A regularity result for a linear elliptic equation with Hardy-type potential

Ionel Ciuperca

Communicated by Y. Charles Li, received November 22, 2011.

ABSTRACT. We consider a linear elliptic problem which Dirichlet boundary conditions, with a potential term b(x)u where the potential function b behaves as $\frac{1}{\operatorname{dist}^2(x,\partial\Omega)}$ close to the boundary. We study the effect of this potential term on the H^2 regularity of the solution of the problem. An application to a stationary Fokker-Planck-Smoluchowski equation for FENE models of diluted polymers is given.

Contents

1.	Introduction	1
2.	The one dimensional case	2
3.	The general dimensional case	4
4.	An application to a FENE model for diluted polymers	9
Acknowledgements		12
References		12

1. Introduction

We consider Ω an open, bounded and regular set in \mathbb{R}^{n+1} , with $n \in \mathbb{N}$, and $u \in H_0^1(\Omega)$ a solution of the equation

(1.1)
$$-\Delta u + b(x)u = f \quad \text{in } \mathcal{D}'(\Omega).$$

In the above f is an element of $H^{-1}(\Omega)$ and the function b is positive, regular and "behaves as $\frac{1}{\text{dist}^2(x,\partial\Omega)}$ for x close to $\partial\Omega$ ".

¹⁹⁹¹ Mathematics Subject Classification. 35H99.

Key words and phrases. Regularity of partial differential equations, Fokker-Plack-Smoluchowski equations, Hardy-type potential.

IONEL CIUPERCA

The goal of this paper is to study the influence of the term b(x)u on the H^2 -regularity of the solution of the problem.

Suppose for simplicity that the function b is given by the expression:

$$b(x) = \frac{b^*}{\operatorname{dist}^2(x,\partial\Omega)}$$

where $b^* > 0$ is a constant (more general forms of b are given in Section 3). We prove that, under the supplementary hypothesis $b^* > \frac{3}{4}$, the solution u belongs to H^2 for any $f \in L^2(\Omega)$, and we also have an appropriate inequality. Moreover, we prove that $\frac{\partial u}{\partial \nu} = 0$ on $\partial\Omega$, that is, $u \in H_0^2(\Omega)$.

The H^2 regularity of u in the case $b \equiv 0$ is a classical result; nevertheless, remark that the regularity result presented in this paper is not an obvious consequence of this classical regularity, since in general the term b(x)u is not an element of $L^2(\Omega)$ under the hypothesis $u \in H_0^1(\Omega)$.

To the best of our knowledge, the H^2 regularity of the solution of such a problem was never studied in the past. For a related work, we mention the paper [1] where a problem like (1.1) is considered, with a function b of the form $b(x) = \frac{b^*}{\|x\|^2}$ with $b^* \in \mathbb{R}$ and $0 \in \Omega$. In that paper the authors suppose that b^* is negative with small enough absolute value and they study the $W^{1,p}$ regularity of u under L^q regularity hypothesis on f, with $p, q \geq 1$.

Our paper is organized as follows: In Section 2 we consider the one dimensional case (n = 0) while in Section 3 the case $n \in N^*$ is treated. The proof for $n \in N^*$ is based on the result obtained in the one dimensional case. Notice that these results are stated in a more general setting than described in the beginning of this section. In Section 4 we give an application to a stationnary Fokker-Planck-Smoluchowski equation for FENE models of diluted polymers; this was the initial motivation for the result obtained in this paper.

2. The one dimensional case

In this section we denote $\Omega =]0, a[$ with a > 0 a given number. Let $f \in L^2(\Omega), u \in L^2(\Omega)$ and $b \in \mathbb{R}$ satisfying

(2.1)
$$-u''(x) + \frac{b}{x^2}u(x) = f(x) \quad \text{in } \mathcal{D}'(\Omega).$$

Our goal is to prove a H^2 - regularity result for u.

The main result of this section is the following:

THEOREM 2.1. Suppose that $b > \frac{3}{4}$ and let us denote

$$\alpha \equiv \alpha(b) = \frac{1}{2}(1 + \sqrt{1 + 4b}).$$

Then for any $f \in L^2(\Omega)$ and $u \in L^2(\Omega)$ satisfying (2.1) we have:

$$u \in H^2(\Omega)$$
 and $u(0) = u'(0) = 0.$

We also have the estimate

(2.2)
$$\|u\|_{H^2(\Omega)} \le C_1 \|u\|_{L^2(\Omega)} + C_2 \|f\|_{L^2(\Omega)}$$

where

$$C_1 = C_1(a,b) = 1 + \frac{a}{\sqrt{2}(2\alpha - 1)} \left(\frac{\alpha}{\sqrt{2\alpha - 3}} + \frac{\alpha - 1}{\sqrt{2\alpha + 1}}\right) + \frac{4\alpha(\alpha - 1)}{(2\alpha + 1)(2\alpha - 3)} + \frac{\alpha}{(2\alpha + 1)(2\alpha - 3)} + \frac{$$

$$+\frac{\alpha}{2(2\alpha-1)}\left(1+\sqrt{\frac{2\alpha+1}{2\alpha-3}}\right)\left(\frac{\alpha-1}{\sqrt{2\alpha-3}}+\frac{a}{\sqrt{2\alpha-1}}\right)$$

and

$$C_2 = C_2(a, b) = 1 + \frac{\alpha\sqrt{2\alpha+1}}{a^2} \left(\frac{a}{\sqrt{2\alpha-1}} + \frac{\alpha-1}{\sqrt{2\alpha-3}}\right)$$

PROOF. We solve the equation (2.1) by using the change of variables $x = e^t$ with $t \in [-\infty, \log a]$.

