(
‖eit′kΔg‖Lp+1

)
k
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are bounded. Furthermore,

lim
k→∞

tk = ±∞ ⇒ lim
k→∞

∥∥eitkΔf
∥∥

Lp+1 = 0

and

lim
k→∞

t′k = ±∞ ⇒ lim
k→∞

∥∥∥eit′kΔg
∥∥∥

Lp+1
= 0.

In both cases, (53) holds. Arguing by contradiction and extracting subsequences,
we are reduced to prove (53) when tk and t′k have finite limits as k goes to infinity.
Time translating, we can also assume that these limits are both 0, and we see that
it is sufficient to prove:

∀f, g ∈ H1(Hn), lim
k→∞

∫
|f(hk · x)||g(h

′
k · x)|

p dx = 0,

provided (55) holds. This follows by approximating f and g, in Lp+1 , by compactly
supported functions and arguing on the supports. �

We next prove Proposition 3.4.

Proof. We shall use the following general abstract concentration-compactness
result (see Proposition 2.1, Definition 2.2 and Theorem 2.3 of [48]):

Theorem B ([48]). Let H be a separable Hilbert space and D a group of
unitary operators in H such that if (gk)k ∈ DN does not converge weakly to zero,
then there exists a strongly convergent subsequence of gk such that s-limk gk 	= 0.

If (fk)k ∈ HN is a bounded sequence, then (extracting subsequences in k), there
exist ϕj ∈ H , (gj,k)k ∈ DN, j ≥ 1 such that

(56)
∑
j≥1

‖ϕj‖
2 ≤ lim sup

k→∞
‖fk‖

2,

(57) (gj,k)
−1gj′,k −−−−⇀

k→∞
0 for j 	= j′,

(58) (gj,k)
−1fk −−−−⇀

k→∞
ϕj,

and for all φ ∈ H ,

(59) lim
J→∞

lim
k→∞

sup
g∈D

∣∣∣∣(g
(
fk −

J∑
j=1

gj,kϕj

)
, φ

)∣∣∣∣ = 0.

Note that in [48, Theorem 2.3], (59) is stated without parameter J and with
an infinite sum. However (59) follows easily from the proof in [48].

We apply this result for H = H1(Hn) and

D = {g : H1(Hn)→ H1(Hn) , g(f)(x) = eitΔf(h · x), (t, h) ∈ R× G}.

The hypothesis onD is satisfied in view of Lemma 3.9. Indeed, if gk = (tk, hk)k ∈ D
does not converge weakly to zero, then by taking g′k = (0, Id) ∈ D, the conclusion
(52) ensures that d(hk · 0, 0) + |tk| does not tend to +∞. Therefore, in view of the
definition of G, there exists strongly convergent subsequences of (tk)k and (hk)k in
R and G. This implies that gk has a strong limit (θ, h) ∈ D.

Now we transcribe the results of this theorem in our context. The statements
(56) and (58) imply directly (46) and (48). If the conclusion of (47) does not hold,
than by the same argument used above to check the assumption on D, we obtain a
contradiction with (57). Therefore (47) is satisfied.
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We are left with proving (49). By the interpolation inequality (39), it is suffi-
cient to consider only the ‖ · ‖Σ norm in (49).

We will deduce (49) from the following lemma, proved below.

Lemma 3.10. Let (rk)k be a bounded sequence in H1(Hn). Assume that for all
sequence (tk, hk)k in R ×G,

(60) eitkΔrk(hk·) −−−−⇀
k→∞

0 weakly in H1(Hn).

Then

(61) lim
k→∞

‖rk‖Σ = 0.

Assuming Lemma 3.10, we prove (49) by contradiction. If (49) does not hold,
there exists ε > 0 and a sequence of positive integers (J�)�≥0 such that

(62) lim
�→∞

J� = +∞ and ∀� ≥ 0, lim
k→∞

‖rJ�,k‖Σ ≥ ε.

Let (φα)α∈N be a countable, dense family in H1(Hn). Let ν ∈ N. By (59) and (62),
there exists indexes �(ν) and k(ν) with the following properties

∀α ∈ {0, . . . , ν}, sup
t∈R

h∈G

∣∣∣(eitΔrJ�(ν),k(ν) (h·) , φα

)
H1

∣∣∣ ≤ 1

2ν

‖rJ�(ν),k(ν)‖Σ ≥
ε

2
.

As a consequence of the first inequality and the density of (φα)α∈N inH1, we obtain
that for all sequence (tν , hν)ν in R× G,

eitνΔrJ�(ν),k(ν)(hν·) −−−−⇀
ν→∞

0 weakly in H1(Hn).

This proves that (rJ�(ν) ,k(ν))ν contradicts Lemma 3.10, concluding the proof. �

Proof of Lemma 3.10. To prove Lemma 3.10, we argue by contradiction.
Assume that (61) does not hold. Then there exist a subsequence of (rk)k (still
denoted by (rk)k), ε > 0, a sequence (tk, xk, mk)k in R×Hn × [1,∞) such that

(63) ∀k,
∣∣Pmk

eitkΔrk(xk)
∣∣ m

1−n/2
k

log(2 +mk)
≥ ε.

Combining with (29) for s = 1, we deduce

∀k, ε log(2 +mk) ≤ C‖rk‖H1 ,

which proves that the sequence (mk)k is bounded. Extracting subsequences, we can
assume

(64) lim
k→∞

mk = m ∈ [1,+∞).

Since G acts transitively on Hn, we can choose for all k an isometry hk ∈ G such
that hk(0) = xk. Let

gk(x) = eitkΔrk(hk · x).

By (63) and (64), and since hk commutes with Pm, there exists ε′ > 0 such that for
large k

(65) |Pmgk(0)| ≥ ε′.
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By assumption (60),

(66) gk −−−−⇀
k→∞

0 weakly in H1.

It follows from the inequality (29) that f 
→ Pm(f)(0) is a continuous linear form
on H1(Hn), which combined with (65) and (66) yields a contradiction. The proof
of Lemma 3.10 (and thus of Proposition 3.4) is complete. �

Proof of Lemma 3.8. We first prove (50). We have

fk =

J∑
j=1

eitj,kΔϕj(hj,k·) + rJ,k,

and thus

‖fk‖
2
H1 =

J∑
j=1

‖ϕj‖
2
H1 + ‖rJ,k‖

2
H1 + Ak +Bk,

where
Ak = 2

∑
1≤j<j′≤J

(
eitj,kΔϕj(hj,k·), e

itj′,kΔϕj′(hj′,k·)
)
,

Bk = 2

J∑
j=1

(
eitj,kΔϕj(hj,k·), rJ,k

)
.

The sum Ak goes to 0 as k goes to infinity by the orthogonality of the profiles
ensured by Lemma 3.9 and (47). Moreover, the term Bk equals

2

J∑
j=1

(
ϕj , e

−itj,kΔfk(h
−1
j,k·)− ϕj

)
H1
− 2Ak,

which goes to 0 as k goes to infinity by (48).
We next prove (51). By the refined Sobolev embedding (33) applied to s =

n(p−1)
2(p+1) ∈ (0, 1) and (45),

‖rJ,k‖Lp+1 ≤ ‖eitΔrJ,k‖L∞Lp+1 ≤ ‖rJ,k‖
2

p+1

H1 ‖e
itΔrJ,k‖

p−1
p+1

L∞Bs ≤ ‖rJ,k‖
2

p+1

H1 ‖rJ,k‖
p−1
p+1

Σ ,

so using (49),

lim
J→∞

lim
k→∞

‖rJ,k‖Lp+1 = 0.

By the Poincaré-Sobolev inequality (6) and (46),∑
j≥1

‖ϕj‖
p+1
Lp+1 < ∞.

We are thus reduced to prove that for a fixed J ,

lim
k→∞

∫ ∣∣∣ J∑
j=1

(e−itj,kΔϕj)(h
−1
j,kx)

∣∣∣p+1

dx−

J∑
j=1

∫ ∣∣∣(e−itj,kΔϕj)(h
−1
j,kx)

∣∣∣p+1

dx = 0.

