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Abstract. The existences of random attractors in Lp(DN )∩L2p−2(DN ) are
proved for a class of stochastic semi-linear degenerate parabolic equations on

arbitrary bounded or unbounded domains DN ⊆ RN , where the leading term
of the equations has the form div(σ(x)∇u) and the nonlinearity f(x, u) satisfies
some dissipative assumptions and the growth of order p−1, p > 2. The asymp-

totic compactness of the corresponding random dynamical system in Lp(DN )
and L2p−2(DN ) are established respectively by using an asymptotic a priori
estimate method. Our result improves a previous result of Yang and Kloeden
[25] concerning the existence of a compact random attractor in L2(DN ) for

the same equations.

Contents

2. Introduction 269
3. Preliminaries and abstract results 271
4. The stochastic semi-linear degenerate parabolic equation with additive

noise 277
5. The random attractor in Lp(DN ) 279
6. The random attractor in L2p−2(DN ) 292
References 296

2. Introduction

The asymptotic dynamics of random dynamical systems (RDSs) have been
richly developed by investigation of the random attractors ever since [9, 16] began
their foundational works. The qualitative study of stochastic partial differential
equations (SPDEs) driven by white noises is based on the theory of RDSs, see [4]
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and [7]. The existences of random attractors for RDSs defined in bounded spatial
domains have been established for a wide range of SPDEs, see [6, 8, 11, 12, 13,
14, 24, 28, 29] and references therein. By a tail-estimate technique developed
in [19] for the deterministic reaction-diffusion equation in unbounded domains,
the asymptotic compactness of the RDSs corresponding to some concrete SPDEs
defined in unbounded domains was proved and therefore the existences of random
attractors for these were established in L2 space, see [5, 23, 20, 21, 22].

However, the existence of random attractors on other Sobolev spaces (e.g.,
Lr(r ̸= 2) and H1) is technically more complicate, and much less has been done,
although the corresponding work was well established for many deterministic par-
tial differential equations, such as p-Laplacian equations [26, 27], reaction-diffusion
equations [15, 17, 18, 31]. Recently, [12, 13] made an important progress on the
reaction-diffusion equations and proved the existences of random attractors in Lp

space for the corresponding RDSs defined in bounded domains by asymptotic a pri-
ori estimate of the unbounded part of solutions. As a generalization of the method
in [13], Zhao and Li [30] established the unique existence of random attractor in
Lp space for reaction-diffusion equations defined in the unbounded domains RN .

In this paper, we study the existences of random attractors for the RDS gener-
ated by the solutions of a class of semi-linear degenerate parabolic equations driven
by additive spatially distributed temporal noises on an arbitrary bounded or un-
bounded domain DN ⊆ RN , N ≥ 2, i.e., of equations of the form

du+ (λu− div(σ(x)∇u))dt = f(x, u)dt+
m∑
j=1

hj(x)dWj(t), x ∈ DN , t ≥ 0,(2.1)

u(x, 0) = u0(x), x ∈ DN ,(2.2)

u(x, t)|∂DN
= 0, t ≥ 0,(2.3)

where λ is a positive constant. The unknown u = u(x, t) is a real valued function
of x ∈ DN and t ≥ 0. hj(1 ≤ j ≤ m) are functions on DN . Wj(t)(1 ≤ j ≤ m) are
mutually independent two-side real-valued Wiener processes on a complete proba-
bility space (Ω,F ,P) and f(x, u) is a nonlinear function satisfying some conditions
which will be specified in section 3.

In order to study the asymptotic behavior of solutions to problem (1.1)-(1.3),
as in [25], we assume that the diffusion coefficient σ(x) satisfies the following as-
sumptions:

Hα: when DN is bounded, we assume that σ ∈ L1
loc(DN ) and lim infx→z |x −

z|−ασ(x) > 0 for some α ∈ (0, 2) and every z ∈ DN ;
Hβ
α: when DN is unbounded, we assume that σ satisfies Hα and

lim inf
|x|→∞

|x|−βσ(x) > 0

for some β > 2.
The assumptions Hα and Hβ

α indicate that the function σ(x) is extremely irreg-
ular, i.e., first, the set {x|σ(x) = 0} is finite and second, σ(x) could be non-smooth,
see [1, 2] for details. Under these assumptions one has the Poincaré inequality as

well as the compact embedding of D1,2
0 (DN , σ) to L

2(DN ).
The deterministic version of these equations has been investigated by Anh and

his coworkers [1, 2, 3], who proved the existences of non-autonomous attractors.
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Recently , Yang and Kloeden [25] obtained the unique existence of random attrac-
tors in L2(DN ) for the RDS corresponding to (1.1)-(1.3). In this paper we consider
the existences of random attractors in Lp(DN ) ∩ L2p−2(DN ) for the same RDS
by a new asymptotic prior estimate technique. In particular, we deduce that the
random attractor in L2(DN ) is actually consistent with the random attractor in
Lp(DN )∩L2p−2(DN ). The results in this respect are new and appear to be optimal
even in deterministic case.

This paper is organized as follows. In section 3, we present some general notions
and the existence criterions of the (Lq, Lr)-random attractors for an RDS. In section
4, we obtain the corresponding RDS for stochastic semi-linear degenerate parabolic
equation with additive noise. In section 5, we prove the existence of (L2, Lp)-random
attractors for corresponding RDS. In section 6, we prove the (L2, L2p−2)-random
attractors for the same RDS.

3. Preliminaries and abstract results

Here, we first introduce some basic notions which are relevant to our discussion-
s, and then obtain the abstract results on the existence of bi-spaces (Lq, Lr)-random
attractors for an RDS, for which the spatial domains may be bounded or unbound-
ed and 1 < q ≤ r < ∞. A comprehensive acknowledge on RDSs please refer to
[9, 4, 7, 8].

3.1. Preliminaries

The basic notion in RDS is a measurable dynamical system (MDS)

θ ≡ (Ω,F ,P, {θt}t∈R),

which is a probability space (Ω,F ,P) with a group θt, t ∈ R, of measure preserving
transformations of (Ω,F ,P). A MDS θ is said to be ergodic under P if for any
θ-invariant set B ∈ F we have either P(B) = 0 or P(B) = 1, where the θ-invariant
set is in the sense P(θtB) = P(B) for B ∈ F and all t ∈ R.

Let (X, ∥.∥X) and (Z, ∥.∥Z) be two separable Banach spaces with Borel σ-
algebra B(X) and B(Z), respectively. The RDS is an object consisting of an MDS
and a cocycle over this MDS, where the MDS is used to model the random pertur-
bations.

Definition 3.1. An RDS on X over an MDS θ is a family of measurable map-
pings

φ : R+ × Ω×X → X, (t, ω, x) 7→ φ(t, ω, x)

such that for P-a.e.ω ∈ Ω, the mappings {φ(t, ω, .)}t≥0,ω∈Ω satisfy the cocycle prop-
erty:

φ(0, ω, .) = id, φ(t+ s, ω, .) = φ(t, θsω, φ(s, ω, .))

for all s, t ∈ R+. An RDS {φ(t, ω, .)}t≥0,ω∈Ω is continuous in the meaning that the
mappings φ(t, ω, .) : X → X are continuous in X for all t ∈ R+ and P-a.e.ω ∈ Ω.

Definition 3.2. (1) A random set {D(ω)}ω∈Ω is a family of closed subsets of
X indexed by ω such that for every x ∈ X the mapping ω 7→ dX(x,D(ω)) is
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measurable with respect to F , where for the nonempty sets A,B ∈ 2X we set

dX(A,B) = sup
x∈A

inf
y∈B

∥x− y∥X

and in particular dX(x,B) = dX({x}, B).

(2) A random bounded sets {B(ω)}ω∈Ω of X is called tempered with respect
to θ if for P-a.e.ω ∈ Ω,

lim
t→∞

e−βt∥B(θ−tω)∥X = 0, for all β > 0,

where ∥B∥X = supx∈B ∥x∥X .
(3) A random variable ϱ(ω) ≥ 0 is called tempered with respect to θ if for

P-a.e.ω ∈ Ω,

lim
t→∞

e−βtϱ(θ−tω) = 0, for all β > 0.

We use DX to denote the collection of all tempered random subsets of X.

Definition 3.3. (1) A random set {KZ(ω)}ω∈Ω ∈ DZ is called an (X,Z)-random
absorbing set for RDS {φ(t, ω, .)}t≥0,ω∈Ω if for every B = {B(ω)}ω∈Ω ∈ DX and
P-a.e.ω ∈ Ω, there exists T = T (B,ω) > 0 such that

φ(t, θ−tω,B(θ−tω)) ⊆ KZ(ω), for all t ≥ T,

where φ(t, θ−tω,B(θ−tω)) = ∪v0∈B(θ−tω)φ(t, θ−tω, v0(θ−tω)).

(2) An RDS {φ(t, ω, .)}t≥0,ω∈Ω on Z is said to be (X,Z)-asymptotically com-
pact if for P-a.e.ω ∈ Ω, {φ(tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in Z
whenever tn → ∞ and xn ∈ B(θ−tnω) with B = {B(ω)}ω∈Ω ∈ DX .

(3) A compact random set {AZ(ω)}ω∈Ω ∈ DZ is said to be an (X,Z)-random
attractor if the following conditions are satisfied: for P-a.e.ω ∈ Ω,

(i) AZ(ω) is invariant, that is, φ(t, ω,AZ(ω)) = AZ(θtω) for all t ≥ 0;
(ii) AZ(ω) is (X,Z)-attracting, in the sense that for every B = {B(ω)}ω∈Ω ∈

DX ,

lim
t→∞

dZ(φ(t, θ−tω,B(θ−tω)),AZ(ω)) = 0.

3.2. Abstract results

We will provide a simple and convenient criterion on the unique existence of
(Lq, Lr)-random attractors for an RDS, where the spatial domains DN ⊆ RN , N ≥
1, are either bounded or unbounded. In the subsequential statement, we use Dm
to denote the collection of all tempered random subsets of Lm. In particular, for
m = 2, D2 = D denotes the collection of all tempered random subsets of L2.