Since

$$\frac{d^2u}{dx^2} = \frac{1}{x^2}\frac{d^2u}{dt^2} - \frac{1}{x^2}\frac{du}{dt}$$

we obtain from (2.1):

(2.3)
$$\frac{d^2u}{dt^2} - \frac{du}{dt} - bu = -e^{-2t}f$$

We easily find that the general solutions of (2.3) is given by

$$u(t) = e^{\alpha t} \left[\beta_1 - \frac{1}{2\alpha - 1} \int_{\log(a)}^t e^{(2-\alpha)t'} f(t') dt' \right] \\ + e^{(1-\alpha)t} \left[\beta_2 + \frac{1}{2\alpha - 1} \int_{-\infty}^t e^{(1+\alpha)t'} f(t') dt' \right]$$

with $\beta_1, \beta_2 \in \mathbb{R}$ arbitrary. Now passing in the variable x we obtain

(2.4)
$$u(x) = x^{\alpha} \left[\beta_1 + \frac{1}{2\alpha - 1} \int_x^a f(x')(x')^{1 - \alpha} dx' \right] + x^{1 - \alpha} \left[\beta_2 + \frac{1}{2\alpha - 1} \int_0^x f(x')(x')^{\alpha} dx' \right].$$

The expression of u can be written in the form

$$u(x) = \beta_1 x^{\alpha} + \frac{1}{2\alpha - 1} x^{\alpha} u_1(x) + \frac{1}{2\alpha - 1} x^{1 - \alpha} u_2(x) + \beta_2 x^{1 - \alpha}$$

with

$$u_1(x) = \int_x^a f(x')(x')^{1-\alpha} \, dx'$$

and

$$u_2(x) = \int_0^x f(x')(x')^{\alpha} dx'.$$

From the hypothesis $b > \frac{3}{4}$ we deduce

$$(2.5) \qquad \qquad \alpha > \frac{3}{2},$$

then the function $\beta_1 x^{\alpha}$ is an element of $H^2(\Omega)$. Let us prove that $x^{\alpha}u_1, x^{1-\alpha}u_2 \in L^2(\Omega)$. We are the following inequalities:

$$|u_1(x)| \le \left[\int_x^a (x')^{2-2\alpha} \, dx'\right]^{1/2} \|f\|_{L^2(\Omega)}$$

which gives

(2.6)
$$|u_1(x)| \le \frac{x^{3/2-\alpha}}{\sqrt{2\alpha-3}} ||f||_{L^2(\Omega)},$$

and we obtain in the same manner

(2.7)
$$|u_2(x)| \le \frac{x^{1/2+\alpha}}{\sqrt{2\alpha+1}} ||f||_{L^2(\Omega)}.$$

We deduce from the above inequalities that $x^{\alpha}u_1, x^{1-\alpha}u_2 \in L^2(\Omega)$ with

(2.8)
$$\|x^{\alpha}u_1\|_{L^2(\Omega)} + \|x^{1-\alpha}u_2\|_{L^2(\Omega)} \le \frac{a^2}{2} \left(\frac{1}{\sqrt{2\alpha+1}} + \frac{1}{\sqrt{2\alpha-3}}\right) \|f\|_{L^2(\Omega)}.$$

Since u must be an element of $L^2(\Omega)$ we necessarily have $\beta_2 = 0$, that is, u is given by

(2.9)
$$u(x) = \beta_1 x^{\alpha} + \frac{1}{2\alpha - 1} x^{\alpha} u_1(x) + \frac{1}{2\alpha - 1} x^{1 - \alpha} u_2(x).$$

We easily compute

(2.10)
$$u'(x) = \alpha \beta_1 x^{\alpha - 1} + \frac{\alpha}{2\alpha - 1} x^{\alpha - 1} u_1(x) + \frac{1 - \alpha}{2\alpha - 1} x^{-\alpha} u_2(x)$$

and

(2.11)
$$u''(x) = -f(x) + \alpha(\alpha - 1)\beta_1 x^{\alpha - 2} + \frac{\alpha(\alpha - 1)}{2\alpha - 1} \left[x^{\alpha - 2} u_1(x) + x^{-1 - \alpha} u_2(x) \right].$$

