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ABSTRACT. We discuss various issues related to the finite-dimensionality of
the asymptotic dynamics of solutions of parabolic equations. In particular, we
study the regularity of the vector field on the global attractor associated with
these equations. We show that if the linear term associated with certain dis-
sipative partial differential equations is log-Lipschitz continuous on the global
attractor A, then A lies within a small neighbourhood of a smooth manifold,
given as a Lipschitz graph over a finite number of Fourier modes. In this case,
A can be shown to have zero Lipschitz deviation and, therefore, there are lin-
ear maps L into finite-dimensional spaces, whose inverses restricted to L.A are
Holder continuous with an exponent arbitrarily close to one. Finally, we use
an argument due to Kukavica (2007; Proc. Amer. Math. Soc. 135 2415-2421)
to prove that the linear term associated with a class of parabolic equations,
that includes the 2D Navier-Stokes equations, is 1-log-Lipschitz continuous.
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1. Introduction

The existence of global attractors with finite upper box-counting dimension for
a wide class of dissipative equations (see Babin and Vishik [2], Foias and Temam
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[15], Hale [17], Temam [44], for example) strongly suggests that it might be possible
to construct a system of ordinary differential equations whose asymptotic dynam-
ics reproduces the dynamics on the original attractor. However, because of the
complexity of the flow on the attractor A and its irregular structure, the finite di-
mensionality of A alone is not immediately sufficient to guarantee the existence of
such a system of ordinary differential equations.

Indeed, the existence of an ordinary differential equation with analogous asymp-
totic dynamics has only been proved for dissipative partial differential equations that
possess an inertial manifold, i.e. a finite-dimensional, positively invariant Lipschitz
manifold that attracts all orbits exponentially (Foias, Sell and Temam [13, 14];
Constantin and Foias [6]; Constantin et al. [7]; Foias, Manley and Temam [12]; and
Temam [44], for more details). All the methods available in the literature construct
inertial manifolds as graphs of functions from a finite-dimensional eigenspace as-
sociated with the low Fourier modes into the complementary infinite-dimensional
eigenspace corresponding to the high Fourier modes, under a certain ‘spectral gap
condition’. Unfortunately, this sufficient condition is quite restrictive, and there are
many equations, such as the 2D Navier—Stokes equations, that do not satisfy it.
(Adopting a different approach, Kukavica [21, 22] has been able to show that the
global attractors of certain dissipative equations of the form w; — uze + f(, u, uy)
in one space dimension, which do not satisfy the spectral gap condition, still lie in
a Lipschitz graph over a finite number of Fourier modes.)

In the cases in which an inertial manifold has not been shown to exist, other
approaches have been explored to reconstruct the dynamics on the attractor within
a finite-dimensional system. Eden et al. [9] were the first to consider explicitly the
problem of projecting a dissipative partial differential equation into a Fuclidean
space of sufficiently high dimension, and obtaining a finite system of ordinary dif-
ferential equations which reproduce the dynamics on the attractor .A.

Romanov [39] (see also [40, 41]) discussed the problem of a finite-dimensional
description of the asymptotic behaviour of dissipative equations more abstractly. He
defined the dynamics on the attractor A to be! ‘Lipschitz finite-dimensional’ if there
exists a bi-Lipschitz map II : A — RY, for some N, and an ordinary differential
equation with a Lipschitz vector field on RY such that the dynamics on A and
II(A) are conjugated under II. He then showed that this property is equivalent to
the attractor being contained in a finite-dimensional Lipschitz manifold, given as a
graph over a sufficiently large number of Fourier modes. Hence, his definition and
that of an inertial manifold are much more similar than they first appear. In Section
3 we give a concise proof of this result, and give a possible alternative definition of
what it might mean for the asymptotic dynamics to be ‘finite-dimensional’.

To illustrate the problem of constructing a finite set of ordinary differential
equations that reproduces the dynamics on the global attractor, consider a governing
equation & = G(u) defined on a Hilbert space H. Suppose there exists a linear map
L : H — RN that is injective on A. In order to study the smoothness of the
embedded equation on X = LA,

(1) i =h(r)=LGL ' (z), ze€X,
We have added the word ‘Lipschitz’ here to emphasise that Lipschitz continuity ‘wherever

possible’ forms a key part of Romanov’s definition; contrast this with our weaker definition, Defi-
nition 3.3.
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one needs to consider the continuity of the vector field on A and the continuity of
the inverse of the embedding L restricted to X.

