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Abstract. We prove a formula which relates the fixed point index of a par-
abolic obstacle equation to a fixed point index related to the right-hand side

of the equation. The result is applied to a reaction-diffusion system at a con-
stant equilibrium which is subject to Turing’s diffusion-driven instability. It is

shown that if a unilateral obstacle is added, the system becomes unstable in a
parameter domain where the system without obstacle is stable.
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1. Introduction

For a bounded domain Ω ⊆ R
N with Lipschitz boundary and C1-functions

F1, F2 : R
2 → R consider the reaction-diffusion system

(1)
ut = d1∆u+ F1(u, v)

vt = d2∆v + F2(u, v)

with d1, d2 > 0 and Neumann (no-flow) boundary conditions

(2)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.

We assume that F1, F2 are such that the system (1), (2) is subject to Turing’s
“diffusion-driven instability” at some stationary and spatially constant solution
(u0, v0), i.e. in case d1 = d2 = 0 the solution is linearly stable. In this case, one can
interpret one of (u, v) as the concentration of an activator the other as an inhibitor.
We will choose the signs such that u describes the activator.

It is known that (u0, v0) is then automatically also a linearly stable solution
of (1), (2) if either the diffusion speed d1 of the activator u is sufficiently large or if
the quotient d2/d1 is sufficiently small, i.e. if the activator diffuses faster than the
inhibitor.

We will prove that if we equip the system with some unilateral obstacle with
respect to v at v0, e.g. if we replace the Neumann boundary condition for v on some
part Γ ⊆ ∂Ω of positive (N − 1)-dimensional Hausdorff measure by the Signorini
condition

(3) v ≥ v0,
∂v

∂n
≥ 0, (v − v0)

∂v

∂n
= 0 on Γ,

then (1) fails to be asymptotically stable if d1 and d2 are both large, independently
of the quotient d2/d1.

Condition (3) can mean that there is a source for v on Γ which becomes active
only if the concentration v of the inhibitor would run under the threshold v0; the
source produces just enough that v does not go under this threshold.

Similar results hold also if the inequalities in (3) are inverted (i.e. if there is a
sink which does not let go v over the threshold v0) or if different type of unilateral
obstacles (e.g. in the interior of Ω or of integral type, or any combinations of such
obstacles as long as their direction is the same) are considered.

The main tool of our proof is the Krasnoselskĭı-Quittner formula for parabolic
variational inequalities which is of independent interest.

The Krasnoselskĭı formula for ordinary differential equations relates the fixed
point index (local Leray-Schauder mapping degree) of the flow (i.e. of the translation
in time map) at a stationary solution u0 for small times t with the local mapping
degree of the map on the right-hand side of the equation at u0. By the homotopy
invariance of the fixed point index, one can conclude that if u0 is asymptotically
stable, then the local index (and thus the local degree) must be 1. In particular, one
has a necessary criterion for asymptotic stability (which in case of (1), (3) will be
violated for large d1, d2, and so we could obtain the announced instability result).
However, roughly speaking, the Krasnoselskĭı formula is known only for ordinary
differential equations.
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This is not completely true, since recently the Krasnoselskĭı formula has been
obtained also for (Lipschitz or compact) perturbations for linear generators of semi-
groups. We remark that just to see that the terms in the Krasnoselskĭı formula are
defined, some compactness requirements are necessary: Either compactness of the
semigroup [3, 5] or at least on the set where the nonlinearity assumes its values [4],
or compactness of the nonlinearity [6] are required.

In the case of variational inequalities the situation is more involved, since the
“natural” degree for stationary solutions is actually a fixed point index, and, al-
though the flow is determined by a maximal monotone operator, this operator is
only maximal monotone in a different space and hence one cannot directly employ
the flow corresponding to that operator as considered e.g. in [19].

Nevertheless, P. Quittner has proved in [14] an instability criterion by showing
implicitly in the proof a Krasnoselskĭı type formula (with the “natural” fixed point
index for variational inequalities). Since it is likely that this result was developed
completely unaware of the Krasnoselskĭı formula (although for the proof analogous
homotopies as in [3, 5] are considered), we call the corresponding formula the
Krasnoselskĭı-Quittner formula.

However, we cannot directly use Quittner’s result for the problem (1), (2),
because in order to obtain a necessary compactness via smoothness, this result
required an assumption which is probably not satisfied for the problem (except in
space dimension N = 1). It might be possible to find the required smoothness
estimates in certain cases (e.g. if ∂Ω and Γ ⊆ ∂Ω are “sufficiently nice”) by other
means, but this would require separate considerations for every type of problem
and, e.g. if one considers an unilateral obstacle in an open set Ω0 ⊆ Ω, it seems
likely that such a smoothness result would not hold.

For this reason, we go a different approach: By a surprisingly small modification
of the arguments in [14], we are actually able to show that the smoothness hypoth-
esis in [14] is completely superfluous. We also relax another hypothesis of [14] and
thus are finally able to give a result which in contrast to [14] does neither in its
formulation nor in its proof make use of fractional power spaces or fractional power
operators.

2. The Krasnoselskĭi-Quittner Formula

If one wants to prove (or even just formulate) the Krasnosel’skĭı-Quittner for-
mula for variational inequalities, one faces two difficulties. The first is that a useful
formulation of that formula requires that one has a (nonlinear) continuous flow in
a fixed state space. The second difficulty is that this flow is required to satisfy some
compactness properties so that one can deal with operators whose degree or fixed
point index is well-defined.

The former difficulty is related to the fact that a “natural” setting for variational
inequalities involves working with a Gel’fand triple V ⊆ H ⊆ V ′ appropriate to
the problem, and the naturally associated operator to variational inequalities is
(maximal) monotone only in the space H : Hence, at most the space H appears
natural to consider the flow. However, the inequality involves a convex set K ⊆ V
which typically is closed only in V , and so also the metric projection PK onto K
is typically only continuous with respect to the topology of V . Since a natural
formulation of the Krasnosel’skĭı-Quittner formula must employ this projection,
we are actually forced to formulate it in the space V . Fortunately, the situation
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is not so bad: Due to automatic “smoothing” properties, one obtains a (weak)
flow in V , see e.g. [14, (7)] which is the natural flow for the formulation of the
Krasnosel’skĭı-Quittner formula.

We will see that actually also the compactness of the flow is automatic: At a
first glance, this compactness might appear a severe restriction for the cone K, and
indeed P. Quittner has required in [14] a cumbersome condition which he called (K)
in order to obtain compactness of certain operators. We discuss this hypothesis later
on.

We will see by a surprisingly simple argument that the hypothesis (K) in [14]
can be completely omitted, and that actually the compactness of the considered
operators is automatic. The difference to [14] is that we do not claim that the
compactness is due to the “smoothing” properties of the flow. More precisely, we
do not show that the flow assumes values in some fractional power space Xα with
α > 1/2, but only that it assumes values inK. (For this reason, we will discuss later
in this section, how one can obtain the smoothness anyway in certain situations).

We are also able to replace another hypothesis of [14] concerning fractional
power spaces by a more classical Hölder condition which is actually even a less
restrictive requirement, so that finally neither the formulation of our main result
nor its proof involves fractional power spaces or fractional power operators at all.

Anyway, since the main part of our proof follows [14], we use the same setting
and notation in this section: We assume that H is a real Hilbert space, its scalar
product and norm denoted by ( · , · ) and | · |, respectively. The dual space V ′ is
understood so that the dual pairing of V ′ and V extends the scalar product ( · , · )
(in the sense of the embeddings V ⊆ H ⊆ V ′), and we use the same symbol for that
dual pairing. Moreover, V is assumed to be a real Hilbert space on its own right
with inner product 〈 · , · 〉 and corresponding norm ‖ · ‖. It is assumed that V is a
dense subset of H , and that the embedding of V into H is compact. The norm in
V ′ is the functional norm (with respect to ‖ · ‖) corresponding to the dual pairing
( · , · ); it is denoted by ‖ · ‖V ′ .