With the help of (2.6) and (2.7) we obtain:

$$|u'(x)| \le \alpha |\beta_1| x^{\alpha-1} + \left[\frac{\alpha}{2\alpha-1} \frac{1}{\sqrt{2\alpha-3}} + \frac{\alpha-1}{2\alpha-1} \frac{1}{\sqrt{2\alpha+1}}\right] x^{1/2} ||f||_{L^2(\Omega)}, \quad \forall x \in \Omega$$

and we deduce that $u' \in L^2(\Omega)$ with

and we deduce that $u' \in L^2(\Omega)$ with (2.12)

$$\|u'\|_{L^{2}(\Omega)} \leq |\beta_{1}| \frac{\alpha}{\sqrt{2\alpha - 1}} a^{\alpha - 1/2} + \frac{a}{\sqrt{2}(2\alpha - 1)} \left(\frac{\alpha}{\sqrt{2\alpha - 3}} + \frac{\alpha - 1}{\sqrt{2\alpha + 1}}\right) \|f\|_{L^{2}(\Omega)}.$$

Now using the Hardy inequalities (see for exemple Lemma 6.2.1 of [7]), we infer that $x^{\alpha-2}u_1, x^{-1-\alpha}u_2 \in L^2(\Omega)$ and

$$\|x^{\alpha-2}u_1\|_{L^2(\Omega)} \le \frac{2}{2\alpha-3} \|f\|_{L^2(\Omega)}$$
$$\|x^{-1-\alpha}u_2\|_{L^2(\Omega)} \le \frac{2}{2\alpha+1} \|f\|_{L^2(\Omega)}.$$

Then from (2.11) we deduce that $u'' \in L^2(\Omega)$ and

(2.13)
$$||u''||_{L^2(\Omega)} \le |\beta_1| \frac{\alpha(\alpha-1)}{\sqrt{2\alpha-3}} a^{\alpha-3/2} + \left[1 + \frac{4\alpha(\alpha-1)}{(2\alpha+1)(2\alpha-3)}\right] ||f||_{L^2(\Omega)}$$

3. The general dimensional case

In this section we consider $n \in \mathbb{N}^*$ and we denote by Ω an open bounded domain included in \mathbb{R}^{n+1} , with boundary of class C^2 .

Let us denote $\Gamma = \partial \Omega$; for any $x \in \Gamma$ we denote $\nu \equiv \nu(x) \in \mathbb{R}^{n+1}$ the normal vector in x to Γ oriented to the interior of Ω . For any $\epsilon > 0$ we denote

$$\Sigma_{\epsilon} = \{ x \in \Omega; \ dist(x, \Gamma) < \epsilon \}.$$

It is well-known that there exists $\epsilon_0 > 0$ small enough such that for any $\epsilon \in]0, \epsilon_0[$ we have

$$\Sigma_{\epsilon} = \{ x + s\nu(x), \ x \in \Gamma, \ s \in]0, \ \epsilon[\}.$$

We also denote for any $\epsilon \in [0, \epsilon_0[$

$$\tilde{\Gamma}_{\epsilon} = \{ x + \epsilon \nu(x), \ x \in \Gamma \}.$$

Let us now give a > 0 and consider $f \in L^2(\Sigma_a)$ and $u \in H^1(\Sigma_a)$ satisfying

(3.1)
$$\begin{cases} -\Delta u + b(x)u = f & \text{in} & H^{-1}(\Sigma_a) \\ u = 0 & \text{for} & x \in \Gamma \end{cases}$$

In the above $b: \Sigma_a \to \mathbb{R}$ is a given regular enough function which "behaves as $\frac{1}{\operatorname{dist}^2(x,\Gamma)}$ for x close" to Γ . For simplicity we suppose that there exists a function $b_0: \Gamma \to \mathbb{R}$ with $b_0 \in C^2(\Gamma)$, such that

(3.2)
$$b(x+s\nu(x)) = \frac{b_0(x)}{s^2}, \quad \forall x \in \Gamma, \ \forall s \in]0, \min\{\epsilon_0, a\}[.$$

In all this section we denote by C a generic positive constant. We have the following preliminary result:

LEMMA 3.1. Let us consider $f \in L^2(\Sigma_a)$ and $u \in H^1(\Sigma_a)$ satisfying (3.1). **a)** For any $a_1 \in [0, a]$ we have

(3.3)
$$\|u\|_{H^1(\Sigma_{a_1})} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

b) For any a_1, a_2 with $0 < a_1 < a_2 < a$, we have $u \in H^2(\Sigma_{1,2})$ and

(3.4)
$$\|u\|_{H^2(\Sigma_{1,2})} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

where we denoted $\Sigma_{1,2} = \Sigma_{a_2} - \overline{\Sigma_{a_1}}$.