Theorem 3.4. Let {φ(t, ω, .)}t≥0,ω∈Ω be a continuous RDS on Lq and be an
RDS on Lr over the same MDS θ, where 1 < q ≤ r < ∞. Assume that there
exists a random set {Kq(ω)}ω∈Ω which is an (Lq, Lq)-random absorbing set for
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{φ(t, ω, .)}t≥0,ω∈Ω and {φ(t, ω, .)}t≥0,ω∈Ω is (Lq, Lq)-asymptotic compact. Then
the family of sets {Aq(ω)}ω∈Ω, where

Aq(ω) =
∩
s≥0

∪
t≥s

φ(t, θ−tω,Kq(θ−tω))
Lq

, ω ∈ Ω,(3.1)

is a unique (Lq, Lq)-random attractor for {φ(t, ω, .)}t≥0,ω∈Ω in Lq, where A
Lq

de-
notes the closure of A with respect to the Lq-norm.

Furthermore, if there exists a family of sets {Kr(ω)}ω∈Ω which is an (Lq, Lr)-
random absorbing set for {φ(t, ω, .)}t≥0,ω∈Ω and {φ(t, ω, .)}t≥0,ω∈Ω is (Lq, Lr)-
asymptotic compact. Then the family of sets {Ar(ω)}ω∈Ω, where

Ar(ω) =
∩
s≥0

∪
t≥s

φ(t, θ−tω,Kq(θ−tω) ∩Kr(θ−tω))
Lq

=
∩
s≥0

∪
t≥s

φ(t, θ−tω,Kq(θ−tω) ∩Kr(θ−tω))
Lr

=
∩
s≥0

∪
t≥s

φ(t, θ−tω,Kq(θ−tω))
Lq

, ω ∈ Ω,(3.2)

is an (Lq, Lr)-random attractor for {φ(t, ω, .)}t≥0,ω∈Ω.

Proof. We will work for fixed ω ∈ Ω0 with P(Ω0) = 1. The unique existence
of (Lq, Lq)-random attractor {Aq(ω)}ω∈Ω is followed from [5]. Hence it suffices to
show that (3.2) is an (Lq, Lr)-random attractor. To this end, we put

K(ω) = Kq(ω) ∩Kr(ω), for every fixed ω ∈ Ω0.

Then {K(ω)}ω∈Ω ∈ Dq and {K(ω)}ω∈Ω ∈ Dr. Furthermore by our assumption, it
follows that the family {K(ω)}ω∈Ω is not only an (Lq, Lq)-absorbing set but also
an (Lq, Lr) absorbing set, whence by the first result of the theorem we know that
{Aq(ω)}ω∈Ω can be also expressed as the omega-limits set of {K(ω)}ω∈Ω, i.e.,

Aq(ω) =
∩
s≥0

∪
t≥s

φ(t, θ−tω,K(θ−tω))
Lq

, ω ∈ Ω0.(3.3)

Put

Ar(ω) =
∩
s≥0

∪
t≥s

φ(t, θ−tω,K(θ−tω))
Lr

, ω ∈ Ω0.(3.4)

It is easy to see that:

y ∈ Ar(ω) if and only if there exist a sequenc tn and a sequence

xn ∈ K(θ−tnω)such that

tn → ∞ and φ(tn, θ−tnω, xn)
∥.∥Lr−−−→ y as n→ ∞.(3.5)

Since {Kr(ω)}ω∈Ω is (Lq, Lr)-random absorbing and {K(ω)}ω∈Ω ∈ Dq, then we
obtain that for xn ∈ K(θ−tnω),

φ(tn, θ−tnω, xn) ∈ Kr(ω), for n large enough,
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whereas by (3.5) we deduce that Ar(ω) ⊂ Kr(ω)
Lr

for ω ∈ Ω0. Therefore

{Ar(ω)}ω∈Ω ∈ Dr,

that is to say, {Ar(ω)}ω∈Ω defined in (3.4) is tempered in Lr space. Furthermore,
from our assumptions and by the same arguments as in [9], we can show that
{Ar(ω)}ω∈Ω is nonempty, compact in Lr and (Lq, Lr)-attracting for φ. Hence, we
only need to verify the invariance property of {Ar(ω)}ω∈Ω, i.e., φ(t, ω,Ar(ω)) =
Ar(θtω) for all t ≥ 0 and ω ∈ Ω0. For this purpose, it is sufficient to prove that
Ar(ω) = Aq(ω) for every ω ∈ Ω0.

Given x ∈ Aq(ω), by (3.1), we have that

there exist sequences tn and xn ∈ Kq(θ−tnω) such that tn → ∞ and

φ(tn, θ−tnω, xn)
∥.∥Lq−−−→ x as n→ ∞.(3.6)

Since {Kq(ω)}ω∈Ω ∈ Dq, then by our assumption of (Lq, Lr)-asymptotic compact-
ness, there exists y ∈ Lr such that, up to a subsequence,

φ(tn, θ−tnω, xn)
∥.∥Lr−−−→ y as n→ ∞.(3.7)

Note that both Lq and Lr are continuous embedding into the distribution functions
space D ′(DN ) on D(DN ), where DN ⊆ RN is bounded or unbounded. Then by
the uniqueness of limits we get x = y. It remains to show that y ∈ Ar(ω). Note
that {Kq(ω)}ω∈Ω ∈ Dq, and {K(ω)}ω∈Ω is also (Lq, Lr)-random absorbing, then
we know that for xn ∈ Kq(θ−tnω), there exists T (Kq, ω) > 0 such that for all
t ≥ T (Kq, ω),

yn = φ(t, θ−tθ−(tn−t)ω, xn(θ−tθ−(tn−t)ω)) ∈ K(θ−(tn−t)ω),(3.8)

where the subsequences tn and xn are in (3.7). Moreover, by the cocycle property
of φ, for tn ≥ t ≥ T (Kq, ω),

φ(tn, θ−tnω, xn(θ−tnω))

= φ(tn − t+ t, θ−tnω, xn(θ−tnω))

= φ(tn − t, θ−(tn−t)ω, φ(t, θ−tnω, xn(θ−tnω)))

= φ(tn − t, θ−(tn−t)ω, φ(t, θ−tθ−(tn−t)ω, xn(θ−tθ−(tn−t)ω))).(3.9)

Put t′n = tn − t. Then yn ∈ K(θ−t′nω), where yn is in (3.8). It follows from
(3.7)-(3.9) that

φ(t′n, θ−t′nω, yn)
∥.∥r−−→ y as n→ ∞,(3.10)

whereas by (3.5), we get y ∈ Ar(ω) which prove the inclusion relation Aq(ω) ⊆
Ar(ω) for ω ∈ Ω0.

On the other hand, if x ∈ Ar(ω), by (3.5), there exist tn → ∞ and xn ∈
K(θ−tnω) such that

φ(tn, θ−tnω, xn)
∥.∥Lr−−−→ x as n→ ∞.(3.11)

Note that K(ω) ⊂ Kq(ω) for ω ∈ Ω0, and by our assumption that φ is (Lq, Lq)-
asymptotically compact. Then there exists y ∈ Lq such that, up to a subsequence,

φ(tn, θ−tnω, xn)
∥.∥Lq−−−→ y as n→ ∞.(3.12)
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By (3.11) and (3.12), we have x = y. But from (3.6) and (3.12), y ∈ Aq(ω), whence
Ar(ω) ⊆ Aq(ω) which proves that Aq(ω) = Ar(ω) for ω ∈ Ω0 and thus {Ar(ω)}ω∈Ω

is invariant as required.

We present the following result which can be employed easily to prove the ex-
istence of the (Lq, Lr)-random attractor for a concrete RDS.

Theorem 3.5. Let {φ(t, ω, .)}t≥0,ω∈Ω be a continuous RDS on Lq and be an RDS
on Lr over the same MDS θ, where 1 < q ≤ r <∞. Assume that {φ(t, ω, .)}t≥0,ω∈Ω

possesses an (Lq, Lq)-random attractor. Then {φ(t, ω, .)}t≥0,ω∈Ω admits an (Lq, Lr)-
random attractor provided that

(i) {φ(t, ω, .)}t≥0,ω∈Ω has an (Lq, Lr)-random absorbing set {K1(ω)}ω∈Ω;
(ii) For any ε > 0 and every B = {B(ω)}ω∈Ω ∈ Dq, there exist positive random

constants c = c(ω),M =M(ε,B, ω) and T = T (ε,B, ω) such that, for all t ≥ T ,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−tω,u0(θ−tω))|≥M)

|φ(t, θ−tω, u0(θ−tω))|rdx ≤ cε.(3.13)

Proof. It suffices to show that {φ(t, ω, .)}t≥0,ω∈Ω is (Lq, Lr)-asymptotically com-
pact, that is, for P-a.e.ω ∈ Ω, the sequence φ(tn, θ−tnω, u0,n(θ−tnω)) has a conver-
gent subsequence in Lr(DN ) provided that tn → ∞, B = {B(ω)}ω∈Ω ∈ Dq and
u0,n(θ−tnω) ∈ B(θ−tnω). By a standard argument we can show that

{φ(t, ω, .)}t≥0,ω∈Ω

is (Lq, Lq)-asymptotically compact, and then there exists ξ ∈ Lq(DN ) and a subse-
quence of

φ(tn, θ−tnω, u0,n(θ−tnω)),

which is still denoted by

φ(tn, θ−tnω, u0,n(θ−tnω)),

such that,

φ(tn, θ−tnω, u0,n(θ−tnω)) → ξ strongly in Lq(DN ).(3.14)

Then there exist T1 = T1(ε,B, ω) and N1 = N1(ε,B, ω) such that tn, tn′ ≥ T1 with
n, n′ ≥ N1,

∥φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))∥qLq(DN ) < ε.(3.15)

For every ε > 0, by assumption (ii), there exist T2 = T2(ε,B, ω) > 0, M =
M(ε,B, ω) and N2 = N2(ε,B, ω) such that tn, tn′ ≥ T2 with n, n′ ≥ N2,∫

DN (|φ(tn,θ−tnω,u0,n(θ−tnω))|≥M)

|φ(tn, θ−tnω, u0,n(θ−tnω))|rdx < ε,(3.16)

and ∫
DN (|φ(tn′ ,θ−t

n′ω,u0,n′ (θ−t
n′ω))|≥M)

|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx < ε.(3.17)
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Consider that

∥φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))∥rr

=

∫
DN

|φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx

≤ (

∫
D1

N

+

∫
D2

N

+

∫
D3

N

+

∫
D4

N

)|φ(tn, θ−tnω, u0,n(θ−tnω))

− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx,(3.18)

where

D1
N = DN (|φ(tn, θ−tnω, u0,n(θ−tnω))| ≤M)

∩DN (|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))| ≤M),

D2
N = DN (|φ(tn, θ−tnω, u0,n(θ−tnω))| ≥M)

∩DN (|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))| ≤M),

D3
N = DN (|φ(tn, θ−tnω, u0,n(θ−tnω))| ≤M)

∩DN (|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))| ≥M),

D4
N = DN (|φ(tn, θ−tnω, u0,n(θ−tnω))| ≥M)

∩DN (|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))| ≥M).