This last property follows from the inequality

(67) ∀(a1, . . . , aJ) ∈ [0,+∞)J ,

∣∣∣∣∣∣
J∑

j=1

ap+1
j −

( J∑
j=1

aj

)p+1

∣∣∣∣∣∣ ≤ CJ

∑
1≤j,j′≤J

j �=j′

ap
jaj′ ,

and the limit (53) of Lemma 3.9, which concludes the proof. �
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3.2.2. Nonlinear profiles and scattering. Let (ϕj , (tj,k, hj,k)k)j≥1 be a profile

decomposition for a bounded sequence in H1. Extracting subsequences, we can
assume:

(68) ∀j ≥ 1, lim
k→∞

tj,k = τj ∈ [−∞,+∞].

For any j, we denote by Uj the nonlinear profile associated to ϕj and the sequence
(tj,k)k. This is by definition the unique solution of (1) such that tj,k ∈ Imax(Uj) for
large k and

(69) lim
k→∞

∥∥eitj,kΔϕj − Uj(tj,k)
∥∥

H1 = 0.

Assuming (68), there always exists a nonlinear profile Uj : this follows from the local
Cauchy theory if τj ∈ R, and from the existence of wave operators (see Proposition
2.5) if τj = ±∞. Note that if T+(Uj) is finite, then τj < T+(Uj), and similarly, if
T−(Uj) is finite, T−(Uj) < τj . We next prove:

Proposition 3.11. Let (fk)k≥1 be a bounded sequence in H1 that admits a pro-
file decomposition (ϕj , (tj,k, hj,k)k)j≥1. Assume that for all j ≥ 1, the corresponding

nonlinear profile Uj scatters forward in time. Then for large k, the solution uk of
(1) with initial data fk at t = 0 scatters forward in time. Furthermore,

lim
k→∞

‖uk‖S0(0,+∞) <∞.

Proof. This is a standard consequence of the long-time perturbation theory
(Proposition 2.7) applied to uk and

uJ,k =

J∑
j=1

Uj,k, where Uj,k(t, x) = Uj(t + tj,k, hj,k · x).

We sketch the proof for 1 < p ≤ 4
n + 1; recall that in this case

S0(I) = Lp+1(I, Lp+1), N0(I) = L
p

p+1 (I, L
p

p+1 ).

We refer to [15] for a very close proof, in the Euclidean setting, in the case p > 4
n
+1.

Step 1. Uniform bound on the S0 norm. We first prove that there is a constant
M > 0, depending on the sequence (fk)k, but not on J , such that

(70) ∀J, lim
k→∞

‖uJ,k‖S0(0,+∞) ≤ M.

To this purpose we first use inequality (67),

(71)

∣∣∣∣∣∣
∫ +∞

0

∫
|uJ,k|

p+1 dμ(x) dt−

J∑
j=1

∫ +∞

0

∫
Hn

|Uj,k|
p+1

dμ(x) dt

∣∣∣∣∣∣
≤ C

∑
1≤j,j′≤J

j �=j′

∫ +∞

0

∫
Hn

|Uj,k(x)|
p|Uj′,k(x)| dμ(x) dt.

We next prove

(72) j 	= j′ =⇒ lim
k→∞

∫ +∞

0

∫
Hn

|Uj,k|
p|Uj′,k| dμ(x) dt = 0.
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The term in the limit (72) equals∫ +∞

0

∫
Hn

|Uj(tj,k + t, hj,k · x)|
p|Uj′(tj′,k + t, hj,k · x)| dμ(x) dt

We first note that

(73) ∀f, g ∈ Lp+1(R× Hn),

lim
k→∞

∫
R

∫
Hn

|f(tj,k + t, hj,k · x)|
p|g(tj′,k + t, hj′,k · x)| dμ(x) dt = 0.

Indeed, this is obvious, arguing on the supports, and using the pseudo-orthogonality
(48) of the parameters, if f and g are compactly supported. The general case follows
by density.

If Uj and Uj′ are globally defined, (72) follows immediately from (73) with
f = Uj and g = Uj′ . If Uj and Uj′ are not globally defined backward in time,
(72) follows from (73) with f = χt≥τj

Uj and g = χt≥τj′
Uj′ , where χt≥A is the

characteristic function of [A,+∞), and τj, τj′ are defined in (68). The other cases
are similar.

Combining (71) and (72), we get

lim
k→∞

‖uJ,k‖
p+1
S0(0,+∞) = lim

k→∞

J∑
j=1

‖Uj(tj,k + ·, hj,k·)‖
p+1
S0(0,+∞) =

J∑
j=1

‖Uj‖
p+1
S(τj ,+∞),

which yields (70) since
∑+∞

j=1 ‖Uj‖
p+1
S(τj,+∞) is finite by (46) and the small data theory

for (1).
Step 2. End of the proof. Fix J ≥ 1 such that

lim
k→∞

‖eitΔrJ,k‖S0(R) ≤
ε(M)

4
,

where ε(M) is given by Proposition 2.7. Recall the notation uJ,k =
∑J

j=1 Uj,k.
Then

i∂tuJ,k +ΔuJ,k + |uJ,k|
p−1uJ,k =

∣∣∣∣ J∑
j=1

Uj,k

∣∣∣∣p−1 J∑
j=1

Uj,k −

J∑
j=1

|Uj,k|
p−1Uj,k︸ ︷︷ ︸

eJ,k

.

We have

‖eJ,k‖
1+ 1

p

N0(0,+∞) = ‖eJ,k‖
1+ 1

p

L
1+ 1

p

≤ C

∫ +∞

0

∫
Hn

∑
1≤j,j′≤J

j �=j′

∣∣|Uj,k|
p−1Uj′,k

∣∣1+ 1
p ,

which goes to 0 as k goes to infinity, using the pseudo-orthogonality (48) of the
sequence of parameters and a proof similar to the one in Step 1.

Choosing k0 large, so that for k ≥ k0

‖eJ,k‖N0(0,+∞) +
∥∥eitΔrJ,k

∥∥
S0(0,+∞)

≤
ε(M)

2
,

we obtain by using (10) and (69) that for k ≥ k0,∥∥eitΔfk − eitΔuJ,k(0)
∥∥

S0(0,+∞)
=
∥∥eitΔrJ,k

∥∥
S0(0,+∞)

≤
ε(M)

2
,
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and the results follows from long-time perturbation theory (Proposition 2.7) applied
to uk and uJ,k. �

3.3. Existence of the critical solution. In this section we shall prove The-
orem 3. We will also prove the nonradial version of this result:

Proposition 3.12 (Nonradial critical element). Let λ <
(n−1)2

4 , 1 < p < 1 +
4

n−2 . There exists a global solution uc of equation (1) and a family (h(t))t∈R of
elements of G such that

{uc(t, h(t)·), t ∈ R}

has compact closure in H1(Hn),

Eλ(uc(0)) ≤ Eλ(Qλ), ‖uc(0)‖Hλ
≤ ‖Qλ‖Hλ

,

and, if

Eλ(u(0)) < Eλ(uc(0)), ‖u(0)‖Hλ
≤ ‖Qλ‖Hλ

,

then the solution u of equation (1) scatters in both time directions.

We will use the compactness/rigidity method initiated in [31].

We fix λ < (n−1)2

4 . Let 0 < ω ≤ 1. We introduce the following set:

Kω =
{

f ∈ H1(HN ) : Eλ(f) ≤ ωEλ(Qλ) and ‖f‖
2
Hλ
≤ ‖Qλ‖

2
Hλ

}
.

(note that Kω also depends on λ, which will be fixed in all this subsection).
Theorem 1 and Lemma 2.16 yield the following facts. First, the set Kω is

invariant with respect to the nonlinear evolution (1). Second, if u0 ∈ Kω, then
its evolution through equation (1) is global in time. Third, if u0 ∈ Kω, then

‖u0‖Hλ
≤ ω

1
2 ‖Qλ‖Hλ

. Therefore, for ω small enough, starting with u0 ∈ Kω

we obtain a scattering solution of (1), in view of the small data theory (Corollary
2.8). We can then define

ω0 = sup
{
0 < ω ≤ 1, u0 ∈ Kω =⇒

the solution u of (1) scatters in both time directions
}

.

Since uλ = eitλQλ is a non scattering solution of (1) it follows that ω0 ≤ 1. Note
that if ω0 = 1, then this solution is a critical element in the sense of Proposition 3,
and Proposition 3 follows.

We shall now focus on the remaining cases ω0 < 1 and prove:

Proposition 3.13. Let λ, ω0 and Kω0 be as above. Assume ω0 < 1. Then
there exists a solution uc of (1) such that

uc(0) ∈ Kω0

‖uc‖S0(−∞,0) = ‖uc‖S0(0,+∞) = +∞,

and there exists a h : R → G such that

K =
{
uc(t, h(t)·), t ∈ R

}
has compact closure in H1(Hn).