PROOF. **a)** We consider a cut-off function $\varphi \in C^{\infty}(\overline{\Sigma_a})$ such that $\varphi \equiv 1$ on Σ_{a_1} and $\varphi \equiv 0$ on $\partial(\Sigma_a) - \Gamma$. It is clear that $\tilde{u} \equiv u\varphi$ satisfies

(3.5)
$$\begin{cases} -\Delta \tilde{u} + b(x)\tilde{u} = \tilde{f} & \text{in} & \mathcal{D}'(\Sigma_a) \\ \tilde{u} = 0 & \text{for} & x \in \partial \Sigma_a \end{cases}$$

where $\tilde{f} = f\varphi - 2\nabla u \cdot \nabla \varphi - u\Delta \varphi$. We have that \tilde{f} is an element of $H^{-1}(\Sigma_a)$ and (3.6) $\|\tilde{f}\|_{H^{-1}(\Sigma_a)} \leq c \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$

(3.7)
$$\left\|\frac{v}{dist(x,\Gamma)}\right\|_{L^2(\Sigma_a)} \le c \|v\|_{H^1(\Sigma_a)}, \quad \forall v \in H^1_0(\Sigma_a)$$

we easily deduce that the problem (3.5) has an unique solution $\tilde{u} \in H_0^1(\Sigma_a)$ for any $\tilde{f} \in H^{-1}(\Sigma_a)$ and

 $\|\tilde{u}\|_{H^1(\Sigma_a)} \le c \|\tilde{f}\|_{H^{-1}(\Sigma_a)}.$

With the help pf (3.6) we obtain the expected result.b) This part is obvious by interior regularity.

We can now state the following result

THEOREM 3.2. Suppose that $b_0(x) > \frac{3}{4} \quad \forall x \in \Gamma$. Then for any $f \in L^2(\Sigma_a)$ and $u \in H^1(\Sigma_a)$ satisfying (3.1) we have $u \in H^2(\Sigma_a)$ with

(3.8)
$$\|u\|_{H^2(\Sigma_a)} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

where $C \ge 0$ is a constant independent on u and f. We also have

(3.9)
$$\frac{\partial u}{\partial \nu} = 0 \quad on \ \Gamma.$$

PROOF. From Lemma 3.1 b) it suffices to prove that $u \in H^2(\Sigma_{s_0})$ for $s_0 > 0$ small enough.

Let us consider the open sets $\Omega_1, \Omega_2, \cdots \Omega_N$ such that

$$\Sigma_{s_0} \subset \Omega_1 \cup \Omega_2 \cdots \Omega_N$$

and $\varphi_1, \varphi_2, \cdots \varphi_N$ a partition of unity associated to $\Omega_1, \Omega_2, \cdots \Omega_N$, with $\varphi_k \in \mathcal{D}(\Omega_k)$ and

$$0 \le \varphi_k \le 1,$$
 $\sum_{k=1}^N \varphi_k = 1 \text{ on } \Sigma_{s_0}.$

Let us denote for any $k \in \{1, 2, \dots N\}$:

$$\tilde{\Omega}_k = \Omega_k \cap \Sigma_{s_0}, \qquad \Gamma_k = \Omega_k \cap \Gamma$$

and

$$u_k = u \varphi_k.$$

Since $u = \sum_{k=1}^{N} u_k$, to obtain the regularity result it suffices to prove that $u_k \in H^2(\tilde{\Omega}_k)$ and to obtain appropriate estimates for $||u_k||_{H^2(\tilde{\Omega}_k)}$. It is clear that

(3.10)
$$\begin{cases} -\Delta u_k + bu_k = f_k & \text{in} & \tilde{\Omega}_k \\ u_k = 0 & \text{on} & x \in \partial \tilde{\Omega}_k - \tilde{\Gamma}_{s_0} \end{cases}$$

where we denoted

$$f_k = f\varphi - 2\nabla u \cdot \nabla \varphi_k - u\Delta \varphi_k.$$

We can suppose that

$$\hat{\Omega}_k = \{ x + s\nu(x), \ x \in \Gamma_k, \ s \in [0, a] \}$$

We also suppose that every set Γ_k is an *n*-dimensional C^2 - manifold which can be written in the following manner:

$$\Gamma_k = \{g^k(t), \quad t \in T_k\}$$

where T_k is a bounded regular open set in \mathbb{R}^n and $g^k : T_k \to \mathbb{R}^{n+1}$ is an injective and C^2 - function (for exemple Γ_k can be defined as a C^2 - graph in an appropriate local coordinates system).

We now introduce the vectors in \mathbb{R}^{n+1} :

$$\tau_j \equiv \tau_j(t) = \frac{\partial g^k}{\partial t_j}(t), \quad j = 1, \dots n$$

These vectors are tangent to the manifold Γ_k and we suppose that $\tau_1(t), \cdots \tau_n(t)$ are independent in \mathbb{R}^{n+1} for any $t \in T_k$. Let us define

$$\tilde{\nu} \equiv \tilde{\nu}(t) = \tau_1 \wedge \tau_2 \dots \wedge \tau_n$$

(the vectorial product in \mathbb{R}^{n+1}) where we recall that $\tilde{\nu}_j = (-1)^{k+1} \det(\mathbf{M}_j)$ with \mathbf{M}_j the $n \times n$ matrix obtained from \mathbf{M} by suppressing the line j, where \mathbf{M} is the

 $(n+1) \times n$ matrix whose *l*-column is τ_l .

It is clear that $\tilde{\nu}$ is normal to Γ_k and we suppose that ν is given by

$$\nu = (-1)^n \frac{\dot{\nu}}{d}$$

where we denote $d \equiv d(t) = \|\tilde{\nu}(t)\| > 0$ (since $\tilde{\nu}(t) \neq 0$).