It is obvious that DN ⊆ D1
N ∪D2

N ∪D3
N ∪D4

N . Put T = max{T1, T2}. Then from
(3.15) we find that, for all tn, tn′ ≥ T ,∫

D1
N

|φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx

≤ (2M)r−q
∫
D1

N

|φ(tn, θ−tnω, u0,n(θ−tnω))

− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|qdx
≤ (2M)r−q∥φ(tn, θ−tnω, u0,n(θ−tnω))
− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))∥qLq(DN ) ≤ cε.(3.19)

Observe that

|φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|

≤ 2|φ(tn, θ−tnω, u0,n(θ−tnω))|

in D2
N , whereas by (3.16) we obtain that, for all tn, tn′ ≥ T ,∫

D2
N

|φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx

≤ 2r
∫
DN (|φ(tn,θ−tnω,u0,n(θ−tnω))|≥M)

|φ(tn, θ−tnω, u0,n(θ−tnω))|rdx ≤ cε.(3.20)
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Similarly by (3.17) we get that, for all tn, tn′ ≥ T ,∫
D3

N

|φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx

≤ 2r
∫
DN (|φ(tn′ ,θ−t

n′ω,u0,n′ (θ−t
n′ω))|≥M)

|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx ≤ cε.

(3.21)

By Hölder’s inequality, |a+ b|p ≤ 2p−1(|a|p+ |b|p). This together with (3.16)-(3.17)
imply that, for all tn, tn′ ≥ T ,∫

D4
N

|φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx

≤ 2r−1
(∫

DN (|φ(tn,θ−tnω,u0,n(θ−tnω))|≥M)

|φ(tn, θ−tnω, u0,n(θ−tnω))|rdx

+

∫
DN (|φ(tn′ ,θ−t

n′ω,u0,n′ (θ−t
n′ω))|≥M)

|φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))|rdx
)
≤ cε.

(3.22)

Then, it follows from (3.19)-(3.22) that, for all tn, tn′ ≥ T ,

∥φ(tn, θ−tnω, u0,n(θ−tnω))− φ(tn′ , θ−tn′ω, u0,n′(θ−tn′ω))∥rLr(DN ) ≤ cε,(3.23)

whence it follows from (3.23) that the subsequence in (3.15) is also a Cauchy se-
quence in space Lr(DN ). By the completeness of Lr(DN ), there exists a function
η ∈ Lr(DN ) such that

φ(tn, θ−tnω, u0,n(θ−tnω)) → η strongly in Lr(DN ).

Note that both Lq(DN ) and Lr(DN ) are continuously embedded into the distributed
space D ′(DN ). Then η = ξ. This completes the proof. �

4. The stochastic semi-linear degenerate parabolic equation with
additive noise

For convenience, we set

Au = −div(σ(x)∇u).

Then A is a positive and self-adjoint linear operator with domains defined by

Dom(A) = {u ∈ D1,2
0 (DN , σ) : Au ∈ L2(DN )},

where D1,2
0 (DN , σ) is a Hilbert space with respect to the scalar product

(u, v)σ =

∫
DN

σ(x)∇u.∇vdx,

and therefore is the closure of C∞
0 (DN ) with respect to the norm

∥u∥D1,2
0 (DN ,σ)

= (

∫
DN

σ(x)|∇u|2dx) 1
2 .

Furthermore, we define Dm(A) = {u ∈ D1,2
0 (DN , σ) : Au ∈ Lm(DN )}.
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In this section, we will show the generation of an RDS corresponding to stochas-
tic semi-linear degenerate parabolic equation with additive noise on the bounded
or unbounded domains DN ⊆ RN , N ≥ 2, i.e. to equations of the form

du+ (λu+Au)dt = f(x, u)dt+
m∑
j=1

hj(x)dWj(t), x ∈ DN , t ≥ 0,(4.1)

u(x, 0) = u0(x), x ∈ DN ,(4.2)

u(x, t)|∂DN
= 0, t ≥ 0,(4.3)

where the functions hj ∈ L2(DN ) ∩ Dom(A) ∩ Dp(A) ∩ D2p−2(A) ∩ L∞(DN ); The
function f(x, u) in (4.1) satisfies the following conditions: for x ∈ DN , u ∈ R,

f(x, u)u ≤ −α1|u|p + ϕ1(x),(4.4)

|f(x, u)| ≤ α2|u|p−1 + ϕ2(x),(4.5) ∣∣∣∂f
∂x

(x, u)
∣∣∣ ≤ ϕ3(x),

∂f

∂u
(x, u) ≤ β,(4.6)

where α1, α2 and β are positive constants and p > 2. ϕ1 ∈ L1(DN ) ∩ L∞(DN ),
ϕ2 ∈ L2(DN ) ∩ Lp′(DN ) ∩ L2p−2(DN ), ϕ3 ∈ L2(DN ), with 1

p′ +
1
p = 1. W (t) =

(W1(t), ...,Wm(t)) are pairwise independent two-sided real-valued Wiener processes
on a complete probability space (Ω,F ,P), where Ω = {ω ∈ C(R,Rm) : ω(0) = 0},
F is the Borel σ-algebra induced by the compact-open topology of Ω and P is the
corresponding Wiener measure on (Ω,F). Then we identify W (t) with

W (t) =W (t, ω) = (W1(t, ω),W2(t, ω), ...,Wm(t, ω)) = ω(t), t ∈ R.
Define the Wiener time shift by

θtω(s) = ω(s+ t)− ω(t), ω ∈ Ω, t, s ∈ R.
Then (Ω,F ,P, θt) is an ergodic MDS.

We now employ the approach similar to [25] to translate equation (4.1) by
one change of variables into a deterministic system with a random parameter. To
this end, on the probability space defined above we introduce the process, for j =
1, 2, ...,m,

t→ zj(θtωj) = −λ
∫ 0

−∞
eλs(θtωj)(s)ds, t ∈ R,

where λ is the positive number in (4.1). It is easy to check that zj(θtωj) solves the
Itó differential equation

dzj + λzjdt = dWj(t), j = 1, 2, ...,m,(4.7)

see also [10]. Indeed, by the θ-invariance of P, t→ zj(θtωj) is a stationary process
which is called stationary Ornstein-Uhlenbeck process. In particular, the random
variable zj(θtωj) is continuous in t for P-a.e.ω ∈ Ω; |zj(ωj)| is tempered and there-
fore by Proposition 4.3.3 in [4] there exists a tempered variable ϱ(ω) > 0 such that,
for P-a.e.ω ∈ Ω,

m∑
j=1

(|zj(θtωj)|2 + |zj(θtωj)|p + |zj(θtωj)|2p−2 + |zj(θtωj)|3p−4) ≤ ϱ(θtω),(4.8)

and

ϱ(θtω) ≤ e
λ
2 |t|ϱ(ω), t ∈ R.(4.9)
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Put z(θtω) =
m∑
j=1

hjzj(θtωj). Then by (4.7) we have

dz + λzdt =

m∑
j=1

hjdWj(t).

We let v(t) = u(t) − z(θtω), where u is a solution of problem (4.1)-(4.3). Then we
can consider the following evolution equation with random parameter but without
white noise:

dv(t)

dt
+ λv(t) +Av(t) = f(x, v(t) + z(θtω))−Az(θtω), x ∈ DN , t ≥ 0,(4.10)

v(x, 0) = v0(ω) = u0 − z(ω), x ∈ DN ,(4.11)

v(x, t)|∂DN
= 0, t ≥ 0.(4.12)

By a standard Galerkin approximation method, we can show that for all v0 ∈
L2(DN ) and P-a.e.ω ∈ Ω, the equations (4.10)-(4.12) with f satisfying (4.4)-(4.6)

admits a unique solution v(t, ω, v0) ∈ C([0, T );L2(DN ))∩L2((0, T );D1,2
0 (DN , σ))∩

Lp((0, T );Lp(DN )) with v0 = v0(ω) = v(0, ω, v0) for every T ≥ 0. Further-
more v(t, ω, v0) is continuous with respect to the initial value v0 in L2(DN ). Let
u(t, ω, u0) = v(t, ω, u0 − z(ω)) + z(θtω). Then u(t, ω, u0) is the solution to the
problem (4.1)-(4.3) in certain sense.

Let v(t, ω, v0) be solution to (4.10)-(4.12). If we define two family of mappings
φ and ψ : R+ × Ω× L2(DN ) → L2(DN ) respectively by

φ(t, ω, v0) = v(t, ω, v0),(4.13)

ψ(t, ω, u0) = u(t, ω, u0) = v(t, ω, u0 − z(ω)) + z(θtω),(4.14)

for all t ≥ 0, ω ∈ Ω and v0, u0 ∈ L2(DN ), then φ is a continuous RDS on L2(DN )
associated with (4.10)-(4.12) and hence ψ is a continuous RDS on L2(DN ) associated
with (4.1)-(4.3).