The linear operator A : H → H which we consider is defined as the restriction
of the linear operator A : V → V ′,

(Au, ϕ) = 〈u, ϕ〉 for all u, ϕ ∈ V ,

to the set D(A) := A−1(H) ⊆ V ⊆ H . In particular, A : D(A) → H is a selfadjoint
positive operator in H . Finally, let K ⊆ V be nonempty, convex and closed in
V . For a map F : V → H (which will later be assumed to satisfy a certain Lips-
chitz condition on some open set U ⊆ V ), we are interested in the parabolic type
variational inequality

(4) u(t) ∈ K,
(du(t)

dt
+ A(u(t)) − F (u(t)), ϕ− u(t)

)
≥ 0 for all ϕ ∈ K,

or, equivalently,

(5) u(t) ∈ K,
(du(t)

dt
−F (u(t)), ϕ− u(t)

)
+ 〈u(t), ϕ− u(t)〉 ≥ 0 for all ϕ ∈ K.

Here, we understand the derivative in the topology ofH , and as usual we understand
by a solution of (4) on [0, T ) an absolutely continuous function u : [0, T ) → H
satisfying (5) almost everywhere. However, it is crucial for us that under our later
requirements the derivative will exist even for every t > 0 as a right-sided derivative
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(in H), and the corresponding formulas (4), (5) hold even for every t ∈ (0, T ), see
Lemma 2.

In order to formulate the Krasnosel’skĭı-Quittner formula for (4) or (5), we have
to introduce the metric projection PK : V → K which is defined such that for v ∈ V
the image u = PKv is the unique point from K which has closest distance (with
respect to ‖ · ‖) to v. Since V is a Hilbert space and K ⊆ V is nonempty, closed
and convex, it is well-known that u = PKv is uniquely defined by that requirement
and characterized by (i.e. the unique solution of) the variational inequality

(6) u ∈ K, 〈u− v, ϕ− u〉 ≥ 0 for all ϕ ∈ K.

Moreover, PK : V → K ⊆ V is Lipschitz continuous with constant 1.
We denote by Φ(t) the map which associates to every initial value u0 ∈ K

the value u(t) where u is a solution of (4) (or (5)) satisfying u(0) = u0. Under
our hypothesis, it will turn out that Φ(t) is for t > 0 a single-valued continuous
compact map from (an open subset of) K into V , and thus also Ψ(t) := Φ(t) ◦ PK

is continuous and compact from (an open subset of) V into V .
Recall that if U ⊆ V is open and bounded and G : U → V is continuous and

compact and has exactly one fixed point u0 ∈ U then one can define the local fixed
point index in the space V as

indV (G, u0) := degV (id −G,U , 0).

Here, degV denotes the Leray-Schauder mapping degree in the space V . Recall
that the excision property of the degree implies that the same value is obtained if
U is replaced by a smaller open neighborhood of u0 so that indV (G, u0) is actually
independent of the choice of U (which justifies the notation).

We call a stationary solution u0 of (4) asymptotically stable if for each ε > 0
there is δ > 0 such that for all u ∈ V with ‖u− u0‖ ≤ δ there holds ‖Φ(t)(u) − u0‖ <
ε for all t > 0 and Φ(t)(u) → u0 as t→ ∞.

Theorem 1. Suppose that (V, 〈 · , · 〉) is dense and compactly embedded into
(H, ( · , · )), and F : V → H. Let K ⊆ V be closed and convex, and u0 be a station-
ary solution of (4), i.e. u0 = Φ(t)(u0) for every t > 0, or, equivalently,

(7) u0 ∈ K,
(
A(u0) − F (u0), ϕ− u0

)
≥ 0 for all ϕ ∈ K.

Suppose that there is an open neighborhood U ⊆ V of u0 such that the restriction
F |U : (U , ‖ · ‖) → (H, | · |) is Lipschitz continuous and satisfies the following Hölder
type condition

(8) ‖F (u) − F (v)‖V ′ ≤ C |u− v|α for all u, v ∈ U ,

where α > 0 and C ∈ [0,∞) are independent of u, v ∈ U . Suppose also that
u 6= PK(A−1(F (u)) for all u ∈ U \ {u0}. Then

(9) indV (Φ(t) ◦ PK , u0) = indV (PK ◦A−1 ◦ F, u0) for all t ∈ (0, t0].

If u0 is asymptotically stable, then the index in (9) is 1.

Remark 1. Part of the assertion of Theorem 1 is that the fixed point indices
in (9) are defined in the sense introduced earlier, i.e., the corresponding operators
are compact and have no other fixed points than u0 in a neighborhood of u0.

Equation (9) is the announced Krasnoselkĭı-Quittner formula for variational
inequalities. We emphasize that the hypothesis (K) of [14] is completely omitted
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in Theorem 1. Moreover, the hypothesis in the last part of (F) of [14] is replaced
by the Hölder condition (8). The condition (8) is not only more convenient to
formulate but also strictly weaker as we will show in Remark 5.

Remark 2. Our proof of Theorem 1 will show that the hypothesis about the
asymptotic stability can be relaxed to the following two assumptions:

(1) There are sequences 0 < rn → 0 and tn > 0 such that for every u ∈ K
with ‖u− u0‖ = rn there holds ‖Φ(t)(u) − u0‖ ≤ rn for all t > tn.

(2) There is no sequence un ∈ K with 0 < ‖un − u0‖ → 0 such that un is the
initial value of a stationary or periodic solution of (4)

These assumptions are neither weaker nor stronger than the classical notion of
Ljapunov stability: They are stronger in the sense that there is no freeness in the
coupling of the two uses of rn, but they are weaker in the sense that the solutions
may go arbitrarily far away from u0 if they only return in time.

Since Φ is completely continuous (as we will show in the proof of Theorem 1),
the above two assumptions indeed follow from the asymptotic stability of Theorem 1
with any sequence rn → 0 (for large n).

Indeed, there are δn ∈ (0, rn) such that for every u ∈ K with ‖u− u0‖ < δn
there holds ‖Φ(t)(u) − u0‖ ≤ rn for all t > 0. We establish the existence of a corre-
sponding tn for every sufficiently large n: For large n we have limt→∞ Φ(t)(u) = 0
for every u from S := {u ∈ K : ‖u− un‖ = rn}. Since Φ is continuous, the compact

set C := Φ(1)(S) is covered by finitely many open (in C) sets C1, . . . , Ck such that
there are s1, . . . , sk > 0 with ‖Φ(sj)(u) − u0‖ < δn for all u ∈ Cj (j = 1, . . . , k).
Since the flow is autonomous, this implies ‖Φ(t)(u) − u0‖ ≤ rn for all t > sj and
u ∈ Cj. Hence, tn := 1 + max{s1, . . . , sk} has the required property.

Apparently, the reason for considering fractional power spaces in [14] was to
obtain compactness of certain auxiliary maps. At a first glance, this is a very
natural idea: According to the experience in “classical” parabolic equations, one
might expect some regularity of the solution, in particular, some uniform norm
estimates in fractional power spaces and hence simple compactness criteria might
be expected.

The problem with this idea is that variational inequalities exhibit in general
less regularity than classical parabolic equations, and for this reason, the hypothesis
(K) of [14] (which actually implies regularity of the solutions) cannot hold in many
such situations.

Since we want to avoid such regularity conditions, we must find another com-
pactness result. We prepare this result with some simple observations.