Similarly, define K̃ω as the subset of the elements of Kω that are radially sym-

metric, and define ω̃0 as ω0, replacing Kω by K̃ω.
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Proposition 3.14. Assume ω̃0 < 1. Then there exists a radially symmetric
solution vc of (1) such that

vc(0) ∈ K̃ω̃0

‖vc‖S0(−∞,0) = ‖vc‖S0(0,+∞) = +∞,

and

K̃ =
{

vc(t), t ∈ R

}
has compact closure in H1(Hn).

Note that ω0 ≤ ω̃0. We conjecture that if p ≥ 1 + 4
n , ω0 = 1. We will show

later (see Section 4) that ω̃0 = 1 if n = 3 and p ≥ 7
3 , or if n = 2 and p ≥ 3. The

proofs of Propositions 3.13 and 3.14 are by now standard. We give the proof of
Proposition 3.13 for the sake of completeness. In view of Remark 3.6, the proof of
Proposition 3.14 is the same, assuming that all the functions are radial and taking
off the isometries h(t).

We first prove a preliminary result. We denote by U(t) the nonlinear evolution
(1): if u0 ∈ H1, u(t) = U(t)u0 is the unique solution of (1), with maximal time of
existence Imax(u0) = (T−(u0), T+(u0)).

Lemma 3.15. Assume λ < (n−1)2

4 . Let (fk)k be a sequence in H1(Hn) such
that

lim
k→∞

Eλ(fk) = ω0Eλ(Qλ), ‖fk‖Hλ
≤ ‖Qλ‖Hλ

and

‖U(t)fk‖S0(T−(fk),0)
k→∞
−→ ∞, ‖U(t)fk‖S(0,T+(fk))

k→∞
−→ ∞.

Then there exists a subsequence of (fk)k (that we still denote by (fk)k), a sequence
(hk)k ∈ GN, and V ∈ H1(Hn) with Eλ(V ) = ω0Eλ(Qλ), ‖V ‖Hλ

≤ ‖Qλ‖Hλ
, such

that

‖fk(hk·)− V ‖H1
k→∞
−→ 0.

Proof. Extracting subsequences, we can assume by Proposition 3.4 that the
sequence (fk)k has a profile decomposition (ϕj ; (tj,k, hj,k)k)j≥1. By the Pythagorean

expansion (50) for large k, and since ‖fk‖Hλ
< ‖Qλ‖Hλ

, we obtain

(74) ∀j ≥ 1, ‖ϕj‖
2
Hλ
≤ ‖Qλ‖

2
Hλ

.

By the Poincaré-Sobolev inequality and the value of its best constant (20) we have

Eλ(ϕj) ≥
‖ϕj‖Hλ

2

2
(
1−

2

p+ 1

‖ϕj‖
p−1
Hλ

‖Qλ‖
p−1
Hλ

)
,

so we get

(75) ∀j, ϕj 	= 0 =⇒ Eλ(ϕj) > 0.

Combining the Pythagorean expansions (50) and (51) with the assumption fk ∈
Kω0 , we obtain that for all J ≥ 1,
(76)

1

2

J∑
j=1

‖ϕj‖
2
Hλ

+ lim
k→∞

⎛⎝1

2
‖rJ,k‖

2
Hλ
−
∑
j≥1

1

p+ 1
‖e−itj,kΔϕj‖

p+1
Lp+1

⎞⎠ ≤ ω0Eλ(Qλ).
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Extracting again subsequences, we can assume that for all j, there exists a nonlinear
profile Uj associated to (ϕj , (tj,k)k) (see §3.2.2). Using the conservation of the mass
and energy for each of this nonlinear profiles, we can write (76):
(77)

J∑
j=1

Eλ(Uj) + lim
k→∞

⎛⎝1

2
‖rJ,k‖

2
Hλ
−
∑

j≥J+1

1

p+ 1
‖e−itj,kΔϕj‖

p+1
Lp+1

⎞⎠ ≤ ω0Eλ(Qλ).

Note that for large J ,∑
j≥J+1

‖e−itj,kΔϕj‖
p+1
Lp+1 ≤ C

∑
j≥J+1

‖ϕj‖
p+1
H1

which is finite, independent of k and goes to 0 as J → ∞. Furthermore, by (75),
Eλ(Uj) is nonnegative (and positive if ϕj 	= 0). Thus (77) implies:

+∞∑
j=1

Eλ(Uj) ≤ ω0Eλ(Qλ).

By (75), if there are more than two indexes j such that ϕj 	= 0, we obtain Eλ(Uj) <
ω0Eλ(Qλ) for all j ≥ 1. In view of (74) and Theorem 1, we deduce that for all j,
Uj is globally defined and satifies Uj(0) ∈ Kω for some ω < ω0. By the definition of
ω0, all the nonlinear profiles Uj scatter in both time directions. From Proposition
3.11, we deduce that fk scatters in both time directions and

(78) lim
k→∞

‖U(t)fk‖S0(R) < ∞,

which contradicts our assumptions. Thus there is at most one nonzero profile, say
ϕ1, and rJ,k = r1,k for all J ≥ 1. Going back to (77), we see that if

lim
k→∞

‖r1,k‖H1 > 0,

then Eλ(U1) < ω0Eλ(Qλ). Arguing as before, we would obtain again that (78)
holds, a contradiction. Thus

lim
k→∞

‖r1,k‖H1 = 0, Eλ(U1) = ω0Eλ(Qλ).

Hence (letting V = ϕ1, tk = −t1,k, hk = h−1
1,k),

‖fk(hk·)− e−itkΔV ‖H1
k→∞
−→ 0.

It remains to prove that tk is bounded.

If tk
k→∞
−→ −∞ then by using Strichartz and Sobolev estimates we get

‖eitΔfk‖S0(0,∞) ≤ ‖e
itΔ(fk(hk·)− e−itkΔV )‖S0(0,∞) + ‖e

itΔV ‖S0(−tk,∞)
k→∞
−→ 0.

Corollary 2.8 insures that for k large, U(t)fk scatters forward in time in H1, and
its S0(0,∞) norm is bounded from above by a constant independent of k. This
contradicts the hypothesis, so the limit of tk cannot be −∞. In the same manner
the limit cannot be ∞. In conclusion the limit of the sequence tk is finite and we
conclude by using the H1 continuity of the free Schrödinger evolution. �

Proof of Proposition 3.13. Step 1. Existence of uc.
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Since ω0 < 1, by its definition we obtain a sequence of numbers ωk approaching
ω0 with ω0 ≤ ωk < 1 and a sequence of functions fk such that Eλ(fk) ≤ ωkEλ(Qλ),
‖fk‖Hλ

≤ ‖Qp‖Hλ
whose global evolution U(t)fk through equation (1) satisfies

‖U(t)fk‖S(R) =∞.

There exists a sequence tk such that

‖U(t− tk)fk‖S(−∞,0)
k→∞
−→ ∞, ‖U(t− tk)fk‖S(0,∞)

k→∞
−→ ∞.

To simplify notations, we denote by fk the translations in time U(−tk)fk. In view
of the global in time result of Theorem 1 we have ‖U(t)fk‖Hλ

< ‖Qλ‖Hλ
for all

t ∈ R. We have

lim
k→∞

Eλ(fk) ≤ ω0Eλ(Qλ),

and we claim that equality holds. Otherwise there exists k such that Eλ(fk) <
ω0Eλ(Qλ), and by definition of ω0 we obtain that U(t)fk scatters in both time
directions, which is not true. Therefore we can apply Lemma 3.15 to conclude
that there exists u0c ∈ H1 with Eλ(u0c) = ω0Eλ(Qλ), ‖u0c‖Hλ

≤ ‖Qλ‖Hλ
and a

sequence (hk) ∈ GN such that

‖fk(hk·)− u0c‖H1
k→∞
−→ 0.