The unique existence of random attractor for this RDS ψ on L2(DN ) has been
obtained in [25], which states

Theorem 4.1.(see[25].) Assume that (4.4)-(4.6) hold. Then the random dynami-
cal system ψ defined in (4.14) admits a unique (L2(DN ), L2(DN ))-random attractor
{A(ω)}ω∈Ω which is tempered random set in space L2(DN ).

5. The random attractor in Lp(DN )

5.1. Uniform estimates of solutions

In this subsection, we give some estimates of the solutions corresponding to
(4.10)-(4.12).

For convenience, we sometimes abbreviate

v(t, ω, v0(ω)) = v(t),

where v(t, ω, v0(ω)) is the solution to (4.10)-(4.12). mes(A) denotes the measure of
the measurable subset A ⊆ DN . The generic constants c or ci used in our discussions
may be different in the context but independent of ε.
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Note that by the interpolation inequality we know that the coefficients hj(j =

1, ...,m) ∈ Lp ∩ L2p−2 ∩ L3p−4 and ϕ1 ∈ L
p
2 ∩ Lp−1 and ϕ2 ∈ Lp.

Lemma 5.1. Assume that (4.4)-(4.6) hold. Let B = {B(ω)}ω∈Ω ∈ D. Then
for every u0(ω) ∈ B(ω) and P-a.e.ω ∈ Ω, there exists T = T (B,ω) > 0 such that
for all t ≥ T and s ∈ [t, t+ 1],

∥φ(s, θ−t−1ω, v0(θ−t−1ω))∥2L2(DN ) ≤ c(1 + ϱ(ω)),

where v0(ω) = u0(ω)− z(ω) = and ϱ(ω) is in (4.8).

Proof. Multiplying (4.10) with v and then integrating over DN , by a similar argu-
ments as Lemma 6.1 in [25], we can show that

d

dt
∥v(t)∥2L2(DN ) + λ∥v(t)∥2L2(DN ) + ∥v(t)∥2

D1,2
0 (DN ,σ)

+ α1∥u∥pLp(DN ) ≤ p1(θtω) + c,(5.1)

where

p1(θtω) = c
m∑
j=1

(|zj(θtωj)|p + |zj(θtωj)|2).(5.2)

Due to (4.9) it shows that for P-a.e.ω ∈ Ω,

p1(θτω) ≤ ce
1
2λ|τ |ϱ(ω), τ ∈ R.(5.3)

By using the Gronwall’ lemma to (5.1) we get that for all s ≥ 0,

∥v(s, ω, v0(ω))∥2L2(DN ) ≤ e−λs∥v0(ω)∥2L2(DN ) +

∫ s

0

eλ(τ−s)p1(θτω)dτ +
c

λ
.(5.4)

Working with ω instead of θ−t−1ω, along with (5.3), we get that, for s ∈ [t, t+ 1],

∥v(s, θ−t−1ω, v0(θ−t−1ω))∥2L2(DN )

≤ e−λs∥v0(θ−t−1ω)∥2L2(DN ) +

∫ s

0

eλ(τ−s)p1(θτ−t−1ω)dτ +
c

λ

≤ eλe−λ(t+1)∥v0(θ−t−1ω)∥2L2(DN ) +

∫ t+1

0

eλ(τ−t)p1(θτ−t−1ω)dτ +
c

λ

≤ eλe−λ(t+1)∥v0(θ−t−1ω)∥2L2(DN ) +

∫ 0

−t−1

eλ(τ+1)p1(θτω)dτ +
c

λ

≤ eλ
(
e−λ(t+1)∥v0(θ−t−1ω)∥2L2(DN ) + c

∫ 0

−t−1

e
λ
2 τϱ(ω)dτ

)
+
c

λ

≤ eλ
(
2e−λ(t+1)(∥u0(θ−t−1ω)∥2L2(DN ) + ∥z(θ−t−1ω)∥2L2(DN )) +

2c

λ
ϱ(ω)

)
+
c

λ
.

(5.5)

Since ∥z(ω)∥2L2(DN ) is also tempered and u0(ω) ∈ B(ω) with {B(ω)}ω∈Ω ∈ D, then

there exists T = T (B,ω) > 0 such that for all t ≥ T ,

e−λ(t+1)(∥u0(θ−t−1ω)∥2L2(DN ) + ∥z(θ−t−1ω)∥2L2(DN )) ≤ c(1 + ϱ(ω)),(5.6)

and therefore it follows from (5.5)-(5.6) that for all t ≥ T ,

∥v(s, θ−t−1ω, v0(θ−t−1ω))∥2L2(DN ) ≤ c(1 + ϱ(ω)),
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which completes the proof. �

Lemma 5.2. Assume that and (4.4)-(4.6) hold. Let B = {B(ω)}ω∈Ω ∈ D. Then
for every u0(ω) ∈ B(ω) and P-a.e.ω ∈ Ω, there exists T = T (B,ω) > 0 such that
for all t ≥ T ,∫ t+1

t

∥φ(s, θ−t−1ω, v0(θ−t−1ω))∥pLp(DN )ds ≤ c(1 + ϱ(ω)),

where v0(ω) = u0(ω)− z(ω) and ϱ(ω) is in (4.8).

Proof. Firstly, let T be the same number as in Lemma 5.1 and t ≥ T . We re-
place t by s in (5.1) and then integrate with respect to s over intervals [t, t+ 1] to
find that for all t ≥ T ,

α1

∫ t+1

t

∥v(s, ω, v0(ω))∥pLp(DN )ds ≤
∫ t+1

t

p1(θsω)ds+ ∥v(t, ω, v0(ω))∥2L2(DN ) + c.

(5.7)

Working with θ−t−1ω instead of ω in (5.7), association with Lemma 5.1, it yields
that for all t ≥ T ,

α1

∫ t+1

t

∥v(s, θ−t−1ω, v0(θ−t−1ω))∥pLp(DN )ds

≤
∫ t+1

t

p1(θs−t−1ω)ds+ ∥v(t, θ−t−1ω, v0(θ−t−1ω))∥2L2(DN ) + c

≤
∫ t+1

t

p1(θs−t−1ω)ds+ c(1 + ϱ(ω))

=

∫ 0

−1

p1(θsω)ds+ c(1 + ϱ(ω))

≤ c(1 + ϱ(ω)) (by (5.3)).

This completes the proof. �

The following lemma shows the existence of an (L2, Lp)-random absorbing set
for the RDS defined in φ in (4.13).

Lemma 5.3. Assume that (4.4)-(4.6) hold. Then there exists a random ball

{Kp(ω)}ω∈Ω centered at 0 with random radius
{
c(1+ϱ(ω))

} 1
p

such that {Kp(ω)}ω∈Ω

is an (L2, Lp)-random absorbing set for the RDS φ in Dp, where c is a deterministic
positive constant.

Proof. We multiply (4.10) with |v|p−2v and then integrate over DN to obtain that

1

p

d

dt
∥v∥pLp(DN ) + λ∥v∥pLp(DN ) +

∫
DN

Av|v|p−2vdx

=

∫
DN

f(x, v + z(θtω))|v|p−2vdx−
∫
DN

Az(θtω)|v|p−2vdx,(5.8)
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where, ∫
DN

Av|v|p−2vdx

=

∫
DN

σ(x)∇v.∇(|v|p−2v)dx

= (p− 2)

∫
DN

σ(x)|v|p−4v2|∇v|2dx+

∫
DN

σ(x)|v|p−2|∇v|2dx ≥ 0.(5.9)

Then we estimate the nonlinearity in (5.8). By our assumptions (4.4)-(4.5), it is
easy to see that

f(x, v + z(θtω))v ≤ −1

2
α1|u|p + c(|z(θtω)|p + |z(θtω)|2) + ϕ1 +

1

2
ϕ22,

where u = v + z(θtω). By the Hölder’s inequality in series form, |u|p ≥ 21−p|v|p −
|z(θtω)|p, it gives that

f(x, v + z(θtω))v ≤ −α1

2p
|v|p + c(|z(θtω)|p + |z(θtω)|2) + ϕ1 +

1

2
ϕ22,(5.10)

whence by using the Young’s inequality four times we have

f(x, v + z(θtω))|v|p−2v

≤ −α1

2p
|v|2p−2 + c|z(θtω)|p|v|p−2 + c|z(θtω)|2|v|p−2 + ϕ1|v|p−2 +

1

2
ϕ22|v|p−2

≤ −α1

2p
|v|2p−2 +

α1

2p+1
|v|2p−2 + c|z(θtω)|2p−2 +

λ

2
|v|p + c|z(θtω)|p

+
λ

4
|v|p + cϕ

p
2
1 +

λ

4
|v|p + cϕp2

≤ − α1

2p+1
|v|2p−2 + λ|v|p + c(|z(θtω)|2p−2 + |z(θtω)|p) + c(ϕ

p
2
1 + ϕp2).

(5.11)

Therefore by (5.11) the nonlinearity has the following estimate:∫
DN

f(x, v + z(θtω))|v|p−2vdx

≤ − α1

2p+1
∥v∥2p−2

L2p−2(DN ) + λ∥v∥pLp(DN ) + c∥z(θtω)∥2p−2
L2p−2(DN )

+ c∥z(θtω)∥pLp(DN ) + c(∥ϕ1∥
p
2

L
p
2 (DN )

+ ∥ϕ2∥pLp(DN )).(5.12)

On the other hand,∣∣∣ ∫
DN

Az(θtω)|v|p−2vdx
∣∣∣ ≤ α1

2p+2

∫
DN

|v|2p−2dx+ c

∫
DN

|Az(θtω)|2dx

=
α1

2p+2
∥v∥2p−2

L2p−2(DN ) + c∥Az(θtω)∥2L2(DN ).(5.13)

Thus it follows from (5.8)-(5.9) and (5.12)-(5.13) that for all t ≥ 0,

d

dt
∥v∥pLp(DN ) +

α1p

2p+2
∥v∥2p−2

L2p−2(DN )

≤ c(∥z(θtω)∥2p−2
L2p−2(DN ) + ∥z(θtω)∥pLp(DN ) + ∥Az(θtω)∥2L2(DN )) + c0.(5.14)
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Note that z(θtω) =
m∑
j=1

hjzj(θtωj) and hj ∈ Dom(A)∩Lp(DN )∩L2p−2(DN ). Then

the right hand side of (5.14) is controlled by

c
( m∑
j=1

|zj(θtωj)|2p−2 +

m∑
j=1

|zj(θtωj)|p +
m∑
j=1

|zj(θtωj)|2
)
+ c0 = p2(θtω) + c0.