Lemma 1. The operators A : V → V ′ and A−1 : V ′ → V are norm-preserving
bijections, and A−1 is compact from H into V . Moreover, A−1f ∈ V and A−1h ∈ V
are for f ∈ V ′, h ∈ H characterized by

(10) 〈A−1f, ϕ〉 = (f, ϕ) and 〈A−1h, ϕ〉 = (h, ϕ) for all ϕ ∈ V ,

respectively.

Proof. For fixed f ∈ V ′, the definition of A means that u ∈ V satisfies Au = f
if and only if (f, ϕ) = 〈u, ϕ〉 holds for all ϕ ∈ V . By the Riesz’ representation
theorem, there is exactly one such u, and ‖u‖ = ‖f‖V ′ . Hence, A : V → V ′ is a
norm-preserving bijection, and we have established the first part of (10). To see
the compactness of A−1 : H → V , we note that A−1 = A−1 ◦ j where j : H → V ′ is
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the embedding described earlier. By hypothesis, j is the Banach-space adjoint of
the compact embedding i : V → H and thus compact. �

Corollary 1. For h ∈ H ⊆ V ′, we have

‖h‖V ′ = ‖A−1h‖ = ‖A−1h‖ .

In particular, for U ⊆ V and F : U → H the condition (8) is equivalent to

(11) ‖A−1(F (u) − F (v))‖ ≤ C |u− v|α for all u, v ∈ U .

The announced compactness result is the following:

Proposition 1. For every t > 0, every h ∈ H ⊆ V ′, and every f ∈ V ′ the
variational inequality

(12) u ∈ K, (tAu− h− f, v − u) ≥ 0 for all v ∈ K

has a unique solution u = ut,h,f , and we have

(13) ut,h,f = PK(t−1(A−1h+ A
−1f)).

Moreover, if t0 > 0, H0 ⊆ H is bounded (in H), and G ⊆ V ′ is relatively compact,
then the set

Ut0,H0,G := {ut,h,f : t ≥ t0, h ∈ H0, f ∈ G}
is relatively compact in V .

Proof. By definition of A, (12) is equivalent to

u ∈ K, 〈u, v − u〉 − t−1(h, v − u) − t−1(f, v − u) ≥ 0 for all v ∈ K.

Using (10), we can rewrite this equivalently as

u ∈ K, 〈u− t−1(A−1h+ A
−1f), v − u〉 ≥ 0 for all v ∈ K.

By (6), this in turn is equivalent to (13). This shows the equivalence of (12)
and (13) and thus the unique existence of a solution of (12). Now if t0 > 0,
H0 ⊆ H is bounded and G ⊆ V ′ is relatively compact, then I0 := [0, 1/t0], K0 :=

A−1H0 and K1 := A−1(G) are compact by Lemma 1. The continuity of the maps
h : I0 ×K0 ×K1 → V , h(s, u, v) := s(u + v) and PK thus implies that U t0,H0,G ⊆
(PK ◦ h)(I0 ×K0 ×K1) is compact. �

The idea of the proof of Proposition 1 is rather simple: The reason for the
compactness of Ut0,H0,G is not that its elements are bounded in some “regular”
space which is compactly embedded into V . Instead, Ut0,H0,G is just the continuous
image of such a set.

Corollary 2. u0 is a stationary solution of (4) if and only if there holds
u0 = PK(A−1F (u0)).

Proof. Since u0 is a stationary solution of (4) if and only if (7) holds, we
find that this is the case if and only if (12) holds with h = F (u0) and f = 0. By
Proposition 1, this is equivalent to u0 = PK(A−1h). �

Remark 3. Our hypothesis that u 6= Φ(t)(u) for all t ∈ (0, t0) and all u ∈ U \
{u0} in Theorem 1 implies that problem (4) has no stationary solutions u ∈ U\{u0}.
By Corollary 2, this is equivalent to u 6= PK(A−1F (u)) for all u ∈ U \ {u0}. The
latter is exactly the hypothesis (D) of [14] which thus is actually automatically
satisfied and therefore can be dropped.
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Lemma 2. Let the conditions of Theorem 1 be satisfied with u0 = 0 and F (0) =
0. Then u(t) = Φ(t)v exists locally for all v ∈ K in a neighborhood of 0 and has
the following regularity properties.

(1) u is uniformly bounded in V on bounded intervals in [0,∞), uniformly for
v from bounded sets.

(2) The right-sided derivative of u exists (in H) at every t > 0, and (4)
and (5) hold pointwise when the derivative is understood as this right-
sided derivative.

(3) The above right-sided derivative is uniformly bounded in H on bounded
intervals in [0,∞), uniformly for v from bounded sets.

(4) The mapping (t, v) 7→ Φ(t)v is compact and uniformly continuous for any
set of the form [c, T ]× (B ∩K) where B ⊆ V is a bounded neighborhood
of 0.

Analogous assertions are true if (4) is replaced by

(14) u(t) ∈ K,
(du(t)

dt
+ A(u(t)) + F0 − F (u(t)), ϕ− u(t)

)
≥ 0 for all ϕ ∈ K,

where F0 ∈ V ′ satisfies 〈F0, ϕ〉 ≥ 0 for all ϕ ∈ K.

Proof. This is the main lemma from [14] (with assumptions and conclusions
about fractional power spaces omitted). The lemma can be proved as in that paper
with the difference that the compactness assertion needs a different argument (since
we have no assertions about fractional power spaces available). We obtain this
compactness assertion instead from the first three assertions of the lemma and by
using Proposition 1. In fact, by the first and third assertion, we obtain that the
family

H0 =
{du(t)

dt
− F (u(t)) : u = Φ( · )v, t ∈ [c, T ], v ∈ B ∩K

}

(the derivative understood as right-sided derivative in H) is bounded in H . By (14)
(and by using the second assertion) we can identify the set of points u(t) = Φ(t)v
with t ∈ [c, T ] and v ∈ B∩K as a subset of the relatively compact set U1,H0,G from
Proposition 1 with G = {F0}. �

Remark 4. In view of the last assertion, the additional assumptions u0 = 0 and
F (0) = 0 in Lemma 2 are actually not a loss of generality, since we can just replace

K by K̃ = K − u0, F by F̃ (u) = F (u− u0) − F (u0), and put F0 := Au0 + F (u0).

Note that F0 = Au0 −F (u0) satisfies indeed 〈F0, ϕ〉 ≥ 0 for all ϕ ∈ K̃ since u0 is a
stationary solution.

Proof of the first assertion of Theorem 1. Our proof of the first part
of Theorem 1 proceeds partially along the line of the proof of the main result in [14].
Therefore, we just sketch the main ideas of the proof, pointing out where we use
different arguments.

Step 1. Using the transformations of Remark 4, we discuss only the transformed
problem in the following, thus assuming u0 = 0, F (0) = 0. Note that we must thus

extend the assertion of the theorem for a map F̂ = F − F0 which assumes values
in H − F0 ⊆ V ′, and we consider the flow ΦK generated by (14) instead.
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Complete Continuity of some Resolvent. As in [14], we introduce the auxiliary
multivalued operator AK : K → 2H ,

AK(u) := {h ∈ H : (Au+ F0 − h, v − u) ≥ 0 for all v ∈ K} .

We will show that AK has a completely continuous “resolvent”. This is a major
extension of the arguments of [14]; simultaneously, we simplify the proof.