By Proposition 2.7 applied to U(t)fk(hk·) and U(t)u0c, and since

lim
k→∞

‖U(t)fk‖S(0,∞) = lim
k→∞

‖U(t)fk‖S(−∞,0) =∞,

we obtain ‖U(t)u0c‖S(0,∞) = ‖U(t)u0c‖S(−∞,0) = ∞. Thus uc = U(t)u0c does not

scatter in H1 neither forward nor backward in time.
Step 2. We show that there exists h : R→ G such that the set {uc(t, h(t)·), t ∈

R} has compact closure in H1.
By a standard lifting argument, it is sufficient to prove that for all sequence

of times (tk)k, there exists a subsequence of (tk)k (still denoted by (tk)k) and a
sequence (hk)k ∈ GN such that (u(tk, hk·))k converges in H1.

In view of Lemma 2.16, u0c satisfy the assumptions of the global existence re-
sult Theorem 1, so it follows that {uc(tk), k ∈ N} is a bounded set of H1. Also,
by the mass and energy conservations, Eλ(uc(tk)) = Eλ(u0c) = ω0Eλ(Qλ). From
Step 1 we know that U(t)u(tk) does not scatter in H1 neither forward nor back-
ward in time. Then in view of Proposition 2.6 we obtain that ‖U(t)u(tk)‖S(0,∞) =
‖U(t)u(tk)‖S(−∞,0) = ∞. Therefore we can apply Lemma 3.15 to obtain the exis-

tence of V ∈ H1 and a sequence (hk)k ∈ GN such that

‖uc(tk, hk·)− V ‖H1
k→∞
−→ 0.

This concludes the proof. �

3.4. Mass-subcritical case. We conclude this section by proving Proposition

1.5. We assume n ≥ 3, 1 < p < 1+ 4
n . By Proposition 2.13, there exists λ < (n−1)2

4 ,
α > 0 such that Qλ is a minimizer for (21). We will prove that Eλ(vc(0)) < Eλ(Qλ)
by contradiction, in the spirit of the proof of the stability of the orbital stability of
the ground states by Cazenave and Lions [8]. Assume

Eλ(vc(0)) = Eλ(Qλ).
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For β > 0, we will consider uβ, the solution of (1) with initial data uβ(0) = βQλ.
Then

Eλ(uβ(0)) =
β2

2
‖Qλ‖

2
Hλ
−

βp+1

p+ 1
‖Qλ‖

p+1
Lp+1 ,

and thus (using the equality ‖Qλ‖
2
Hλ

= ‖Qλ‖
p+1
Lp+1 ),

β < 1 =⇒ Eλ(uβ(0)) < Eλ(Qλ) = Eλ(vc) and ‖uβ(0)‖Hλ
< ‖Qλ‖Hλ

.

By the definition of vc, we deduce that the solution uβ scatters in both time direc-
tions if β < 1. In particular, uβ is global and

(79) lim
t→∞

‖uβ(t)‖Lp+1 = 0.

Furthermore, by Theorem 1, again if β < 1,

(80) ∀t ∈ R, ‖uβ(t)‖Hλ
≤ ‖Qλ‖Hλ

, ‖uβ(t)‖Lp+1 ≤ ‖Qλ‖Lp+1

Let k be an integer, and βk = 1− 2−k. By (79), there exists tk such that

(81) ‖uβk
(tk)‖Lp+1 ≤ 2−k.

Let

fk =
1

βk
uβk

(tk).

Then, by mass conservation,

‖fk‖L2 =
1

βk
‖uβk

(0)‖L2 = ‖Qλ‖L2 = α.

By energy conservation,

E(βkfk) = E(uβk
(0))

k→∞
−→ E(Qλ) = e(α),

Thus, using also (80)

E(fk) =

(
1

2
−

β2
k

2

)
‖∇fk‖

2
L2 −

(
1

p+ 1
−

βp+1
k

p+ 1

)
‖fk‖

p+1
Lp+1 +E(βkfk)

k→∞
−→ E(Qλ).

Finally, we have obtained that (fk)k is a minimizing sequence for the minimiza-
tion problem (21). By Proposition 2.13, fk converges (extracting subsequences if
necessary) to a minimizer, a contradiction with (81). �

4. The rigidity argument

In this subsection we shall prove the following proposition, which, together with
Proposition 3.14 will imply the Theorem 2, (a).

Proposition 4.1. Let n ∈ {2, 3}, 1 + 4
n ≤ p < 1 + 4

n−2 and λ < (n−1)2

4 . Let

u be a radial solution of (1) such that {u(t)} is a compact subset of H1
rad. If u0 is

radial, Eλ(u0) < Eλ(Qλ) and ‖u0‖Hλ
≤ ‖Qλ‖Hλ

, then u ≡ 0.

In order to prove this proposition we shall need some additional information.
We first recall the classical virial formula:

∂2
t

∫
Hn

|u(t)|2 r2 = G(u(t)),
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where

(82) G(f) = 16E(f) + 8

∫
Hn

|∇Sn−1u(t)|2
r cosh r − sinh r

sinh r3

−

∫
Hn

|u(t)|2Δ2
Hn r2 −

∫
Hn

|u(t)|p+1

(
2(p− 1)

p + 1
ΔHn r2 −

16

p+ 1

)
,

where

ΔHn r2 = 2 + 2(n− 1)
r cosh r

sinh r
,

Δ2
Hn r2 = 2(n− 1)2 − 2(n− 1)(n− 3)

r cosh r − sinh r

sinh3 r
for radial functions, we have:

(83) G(f) = 8‖f‖2H + 2(n− 1)(n− 3)

∫
Hn

|f |2
r cosh r − sinh r

sinh3 r
dμ(x)

−
4(p− 1)

p+ 1

∫
Hn

|f |p+1

(
1 + (n− 1)

r cosh r

sinh r

)
dμ(x).

Note that the third term is well defined for u ∈ H1, in view of the following lemma,
that will be of use also later.

Lemma 4.2. Let n ≥ 2 and 1 < p < 1+ 4
n−2

. The space H1
rad(H

n) is compactly

embedded in Lp+1(Hn) and in Lp+1
(
(1 + (n − 1) r cosh r

sinh r )dr, Hn
)
.

Proof. By the change of function

v(r) =

(
sinh r

r

)n−1
2

u(r),

wee see that it is enough to show that H1
rad(R

n) is compactly embedded in

Lp+1(w(r)dr) with w(r) =
( r

sinh r

) (p−1)(n−1)
2

for the first embedding result and in Lp+1(w̃(r)dr) with w̃(r) = (1+(n−1) r cosh r
sinh r )w(r)

for the second one. This follows immediately from the compact embedding of
H1

rad(R
n) into Lp+1(Rn) (see [55, Compactness Lemma p. 570]). �

We shall use the following crucial lemma.

Lemma 4.3. Let n ∈ {2, 3}, 1 + 4
n ≤ p < 1 + 4

n−2 and λ < (n−1)2

4 . Then

inf
f∈H1

rad ,
Eλ(f)≤Eλ(Qλ),
‖f‖Hλ

≤‖Qλ‖Hλ

G(f) = 0,

and the minimizing sequences converge (after extraction) in H to the constant zero
function or to eiθQ for some θ ∈ R, Q ∈ Qλ.

Proof. We denote m the infimum and we consider a minimizing sequence fk,

G(fk)
k→∞
−→ m.

Since (fk)k is bounded in H1, we can suppose that (up to a subsequence) there
exists a radial weak limit f of fk in H1,

fk
k→∞
−−−−⇀ f in H1.
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Thus fk ⇀ f in H also. As a consequence,

(84) lim inf
k→∞

‖fk‖Hλ
≥ ‖f‖Hλ

and lim inf
k→∞

‖fk‖H ≥ ‖f‖H.

By Lemma 4.2 we obtain that

fk
k→∞
−→ f in Lp+1 ,

and∫
Hn

|fk(x)|
p+1

(
1 + (n− 1)

r cosh r

sinh r

)
k→∞
−→

∫
Hn

|f(x)|p+1

(
1 + (n− 1)

r cosh r

sinh r

)
.

Finally, by Hölder’s inequality,∫
Hn

|fk(x)− f(x)|2
r cosh r − sinh r

sinh3 r
≤ ‖fk − f‖2Lp+1

∥∥∥∥r cosh r − sinh r

sinh3 r

∥∥∥∥
L

p+1
p−1

k→∞
−→ 0,

and in particular∫
Hn

|fk(x)|
2 r cosh r − sinh r

sinh3 r

k→∞
−→

∫
Hn

|f(x)|2
r cosh r − sinh r

sinh3 r
.

In view of the expression of G it follows that −∞ < m and

(85) 8‖fk‖
2
H −→ m− (G(f) − 8‖f‖2H).