Let us denote $Q = T_k \times [0, s_0]$. We suppose that $s_0 > 0$ is small enough such that the function $\theta : Q \to \tilde{\Omega}_k$ given by

$$\theta(t,s) = g(t) + s\nu(t)$$

is injective. It is easy to see that the Jacobian matrix of θ is the matrix $\mathbf{A} \equiv \mathbf{A}(t, s)$ given by

$$\mathbf{A}(t,s) = \mathbf{A}_0(t) + s\mathbf{J}(t)$$

where \mathbf{A}_0 and \mathbf{J}_0 are written by columns as

$$\mathbf{A}_0 \equiv \mathbf{A}_0(t) = (\tau_1(t) \cdots \tau_n(t) \ \nu(t))$$

and

$$\mathbf{J}_0 \equiv \mathbf{J}_0(t) = \left(\frac{\partial \nu}{\partial t_1}(t) \cdots \frac{\partial \nu}{\partial t_n}(t) \ 0\right).$$

We also have

$$\det \left(\mathbf{A}_{0}\right) = \sum_{j=1}^{n+1} (-1)^{n+j+1} \nu_{j} \det \left(\mathbf{M}_{j}\right) = \sum_{j=1}^{n+1} (-1)^{n} \nu_{j} \tilde{\nu}_{j} = d(t) > 0, \quad \forall t \in T_{k}.$$

By continuity we deduce that there exists $d_0 > 0$ such that

$$\det \left(\mathbf{A}(t,s) \right) \ge d_0 \quad \text{on} \quad Q$$

for s_0 small enough. Then the function θ is a diffeomorphisme between Q and $\tilde{\Omega}_k$.

Let us denote $\mathbf{B} \equiv \mathbf{B}(t,s) = \mathbf{A}^{-1}$. It is well-known that the laplacian operator on $\tilde{\Omega}_k$ is given in coordinates (t,s) by

$$\Delta_x v = L(v)$$

where we set

(3.11)
$$L(v) = \frac{1}{\det \mathbf{A}} \nabla_{t,s} \cdot \left[(\det \mathbf{A}) \mathbf{B} \mathbf{B}^T \nabla_{t,s} v \right]$$

Then the equation (3.10) is written in coordinates (t, s) under the form

(3.12)
$$\begin{cases} -L(u_k) + \frac{b_0(t)}{s^2} u_k = f_k & \text{in } Q \\ u_k = 0 & \text{on } \partial Q - \{s = s_0\}. \end{cases}$$

It is clear that for s_0 small enough, we have for any $m \in \mathbb{N}$ that $v \in H^m(\tilde{\Omega}_k) \iff v \in H^m(Q)$ with equivalence of norms. Let us observe that

(3.13)
$$\mathbf{A}_0^T \mathbf{A}_0 = \begin{pmatrix} \mathbf{R}(t) & 0\\ 0 & 1 \end{pmatrix}$$

where $\mathbf{R} \equiv \mathbf{R}(t)$ is the $n \times n$ invertible matrix given by

$$\mathbf{R}_{ij}(t) = \tau_i(t) \cdot \tau_j(t), \quad i, j = 1, \dots n.$$

Since $\mathbf{BB}^T = (\mathbf{A}^T \mathbf{A})^{-1}$ we deduce

$$\mathbf{B}\mathbf{B}^T = \left(\mathbf{A}_0^T \mathbf{A}_0\right)^{-1} + sO(1)$$

where we denote in all this paper by O(1) terms which are regular enough on $\overline{\Sigma_{s_0}}$. We remark that

$$\det \mathbf{A} = d(t) + sO(1).$$

By a direct calculus we can prove that the operator L can be written in the form

(3.14)
$$L(v) = \frac{\partial^2 v}{\partial s^2} + L_0(v) + L_1(v) + sL_2(v)$$

where

$$L_0(v) = \frac{1}{d} \nabla_t \cdot (d\mathbf{R}\nabla_t v)$$

 L_1 is a first order linear differential operator in (t, s)

 L_2 is a second order linear differential operator in (t, s).

The goal is now to prove that f_k , $L_0(u_k)$, $L_1(u_k)$ and $sL_2(u_k)$ are in $L^2(Q)$, to obtain appropriate L^2 - estimates for these expressions and to conclude using the results of Theorem 2.1.

From Lemma 3.1 we deduce that

(3.15)
$$\|u_k\|_{H^1(Q)} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

and

(3.16)
$$\|u_k\|_{H^{3/2}(\{s=s_0\})} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

which allows to obtain f_k , $L_1(u_k) \in L^2(Q)$ with

(3.17)
$$\|f_k\|_{L^2(Q)} + \|L_1(u_k)\|_{L^2(Q)} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

Let us now observe that for any v we have

(3.18)
$$L(sv) = sL(v) + L_3(v)$$

and

(3.19)
$$L_2(sv) = sL_2(v) + L_4(v)$$

with L_3 , L_4 first order linear differential operators in (t, s). Then multiplying (3.12) by s and using (3.18) we obtain