Proposition 1 implies A−1
K : H → K, A−1

K (h) = PK ◦ (A−1h− A−1F0) = PK ◦
A−1(h−F0). In particular, A−1

K ◦F = PK◦A−1◦F̂ . Moreover, for each λ ≥ 0, t > 0,
we find by applying [20, Theorem 32.C] (with A = A+λt−1idV , b = t−1h−F0 ∈ V ′,
C = K) that for each h ∈ H there is a unique u ∈ K satisfyingAK(u) = t−1(h−λu),
that is, the “resolvent” is a map Rt,λ := (λidH + tAK )−1 : H → K.

We show that the map R0(t, λ, h) 7→ Rt,λ(h) is continuous and compact into
V on each bounded M ⊆ [t0,∞) × [0,∞) × H , t0 > 0. Indeed, u = Rt,λ(h) is
equivalent to

(15) u ∈ K, (tAu+ λu+ tF0 − h, v − u) ≥ 0 for all v ∈ K.

Fixing some v ∈ K, we thus obtain

t ‖u‖2 ≤ t ‖u‖2
+ λ |u|2 = (tAu+ λu, u) ≤

−(tF0 − h, u) + t 〈u, v〉 + (λu + tF0 − h, v) ≤ C(1 + ‖u‖),

where C depends only on M . It follows that ‖u‖ is bounded with a constant
depending only on M . In particular, h − λu are from a bounded subset H0 ⊆ H .
Since −tF0 are from a compact subset G ⊆ V ′, we obtain that the set R0(M)
of solutions u of (15) is contained in the set Ut0,H0,G of Proposition 1 and thus
relatively compact in V .

Since A : V → V ′ is continuous, the set of all (t, λ, h, u) ∈M×V satisfying (15)
is trivially closed in M × V . This means that R0 : M → V has a closed graph.
Since we have already shown that R0(M) is relatively compact in V , it follows that
R0 : M → V is continuous, see e.g. [17, Corollary 2.124].

Step 2. We show that for every t > 0 there holds

indV (PK ◦ A
−1 ◦ F̂ , 0) = indV

(
(idH + tAK)−1 ◦ (idV + tF ) ◦ PK, 0

)
.

To this end, we observe first that by the permanence property of the fixed point
index, and by our above calculation of A−1

K , we have

indV (PK ◦ A
−1 ◦ F̂ , 0) = indV (PK ◦ A

−1 ◦ F̂ ◦ PK , 0) = indV (A−1
K ◦ F ◦ PK , 0).

Since A−1
K ◦ F = (tAK)−1 ◦ (tF ), it suffices to show by the homotopy invariance of

the degree that the map

hλ := (λidH + tAK)−1 ◦ (λidV + tF ) ◦ PK

is an admissible homotopy, that is, there is a neighborhood U ⊆ V of 0 such
that (λ, u) 7→ hλ(u) is a continuous compact map on [0, 1] × U and such that
hλ has no fixed points u 6= 0 in U for λ ∈ [0, 1]. Since we have already shown
the complete continuity of the resolvent, it remains to prove the latter. However,
u = hλ(u) is equivalent to F (u) ∈ AK(u) and thus equivalent to u = (A−1

K ◦F )(u) =

(PK ◦ A−1 ◦ F̂ )(u). By hypothesis, the latter is excluded for u ∈ U \ {0}.
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Step 3. It remains to show that for all sufficiently small t > 0 there holds

indV

(
(idH + tAK)−1 ◦ (idV + tF ) ◦ PK , 0

)
= indV

(
Φ(t) ◦ PK , 0

)
.

This is the most technical part of the proof and was done in [14, p. 1173–1175] by
showing with a lot of auxiliary estimates that the homotopy

h̃λ =
(
λ(idH + tAK)−1 ◦ (idV + tF ) + (1 − λ)Φ(t)

)
◦ PK

is admissible for all sufficiently small t > 0. These calculations can be used almost
unchanged under our weaker requirements. One only has to be aware that we have
relaxed the last condition of (F) from [14] by the weaker Hölder condition (8).
However, this last condition of (F) is only used in these calculations to obtain
in [14, (27)] estimates of the form

‖F̃ (u) − F̃ (v)‖ ≤ Ct1/2−β

(with F̃ := A−1 ◦ F ) from the estimates

(16) |u− v| ≤
√
t and ‖u− v‖ ≤ C̃.

We get such estimates already by using even only the first inequality of (16), Indeed,
we readily obtain from (11) that

‖F̃ (u) − F̃ (v)‖ ≤ C |u− v|α ≤ Ctα/2,

and we can proceed as in the proof of [14], only replacing 1/2−β in the exponents
throughout by α/2. �

Proof of the second assertion of Theorem 1. Let u0 satisfy the sta-
bility property of Remark 2. This assumption implies that there is some n such
that none of the maps Φ(t) ◦ PK (t > 0) has a fixed point in the ball B :=
{u ∈ V : ‖u− u0‖ < rn} or its closure except u = u0. By the homotopy invari-
ance of the degree, we thus obtain that

indV (Φ(t) ◦ PK , u0) = degV (id − Φ(t) ◦ PK, B, 0)

is the same for every t > 0, in particular for t = tn. Since Φ(t0)◦PK maps ∂B into
B, the compact homotopy

h(λ, u) := (1 − λ)Φ(t0)
(
PK(u)

)
+ λu0

shows that the latter degree is degV (id − u0, B, 0) which is 1 by the normalization
property of the degree. �

Although, as remarked earlier, neither the formulation nor the proof of The-
orem 1 involve fractional power operators or fractional power spaces, the Hölder
condition (8) is sometimes easier to verify by using fractional power spaces. So let
us briefly introduce these spaces and discuss that condition.

Recall that since A : D(A) ⊆ H → H is a selfadjoint positive maximal mono-
tone operator in H , one can define the fractional powers Aα on their domains
Xα = D(Aα) which become Hilbert spaces with the corresponding graph norm

‖u‖α := |Aαu| .
In particular, X0 = H , X1 = D(A), and in our setting we have X1/2 = V by Kato’s
square root theorem [11].
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Remark 5. In hypothesis (F) from [14], the following Lipschitz assumption
was made instead of (8): There is β < 1/2 and C ∈ [0,∞) with

(17) ‖A−1
(
F (u) − F (v)

)
‖ ≤ C ‖u− v‖β for all u, v ∈ U ⊆ V ⊆ Xβ .

Note that by Corollary 1, (17) is equivalent to

(18) ‖F (u)− F (v)‖V ′ ≤ C ‖u− v‖β for all u, v ∈ U ⊆ V ⊆ Xβ .

Our hypothesis (8) is strictly milder than (18). In fact, we need only a Hölder
condition of such a type as the following result shows.

Proposition 2. Let U ⊆ V be bounded, and F : U → H. Suppose that there

are β < 1/2, Ĉ ∈ [0,∞), and α̂ > 0 with

(19) ‖F (u)− F (v)‖V ′ ≤ Ĉ ‖u− v‖α̂
β for all u, v ∈ U ⊆ V ⊆ Xβ .

Then (8) holds with appropriate C ∈ [0,∞) and α > 0.

Proof. The convex interpolation inequality for fractional power spaces (see
e.g. [1, Theorem 2.11.1] with γ = 0 and α = 1/2) yields

‖u− v‖β ≤ C̃ ‖u− v‖2β |u− v|1−2β
.

Since U is bounded in V by some constant M , we find that (19) implies (8) with

C := Ĉ
(
C̃(2M)2β

)α̂
and α := (1 − 2β)α̂. �

Although we were able to eliminate the hypothesis (K) of [14] completely from
Theorem 1, we shall discuss it now, since it was used in [14] to provide a regu-
larity estimate for (12) and thus for the flow of (4): Such regularity results are of
independent interest.