Then, by (84), we obtain G(f) ≤ m and Eλ(f) ≤ Eλ(Qλ), ‖f‖Hλ
≤ ‖Qλ‖Hλ

. Thus
G(f) = m, so f is a minimizer. We shall distinguish five cases.

Case 0: f = 0. In this case, m = 0. By (85),

lim
k→∞

‖fk‖H = 0.

Case 1: f 	= 0, Eλ(f) < Eλ(Qλ) and ‖f‖Hλ
< ‖Qλ‖Hλ

.

The set of functions such that Eλ(f) < Eλ(Qλ) and ‖f‖Hλ
< ‖Qλ‖Hλ

is open
in H1, so

0 = ∂μG(μf)|μ=1 = 2G(f) −
4(p2 − 1)

p+ 1

∫
Hn

|f(x)|p+1

(
1 + (n − 1)

r cosh r

sinh r

)
,

and since f is not identically zero it follows that

m = G(f) > 0 = G(0),

so this case is excluded.

Case 2: f 	= 0, Eλ(f) = Eλ(Qλ) and ‖f‖Hλ
= ‖Qλ‖Hλ

.

By Theorem 2.9 it follows that f = eiθQ, for some θ ∈ R, Q ∈ Qλ. The function
eitλQ is a solution of (1), so the virial formula yields

m = G(f) = G(Q) = 0.

Since ‖fk‖Hλ
≤ ‖Qλ‖Hλ

= ‖Q‖Hλ
for all k, and fk converges weakly to f = eiθQ,

we deduce
lim

k→∞
‖fk‖Hλ

= ‖f‖Hλ

thus (fk)k converges strongly to eiθQ in H1 (and thus in H).

Case 3: f 	= 0, Eλ(f) = Eλ(Qλ) and ‖f‖Hλ
< ‖Qλ‖Hλ

.

Since {‖f‖Hλ
< ‖Qλ‖Hλ

} is an open set, it follows that m is a local minimum
of G(f) under the constraint f ∈ Hrad with Eλ(f) = Eλ(Qλ). Indeed, to avoid that
f∗ is an isolated point in the set Eλ(f) = Eλ(Qλ) we might argue as follows. There



FOCUSING NLS ON HYPERBOLIC SPACE 85

exists locally a curve through f∗ that is in the set Eλ(f) = Eλ(Qλ): otherwise f∗

is a local extremum for Eλ(f), so −Δf∗ − λf∗ − |f∗|p−1f∗ = 0, which contradicts,
by using Poincaré-Sobolev inequalities,

‖f‖2Hλ
− ‖f‖p+1

Lp+1 ≥ ‖f‖
2
Hλ
− ‖f‖p+1

Hλ

‖Qλ‖
p+1
Lp+1

‖Qλ‖
p+1
Hλ

= ‖f‖2Hλ

(
1−

‖f‖p−1
Hλ

‖Qλ‖
p−1
Hλ

)
> 0.

Therefore we obtain the existence of a Lagrange multiplier μ such that f solves

(86) 16

(
−Δf −

(n− 1)2

4
f

)
+ 4(n− 1)(n− 3)

r cosh r − sinh r

sinh3 r
f

− 4(p− 1)|f |p−1f

(
1 + (n− 1)

r cosh r

sinh r

)
= μ

(
−Δf − λf − |f |p−1f

)
.

If μ ≥ 0 we multiply with f , integrate and obtain

(87) 2G(f)−
4(p− 1)2

p+ 1

∫
|f |p+1

(
1 + (n− 1)

r cosh r

sinh r

)
= μ(‖f‖2Hλ

− ‖f‖p+1
Lp+1 ) > 0.

It follows that

G(f) > 0 = G(0),

which contradicts the fact that f is a minimizer.
If μ < 0 we note that the equation on f is of type

−Δf − gf − h|f |p−1f = 0,

with explicit variable radial coefficients g(r) and h(r):

g(r) =
4(n− 1)2 − λμ

16− μ
−
4(n− 1)(n− 3)

16− μ

r cosh r − sinh r

sinh3 r
,

h(r) =
1

16− μ

(
4(p− 1)

(
1 + (n− 1)

r cosh r

sinh r

)
− μ

)
.

Multiplying the equation by ϕ∂rf +
∂rϕ
2

f , integrating from 0 to infinity and taking
the real part, we obtain by integration by parts that

0 =

∫ ∞

0

|∂rf |
2

(
∂rϕ− (n − 1)

cosh r

sinh r
ϕ

)
+|f |2

(
−

∂3
r ϕ

4
+

n − 1

4
∂r

(
cosh r

sinh r
∂rϕ

)
+
1

2
∂rgϕ

)
+

∫ ∞

0

|f |p+1

(
−

p− 1

2(p + 1)
h∂rϕ +

1

p+ 1
∂rh ϕ

)
.

We choose ϕ(r) = r sinh rn−1, so that

∂3
rϕ = 2(n− 1)2 sinhn−1 r + (n− 1)(2n− 5) sinhn−3 r

− (n− 1)(n− 3)r cosh r sinhn−4 r + (n− 1)2∂r

(
cosh2 r

sinh2 r
ϕ

)
,

∂r

(
cosh r

sinh r
∂rϕ

)
= (n− 1) sinhn−1 r + (n− 2) sinhn−3 r + (n − 1)∂r

(
cosh2 r

sinh2 r
ϕ

)
,
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and get, using that ‖f‖2H =
∫

Hn |∂rf |
2dμ− (n−1)2

4

∫
Hn |f |

2,

0 = ‖f‖2H +

∫
Hn

|f |2
(
(n− 1)(n− 3)

4

r cosh r − sinh r

sinh3 r
+

r

2
∂rg

)
+

∫
Hn

|f |p+1

(
−

p− 1

2(p+ 1)
h(1 + (n − 1)

r cosh r

sinh r
) +

1

p+ 1
r∂rh

)
.

It follows then that

G(f) =

∫
|f |p+1

(
4(p− 1)

p+ 1

(
1 + (n− 1)

r cosh r

sinh r

)
(h− 1)−

8

p+ 1
r∂rh

)
−4

∫
|f |2 r∂rg.

In order to obtain that G(f) > 0 we want to have the coefficients of |f |p+1 and of
|f |2 positive. The coefficient of |f |p+1 is

16(p− 1)

(16− μ)(p+ 1)

(
(n − 1)r2

sinh2 r

(
(p− 1)(n− 1) cosh2 r + 2

)
+2(n− 1)(p− 4)

r cosh r

sinh r
+ p− 5

)
.

From the behavior near r = 0 we see that p ≥ 1 + 4
n
is a necessary condition for

positivity. Moreover, since the coefficient of p is positive, in order to show that the
function is positive for p ≥ 1 + 4

n , it is enough to show it for p = 1 + 4
n , which is

equivalent to

(2n− 2)r2 cosh2 r + nr2 − (3n− 4)r cosh r sinh r − 2 sinh2 r ≥ 0.

This function vanishes at r = 0 and its first four derivatives are

(4n− 4)r cosh2 r + (4n− 4)r2 cosh r sinh r + 2nr − 3n cosh r sinh r

−(3n− 4)r(cosh2 r + sinh2 r),

(4n− 4) cosh2 r + 4nr cosh r sinh r + (4n− 4)r2(cosh2 r + sinh2 r)

+2n+ (−6n + 4)(cosh2 r + sinh2 r),

(−12n+ 8) cosh r sinh r + (12n− 8)r(cosh2 r + sinh2 r) + (16n− 16)r2 cosh r sinh r,

(80n− 64)r cosh r sinh r + (16n− 16)r2(cosh2 r + sinh2 r).

All these derivatives vanish at r = 0 and the fourth derivative is positive. Therefore
we have the initial inequality for all r ≥ 0 and all n, so

m = G(f) > −4

∫
|f |2r∂rg.

Since

∂rg = −
4(n − 1)(n− 3)

16− μ

r sinh2 r − 3r cosh2 r + 3 cosh r sinh r

sinh4 r
,

its sign is given by n− 3, so in particular, in dimensions n ≤ 3 we obtain

m = G(f) > 0 = G(0),

which contradicts the fact that f is a minimizer. Therefore this case is excluded.

Case 4: f 	= 0, Eλ(f) < Eλ(Qλ) and ‖f‖Hλ
= ‖Qλ‖Hλ

. This case is excluded by
(22).
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Summarizing we have obtained that m = 0, that the only minimizers are the
constant zero function and eiθQ, for some Q ∈ Qλ and θ ∈ R, and that minimizing
sequences tend in H to a minimizer. �

We are now able to prove Proposition 4.1.