(3.20)
$$\begin{cases} -L(s u_k) = s f_k - \frac{b_0(t)}{s} u_k - L_3(u_k) & \text{in } Q \\ s u_k = 0 & \text{on } \partial Q - \{s = s_0\}. \end{cases}$$

Now we have the following Hardy inequality

(3.21)
$$\left\|\frac{v}{s}\right\|_{L^2(Q)} \le C \|v\|_{H^1(Q)} \quad \forall v \in H^1(Q) \text{ with } v = 0 \text{ on } \{s = 0\}$$

which implies

(3.22)
$$\left\|\frac{v}{s^2}\right\|_{H^{-1}(Q)} \le C \|v\|_{H^1(Q)} \quad \forall v \in H^1(Q) \text{ with } v = 0 \text{ on } \{s = 0\}.$$

From (3.15), (3.16) and (3.21) we deduce by classical regularity that $s u_k \in H^2(Q)$. Then using (3.19) we deduce that $s L_2(u_k) \in L^2(Q)$ and

(3.23)
$$\|s L_2(u_k)\|_{L^2(Q)} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

On the other hand, we remark that for any $j = 1, \dots n$ we have

$$\frac{\partial}{\partial t_j}L(v) = L\left(\frac{\partial v}{\partial t_j}\right) + L_5(v)$$

with L_5 a second order linear differential operators in (t, s). Now deriving (3.12) with respect to t_j we deduce (3.24)

$$\begin{cases} -L\left(\frac{\partial u_k}{\partial t_j}\right) + \frac{b_0(t)}{s^2}\frac{\partial u_k}{\partial t_j} = \frac{\partial f_k}{\partial t_j} + L_5(u_k) - \frac{u_k}{s^2}\frac{\partial b_0}{\partial t_j} & \text{in } Q\\ \frac{\partial u_k}{\partial t_j} = 0 & \text{on } \partial Q - \{s = s_0\}. \end{cases}$$

Denoting by g_k the right-hand part of the first equation of (3.24) we prove, with the help of (3.22), that $g_k \in H^{-1}(Q)$ and

 $||g_k||_{H^{-1}(Q)} \le C \left[||u||_{L^2(\Sigma_a)} + ||f||_{L^2(\Sigma_a)} \right].$

We now use the fact that the operator $-Lv + \frac{b_0}{s^2}v$ is an isomorphisme from $H_0^1(Q)$ to $H^{-1}(Q)$ and that $\frac{\partial u_k}{\partial t_j} \in H^{1/2}(\{s = s_0\})$ with

$$\left\|\frac{\partial u_k}{\partial t_j}\right\|_{H^{1/2}(\{s=s_0\})} \le C\left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)}\right]$$

as a consequence of Lemma 3.1. Then for any $j = 1, \dots n$ we deduce that $\frac{\partial u_k}{\partial t_j} \in H^1(Q)$, and we obtain $L_0(u_k) \in L^2(Q)$ with

(3.25) $\|L_0(u_k)\|_{L^2(Q)} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right].$

Now the equation (3.12) can be written in the form

(3.26)
$$\begin{cases} -\frac{\partial^2 u_k}{\partial s^2} + \frac{b_0(t)}{s^2} u_k = h_k & \text{in } Q\\ u_k(s=0) = 0 \end{cases}$$

with

$$h_k = f_k + L_1(u_k) + sL_2(u_k) + L_0(u_k).$$

From (3.17), (3.23) and (3.25) we deduce that $h_k \in L^2(Q)$ and

(3.27)
$$\|h_k\|_{L^2(Q)} \le C \left[\|u\|_{L^2(\Sigma_a)} + \|f\|_{L^2(\Sigma_a)} \right]$$

which allows to write $h_k(t, \cdot) \in L^2(]0, s_0[)$ a.e. $t \in T$. Since $u_k(t, \cdot) \in L^2(]0, s_0[)$ we can apply Theorem 2.1 and deduce that $u_k(t, \cdot) \in H^2(]0, s_0[)$ a.e. $t \in T$. We also have a.e. $t \in T_k$:

$$\left\|\frac{\partial^2 u_k(t,\cdot)}{\partial s^2}\right\|_{L^2(]0,s_0[)} \le C_1(s_0,\alpha) \|h_k(t,\cdot)\|_{L^2(]0,s_0[)} + C_2(s_0,\alpha) \|u_k(t,\cdot)\|_{L^2(]0,s_0[)}$$

with $\alpha \equiv \alpha(t) = \frac{1}{2} \left(1 + \sqrt{b_0(t)} \right)$ and C_1, C_2 given in Theorem 2.1. We also obtain $\frac{\partial u_k}{\partial s}(t,0) = 0$ a.e. $t \in T_k$ which gives (3.9), where we use the fact that $\mathbf{B}(t,0)\nu = (0, \dots, 0, 1)^T$. Integrating in T_k and using (3.27) we easily obtain that u belongs to $H^2(\Sigma_a)$ and satisfies (3.8).