(5.15)

By (4.8)-(4.9) we have, for all t ∈ R,

p2(θtω) ≤ cϱ(ω)e
1
2λ|t|.(5.16)

It follows from (5.14)-(5.15) that

d

dt
∥v∥pLp(DN ) +

α1p

2p+2
∥v∥2p−2

L2p−2(DN ) ≤ p2(θtω) + c0.(5.17)

Working with l instead of t in (5.17) and integrating with respect to l from τ(t ≤
τ ≤ t+ 1/2) to s(t+ 1/2 ≤ s ≤ t+ 1), it yields that

∥v(s, ω, v0(ω))∥pLp(DN ) ≤
∫ s

τ

p2(θlω)dl + ∥v(τ, ω, v0(ω))∥pLp(DN ) + c0(s− τ).

(5.18)

By replacing ω by θ−t−1ω in (5.18) and then integrating with respect to τ from t
to t+ 1/2, we obtain that, for all s ∈ [t+ 1/2, t+ 1],

∥v(s, θ−t−1ω, v0(θ−t−1ω))∥pLp(DN )

≤
∫ t+1

t

p2(θl−t−1ω)dl +

∫ t+1

t

∥v(τ, θ−t−1ω, v0(θ−t−1ω))∥pLp(DN )dτ + c0.(5.19)

Hence by employing Lemma 5.2, association with (5.16), it follows from (5.19) that,
for all t ≥ T and s ∈ [t+ 1/2, t+ 1],

∥v(s, θ−t−1ω, v0(θ−t−1ω))∥pLp(DN ) ≤
∫ 0

−1

p2(θlω)dl + c(1 + ϱ(ω)) + c0

≤ cϱ(ω)

∫ 0

−1

e−
1
2λldl + c(1 + ϱ(ω)) + c0

≤ c(1 + ϱ(ω)),(5.20)

where T = T (B,ω) is in Lemma 5.2 and v0(ω) + z(ω) = u0(ω) ∈ B(ω). Then by
(5.20) for every B = {B(ω)}ω∈Ω ∈ D and P-a.e.ω ∈ Ω, there is T ′ = T (B,ω) + 1
such that, for all t ≥ T ′,

φ(t, θ−tω,B(θ−tω)− z(θ−tω)) ⊆ Kp(ω),

where

Kp(ω) = {v ∈ Lp(DN ) : ∥v∥Lp(DN ) ≤ {c(1 + ϱ(ω))}
1
p }.

That is, {Kp(ω)}ω∈Ω is an (L2(DN ), Lp(DN ))-random absorbing set in Dp for the
RDS φ, which completes the proof. �

We give an unform estimate of the unbounded part of the modulus |φ| in the
topology of space Lp(DN ). We start with some auxiliary lemmas.

Lemma 5.4. Assume (4.4)-(4.6) hold. Let u0(ω) ∈ B(ω) with B = {B(ω)}ω∈Ω ∈
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D. Then for every ε > 0 and P-a.e.ω ∈ Ω, there exist T = T (B,ω) > 0 and
M =M(ε,B, ω) such that for all t ≥ T and s ∈ [t, t+ 1],

mes(DN |φ(s, θ−t−1ω, v0(θ−t−1ω))| ≥M) ≤ ε.

where v0(ω) = u0(ω)− z(ω).

Proof. By Lemma 5.1, for every u0(ω) ∈ B(ω) with B = {B(ω)}ω∈Ω ∈ D, there
exists a constant T = T (B,ω) such that for all t ≥ T and s ∈ [t, t+ 1],∫

DN

|φ(s, θ−t−1ω, v0(θ−t−1ω))|2dx ≤ c(1 + ϱ(ω)),(5.21)

where v0(ω) = u0(ω) − z(ω). On the other hand, for any fixed s ∈ [t, t + 1] and
positive number M =M(ω),∫

DN

|φ(s, θ−t−1ω, v0(θ−t−1ω))|2dx

≥
∫
DN (|φ(s,θ−t−1ω,v0(θ−t−1ω))|≥M)

|φ(s, θ−t−1ω, v0(θ−t−1ω))|2dx

≥M2mes(DN (|φ(s, θ−t−1ω, v0(θ−t−1ω))| ≥M).(5.22)

It follows from (5.21)-(5.22) that

mes(DN (|φ(s, θ−t−1ω, v0(θ−t−1ω))| ≥M) ≤ c(1 + ϱ(ω))

M2
, s ∈ [t, t+ 1].(5.23)

Hence for any ε > 0, we deduce from (5.23) that, for all s ∈ [t, t+ 1] and t ≥ T ,

mes(DN |φ(s, θ−t−1ω, v0(θ−t−1ω))| ≥M) ≤ ε,

provided that M > ( c(1+ϱ(ω))ε )
1
2 . �

Lemma 5.5. Assume that (4.4)-(4.6) hold. Let B = {B(ω)}ω∈Ω ∈ D. Then for P-
a.e.ω ∈ Ω and any ε > 0, there exist random constants c = c(ω), T = T (ε,B, ω) > 0
and M =M(ε,B, ω) such that for all t ≥ T ,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−t−1ω,v0(θ−t−1ω))|≥M)

|φ(t, θ−t−1ω, v0(θ−t−1ω))|2dx ≤ cε,

where v0(ω) = u0(ω)− z(ω).

Proof. From Theorem 4.1 there exists a compact random attractor {A(ω)}ω∈Ω

for RDS ψ in L2(DN ). Then for B = {B(ω)}ω∈Ω ∈ D and P-a.e.ω ∈ Ω, there holds

lim
t→∞

d(ψ(t, θ−tω,B(θ−tω)),A(ω)) = 0,(5.24)

where d is the Hausdorff semi-distance in L2(DN ). Working with θ−1ω instead of
ω in (5.24), it yields that

lim
t→∞

d(ψ(t, θ−t−1ω,B(θ−t−1ω)),A(θ−1ω)) = 0.(5.25)

Then (5.25) and along with (4.14) implies that there exists T1 = T1(ε,B, ω) > 0
such that for all t ≥ T1 and P-a.e.ω ∈ Ω,

φ(t, θ−t−1ω,B(θ−t−1ω)− z(θ−t−1ω)) + z(θ−1ω) ⊆ Nε(A(θ−1ω)),
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where Nε(A(θ−1ω)) is the ( ε8 )
1
2 -neighborhood of A(θ−1ω) in L2(DN ). From the

compactness of A(θ−1ω), we deduce that∪
t≥T1

(
φ(t, θ−t−1ω,B(θ−t−1ω)− z(θ−t−1ω)) + z(θ−1ω)

)
has a finite ( ε8 )

1
2 -net. Thus by Lemma 2.5 in [26], there exists M1 = M1(ε,B, ω)

such that for all t ≥ T1 and P-a.e.ω ∈ Ω,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−t−1ω,v0(θ−t−1ω))|≥M1)

|φ(t, θ−t−1ω, v0(θ−t−1ω))

+ z(θ−1ω)|2dx ≤ cε,(5.26)

where v0(ω) = u0(ω)−z(ω). Note that from Lemma 4.4, there exist T2 = T2(ε,B, ω)
and M2 =M2(ε,B, ω) such that for all t ≥ T2 and P-a.e.ω ∈ Ω,

mes(DN (|φ(t, θ−t−1ω, v0(θ−t−1ω))| ≥M2)) ≤ ε.

Put T = max{T1, T2} and M = max{M1,M2}. Observer that hj ∈ L2(DN ). Then
by Hölder’s inequality, along with (5.27) below and (5.3), we infer that for all t ≥ T ,∫

DN (|φ(t,θ−t−1ω,v0(θ−1ω))|≥M)

|z(θ−1ω)|2dx

≤
m∑
j=1

|zj(θ−1ω)|2
∫
DN (|φ(t,θ−t−1ω,v0(θ−1ω))|≥M)

|hj |2dx

≤ cε

m∑
j=1

|zj(θ−1ω)|2 ≤ cϱ(ω)ε,

from which and by an utilization of the inequality |a+ b|2 ≥ |a|2
2 − |b|2 to (5.26), it

yields that

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−t−1ω,v0(θ−t−1ω))|≥M)

|φ(t, θ−t−1ω, v0(θ−t−1ω))|2dx ≤ cε,

where v0(ω)) = u0 − z(ω). �

Lemma 5.6. Assume that (4.4)-(4.6) hold. Let B = {B(ω)}ω∈Ω ∈ D. Then
for P-a.e.ω ∈ Ω and any ε > 0, there exist c = c(ω), T = T (ε,B, ω) > 0 and
M =M(ε,B, ω) such that for all t ≥ T1,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−tω,v0(θ−tω))|≥M)

|φ(t, θ−tω, v0(θ−tω))|pdx ≤ cε,

where v0(ω) = u0(ω)− z(ω).