Proof. We suppose that u0 is not the constant null function.
Recall here that Theorem 1 insures us that if the initial data satisfies toEλ(u0) <

Eλ(Qλ) and ‖u0‖Hλ
≤ ‖Qλ‖Hλ

, then these properties will be preserved in time. In
view of Lemma 4.3,

inf
t

G(u(t)) ≥ 0.

and equality holds if there is a sequence of times (tn) such that G(u(tn)) → 0 and
u(tn) tends in H to the constant zero function or to eiθQ for some Q ∈ Qλ, θ ∈ R.
It follows that there exists δ0 > 0 such that

(88) G(u(t)) > δ0, ∀t ∈ R.

Indeed, otherwise there is a sequence of times (tn) such that G(u(tn))→ 0 and u(tn)
tends to the constant zero function or to eiθQ for some Q ∈ Qλ, θ ∈ R, strongly

in H, and thus, by compactness of {u(t)} in H1
rad, strongly in H1. In particular,

Eλ(u0) = Eλ(u(tn)) which tends to 0 or to Eλ(Qλ). The second case contradicts
the hypothesis Eλ(u0) < Eλ(Qλ). In the first case, Eλ(u0) = 0 and by using the
variational inequality (22) this contradicts the fact that we have supposed that u0

is not the null function.
Now we recall that the classical virial computation yields for radial functions:

(89) ∂2
t

∫
Hn

|u(t)|2 h

=

∫
Hn

(
|∂ru|

2 −
(n− 1)2

4
|u|2
)
4∂2

rh−2
p − 1

p + 1
|u|p+1Δh+|u|2((n−1)2∂2

rh−Δ2h).

Let ϕ be a smooth positive decreasing radial function supported in B(0, 2), valued
1 in B(0, 1). We shall use the above formula with the weight hR(r) = r2ϕ

(
r
R

)
and

R ≥ 1. Note that when all derivatives fall on r2, then we recover G(u(t)) with
the weight ϕ

(
r
R

)
. Otherwise at least one derivative in space falls on ϕ

(
r
R

)
, so the

integral is restricted to the region R ≤ r ≤ 2R. More precisely,

∂2
rhR = (∂2

rr2)ϕ
( r

R

)
+
4r

R
ϕ′
( r

R

)
+

r2

R2
ϕ′′
( r

R

)
,

ΔhR = (Δr2)ϕ
( r

R

)
+ (n− 1)

cosh r

sinh r

r2

R
ϕ′
( r

R

)
+
4r

R
ϕ′
( r

R

)
+

r2

R2
ϕ′′
( r

R

)
,

and similar computations show that∣∣∣((n− 1)2∂2
rhR −Δ2hR)−

(
(n− 1)2(∂2

r r2)ϕ
( r

R

)
− (Δ2r2)ϕ

( r

R

))∣∣∣ ≤ C

r
1R≤r≤2R.

Therefore we obtain, using also the fact that ϕ′ ≤ 0,

∂2
t

∫
Hn

|u(t)|2 hR = ∂t

(
4�

∫
Hn

u(t)∇u(t)∇hR

)
≥
(
G(u(t))−C

∫
Hn∩{|x|≥R}

(
|∇u(t, x)|2 + |u(t, x)|2 + |u|p+1

)
.
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Therefore for R large enough, we get, using the compactness of {u(t)} and (88) that

∂t

(
4�

∫
Hn

u(t)∇u(t)∇hR

)
≥

δ0

2
.

Integrating in time, and using Cauchy-Schwarz inequality and then Hardy’s inequal-
ity as above, we get

t
δ0

2
≤ C(1 + R2) sup

τ∈(0,t)

(
‖u(τ )‖

2
L2(r≤2R) + ‖∇u(τ )‖2L2(r≤2R)

)
≤ C(R, λ) sup

τ∈(0,t)

‖u(τ )‖Hλ
.

Therefore, we obtain a contradiction by letting t go to infinity, and the Proposition
follows.

�

5. Blow-up

5.1. Previous blow-up results on hyperbolic space. In this section we
recall the known results on blow-up for equation (1). These results are based on
the method of Glassey [18, 53]. If u is a general (not necessarily radial) solution of
(1), and h a radial weight, we have the following virial identity which generalizes
(89):

∂2
t

∫
Hn

|u(t)|2 h =

∫
Hn

4|∂ru|
2∂2

rh+4
|∇Sn−1u|2

sinh2 r
∂rh

cosh r

sinh r
−|u|2Δ2h−2

p− 1

p+ 1
|u|p+1Δh.

Proposition 5.1. Blow-up occurs in the following cases:

(a) [3] If u0 is radial, of finite variance, p ≥ 1 + 4
n and

E(u0) <

{
(n−1)2

8 ‖u0‖
2
L2 if n = 2 or n = 3

n(n−1)
12

‖u0‖
2
L2 if n ≥ 4.

(b) [38] If u0 is of finite variance, not necessarily radial, p ≥ 1 + 4
n−1

and

E(u0) < 0.

We refer to [3, 38] for the proofs. Let us mention that both proofs are
based on the preceding virial identity, with h(r) = r2 for (a), and with h(r) =∫ r

0

∫ s

0 sinh
n−1 τdτ ds

sinhn−1 s
, that satisfies Δh = 1, for (b).

In [3], the blow-up sufficient condition is stated as:

E(u0) < inf
r>0

Δ2
Hnr2

16
‖u0‖

2
L2 .

Condition (a) follows, since

Δ2
Hn r2 = 2(n− 1)2 − 2(n− 1)(n− 3)

r cosh r − sinh r

sinh3 r

and

sup
r>0

r cosh r − sinh r

(sinh r)3
=
1

3
, inf

r>0

r cosh r − sinh r

(sinh r)3
= 0.
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Remark 5.2. By Proposition 5.1 (a), radial solutions with positive energy,
small with respect to the L2 norm always blow up, which seems better than the
analoguous blow-up sufficient condition in the Euclidean setting. However, it is
more natural to write this in term of the following conserved modified energy:

Em(u(t)) =
1

2
‖u(t)‖2H −

1

p+ 1
‖u(t)‖p+1

Lp+1 = E(u(t)) −
(n− 1)2

8
‖u(t)‖2L2 ,

which takes into account the fact that the bottom of the spectrum of −ΔHn is
(n−1)2

4 . The blow-up sufficient condition of Proposition 5.1 (a) can be rewritten as

Em(u0) <

{
0 if n = 2 or n = 3

− (n−3)(n−1)
24 ‖u0‖

2
L2 if n ≥ 4.

In dimension n = 2 and n = 3, we find a negative energy criterion similar to
Glassey’s criterion in the Euclidean setting. In higher dimension, we can only show
that a stronger condition implies blow-up. Technically this is due to the term

(n− 1)(n− 3)

∫
Hn

r cosh r − sinh r

sinh3 r
|u|2

which has a bad sign in the virial identity, in dimension n ≥ 4. Note that the
assumption n ∈ {2, 3} in Theorem 2 comes from the same technical problem (see
e.g. the proof of Lemma 4.3, Case 3).

5.2. Blow-up criterion in the finite variance case. In the particular case
h = r2, we can write the virial formula as

(90) ∂2
t

∫
Hn

|u(t)|2 r2 = G(u(t)),

with G(f) defined in (82). In this section we obtain Theorem 2, (b) in the finite
variance case as a consequence of the following proposition.

Proposition 5.3. Let n ∈ {2, 3}, p ≥ 1 + 4
n and λ < (n−1)2

4 . Let u be a radial

solution of (1) with u0 in H1. Then, if Eλ(u0) ≤ Eλ(Qλ) and ‖u0‖Hλ
> ‖Qλ‖Hλ

,

sup
t

G(u(t)) ≤ −16 (Eλ(Qλ)− Eλ(u0)) .

Theorem 2 (b) in the finite variance case follows immediately from Proposition
5.3. Indeed, in this case and under the assumptions of Theorem 2 (b), the function
t 
→

∫
Hn r2|u(t)|2 is positive and strictly concave on (T−(u), T+(u)), which proves

that T+(u) and T−(u) must be finite. We will treat the case of infinite variance in
the next subsection. It remains to prove Proposition 5.3.