4. An application to a FENE model for diluted polymers

We consider the stationary Fokker-Planck-Smoluchowski equation in \mathbb{R}^d , d = 2 or d = 3, which comes from the modelisation of the diluted polymers where the molecules are considered as elastic springs (**FENE** models, see for exemple [3], [4], [5] and [6]). We suppose that

(1) The length of the molecules are no larger than a physical constant supposed equal to 1 by normalization.

IONEL CIUPERCA

- (2) The gradient of the velocity of the fluid is a constant traceless $d \times d$ matrix denoted by **G**.
- (3) The force in the elastic springs is given by

$$F(x) = \frac{2\delta x}{1 - \|x\|^2}, \quad \forall x \in B$$

where we denote $\delta > 0$ a physical constant and B = B(0, 1) the ball in \mathbb{R}^d centered in 0 with radius 1.

We search for a density probability ψ defined on B solution of

(4.1)
$$\begin{cases} -\Delta\psi - \nabla \cdot [F(x)\psi - \mathbf{G}x\psi] = 0 & \text{for} \quad x \in B\\ \frac{\partial\psi}{\partial x} + [F(x)\psi - \mathbf{G}x\psi] \cdot x = 0 & \text{for} \quad x \in \partial B \end{cases}$$

Remark that $F(x) = \nabla \phi(x)$ with $\phi(x) = -\delta \log(1 - ||x||^2)$, then the problem (4.1) can be written in the form

(4.2)
$$\begin{cases} -\nabla \cdot \left[M\nabla \left(\frac{\psi}{M}\right) \right] + \nabla \cdot (\mathbf{G}x\psi) = 0 \quad \text{for} \quad x \in B \\ \left[-M\nabla \left(\frac{\psi}{M}\right) + \mathbf{G}x\psi \right] \cdot x = 0 \quad \text{for} \quad x \in \partial B \end{cases}$$

where we denote $M(x) = (1 - ||x||^2)^{\delta}$. This equation has to be completed by the conditions:

$$(4.3) \qquad \qquad \psi \ge 0$$

(4.4)
$$\int_{B} \psi(x) \, dx = q$$

with q > 0 a given constant.

Let us now introduce the following functional spaces

$$\begin{split} L_M^2 &\equiv L_M^2(B) := \left\{ \varphi \in L_{\text{loc}}^1(B), \ \int_B \frac{\varphi^2}{M} \, dx < \infty \right\} \\ H_M^1 &\equiv H_M^1(B) := \left\{ \varphi \in L_{\text{loc}}^1(B), \ \int_B \left[\frac{\varphi^2}{M} + M \left| \nabla \left(\frac{\varphi}{M} \right) \right|^2 \right] \, dx < \infty \right\}. \end{split}$$

Then the variational formulation of the problem (4.2) is: find $\psi \in H^1_M$ such that

(4.5)
$$\int_{B} \left[M \nabla \left(\frac{\psi}{M} \right) \cdot \nabla \left(\frac{\varphi}{M} \right) - \mathbf{G} x \psi \cdot \nabla \left(\frac{\varphi}{M} \right) \right] \, dx = 0 \quad \forall \varphi \in H^{1}_{M}.$$

The existence and uniqueness of a solution of (4.5) satisfying also (4.3) and (4.4) was given in [2] and [3].

The goal of this section is to give a supplementary regularity result for ψ . Let us begin by the following preliminary result:

LEMMA 4.1. For any $\delta > 1$ we have

$$H^1_M = \left\{ \varphi \in L^1_{loc}(B), \ \frac{\varphi}{\sqrt{M}} \in H^1_0(B) \right\}$$

and there exist constants $0 < c_1 < c_2$ such that

(4.6)
$$c_1 \left\| \frac{\varphi}{\sqrt{M}} \right\|_{H_1(B)} \le \|\varphi\|_{H_M^1} \le c_2 \left\| \frac{\varphi}{\sqrt{M}} \right\|_{H_1(B)}, \ \forall \varphi \in H_M^1$$

PROOF. Let us consider $\varphi \in H^1_M$ arbitrary. We have

$$\nabla\left(\frac{\varphi}{\sqrt{M}}\right) = \sqrt{M}\nabla\left(\frac{\varphi}{M}\right) - \frac{\nabla M}{2M^{3/2}}\varphi.$$

Since $\nabla M = -2\delta x M^{1-1/\delta}$ we obtain

$$\left\|\frac{\varphi}{\sqrt{M}}\right\|_{H^1(B)}^2 \le \int_B \frac{\varphi^2}{M} + 2\int_B M \left|\nabla\left(\frac{\varphi}{M}\right)\right|^2 + 2\delta^2 \int_B \frac{\|x\|^2}{M^{1+2/\delta}}\varphi^2$$

Now using Theorem 6.2.5 of [7] (see also the inclusion (3.10) of [3]) we deduce that $\frac{\varphi}{\sqrt{M}} \in H^1(B)$ and that the first inequality of (4.6) is satisfied.

On the other hand, from the density of $\mathcal{D}(B)$ in H^1_M (see Remark 3.7 of [6]) we deduce that there exists a sequence $\varphi_k \in \mathcal{D}(B)$ such that $\varphi_k \to \varphi$ in H^1_M . Then

$$\frac{\varphi_k}{\sqrt{M}} \to \frac{\varphi}{\sqrt{M}}$$
 in $H^1(B)$ with $\frac{\varphi_k}{\sqrt{M}} \in \mathcal{D}(B)$

and this implies $\frac{\varphi}{\sqrt{M}} \in H^1_0(B)$.