Proof. For any fixed ε > 0, if g ∈ Ll(DN ) then there exists δ1 = δ1(ε) > 0
such that for any e ⊂ DN with mes(e) < δ1,∫

e

|g|ldx < ε.(5.27)
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As hj ∈ Lp(DN )∩Dom(A)∩L2p−2(DN ) for j = 1, 2, ...,m, there exists δ2 = δ2(ε) >
0 such that for any e ⊂ DN with mes(e) < δ2,∫

e

(|hj(x)|2p−2 + |hj(x)|p + |hj(x)|2 + |Ahj(x)|2)dx <
ε

mp−1ϱ(ω)
.(5.28)

From Lemma 5.4, we know that for every u0(ω) ∈ B(ω), there exist positive
constants T1 = T1(ε,B, ω) and M1 = M1(ε,B, ω) such that for all t ≥ T1 and
s ∈ [t, t+ 1],

mes(DN (|φ(s, θ−t−1ω, v0(θ−t−1ω))| ≥M1)) < min{ε, δ1, δ2},(5.29)

where v0(ω) = u0(ω) − z(ω). On the other hand, by Lemma 5.5, there exists
T2 = T2(ε,B, ω) and M2 =M2(ε,B, ω) such that for all t ≥ T2,∫

DN (|φ(t,θ−t−1ω,v0(θ−t−1ω))|≥M2)

|φ(t, θ−t−1ω, v0(θ−t−1ω))|2dx ≤ cε.(5.30)

By our assumption (4.4), we can choose M3 = M3(ε,B, ω) > 0 such that for all
x ∈ DN ,

f(x, u) ≤ 0 if u ≥M3.(5.31)

We let

E = E(ω) = max
−1≤s≤0

∥z(θsω)∥L∞(DN ).(5.32)

Then by our assumption hj ∈ L∞(DN ), together with (4.8)-(4,9), we have E(ω) is
finite for P-a.e.ω ∈ Ω. Let now

M =M(ω) = max{M1,M2,M3}+ E(ω), T = max{T1, T2}.(5.33)

Then by replacing ω by θt+1ω we have

M(θt+1ω) = max{M1(θt+1ω),M2(θt+1ω),M3(θt+1ω)}+ E(θt+1ω).

For these positive constants M(ω) and T , (5.29)-(5.31) hold when t ≥ T , and
therefore (5.27)-(5.28) hold for e = DN (|v(s, θ−t−1ω, v0(θ−t−1ω))| ≥M), s ∈ [t, t+
1].

For fixed t ∈ R and ω ∈ Ω, define

(v(s)−M(θt+1ω))+ =

{
v(s)−M(θt+1ω), if v(s) ≥M(θt+1ω),
0, if v(s) ≤M(θt+1ω).

Multiplying (4.10) with (v(s)−M(θt+1ω))+ and then integrating over DN , we have

1

2

d

ds
∥(v(s)−M(θt+1ω))+∥2L2(DN )

+ λ

∫
DN

v(s)(v(s)−M(θt+1ω))+dx+

∫
DN

Av(s)(v(s)−M(θt+1ω))+dx

=

∫
DN

f(x, v(s) + z(θsω))(v(s)−M(θt+1ω))+dx

−
∫
DN

Az(θsω)(v(s)−M(θt+1ω))+dx,(5.34)

where ∫
DN

Av(s)(v(s)−M(θt+1ω))+dx ≥ 0,(5.35)
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λ

∫
DN

v(s)(v(s)−M(θt+1ω))+dx ≥ λ∥(v(s)−M(θt+1ω))+∥2L2(DN ).(5.36)

By Young’s inequality, the second term on the right hand side of (5.34) is bounded
by

λ∥(v(s)−M(θt+1ω))+∥2L2(DN ) +
1

4λ

∫
DN (v(s)≥M(θt+1ω))

|Az(θsω)|2)dx.(5.37)

Then by (5.34)-(5.37) we find that

d

ds
∥(v(s)−M(θt+1ω))+∥2L2(DN )

≤ 2

∫
DN

f(x, v(s) + z(θsω))(v(s)−M(θt+1ω))+dx

+
1

2λ

∫
DN (v(s)≥M(θt+1ω))

|Az(θsω)|2dx(5.38)

We integrate (5.38) with respect to s from t to t+ 1 to yield that

−
∫ t+1

t

2

∫
DN

f(x, v(s) + z(θsω))(v(s)−M(θt+1ω))+dxds

≤ 1

2λ

∫ t+1

t

∫
DN (v(s,ω,v0(ω))≥M(θt+1ω))

|Az(θsω)|2dxds

+ ∥(v(t, ω, v0(ω))−M(θt+1ω))+∥2L2(DN ).(5.39)

Denote

Di(s, t+ 1) = DN (v(s, θ−t−1ω, v0(θ−t−1ω)) ≥ iM(ω)), i = 1, 2, 4, 8.

Then D1(s, t+ 1) ⊇ D2(s, t+ 1). Replacing ω by θ−t−1ω in (5.39), we see that

− 2

∫ t+1

t

∫
D1(s,t+1)

f(x, v(s, θ−t−1ω, v0(θ−t−1ω))

+ z(θs−t−1ω))(v(s, θ−t−1ω, v0(θ−t−1ω))−M(ω))+dxds

≤ c1

∫ t+1

t

∫
D1(s,t+1)

|Az(θs−t−1ω)|2dxds+

∥(v(t, θ−t−1ω, v0(θ−t−1ω))−M(ω))+∥2L2(DN ).(5.40)

Note that s − t − 1 ∈ [−1, 0] for s ∈ [t, t + 1]. Then it follows from (5.32) that
v(s, θ−t−1ω, v0(θ−t−1ω)) + z(θs−t−1ω) ≥ M(ω) − E(ω) ≥ M3 on D1(s, t + 1) for
s ∈ [t, t+ 1]. This along with (5.31) implies that, for s ∈ [t, t+ 1],

f(x, v(s, θ−t−1ω, v0(θ−t−1ω)) + z(θs−t−1ω)) ≤ 0, on D1(s, t+ 1).(5.41)

By (5.41) and the fact that 2(v−M) ≥ v for v ≥ 2M , it yields that, for s ∈ [t, t+1],∫
D1(s,t+1)

2f(x, v(s, θ−t−1ω, v0(θ−t−1ω))

+ z(θs−t−1ω))(v(s, θ−t−1ω, v0(θ−t−1ω))−M(ω))+dx

≤
∫
D2(s,t+1)

f(x, v(s, θ−t−1ω, v0(θ−t−1ω))

+ z(θs−t−1ω))v(s, θ−t−1ω, v0(θ−t−1ω))dx.(5.42)
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But by (5.10),

f(x, v(s) + z(θsω))v ≤ −α1

2p
|v(s)|p + c(|z(θsω)|p + |z(θsω)|2) + ϕ1 +

1

2
ϕ22.(5.43)

It follows from (5.43) that the right hand side of (5.42) is bounded by

− α1

2p

∫
D2(s,t+1)

|v(s, θ−t−1ω, v0(θ−t−1ω))|pdx

+ c

∫
D2(s,t+1)

(|z(θs−t−1ω)|p + |z(θs−t−1ω)|2)dx

+

∫
D2(s,t+1)

(ϕ1 +
1

2
ϕ22)dx.(5.44)

Then from (5.40) and (5.44) we deduce that

∫ t+1

t

∫
D2(s,t+1)

|v(s, θ−t−1ω, v0(θ−t−1ω))|pdxds

≤ c1

∫ t+1

t

∫
D1(s,t+1)

(|z(θs−t−1ω)|p + |z(θs−t−1ω)|2 + |Az(θs−t−1ω)|2)dxds

+ c2

∫ t+1

t

∫
D1(s,t+1)

(ϕ1 +
1

2
ϕ22)dxds

+ c3∥(v(t, θ−t−1ω, v0(θ−t−1ω))−M(ω))+∥2L2(DN ).(5.45)

Since ϕ1 ∈ L1(DN ) and ϕ2 ∈ L2(DN ) then by (5.29) and (5.27) we have, for all
t ≥ T ,

c2

∫ t+1

t

∫
D1(s,t+1)

(ϕ1 +
1

2
ϕ22)dxds ≤ cε.(5.46)

The Hölder’s inequality implies that

∣∣∣ m∑
j=1

hjzj(θσ−t−1ω)
∣∣∣p ≤ mp−2

m∑
j=1

|hj |p
m∑
j=1

|zj(θs−t−1ω)|p,

whereas it follows from (5.28)-(5.29) that, for all t ≥ T ,
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c1

∫ t+1

t

∫
D1(s,t+1)

(|z(θs−t−1ω)|p + |z(θs−t−1ω)|2 + |Az(θs−t−1ω)|2)dxds

≤ c1m
p−2

∫ t+1

t

∫
D1(s,t+1)

( m∑
j=1

|hj |p
m∑
j=1

|zj(θs−t−1ωj)|p

+
m∑
j=1

|hj |2
m∑
j=1

|zj(θs−t−1ωj)|2

+

m∑
j=1

|Ahj |2
m∑
j=1

|zj(θs−t−1ωj)|2
)
dxds

≤ c1ε

ϱ(ω)

∫ t+1

t

(
m∑
j=1

|zj(θs−t−1ωj)|p + 2
m∑
j=1

|zj(θs−t−1ωj)|2)ds

≤ 2c1ε

ϱ(ω)

∫ t+1

t

p1(θs−t−1ω)ds ≤
2c1ε

ϱ(ω)

∫ 0

−1

ϱ(ω)e−
1
2λsds ≤ cε,(5.47)

where p1(θsω) is in (5.2). Then by (5.30) and (5.46)-(5.47), the inequality (5.45)
can be expressed in a simple form, i.e., for all t ≥ T ,∫ t+1

t

∫
D2(s,t+1)

|v(s, θ−t−1ω, v0(θ−t−1ω))|pdxds ≤ cε,(5.48)

where D2(s, t+ 1) = DN (v(s, θ−t−1ω, v0(θ−t−1ω)) ≥ 2M(ω)).