Unfortunately, even the formulation of the hypothesis (K) in [14] is not very
clear, since it involves the inverse of a nonlinear map whose existence is unclear.
Therefore, we formulate this hypothesis in a simpler manner. Simultaneously, we
relax it:

Definition 1. Let U ⊆ V , H0 ⊆ H , F0 ⊆ V ′, α ∈ (0, 1], and t > 0. We
say that (H, V,K,U , H0, F0, α, t) satisfy the hypothesis (K′) with respect to the
constants C1, C2, C3, C4 ∈ [0,∞) if H0 and A−1(F0) are bounded subsets of H
(with constant C1) and of X(1+α)/2 (with constant C2), respectively, and if for
every u ∈ K ∩ U , f ∈ F0 and h ∈ H0 there are sequences vn, gn ∈ X(1+α)/2,
Gn ∈ V , and 0 < λn → 0, such that the following holds for all n:

(1) u = vn + λnA
α(vn + gn).

(2) vn + λnGn ∈ K.
(3) t 〈u,Gn〉 − (h,Gn) − (f, Gn) ≤ C3.
(4) ‖gn‖(1+α)/2 ≤ C4.

If the hypothesis (K) from [14] is satisfied then also the above hypothesis is
satisfied for every bounded H0 ⊆ H and every F0 ⊆ V ′ for which A−1(F0) is
a bounded subset of X(1+α)/2. Indeed, in this case we can choose the sequence
vn independently of (u, h, f), and put Gn := 0 and gn := G(vn) (with G as in
hypothesis (K) of [14]). Thus, the hypothesis of Definition 1 is weaker and, in
particular, it does not require the existence of nonlinear inverses (id +λ(Aα +G))−1

as in [14]. Moreover, introducing Gn seems to be an important relaxation of the
condition in [14].
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In order to understand the meaning of the condition vn + λnGn ∈ K in Defi-
nition 1, one should recall that the most interesting case is when K is a cone in V
with vertex in 0 ∈ U . In this case, one has K +K ⊆ K and λK ⊆ K for all λ ≥ 0,
and thus one can use the following criterion with K0 = K. However, also for other
sets K, one usually finds rather large sets K0 for which this criterion applies.

Proposition 3. If in Definition 1 there is K0 ⊆ V and ε > 0 with (U ∩K) +
λK0 ⊆ K for all λ ∈ (0, ε) then the condition vn + λnGn ∈ K can be replaced by
Gn − Aα(vn + gn) ∈ K0.

Proof. The choice of vn and gn implies

(20) vn − u = −λnA
α(vn + gn),

and so

vn + λnGn = u+ λn(Gn −Aα(vn + gn)) ∈ (U ∩K) + λnK0 ⊆ K

for all sufficiently large n. Hence, one can pass to a subsequence satisfying vn +
λnGn ∈ K for all n. �

The crucial point of Proposition 3 is that λn does not occur in the condition,
and so one can sometimes choose Gn (or −Aαgn) in some “interior” of K0:

Example 1. Let Ω = (a, b) ⊆ R, H = L2(Ω), V = W 1,2(Ω), and α < 1/4.
Then Aα is bounded from V into W 1−2α,2(Ω) ⊆ C(Ω), and thus, putting λn := 1/n
and gn := 0, we find for each u ∈ U that vn := (I+λnA

α)−1u has the property that
Aα(vn +gn) = Aαvn is uniformly small with respect to the max-norm if U ⊆ V is a
sufficiently small neighborhood of 0. Hence, if K0 in Proposition 3 contains a ball
in V with respect to the max-norm, we can just let Gn be the center of that ball
and thus obtain the properties required in Definition 1.

Now we show that the hypothesis (K′) can indeed be used to obtain the fol-
lowing regularity estimate for variational inequalities:

Proposition 4. Let (H, V,K,U , H0, F0, α, t) satisfy the hypothesis (K′) of Def-
inition 1 with constants Ci (i = 1, 2, 3, 4). Let Ut,H0,F0

denote the set of all solutions
of the variational inequality (12) with some h ∈ H0, f ∈ F0, and t > 0.

Then Ut,H0,F0
is a bounded subset of X(1+α)/2. More precisely, a bound for the

norm is given by

C4 + (cαC1 +C2)/t+
√

(cαC1C4 + C2C4 + C3)/t,

where cα is the norm of the embedding of X(1+α)/2 into Xα.

Proof. With the notation of Definition 1, we note that the positivity of A

implies

(21) (tAu, vn − u) ≤ (tAvn, vn − u).

Inserting ϕ := vn + λnGn into (12), we obtain together with (21) that

0 ≤ (tAu− h− f, vn − u+ λnGn) ≤ (tAvn − h− f, vn − u) + (tAu− h− f, λnGn).

Using (20) and dividing by λn > 0, we conclude with (10) that

0 ≤ −(tAvn − h− f, Aα(vn + gn)) + (tAu− h − f, Gn) =

−t(Avn, A
αvn) − t(A(1+α)/2vn, A

(1+α)/2gn) + (h, Aα(vn + gn))

+ (A(1+α)/2
A

−1f, A(1+α)/2(vn + gn)) + (tAu− h − f, Gn).
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Hence,

t ‖vn‖2
(1+α)/2 = (tAvn, A

αvn) ≤ t ‖vn‖(1+α)/2 ‖gn‖(1+α)/2 + |h| ‖vn + gn‖α +

‖A−1f‖(1+α)/2 ‖vn + gn‖(1+α)/2 + t 〈u,Gn〉 − (h,Gn) − (f, Gn)

≤ t ‖vn‖(1+α)/2C4 + (C1cα +C2)(‖vn‖(1+α)/2 + C4) + C3.

Thus, putting a := C4 + t−1(cαC1 + C2) and b := t−1(cαC1C4 + C2C4 + C3), we
have shown that rn := ‖vn‖(1+α)/2 satisfies r2n ≤ arn + b. It follows that

(
rn − a

2

)2

≤ b+
a2

4
≤
(√

b+
a

2

)2

,

and so

‖vn‖(1+α)/2 = rn ≤ C0 := a+
√
b.

Since C0 is independent of n, we can assume, passing to a subsequence if necessary,
that vn ⇀ũ in X(1+α)/2. By the compactness of the embedding of X(1+α)/2 into
X(1−α)/2, we find that vn → ũ in X(1−α)/2. Since

‖Aα(vn + gn)‖(1−α)/2 ≤ ‖vn + gn‖(1+α)/2 ≤ C0 +C4

is bounded, and so (20) implies vn → u in X(1−α)/2, we must have ũ = u. Since
the closed ball in X(1+α)/2 with radius C0 is weakly closed, we conclude that
‖u‖(1+α)/2 ≤ C0. �

3. Instability of the Reaction-Diffusion System

Substituting (u, v) by (u − u0, v − v0) in (1) and (2) or (3), respectively, we
can assume without loss of generality that the equilibrium is u0 = v0 = 0. Note
that after this substitution, (u, v) actually denote the difference to the equilibrium
in the original system, so that negative values make physically sense. Linearizing
(F1, F2) at the equilibrium u0 = v0 = 0, we rewrite (1) in the form

(22)
ut = d1∆u+ b11u+ b12v + f1(u, v),

vt = d2∆v + b21u+ b22v + f2(u, v),

where B = (bij)ij ∈ R
2×2 and

(23) fi(0, 0) = 0 and f ′i(0, 0) = 0 for i = 1, 2.

We assume that fi satisfy the Lipschitz type condition

(24) |fi(u1, v1) − fi(u2, v2)| ≤ C
(
1+|u1|+|u2|+|v1|+|v2|

)αN
(
|u1 − u2|+|v1 − v2|)

for all uj, vj ∈ R, where C ∈ [0,∞) and αN := 2/(N − 2) if N > 2 or 0 < αN <∞
if N = 2. In case of space dimension N = 1, we assume instead of (24) only that
fi satisfy a local Lipschitz condition in some neighborhood of (u, v) = (0, 0).