Let us now consider $v \in H_0^1(B)$ and denote $\varphi = \sqrt{M}v$. We have

$$\int_{B} \frac{\varphi^{2}}{M} + \int_{B} M \left| \nabla \left(\frac{\varphi}{M} \right) \right|^{2} = \int_{B} v^{2} + \int_{B} |\nabla v|^{2} + \frac{1}{4} \int_{B} \left| \frac{\nabla M}{M} \right|^{2} v^{2}.$$

With the help of the Hardy inequality we deduce that $\varphi \in H^1_M$ and obtain the second inequality of (4.6).

Then using the changes $\psi = \sqrt{M}f$ and $\varphi = \sqrt{M}g$, the problem (4.5) can be written in the equivalent form: find $f \in H_0^1(B)$ such that

$$\int_{B} \left[M \nabla \left(\frac{f}{\sqrt{M}} \right) \cdot \nabla \left(\frac{g}{\sqrt{M}} \right) - \mathbf{G} x \sqrt{M} f \cdot \nabla \left(\frac{g}{\sqrt{M}} \right) \right] \, dx = 0 \quad \forall g \in H_0^1(B).$$

By an elementary calculus, the above equality writes

$$\int_{B} \left\{ \nabla f \cdot \nabla g - \mathbf{G}xf \cdot \nabla g + \left[(\delta^{2} - 2\delta)M^{-2/\delta} - (\delta^{2} + (n-2)\delta + \delta\mathbf{G}x \cdot x)M^{-1/\delta} \right] fg \right\}$$

then $f \in H^1_0(B)$ satisfies the problem

$$-\Delta f + \mathbf{G}x \cdot \nabla f + \left[\frac{\delta^2 - 2\delta}{(1 - \|x\|^2)^2} - \frac{\delta^2 + (n - 2)\delta + \delta \mathbf{G}x \cdot x}{1 - \|x\|^2}\right]f = 0 \quad \text{in } H^{-1}(B).$$

Let us now write

$$\frac{1}{(1-\|x\|^2)^2} = \frac{1}{(1+\|x\|)^2} \frac{1}{(1-\|x\|)^2} = \frac{1}{4} \frac{1}{(1-\|x\|)^2} + \frac{3+\|x\|}{4(1+\|x\|)^2} \frac{1}{1-\|x\|}$$

and observe that $dist(x, \partial B) = 1 - ||x||, \forall x \in B$. Since $\frac{f}{1-||x||} \in L^2(B)$ by Hardy inequality, we deduce that f satisfies

$$-\Delta f + \frac{\delta^2 - 2\delta}{4\text{dist}^2(x,\partial B)}f = h \quad \text{in } H^{-1}(B)$$

with $h \in L^2(B)$.

Then the result of Theorem 3.2 applies with $b_0 = \frac{\delta^2 - 2\delta}{4}$ provided that $\frac{\delta^2 - 2\delta}{4} > \frac{3}{4} \iff \delta > 3$ and we get $f \in H^2(B)$ and $\frac{\partial f}{\partial \nu} = 0$ on ∂B . We then proved the following regularity result:

PROPOSITION 4.2. Under the hypothesis $\delta > 3$ the solution ψ of (4.5) satisfies

$$\frac{\psi}{\sqrt{M}} \in H^2_0(B).$$

Acknowledgements

The author thanks to Petru Mironescu for useful talks on regularity results in elliptic PDEs.

References

- L. Boccardo, L. Orsina, I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete and continuous Dynamical Systems, Vol. 16, No. 3, (2006), 513-523.
- [2] L. Chupin, The FENE model for viscoelastic thin film flows, Methods Appl. Anl. 16 (2009) no. 2, 217-261.
- [3] I.S. Ciuperca and L.I. Palade, The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: existence and uniqueness of solutions for arbitrary velocity gradients, Math. Mod. Meth. Appl. Sci. (M3AS), Vol. 19, No. 11 (2009) 2039-2064.
- [4] B. Jourdain, C. Le Bris, T. Lelièvre, F. Otto, Long-Time asymptotics of a multiscale model for a polymeric fluid flows, Arc. Rational Mech. Anal. 181 (2006) 97-148.
- [5] F. Lin, C. Liu, P. Zhang, On a micro-macro model for polymeric fluids near equilibrium, Comm. Pure Appl. Math. 60 (2007), no. 6, 838866.
- [6] N. Masmoudi, Well-Posedness for the FENE dumbbell model of polymeric flows, Comm. Pure Appl. Math. 61 (12) (2008), 1685-1714.
- [7] J. Nečas, Les méthodes diréctes en théorie des équations elliptiques, Masson, Paris, 1967.

INSTITUT CAMILLE JORDAN, UNIVERSITÉ DE LYON, FRANCE *E-mail address*: ciuperca@math.univ-lyon1.fr