We then take the inner product of (4.10) with (v(s) − 2M(θt+1ω))
p−1
+ and

integrate over DN to find that

1

p

d

ds
∥(v(s)− 2M(θt+1ω))+∥pLp(DN )

+ λ

∫
DN

v(s)(v(s)− 2M(θt+1ω))
p−1
+ dx

+

∫
DN

Av(s)(v(s)− 2M(θt+1ω))
p−1
+ dx

=

∫
DN

f(x, v(s) + z(θsω))(v(s)− 2M(θt+1ω))
p−1
+ dx

−
∫
DN

Az(θsω)(v(s)− 2M(θt+1ω))
p−1
+ dx,(5.49)

where

λ

∫
DN

v(s)(v(s)− 2M(θt+1ω))
p−1
+ dx ≥ λ∥(v(s)− 2M(θt+1ω))+∥pLp(DN ),(5.50)

∫
DN

Av(s)(v(s)− 2M(θt+1ω))
p−1
+ dx ≥ 0.(5.51)
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But by Young’s inequality, we deduce that∣∣∣ ∫
DN

Az(θsω)(v(s)− 2M(θt+1ω))
p−1
+ )dx

∣∣∣ ≤ λ∥(v(s)− 2M(θt+1ω))+∥pLp(DN )

+
1

4λ

∫
DN (v(s)≥2M(θt+1ω))

|Az(θsω)|p)dx.(5.52)

Thus from (5.49)-(5.52) we get that, for all s ≥ 0,

d

ds
∥(v(s)− 2M(θt+1ω))+∥pLp(DN )

≤ p

∫
DN

f(x, v(s) + z(θsω))

(v(s)− 2M(θt+1ω))
p−1
+ dx

+
p

4λ

∫
DN (v(s)≥2M(θt+1ω))

|Az(θsω)|pdx,(5.53)

Integrating (5.53) with respect to s from τ(t ≤ τ ≤ t+1/2) to s(t+1/2 ≤ s ≤ t+1)
we get that

∥(v(s)− 2M(θt+1ω))+∥pLp(DN )

≤ p

∫ s

τ

∫
DN

f(x, v(σ) + z(θσω))(v(σ)− 2M(θt+1ω))
p−1
+ dxdσ

+
p

4λ

∫ s

τ

∫
DN (v(σ)≥2M(θt+1ω))

|Az(θσω)|pdxdσ

+ ∥(v(τ, ω, v0(ω))−M(θt+1ω))+∥pLp(DN ).(5.54)

Working with θ−t−1ω instead of ω in (5.54) then integrating with respect to τ over
intervals [t, t+ 1/2] it yields that

∥(v(s, θ−t−1ω, v0(θ−t−1ω))

− 2M(ω))+∥pLp(DN ) ≤
p

4λ

∫ t+1

t

∫
D2(s,t+1)

|Az(θs−t−1ω)|pdxds

+

∫ t+1/2

t

∥(v(τ, θ−t−1ω, v0(θ−t−1ω))− 2M(ω))+∥pLp(DN )dτ,(5.55)

where we use the fact that f(x, v(σ, θ−t−1ω, v0(θ−t−1ω)) + z(θσ−t−1ω)) ≤ 0 on
D2(σ, t+ 1). By a similar argument as (5.47), we can show that, for all t ≥ T ,

p

4λ

∫ t+1

t

∫
D2(s,t+1)

|Az(θs−t−1ω)|pdxds ≤ cε.(5.56)

Therefore, by (5.48) and (5.55)-(5.56) we find that, for all t ≥ T and s ∈ [t+1/2, t+
1],

∥(v(s, θ−t−1ω, v0(θ−t−1ω))− 2M(ω))+∥pLp(DN ) ≤ cε,(5.57)

and then we deduce that, for all t ≥ T + 1,∫
D4(t,t)

|v(t, θ−tω, v0(θ−tω))|pdx ≤ cε,(5.58)

where D4(t, t) = DN (v(t, θ−tω, v0(θ−tω)) ≥ 4M(ω)). Repeating the same argu-
ments above, working with (v(s)+M(θt+1ω))− and |(v(s)+M(θt+1ω))−|p−2(v(s)+
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M(θt+1ω))− instead of (v(s)−M(θt+1ω))+ and (v(s)−M(θt+1ω))
p−1
+ , respectively,

where (v(s)+M((θt+1ω))− is the negative part of v(s)+M(θt+1ω), we can deduce
that, for all t ≥ T + 1,∫

D−4(v(t,t)

|v(t, θ−tω, v0(θ−tω)|pdx ≤ cε,(5.59)

where D−4(t, t) = DN (v(t, θ−tω, v0(θ−tω)) ≤ −4M(ω)). Therefore, it follows from
(5.58) and (5.59) that for every B = {B(ω)}ω∈Ω ∈ D, there exist T (ε,B, ω) = T +1
and M ′ = 4M such that for all t ≥ T (ε,B, ω) and P-a.e.ω ∈ Ω,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−tω,v0(θ−tω))|≥M ′)

|φ(t, θ−tω, v0(θ−tω))|pdx < cε,(5.60)

where v0(ω) = u0(ω)− z(ω). This concludes our result. �

5.2. The (L2, Lp)-random attractor

From Lemma 5.3 and Lemma 5.6 the RDS φ associated with the solutions to
(4.10)-(4.12) satisfies the assumptions (i) and (ii) of Theorem 3.5, and therefore
admits an (L2, Lp)-random attractor. We show that this holds true for the RDS ψ
generated by the original problem (4.1)-(4.3).

Theorem 5.7. Assume that (4.4)-(4.6) hold. Then the RDS ψ generated by (4.1)-
(4.3) admits a unique (L2(DN ), Lp(DN ))-random attractor {Ap(ω)}ω∈Ω. Further-
more, Ap(ω) = A(ω) for ω ∈ Ω, where {A(ω)}ω∈Ω is the (L2(DN ), L2(DN ))-random
attractor.

Proof. It suffices to show that the RDS ψ defined in (4.14) satisfies Theorem
3.5. By (4.14),

ψ(t, ω, u0(ω)) = φ(t, ω, u0(ω)− z(ω)) + z(θtω).(5.61)

Then by Lemma 5.3, for t large enough,

∥ψ(t, θ−tω, u0(θ−tω))∥pLp(DN )

= ∥φ(t, θ−tω, u0(θ−tω)− z(θ−tω)) + z(ω)∥pLp(DN )

≤ 2p−1(∥φ(t, θ−tω, v0(θ−tω))∥pLp(DN ) + ∥z(ω)∥pLp(DN ))

≤ c2p−1(1 + ϱ(ω)) + 2p−1∥z(ω)∥pLp(DN )

≤ c(1 + ϱ(ω)),(5.62)

which shows the existence of a closed (L2(DN ), Lp(DN ))-random absorbing set for
RDS ψ. On the other hand, by Lemma 5.6, for every B = {B(ω)}ω∈Ω ∈ D and any
ε > 0, there exist c = c(ω), T = T (ε,B, ω) > 0 and M = M(ε,B, ω) such that for
all t ≥ T and P-a.e.ω ∈ Ω,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−tω,v0(θ−tω))|≥M)

|φ(t, θ−tω, v0(θ−tω))|pdx < cε,(5.63)

where v0(ω) = u0(ω)− z(ω). But by (5.61) we see that

DN (|ψ(t, θ−tω, u0(θ−tω))| ≥M + F ) ⊂ DN (|φ(t, θ−tω, v0(θ−tω))| ≥M),(5.64)
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where F = ∥z(ω)∥L∞(DN ). Hence, by (5.63) and (5.64), using Lemma 5.4, we get
that, for all t ≥ T ,∫

DN (|ψ(t,θ−tω,u0(θ−tω))|≥M+F )

|ψ(t, θ−tω, u0(θ−tω))|pdx

≤ 2p−1
(∫

DN (|φ(t,θ−tω,v0(θ−tω))|≥M)

|v(t, θ−tω, v0(θ−tω))|pdx

+

∫
DN (|φ(t,θ−tω,v0(θ−tω))|≥M)

|z(ω)|pdx
)

≤ 2p−1(cε+ F pmes(DN (|φ(t, θ−tω, v0(θ−tω))| ≥M))) ≤ cε,

which show that the assumptions (ii) of Theorem 3.5 is fulfilled. This ends the
proof. �

6. The random attractor in L2p−2(DN )

In this section, we will prove the existence of (L2(DN ), L2p−2(DN ))-random
attractor. For this purpose, at first, we will give some a priori estimates of the RDS
φ associated with (4.10)-(4.12) in L2p−2 space.

Lemma 6.1. Assume that (4.4)-(4.6) hold. Then there exists a random bal-

l {K2p−2(ω)}ω∈Ω centered at 0 with random radius
{
c(1 + ϱ(ω))

} 1
2p−2

such that

{K2p−2(ω)}ω∈Ω is an (L2, L2p−2)-random absorbing set for RDS φ in D2p−2, where
c is a deterministic positive constant.

Proof. Replacing t by s in (5.17) and then integrating with respect to s from
t+ 1/2 to t+ 1 we get that∫ t+1

t+1/2

∥v(s)∥2p−2
L2p−2(DN )ds ≤ c

∫ t+1

t+1/2

p2(θs)ds+ c∥v(t+ 1/2)∥pLp(DN ) +
1

2
c0.(6.1)

Working with θ−t−1ω instead of ω in (6.1), then using (5.20) we find that there
exists T = T (ε,B, ω) > 0 such that for all t ≥ T ,∫ t+1

t+1/2

∥v(s, θ−t−1ω, v0(θ−t−1ω))∥2p−2
L2p−2(DN )ds

≤ c

∫ t+1

t+1/2

p2(θs−t−1)ds+ c∥v(t+ 1/2, θ−t−1ω, v0(θ−t−1ω))∥pLp(DN ) +
1

2
c0

≤ c

∫ 0

−1/2

p2(θs)ds+ c(1 + ϱ(ω)) +
1

2
c0 ≤ c(1 + ϱ(ω)).(6.2)

Multiplying (4.10) with v2p−3 we obtain that

1

2p− 2

d

dt

∫
DN

v2p−2dx+ λ

∫
DN

v2p−2dx ≤
∫
DN

f(x, v + z(θtω))v
2p−3dx

−
∫
DN

Az(θtω)v
2p−3dx.(6.3)
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By careful calculations, we deduce that∣∣∣ ∫
DN

f(x, v + z(θtω))v
2p−4vdx

∣∣∣
≤ − α1

2p+1

∫
DN

|v|3p−4dx+
λ

2

∫
DN

v2p−2dx

+ c

∫
DN

(z(θtω)
3p−4 + z(θtω)