Note that due to our substitution, we have v0 = 0 so that the corresponding
Neumann-Signorini boundary conditions obtain the form

(25)






∂u
∂n = 0 on ∂Ω,
∂v
∂n = 0 on ∂Ω \ Γ,

v ≥ 0, ∂v
∂n

≥ 0, v ∂v
∂n

= 0 on Γ.
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We will also assume that b11 > 0 and that the equilibrium (u0, v0) = (0, 0)
is for d1 = d2 = 0 linearly stable, i.e. the spectrum of B is contained in the left
half-plane. This means

(26) b11 > 0, b11 + b22 < 0, |B| := b11b22 − b12b21 > 0.

Note that (26) automatically implies

b11 > 0 > b22, b12b21 < 0.

In particular, depending on the sign of b12, system (22) is of activator-inhibitor or
substrate-depletion type.

By Turing’s effect of “diffusion-driven instability” [15], it may happen that the
system loses stability in case d1, d2 > 0. More precisely, this is well-known for
Neumann (no-flow) boundary conditions (2): In this case, the right-hand side of
system (22), (2) is differentiable, and by considering the linearization, one can ex-
actly determine those (d1, d2) for which the trivial solution of the system is linearly
stable: Let 0 = κ0 < κ1 < κ2 < . . . denote the eigenvalues of −∆ with respect to
Neumann boundary conditions (2). To each positive eigenvalue κn (n = 1, 2, . . .)
we associate the hyperbola

(27)

Cn = {(d1, d2) ∈ R
2
+ : (κnd1 − b11)(κnd2 − b22) = b12b21}

=
{

(d1, d2) ∈ R
2
+ : d2 =

b12b21/κ
2
n

d1 − b11/κn
+
b22

κn

}
,

see Figure 1.

d1

d2 C4 C3 C2 C1

DS

Figure 1. Hyperbolas (27) determining DS , their vertical asymp-
totes, and the common tangential line with slope (28)

By standard arguments, it can be verified that Figure 1 is qualitatively correct
in all cases with (26): Cn is a connected subset of one “branch” of a hyperbola, and
Cn has the vertical asymptote b11/κn. Moreover, the family Cn has the common
tangent which is a line through (0, 0) with slope

(28) S :=
−b12b21 + |B| + 2

√
−b12b21 |B|

b211

> 1.
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One can show that the trivial solution of (22), (2) is linearly stable if and only
if d = (d1, d2) lies to the right/under the common envelope of the hyperbolas
C1, C2, . . . ; we denote this “domain of stability” by DS , see Figure 1. Roughly
speaking, by “crossing” the hyperbola Cn, one loses the corresponding multiplicity
of κn of “stable directions”. In space dimension N = 1 this was shown in [13], for
N > 1 see e.g. [7]; a more precise variant of the assertion, showing the asymptotic
and exponential stability for d ∈ DS in the W 1,2(Ω)-topology, is given in [18].

In particular, the trivial solution of (22), (2) is linearly stable if the diffusion
speeds d1 and d2 corresponding to the activator u and inhibitor v, respectively,
satisfy

d1 ≥ b11

κ1
or

d2

d1
< S.

Thus, roughly speaking, each of these inequalities will actually prevent Turing’s
diffusion-driven instability in (22), (2). In practice, especially the second inequality
is often satisfied since the slope (28) is typically extremely large.

In [12], it was shown that if one has a unilateral obstacle like e.g. (25) (recall
that v0 = 0 after our substitution) on some part Γ ⊆ ∂Ω of positive measure, there
occurs a bifurcation of stationary solutions in DS if d1, d2 are both large and, sur-
prisingly, the ratio d2/d1 is small. In the following, we will combine a part of the
proof of [12] with the Krasnosel’skĭı-Quittner formula to prove that, with a unilat-
eral obstacle, the system (2) fails to be asymptotically stable at (u0, v0) = (0, 0) at
least if the diffusion speeds d1 and d2 are both sufficiently large, independently of
the ratio d2/d1. In space dimension N = 1, we can make even more quantitative
statements by using the results from [10].

In order to apply the Krasnosel’skĭı-Quittner formula, we first reformulate our
problem in a weak sense: We let

(29) K0 := {v ∈W 1,2(Ω) : v|Γ ≥ 0}

where the restriction v|Γ is understood in the sense of traces. Let K := W 1,2(Ω)×
K0. Then the weak formulation of problem (22), (25) can be written as

(30)

(
u
v

)
∈ K, and for all

(
ϕ
ψ

)
∈ K:

∫

Ω

(
ut − b11u− b12v − f1(u, v)

)
(ϕ− u) dx+ d1

∫

Ω

∇u(∇ϕ−∇u) dx ≥ 0,

∫

Ω

(
vt − b21u− b22v − f2(u, v)

)
(ψ − v) dx+ d2

∫

Ω

∇v(∇ψ −∇v) dx ≥ 0.

To rewrite (30) in the setting of Section 2, we equip V0 := W 1,2(Ω) with the usual
scalar product

〈u, v〉 :=

∫

Ω

u(x)v(x) dx+

∫

Ω

∇u(x) · ∇v(x) dx.

It will be convenient to define d0 := 1. For i = 0, 1, 2, we equip Hi := L2(Ω) with
the scaled scalar product

(u, v)i = d−1
i

∫

Ω

u(x)v(x) dx (i = 0, 1, 2)
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(i.e. H0 = L2(Ω) with the usual scalar product), and we define Ai : V0 → V ′
0 by the

duality

(Aiu, v)i = 〈u, v〉 (i = 0, 1, 2).

We let Ai denote the restriction of Ai to A
−1
i (Hi). Then

Ai = diA0 and Ai = diA0 for i = 1, 2.

We equip V := V0 × V0 and H := H1 × H2 with the canonical inherited scalar
products. Then we have in the notation of Section 2 that

A(

(
u
v

)
) =

(
A1u
A2v

)
=

(
d1A0u
d2A0v

)

and

A(

(
u
v

)
) =

(
A1u
A2v

)
=

(
d1A0u
d2A0v

)
.

By Lemma 1, we find that A−1 is compact from H into V and is characterized by

〈A−1(

(
u
v

)
),

(
ϕ
ψ

)
〉 = (

(
u
v

)
,

(
ϕ
ψ

)
) for all

(
ϕ
ψ

)
∈ V .

Since

A−1(

(
u
v

)
) =

(
d−1
1 A−1

0 u
d−1
2 A−1

0 v

)
,

we find that A−1
0 is compact from H0 into V0, and characterized by

(31) 〈A−1
0 u, v〉 = (u, v)0 =

∫

Ω

u(x)v(x) dx for all u, v ∈ H0.

In particular, the restriction Â := A−1
0 |V0

: V0 → V0 is compact and characterized
by

〈Âu, v〉 = (u, v)0 =

∫

Ω

u(x)v(x) dx for all u, v ∈ V0.

Finally, for i = 1, 2, we define superposition operators Fi : V → H0 by

Fi(u, v)(x) := fi

(
u(x), v(x)

)
,

and F : V → H by

F (

(
u
v

)
) :=

(
d1u+ b11u+ b12v + F1(u, v)
d2v + b21u+ b22v + F2(u, v)

)
.