Proof of Proposition 5.3. Theorem 1 insures that if the initial data satis-
fies Eλ(u0) ≤ Eλ(Qλ) and ‖u0‖Hλ

> ‖Qλ‖Hλ
, then these properties will be pre-

served in time. We thus define

(91) m = sup
f∈H1

rad,
Eλ(f)≤Eλ(Qλ),
‖f‖Hλ

≥‖Qλ‖Hλ

G(f).

We will show that m = 0, then improve this estimate to get the conclusion of the
proposition. We divide the proof into 4 steps.

Step 1. We shall first prove that the supremum in (91) can be restricted to the set{
Eλ(f) = Eλ(Qλ)

}
. More precisely, we shall prove the following result.
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Lemma 5.4. Assume n ∈ {2, 3}, p ≥ 1 + 4
n , λ < (n−1)2

4 . If

Eλ(f) < Eλ(Qλ), ‖f‖Hλ
> ‖Qλ‖Hλ

then there exists f∗ ∈ H1 such that Eλ(f∗) = Eλ(Qλ), ‖f∗‖Hλ
≥ ‖Qλ‖Hλ

with

G(f∗) > G(f) + 16(Eλ(Qλ) −Eλ(f)).

Proof. We consider the family of functions {σf}σ∈[0,1]. If Eλ(σf) < Eλ(Qλ)
for all σ ∈ [0, 1], then by Lemma 2.16 and a simple continuity argument, it fol-
lows that ‖σf‖Hλ

> ‖Qλ‖Hλ
for all σ ∈]0, 1], which is in contradiction with

‖Qλ‖Hλ
> 0. This yields the existence of σ∗ ∈]0, 1[ such that Eλ(σ

∗f) = Eλ(Qλ)
and Eλ(σf) < Eλ(Qλ) for σ ∈]σ∗, 1]. So for σ ∈]σ∗, 1], again by Lemma 2.16 and
a simple continuity argument we have ‖σf‖Hλ

> ‖Qλ‖Hλ
. If σ ∈]σ∗, 1], we have

σ
∂

∂σ
G(σf) = 16‖σf‖2Hλ

− 4(p− 1)

∫
Hn

|σf |p+1

(
1 + (n− 1)

r cosh r

sinh r

)
dx

+16

∫
Hn

|σf |2
(

λ−
(n − 1)2

4
+
(n − 1)(n− 3)

4

r cosh r − sinh r

sinh3 r

)
dx

< 16‖σf‖2Hλ
− 4n(p− 1)‖σf‖p+1

Lp+1 .

The inequality is strict since f 	= 0. Hence, using that p < 1 + 4
n ,

∂

∂σ
G(σf) ≤ 16σ‖f‖2Hλ

− 16σp‖f‖p+1
Lp+1 .

Integrating between σ∗ and 1, we get:

G(f) < G(σ∗f) + 16

(
1

2
−

σ∗2

2

)
‖f‖2Hλ

− 16

(
1

p+ 1
−
(σ∗)p+1

p+ 1

)
‖f‖p+1

Lp+1

= G(σ∗f) + 16 (Eλ(f) − Eλ(σ
∗f)) = G(σ∗f) + 16 (Eλ(f) − Eλ(Qλ)) .

Since ‖σf‖Hλ
> ‖Qλ‖Hλ

for σ ∈]σ∗, 1] we obtain that ‖σ∗f‖Hλ
≥ ‖Qλ‖Hλ

so we
can set f∗ = σ∗f . �

Step 2. Maximizer for an equivalent maximization problem. Let

Hλ(f) = G(f) − 16Eλ(f) + 16Eλ(Qλ).

Note that Hλ(f) = G(f) if Eλ(f) = Eλ(Qλ). In virtue of Lemma 5.4 we obtain
that G(f) < Hλ(f) < G(f∗) if Eλ(f) < Eλ(Qλ), ‖f‖Hλ

> ‖Qλ‖Hλ
, and thus:

m = sup
f∈H1

rad

Eλ(f)=Eλ(Qλ)
‖f‖Hλ

≥‖Qλ‖Hλ

G(f) = sup
f∈H1

rad ,
Eλ(f)≤Eλ(Qλ),
‖f‖Hλ

≥‖Qλ‖Hλ

Hλ(f),

In this step we prove that there exists a maximizer f for the maximization problem

(92) m = sup
f∈H1

rad,
Eλ(f)≤Eλ(Qλ),
‖f‖Hλ

≥‖Qλ‖Hλ

Hλ(f)

and that it satisfies

Eλ(f) = Eλ(Qλ).
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Note that

Hλ(f) =
16

p+ 1
‖f‖p+1

Lp+1 −
4(p− 1)

p+ 1

∫
Hn

|f |p+1

(
1 + (n− 1)

r cosh r

sinh r

)
dx+

16Eλ(Qλ) + 8

∫
Hn

|f |2
(

λ−
(n− 1)2

4
+
(n− 1)(n− 3)

4

r cosh r − sinh r

sinh3 r

)
dx

≤ 4
4− n(p− 1)

p+ 1
‖f‖p+1

Lp+1 + 16Eλ(Qλ),

by our assumptions on p and n. We consider now a maximizing sequence fk,

Hλ(fk)
k→∞
−→ m.

From the above upper-bound on Hλ(fk) we obtain that the sequence (fk)k is
bounded in Lp+1 . Since Eλ(fk) ≤ Eλ(Qλ) it follows that (fk)k is bounded in
H1, and we can suppose that (up to a subsequence) there exists a radial weak limit
f of fk in H1,

fk
k→∞
−−−−⇀ f in H1.

By Fatou’s lemma, since λ < (n−1)2

4 ,

(93)

(
λ−

(n − 1)2

4

)
lim inf
k→∞

‖fk‖
2
L2 ≤

(
λ −

(n − 1)2

4

)
‖f‖2L2 .

By the compactness Lemma 4.2,

16

p + 1
‖fk‖

p+1
Lp+1 −

4(p− 1)

p+ 1

∫
Hn

|fk(x)|
p+1

(
1 + (n− 1)

r cosh r

sinh r

)
dx

k→∞
−→

16

p+ 1
‖f‖p+1

Lp+1 −
4(p− 1)

p+ 1

∫
Hn

|f |p+1

(
1 + (n − 1)

r cosh r

sinh r

)
dx,

and, using also Hölder’s inequality∫
Hn

|fk|
2 r cosh r − sinh r

sinh3 r
dx

k→∞
−→

∫
Hn

|f |2
r cosh r − sinh r

sinh3 r
dx.

In view of the expression of Hλ it follows that m < ∞ and that ( (n−1)2

4 −λ)‖fk‖L2

converges. From (93) we obtain

m = lim
k→∞

Hλ(fk) ≤ Hλ(f).

It remains to prove that f satisfies Eλ(f) = Eλ(Qλ), ‖f‖Hλ
≥ ‖Qλ‖Hλ

.
By the weak convergence we obtain

lim inf
k→∞

‖fk‖Hλ
≥ ‖f‖Hλ

,

so combining this with the Lp+1 convergence,

Eλ(f) ≤ lim inf
k→∞

Eλ(fk) ≤ Eλ(Qλ).

Moreover, since fk satisfy the constraints in (92), it follows that ‖fk‖Lp+1 ≥ ‖Qλ‖Lp+1

and by the Lp+1 convergence we get ‖f‖Lp+1 ≥ ‖Qλ‖Lp+1 . Now using Poincaré-
Sobolev inequality (6),

‖Qλ‖
2
Hλ

= ‖Qλ‖
p+1
Lp+1 ≤ ‖f‖

p+1
Lp+1 ≤ D

p+1
2

λ ‖f‖p+1
Hλ

= ‖Qλ‖
1−p
Hλ
‖f‖p+1

Hλ
,

so we get the second constraint

‖f‖2Hλ
≥ ‖Qλ‖

2
Hλ

.



92 VALERIA BANICA AND THOMAS DUYCKAERTS

Therefore we have obtained that f is a solution of the maximization problem (92).
To conclude this step, we must prove Eλ(f) = Eλ(Qλ). Indeed, if f does not

satisfy this constraint, then Eλ(f) < Eλ(Qλ) and, letting f∗ be as in Lemma 5.4,
we have

Hλ(f∗) = G(f∗) > Hλ(f) = m,

a contradiction.