2p−2)dx+ c

∫
DN

(ϕp−1
1 + ϕ2p−2

2 )dx,(6.4)

and ∣∣∣ ∫
DN

Az(θtω)v
2p−3dx

∣∣∣ ≤ λ

2

∫
DN

v2p−2dx+ c

∫
DN

|Az(θtω)|2p−2dx.(6.5)

Therefore by (6.3)-(6.5) we get that

d

dt

∫
DN

v2p−2dx ≤ c

∫
DN

(z(θtω)
3p−4 + z(θtω)

2p−2 + |Az(θtω)|2p−2)dx+ c.(6.6)

Note that hj ∈ L3p−4(DN ) ∩ L2p−2(DN ) ∩ D2p−2(A). Then the right hand side of
(6.6) is controlled by

c
m∑
j=1

(|zj(θtωj)|3p−4 + |zj(θtωj)|2p−2) + c = p3(θtω) + c.(6.7)

Furthermore,

p3(θsω) ≤ ce
1
2λ|s|ϱ(ω), s ∈ R.(6.8)

By integrating (6.6) from τ(t+1/2 ≤ τ ≤ t+1) to t+1 we obtain that, with (6.2),

∥v(t+ 1, θ−t−1ω, v0(θ−t−1ω))∥2p−2
L2p−2(DN )

≤
∫ t+1

τ

p3(θτ−t−1ω)dτ + ∥v(τ, θ−t−1ω, v0(θ−t−1ω))∥2p−2
L2p−2(DN ) +

1

2
c

≤
∫ t+1

t+1/2

∥v(τ, θ−t−1ω, v0(θ−t−1ω))∥2p−2
L2p−2(DN )dτ + c(1 + ϱ(ω)) ≤ c(1 + ϱ(ω)),

(6.9)

for all t ≥ T , which completes the proof. �

Lemma 6.2. Assume that (4.4)-(4.6) hold. Let B = {B(ω)}ω∈Ω ∈ D. Then
for P-a.e.ω ∈ Ω and any ε > 0, there exist c = c(ω), T = T (ε,B, ω) > 0 and
M =M(ε,B, ω) such that for all t ≥ T ,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−tω,v0(θ−tω))|≥M)

|φ(t, θ−tω, v0(θ−tω))|2p−2dx < cε,

where v0(ω) = u0(ω)− z(ω).
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Proof. Integrating (5.53) with respect to s from t+ 1/2 to t+ 1 to yield that

0 ≤ p

∫ t+1

t+1/2

∫
DN

f(x, v(s, ω, v0(ω)) + z(θsω))

× (v(s, ω, v0(ω))− 2M(θt+1ω))
p−1
+ dxds

+
p

4λ

∫ t+1

t+1/2

∫
DN (v(s)≥2M(θt+1ω))

|Az(θs−t−1ω)|pdxds

+ ∥(v(t+ 1/2, ω, v0(ω))− 2M(θt+1ω))+∥pLp(DN ).

Replacing ω with θ−t−1ω in the above inequality and connection with (5.56) and
(5.57) we get that there exists T = T (ε,B, ω) such that for all t ≥ T ,

0 ≤ p

∫ t+1

t+1/2

∫
D2(s,t+1)

f(x, v(s, θ−t−1ω, v0(θ−t−1ω)) + z(θs−t−1ω))×

(v(s, θ−t−1ω, v0(θ−t−1ω))− 2M(ω))p−1
+ dxds+ cε.(6.10)

Note that ∫
D2(s,t+1)

2p−1f(x, v(s, θ−t−1ω, v0(θ−t−1ω))

+ z(θs−t−1ω))(v(s, θ−t−1ω, v0(θ−t−1ω))− 2M(ω))p−1
+ dx

≤
∫
D4(s,t+1)

f(x, v(s, θ−t−1ω, v0(θ−t−1ω))

+ z(θs−t−1ω))v(s, θ−t−1ω, v0(θ−t−1ω))
p−1dx,(6.11)

and by (5.11),

f(x, v + z(θtω))|v|p−2v ≤ − α1

2p+1
|v|2p−2 + λ|v|p + c(|z(θtω)|2p−2

+ |z(θtω)|p) + c(ϕ
p
2
1 + ϕp2).(6.12)

Then it follows from (6.10)-(6.12) that, for all t ≥ T ,

∫ t+1

t+1/2

∫
D4(s,t+1)

|v(s, θ−t−1ω, v0(θ−t−1ω))|2p−2dxds

≤ c1

∫ t+1

t

∫
D4(s,t+1)

|v(s, θ−t−1ω, v0(θ−t−1ω))|pdxds

+ c2

∫ t+1

t

∫
D4(s,t+1)

(|z(θs−t−1ω)|2p−2 + |z(θs−t−1ω)|p)dxds

+ c3

∫ t+1

t

∫
D4(s,t+1)

c(ϕ
p
2
1 + ϕp2)dxds+ cε

≤ cε.(6.13)



RANDOM ATTRACTORS 295

Multiplying (4.10) with (v(s)− 4M(θt+1ω))
2p−3
+ we obtain that

1

2p− 2

d

ds
∥(v(s)− 4M(θt+1ω))+∥2p−2

L2p−2(DN ) + λ

∫
DN

v(s)(v(s)− 4M(θt+1ω))
2p−3
+ dx

+

∫
DN

Av(s)(v(s)− 4M(θt+1ω))
2p−3
+ dx

=

∫
DN

f(x, v(s) + z(θsω))(v(s)− 4M(θt+1ω))
2p−3
+ dx

−
∫
DN

Az(θsω)(v(s)− 4M(θt+1ω))
2p−3
+ dx.(6.14)

Consider that ∣∣∣ ∫
DN

Az(θsω)(v(s)− 4M(θt+1ω))
2p−3
+ dx

∣∣∣
≤ λ

∫
DN

(v(s)− 4M(θt+1ω))
2p−2
+ dx+

1

4λ

∫
DN (v(s)≥4M(θt+1ω))

|Az(θsω)|2p−2dx,(6.15)

and

λ

∫
DN

v(s)(v(s)− 4M(θt+1ω))
2p−3
+ dx ≥ λ

∫
DN

(v(s)− 4M(θt+1ω))
2p−2
+ dx.(6.16)

It follows from (6.14)-(6.16) that

d

ds
∥(v(s)− 4M(θt+1ω))+∥2p−2

L2p−2(DN )

= (2p− 2)

∫
DN

f(x, v(s) + z(θsω))(v(s)− 4M(θt+1ω))
2p−3
+ dx

+
2p− 2

4λ

∫
DN (v(s)≥4M(θt+1ω))

|Az(θsω)|2p−2dx.(6.17)

By integrating (6.17) with respect to s from τ(t+ 1/2 ≤ τ ≤ t+ 1) to t+ 1 we see
that

∥(v(t+ 1, θ−t−1ω, v0(θ−t−1ω))− 4M((ω))+∥2p−2
L2p−2(DN )

≤ c

∫ t+1

τ

∫
D4(s,t+1)

f(x, v(s, θ−t−1ω, v0(θ−t−1ω)) + z(θs−t−1ω))×

(v(s, θ−t−1ω, v0(θ−t−1ω))− 4M(ω))2p−3
+ dxds

+ c

∫ t+1

τ

∫
D4(s,t+1)

|Az(θs−t−1ω)|2p−2dxds

+ ∥(v(τ, θ−t−1ω, v0(θ−t−1ω))− 4M(ω))+∥2p−2
L2p−2(DN )

≤ c

∫ t+1

t

∫
D4(s,t+1)

|Az(θs−t−1ω)|2p−2dxds+

∥(v(τ, θ−t−1ω, v0(θ−t−1ω))− 4M(ω))+∥2p−2
L2p−2(DN ).



296 WENQIANG ZHAO AND YANGRONG LI

Integrating the above with respect to τ from t + 1/2 to t + 1, employing (6.13), it
produces that, for all t ≥ T

∥(v(t+ 1, θ−t−1ω, v0(θ−t−1ω))− 4M(ω))+∥2p−2
L2p−2(DN ) ≤ cε,

where T is in (6.10), and then we deduce that, for all t ≥ T + 1,∫
D8(t,t)

|v(t, θ−tω, v0(θ−tω))|2p−2dx ≤ cε.(6.18)

Repeating the same arguments above, working with (v(s) +M(θt+1))
2p−3
− instead

of (v(s)−M(θt+1))
2p−3
+ , we can deduce that, for all t ≥ T + 1,∫
D−8(v(t,t)

|v(t, θ−tω, v0(θ−tω))|2p−2dx ≤ cε,(6.19)

where D−8(t, t) = DN (v(t, θ−tω, v0(θ−tω)) ≤ −8M). Therefore, (6.18) and (6.19)
imply that for every B = {B(ω)}ω∈Ω ∈ D, there exist T (ε,B, ω) = T + 1 and
M ′ = 8M such that for all t ≥ T (ε,B, ω) and P-a.e.ω ∈ Ω,

sup
u0(ω)∈B(ω)

∫
DN (|φ(t,θ−tω,v0(θ−tω))|≥M ′)

|φ(t, θ−tω, v0(θ−tω))|2p−2dx < cε,

which completes the proof. �

By a similar argument as Theorem 5.7, we can show the following:

Theorem 6.3. Assume that (4.4)-(4.6) hold. Then the RDS ψ generated by (4.1)-
(4.3) has a unique (L2(DN ), L2p−2(DN ))-random attractor {A2p−2(ω)}ω∈Ω. Fur-
thermore, A2p−2(ω) = A(ω) for ω ∈ Ω, where {A(ω)}ω∈Ω is the (L2(DN ), L2(DN ))-
random attractor.

Remark 6.4. Although the RDS ψ associated with (4.1)-(4.3) is only continu-
ous in L2(DN ), we also obtain the existences of random attractors in Lp(DN ) and
L2p−2(DN ), respectively. Furthermore, by the interpolation inequality, we can im-
mediately deduce that the RDS ψ also has a unique random attractor in the space
Lr(DN ) (where r ∈ [2, 2p− 2]), and Ar(ω) = A(ω) for ω ∈ Ω.
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