Then (30) can be written in the form (5), i.e. in the form (4): Note that if

U(t)(x) =

(
u(t, x)
v(t, x)

)

is absolutely continuous in the sense that it can be written as the Bochner integral
in H (or V ) over its derivative then by H ∼= L2(Ω,R

2), we can interpret this
derivative indeed as

dU(t)

dt
(x) = (ut(t, x), vt(t, x))

almost everywhere with the partial derivatives ut and vt existing almost everywhere,
see e.g. [16, Theorem 4.4.4].
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Remark 6. Except in space dimension N = 1, it is probably not the case that
the hypothesis (K′) of Definition 1 can be satisfied with our above choice of K.
Although it is probably possible to obtain conclusions similar to that of Proposi-
tion 4 anyway (i.e. even without hypothesis (K′)) for this particular cone K by
using regularity theory for Signorini problems, the crucial point of our Theorem 1
(in contrast to [14]) is that we do not need such a regularity theory for the Kras-
nosel’skĭı-Quittner formula or for the instability result. In fact, in Section 4, we will
discuss a similar setting for which one cannot even expect such regularity results.

Proposition 5. There is a neighborhood U ⊆ V of 0 such that the restriction
F |U : (U , ‖ · ‖) → (H, | · |) is Lipschitz continuous and satisfies (8). In case N > 2,
this is even true for every bounded U ⊆ V .

Proof. We assume first N ≥ 2. Let p∗ := 2(αN + 1) and (p∗)′ := p∗/(p∗ −
1). Then the Sobolev embedding theorems yield continuous embeddings V ⊆
Lp∗(Ω,R2), and thus also L(p∗)′(Ω,R

2) ⊆ V ′, and moreover, for every p < p∗

there is β < 1/2 with Xβ ⊆ Lp(Ω,R
2). Note that p∗ > 2 and thus (p∗)′ < 2. From

Proposition 6 in the appendix, we thus obtain that F : Lp∗(Ω,R2) → L2(Ω,R
2) sat-

isfies a Lipschitz condition on bounded subsets and, if p < p∗ was chosen sufficiently
close to p∗, then also F : Lp(Ω,R

2) → L(p∗)′(Ω,R
2) satisfies a Lipschitz condition

on bounded subsets. Summarizing, if U ⊆ V is bounded then U ⊆ Lp∗(Ω,R2) ⊆
Lp(Ω,R

2) is bounded, and F |U : (U , ‖ · ‖) → (H, | · |) and F |U : (U , ‖ · ‖β) → V ′ are

Lipschitz. The latter means (18) and thus implies (8) by Proposition 2.
In case N = 1, we even have continuous embeddings V,Xβ ⊂ C(Ω,R2) (if

β < 1/2 is sufficiently close to 1/2). The local Lipschitz condition of fi in a
neighborhood of (0, 0) implies that there is a neighborhood U0 ⊆ C(Ω,R2) of 0
such that F : U0 → C(Ω,R2) satisfies a Lipschitz condition on U0. Let U ⊆ V be
a neighborhood of 0 which is contained in U0. Then F |U : U → C(Ω,R2) ⊆ H and
F |U : (U , ‖ · ‖β) → C(Ω,R2) ⊆ H ⊆ V ′ satisfy a Lipschitz condition on U . From

the latter it follows as above by Proposition 2 that (8) holds. �

We call (d1,0, d2,0) a non-bifurcation point of stationary solutions of prob-
lem (22), (25) if there is a neighborhood of (d1,0, d2,0, 0, 0) in R

2 × V 2 = R
2 ×

W 1,2(Ω)2 such that every stationary weak solution (d1, d2, u, v) in this neighbor-
hood satisfies u = v = 0. Now we can formulate our main result:

Theorem 2. Let Ω ⊆ R
N be a bounded domain with Lipschitz boundary,

and suppose (26). Let Γ ⊆ ∂Ω have positive measure. Then there are constants
d1,0, d2,0 > 0 such that for every f1, f2 : R

2 → R satisfying (23) and (24) the fol-
lowing holds.

The set D ⊆ R
2
+ of non-bifurcation points of stationary solutions of prob-

lem (22), (25) is open and contains [d1,0,∞)× [d2,0,∞). Let D∞ denote the con-
nected component of D containing (d1,0, d2,0), in particular [d1,0,∞) × [d2,0,∞) ⊆
D∞. Then for every (d1, d2) ∈ D∞ the trivial solution of problem (22), (25) fails
to be asymptotically stable with respect to the topology of W 1,2(Ω).

In case of space dimension N = 1, Ω = (a, b), every choice d2,0 > d∗, in
case Γ = ∂Ω = {a, b} even d2,0 > d∗/4, is possible where d∗ is the unique positive
solution of the equation

1

b− a

√
d∗

−b22
tanh

(
(b− a)

√
−b22

d∗

)
=

|B|
−b12b21

.
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Moreover, in case of space dimension N = 1, there is some d1,1 > 0 (independent
of f1, f2) such that D∞ contains all (d1, d2) ∈ DS with d1 ≥ d1,1.

All above assertions hold unchanged if both inequality signs in (25) are reversed.

Remark 7. The trivial solution not only fails to be asymptotically stable but
even fails to be stable in the sense described in Remark 2.

Proof. The fact that D is open follows immediately from the definition. That
it contains some [d1,0,∞)× [d2,0,∞) has been shown in [12], and the corresponding
assertions about D∞ in space dimension N = 1 are contained in [10]. For i = 1, 2,

we put F̃i := d−1
i A−1

0 ◦ Fi. By (31), we find that F̃i : V → V0 is characterized by

〈F̃i(u, v), ϕ〉 =

∫

Ω

d−1
i fi(u(x), v(x))ϕ(x) dx for all ϕ ∈ V0.

Hence, defining G : V → V by

G(

(
u
v

)
) :=

(
b11+d1

d1

Âu+ b12Âv + F̃1(u, v)

b21Âu+ b22+d2

d2

Âv + F̃2(u, v)

)
,

we are exactly in the situation of [12] where it has been shown that for (d1, d2) ∈
[d1,0,∞)× [d2,0,∞) the map PK ◦G has an isolated zero at (0, 0) and satisfies

(32) indV (PK ◦G, 0) = 0.

Since D is open and thus locally path-connected, it follows straightforwardly from
the homotopy invariance of the degree and the definition of D that the index
from (32) is defined for all (d1, d2) ∈ D and depends locally constant from (d1, d2) ∈
D. In particular, (32) holds even for all (d1, d2) ∈ D∞. Note now that G = A−1◦F ,
and so

indV (PK ◦A−1 ◦ F, 0) = 0 6= 1

for all (d1, d2) ∈ D∞. Thus, the assertion follows from the second part of Theorem 1.
�

4. Other Obstacles

Let Ω ⊆ R
N be bounded with a Lipschitz boundary, and Ω0 ⊆ Ω open and

satisfy Ω0 ⊆ Ω. We consider the problem

(33)

ut = d1∆u+ b11u+ b12v + f1(u, v) on Ω,

vt = d2∆v + b21u+ b22v + f2(u, v) on Ω \ Ω0,

−vt + d2∆v + b21u+ b22v + f2(u, v) ≤ 0 ≤ v on Ω0,(
−vt + d2∆v + b21u+ b22v + f2(u, v)

)
v = 0 on Ω0

with Neumann boundary conditions (2).
The last two lines in (33) can mean that there is a source in Ω0 guaranteeing

that v ≥ 0 by becoming just enough active in those points x for which v(x) would
become negative without the source.

The weak formulation of (33), (2) has the form (30) when we define K :=
W 1,2(Ω) ×K0 with

K0 := {v ∈W 1,2(Ω) : v|Ω0
≥ 0} .