Step 3. Proof that the maximum is zero. In the following we shall prove that
f = eiθQ for some θ ∈ R, Q ∈ Qλ which implies m = 0. We suppose that f 	= eiθQ
for any θ ∈ R and any Q ∈ Qλ. By the definition of Qλ and Theorem 2.9 we get
‖f‖2Hλ

> ‖Qλ‖
2
Hλ

. In particular, f is a local maximizer for G(f) under the only
constraint Eλ(f) = Eλ(Qλ). We derive the equation

G′(f) = μE′λ(f),

with the Lagrange multiplier μ ∈ R. This is precisely equation (86). In particular,
(87) writes

(94) (−16 + μ)(‖f‖p+1
Lp+1 − ‖f‖

2
Hλ
)

+ 16

∫
|f |2

(
λ −

(n − 1)2

4
+
(n − 1)(n− 3)

4

r cosh r − sinh r

sinh3 r

)
=

∫
|f |p+1

(
4(p− 1)

(
1 + (n− 1)

r cosh r

sinh r

)
− 16

)
.

Since ‖f‖Lp+1 > ‖Qλ‖Lp+1 we have

‖f‖p+1
Lp+1 − ‖f‖

2
Hλ

= −2Eλ(f) +
p− 1

p+ 1
‖f‖2Lp+1 > −2Eλ(Qλ) +

p− 1

p+ 1
‖Qλ‖

2
Lp+1 = 0.

Since p ≥ 1+ 4
n , the right-hand side of (94) is positive. So, in view of the hypothesis

n ∈ {2, 3}, λ < (n−1)2

4 , we must have μ > 16. Then, recalling the computation in
Case 3 of the proof of Lemma 4.3, but with the opposite sign for 16− μ, we get

m = G(f) < 4

∫
|f |2r

4(n− 1)(n− 3)

16− μ

r sinh2 r − 3r cosh2 r + 3 cosh r sinh r

sinh4 r
.

For n ≤ 3 we obtain

m = G(f) < 0 = G(Qλ),

which contradicts the definition of m.

Step 4. Conclusion of the proof. By Lemma 5.4, for all t in the domain of existence
of u, there exists u∗(t) with Eλ(u∗) = Eλ(Qλ),‖u∗‖Hλ

> ‖Qλ‖Hλ
and such that

G(u(t)) ≤ G(u∗(t)) + 16 (Eλ(u0) −Eλ(Qλ)) ≤ 16 (Eλ(u0)−Eλ(Qλ)) ,

since by Step 3, G(u∗(t)) ≤ 0. This concludes the proof of Proposition 5.3. �

5.3. Blow-up criterion in the infinite variance case. We next assume
(in addition to the preceding assumptions on p, n and λ), 1 + 4

n < p ≤ 5, and
prove Theorem 2 (b) without the finite variance assumption. The proof relies on a
localized version of the virial identity (90) in the spirit of [43]. To use this localized
version, we need the following refinement of Proposition 5.3:
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Proposition 5.5. Let n ∈ {2, 3}, p > 1 + 4
n and λ < (n−1)2

4 . Let u be a radial
solution of (1) with u0 in Hλ . Then, if Eλ(u0) < Eλ(Qλ) and ‖u0‖Hλ

> ‖Qλ‖Hλ
,

there exists δ > 0, depending only on the conserved mass and energy of u, such that
for all t in the maximal interval of existence (T−, T+) of u,

(95) G(u(t)) ≤ −δ‖u(t)‖2H1 .

Proof. By Proposition 5.3, it is sufficient to prove (95) when ‖∇u(t)‖L2 is
large, i.e.

(96) ∃M, δ > 0, ∀t ∈ (T−, T+), ‖∇u(t)‖L2 ≥M =⇒ G(u(t)) ≤ −δ‖∇u(t)‖2L2.

Using the definition (83) of G(u(t)) and the assumption n ≤ 3, we obtain

G(u(t)) ≤ 8‖u(t)‖2H −
4n(p− 1)

p+ 1
‖u(t)‖p+1

Lp+1

= 4n(p− 1)E(u(t)) + (8− 2n(p− 1))‖∇u(t)‖2L2 −
(n− 1)2

4
‖u(t)‖2L2 ,

and (96) follows, since by our assumptions 8− 2n(p− 1) < 0. �

We next prove Theorem 2 (b). We will only sketch the proof, which is close to
the corresponding proof on Rn once (95) is known.

Let ϕ : (0,∞) → (0,+∞) be a smooth function such that ϕ(r) = r2 if r ≤ 1,
ϕ(r) is constant for r ≥ 2 and ϕ′′(r) ≤ 2 for all r > 0. Let R ≥ 1 and hR(r) =
R2ϕ(r/R). Combining the virial identity (89) with h(r) = hR(r), and the definition
(83) of G, we obtain

(97)
∂2

∂t2

∫
|u(t)|2hR −G(u(t)) = a+ b+ c,

with

a = 4

∫
Hn

(
|∂ru|

2 −
(n− 1)2

4
|u|2
)
(ϕ′′(r/R)− 2) ,

b = −2
p− 1

p+ 1

∫
Hn

|u|p+1

(
(ϕ′′(r/R)− 2) + (n − 1)

cosh r

sinh r
(Rϕ′(r/R)− 2r)

)
c =

∫
Hn

|u|2
[
−

1

R2
ϕ(4) (r/R)−

2(n− 1)

R

cosh r

sinh r
ϕ(3) (r/R)

−
(n − 1)(n− 3)

sinh2(r)
(ϕ′′ (r/R)− 2) +

cosh r

sinh3 r
(n− 1)(n − 3) (Rϕ′ (r/R)− 2r)

]
.

By the choice of ϕ, the integrand in the definitions of a, b and c is zero for r ≤ R.
We claim

a ≤
C

R
‖u‖2L2, |b| ≤ Ce−R/C‖u‖

p−1
2

H1 ‖u‖
p+3
2

L2 , |c| ≤
C

R
‖u‖2L2 .(98)

We first assume (98) and prove that u blows up in finite time. Combining Propo-
sition 5.5, (97) and (98), we obtain that for all t in the domain of existence of
u,

∂2

∂t2

∫
Hn

|u(t)|2hR ≤ −δ‖u(t)‖2H1 + Ce−R/C‖u(t)‖
p−1
2

H1 ‖u(t)‖
p+3
2

L2 +
C

R
‖u(t)‖2L2 .
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Using the conservation of the mass and Young’s inequality together with the as-
sumption p ≤ 5 we deduce (for a constant C > 0 that depends on the mass and
energy of u),

∂2

∂t2

∫
Hn

|u(t)|2hR ≤ −δ‖u(t)‖2H1 + Ce−R/C‖u(t)‖2H1 +
C

R
.

Note that ‖u(t)‖2H1 is bounded from below (by the conserved mass of u). Chosing
R large, we obtain

∂2

∂t2

∫
Hn

|u(t)|2hR ≤ −
δ

2
‖u(t)‖2H1 ≤ −

δ

2
M(u).

Thus
∫
|u(t)|2hR is a positive, strictly concave function on the domain of existence

of u, which proves that u blows up in finite time.
It remains to prove (98).
The bound on c is straightforward using that the integrand in the definition of

c is zero for r ≤ R.

To bound a, we let w = (sinh r)
n−1

2 u. Then(
|∂ru|

2 −
(n− 1)2

4
|u|2
)
(sinh r)n−1 = |∂rw|

2 −
n− 1

2

cosh r

sinh r

∂

∂r
|w|2.

Hence, using that 4ϕ′′(r/R)− 8 is nonpositive for all r > 0, and 0 for r ≤ R,

a ≤ −
n − 1

2

∫ ∞
0

cosh r

sinh r

∂

∂r
|v|2 (4ϕ′′(r/R)− 8) dr ≤

C

R

∫ ∞
0

|v|2 dr ≤
C

R

∫
Hn

|u|2.

Finally, using that for r ≥ 1,

|u(t, r)|2 =

∣∣∣∣∫ ∞
r

∂

∂ρ
|u(t, ρ)|2 dρ

∣∣∣∣
≤

1

(sinh r)n−1

√∫ ∞

r

|∂ρu(t, ρ)|2 (sinh ρ)n−1 dρ

√∫ ∞
r

|u(t, ρ)|2 (sinh ρ)n−1 dρ

≤ Ce−(n−1)r‖u(t)‖H1‖u(t)‖L2,

we obtain the bound of b in (98) by explicit computation. The proof is complete
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