In this weak formulation, we can even allow arbitrary Ω0 ⊆ Ω, but if Ω0 touches
the boundary, then in the classical interpretation of (30), one has to replace the
Neumann condition (2) for v by the Signorini condition (3) with Γ := Ω0 ∩ ∂Ω.
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Similarly, we actually do not have to assume that Ω0 is open, if we understand v|Ω0

in the sense of traces.
We call (d1,0, d2,0) a non-bifurcation point of stationary solutions of (30) if there

is a neighborhood of (d1,0, d2,0, 0, 0) in R
2 ×W 1,2(Ω)2 such that every nontrivial

stationary solution (d1, d2, u, v) in this neighborhood satisfies u = v = 0.
The hypothesis −1 /∈ K0 of the following theorem is satisfied if Ω0 has positive

N -dimensional Lebesgue measure. However, it can also be satisfied for certain
“thin” obstacles Ω0 (of positive Hausdorff dimension N − 1) if one understands
the restriction v|Ω0

in the sense of a corresponding trace. The function u− of the
following result exists e.g. whenever Ω \ Ω0 has an interior point.

Theorem 3. Let Ω ⊆ R
N be bounded with a Lipschitz boundary, and Ω0 as

above. Assume that −1 /∈ K0 and that there is u− ∈ K0 with
∫
Ω u−(x) dx < 0.

Suppose (26). Then there are constants di,0 > 0 such that for every fi : R
2 → R

satisfying (23) and (24) the following holds.
The set D ⊆ R

2
+ of non-bifurcation points is open and contains [d1,0,∞) ×

[d2,0,∞). Let D∞ denote the connected component of D containing (d1,0, d2,0), in
particular [d1,0,∞) × [d2,0,∞) ⊆ D∞. Then for every (d1, d2) ∈ D∞ the trivial
solution of problem (30) fails to be asymptotically stable with respect to the topology
of W 1,2(Ω).

All above assertions hold unchanged if all inequality signs are reversed and if
the hypothesis −1 /∈ K0 is replaced by the hypothesis 1 /∈ K0.

Remark 8. The trivial solution not only fails to be asymptotically stable but
even fails to be stable in the sense described in Remark 2.

Proof. The proof is completely analogous to the proof of Theorem 2; the
condition ∅ 6= Ω0 6= Ω is used in Lemma 3.1 of [12]. �

Note that the condition about the measure of Ω0 from [12] is not needed in our
case, since this condition was only used in [12] to obtain that indV (PK ◦G, 0) = 1 if
d1 is large and d2 is sufficiently small. Without this condition, we thus cannot claim
that there is a branch of bifurcation points for the stationary problem in DS , but
nevertheless we obtain the instability result. We conjecture that a reason for this
can be that if Ω0 has sufficiently large volume then it can happen that (u, v) = (0, 0)
is unstable for every (d1, d2) ∈ DS , and thus there cannot be stationary nontrivial
solutions close to (0, 0).

We point out that in contrast to the Signorini problem (22), (25), one cannot
expect strong regularity results for the solutions of Problem (33), (2). In particular,
one probably cannot expect that the solutions of this problem belong to some
fractional power space Xα with α > 1/2 for t > 0, and so the way of [14] to prove
the compactness of the flow is not possible. This is one of the reasons why it is so
important that we could get rid of the condition (K) of [14].

We obtain results analogous to Theorem 3 when we put

K0 := {v ∈W 1,2(Ω) :

∫

Γi

v dx ≥ 0 for i = 1, . . . , n}

or

K0 := {v ∈W 1,2(Ω) :

∫

Ωi

v dx ≥ 0 for i = 1, . . . , m} ,
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where Γ1, . . . ,Γn ⊆ ∂Ω or Ω1, . . . ,Ωm ⊆ Ω have pairwise disjoint closure. In this
case (and if Ωi are open with Ωi ⊆ Ω), Problem (30) can be interpreted as the weak
formulation of (22) with integral Signorini conditions

(34)





∂u
∂n = 0 on ∂Ω,
∂v
∂n

= 0 on ∂Ω \ (Γ1 ∪ · · · ∪ Γn),∫
Γi

v dx ≥ 0, ∂v
∂n

= const ≥ 0,
∫
Γi

v dx ∂v
∂n

= 0 on Γi

or as the weak formulation of the integral obstacle system

(35)

ut = d1∆u+ b11u+ b12v + f1(u, v) on Ω,

vt = d2∆v + b21u+ b22v + f2(u, v) on Ω \ (Ω1 ∪ · · · ∪ Ωm),

−vt + d2∆v + b21u+ b22v + f2(u, v) = const ≤ 0,

∫

Ωi

v dx ≥ 0 on Ωi,

(
−vt + d2∆v + b21u+ b22v + f2(u, v)

) ∫

Ωi

v dx = 0 on Ωi

with Neumann boundary conditions (2), respectively, see e.g. [8, Observation 5.2]
or [9, Appendix], respectively.

Of course, it is also possible to reverse all corresponding inequalities or to
combine various of the above obstacles by considering the intersection of the cor-
responding cones K0. However, our proof breaks down if we would attempt to
combine obstacles of opposite sign: The proof strongly relies on the fact that there
is a constant function e satisfying e ∈ K0 \ (−K0). The special role of the con-
stant function was explained in [12]: It comes from the fact that this is the unique

eigenfunction of Â to its largest eigenvalue.

Appendix A. A Local Lipschitz Condition for a Superposition

Operator in Lp Spaces

Proposition 6. Let Ω be a measure space, and E0, E1 be Banach spaces. Let
1 ≤ q ≤ p < ∞, and f : Ω × E0 → E1 be such that f( · , u) is (strongly Bochner)
measurable for every u ∈ E0, and f( · , 0) ∈ Lq(Ω, E1).

Suppose that there are C ∈ [0,∞) and a ∈ Lp(Ω, [0,∞]) such that, for almost
all x ∈ Ω,

(36) ‖f(x, u) − f(x, v)‖ ≤ C
(
a(x) + ‖u‖+ ‖v‖

)(p/q)−1 ‖u− v‖ for all u, v ∈ E0.

Then F (u)(x) := f
(
x, u(x)

)
acts from Lp(Ω, E0) into Lq(Ω, E1) and satisfies a

Lipschitz condition on every bounded set U ⊆ Lp(Ω, E0).

In the scalar case E0 = E1 = R and if Ω has no atoms and finite measure,
it follows from [2, Theorem 3.10] in view of [2, Theorem 3.1] that the conditions
given in Proposition 6 are necessary and sufficient for the conclusion. However, for
us the vector-valued version is important. In this case, we do not know whether
the condition (36) is really necessary, but it seems at least close to necessary, even
if one is only interested in a Lipschitz condition on some neighborhood of 0.

Proof. It follows from e.g. [16, Theorem A.1.1] and the continuity of f(x, · )
for almost all x ∈ Ω that F (u) is measurable for measurable u : Ω → E0. Similarly,
also

G(u, v)(x) := C
(
a(x) + ‖u(x)‖ + ‖v(x)‖

)(p/q)−1
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and

H(u, v)(x) := ‖u(x)− v(x)‖
are measurable if u, v : Ω → E0 are measurable. Let | · |p denote the norm in Lp.
Since

‖F (u)(x)− F (v)(x)‖ ≤ r(u, v)(x) := G(u, v)(x)H(u, v)(x)

and F (0) ∈ Lq(Ω, E1), we thus obtain the result from the estimate

|r(u, v)|q ≤ Lu,v |H(u, v)|p = Lu,v |u− v|p ,

which follows from Hölder’s inequality with

Lu,v := |G(u, v)|pq/(p−q) = C |a( · ) + ‖u( · )‖+ ‖v( · )‖|(p/q)−1
p

≤ C
(
|a|p + 2R

)(p/q)−1

for |u|p , |v|p ≤ R. �

Note that Lu,v in the above proof of Proposition 6 is actually an upper bound
for the Lipschitz constant.
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