If one would like a system of ordinary differential equations with unique solu-
tions that generates a flow {S;}, then the embedded vector field h in X does not
need to be Lipschitz; it is sufficient for h to be a-log-Lipschitz with any exponent
0 < a<1,i.e. there exists a C' > 0 and a § > 0 such that

[h(x) = h(y)| < Clz = y[log(—[z —y[)* forall |z—y| <o
(Osgood’s criterion then guarantees the uniqueness of solutions, since the integral

foa W diverges, see [18]). Given such a function defined on X, one can readily

extend h : X — RY to 1-log-Lipschitz function H : RN — R using a standard
extension result (see McShane [26], for example).
Hence, one needs to show that there exist

(i): an exponent v > 0 such that the vector field on the attractor A is
~-log-Lipschitz in H, and

(ii): an exponent 1 > 0 such the inverse of linear embedding L : H — R is
n-log-Lipschitz when restricted to &,

with v and 7 such that v+ n < 1.

The regularity of the embedding L (i.e. the continuity properties of L™!) has
been discussed in a variety of papers (see Mané [25], Ben-Artzi et al. [4], Eden et
al. [9, 10], Foias and Olson [11], Hunt and Kaloshin [20], Olson and Robinson [30],
Robinson [36] for more details), with the strongest current result [37, 38] providing
an 7)-log-Lipschitz embedding for any 1 > 1/2 when the Assouad dimension? of the
set of differences A — A is finite.

Under this condition, we would therefore require the vector field G, restricted to
A, to be v-log-Lipschitz for some exponent v < 1/2. (Under these two assumptions,
on the Assouad dimension of A — A and the continuity of the vector field, Pinto de
Moura et al. [33] show that there is an ordinary differential equation in some R*
that has unique solutions and reproduces the dynamics on A4, i.e. that the dynamics
are ‘finite-dimensional’ in the sense of our Definition 3.3). We therefore focus our
attention in this paper on what we can say about the regularity of G (on A) in a
general semilinear parabolic problem, and how this relates to other properties of
the attractor.

In Section 4, we prove that if the the linear term is -log-Lipschitz continuous,
then there exists a family of Lipschitz manifolds M y such that the distance between
the N-dimensional manifold My and the attractor A is exponentially small in N.
It is interesting to note that this result does not rely explicitly on a dynamical
argument, but is a consequence of the regularity of the functions that lie on the
attractor. We then recall (after Pinto de Moura and Robinson [32]) that this result
implies that one can obtain linear embeddings of the A into some RY that have
Holder continuous inverse and whose exponent can be made arbitrarily close to one
by choosing an embedding space of sufficiently high dimension.

In Section 5, we show that for certain dissipative partial differential equations,
including the 2D Navier—Stokes equations, the linear term (and hence the whole
vector field) is 1-log-Lipschitz continuous on the attractor, using methods developed
by Kukavica [23]. Of course, improvement of this result is required if one is to

2For a comprehensive treatment of the Assouad dimension see Luukkainen [24], Olson [29],
or Robinson [37].
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follow the ‘finite-dimensional programme’ outlined above, unless one can guarantee
the existence of a bi-Lipschitz embedding of A into some R,

2. Notation and general setting

Consider a semilinear parabolic equation written as an abstract evolution equa-
tion of the form

d
(2) d—? + Au = F(u)
in a separable real Hilbert space H with scalar product (-,-) and norm | - ||. We

suppose that A is an unbounded positive self-adjoint linear operator with compact
inverse and dense domain Dy (A) C H. For each a > 0, we denote by Dy (A®) the
domain of A% in H, i.e.

Dy(A%) ={u: A%u € H};
these are Hilbert spaces with inner product (u,v)o = (A%u, A%v) and norm ||u||o =

| A%ul|. We know that for a > 3, the embedding Dy (A%) C Dy (AP) is dense and
continuous such that

3) ulls < c(c, B)|[ulla,  for ue Dp(A%)

(see Henry [19] or Sell and You [43], for details). Moreover, we assume that for
some a € [0,1) the nonlinear term F' is locally Lipschitz from Dp(A%) into H.
Hence, for u,v € Dy (A%),

(4) HF(U)—F(U)H < K(R)H’U,—’UHQ, with |||, [|[v]le < R,

where K is a constant depending only on R. This abstract setting includes, among
others, the 2D Navier—-Stokes equations and the original Burgers equation with
Dirichlet boundary values (see Eden et al. [9] or Temam [44] for example).

Since A is a self-adjoint densely defined operator and its inverse is compact, H
has an orthonormal basis {w;};en consisting of eigenfunctions of A such that

Aw; = A\jw; forall jeN

with 0 < Ay < Ag,...and \; — 00 as j — oo. For n € N fixed, define the finite-
dimensional orthogonal projections P,, and their orthogonal complements @Q,, by

=1 Jj=n-+1

Hence, we can write u = P,u + Qnu, for all u € H. The orthogonal projections
P, and @, are bounded on the Hilbert spaces Dy (A%), for any a > 0 (see (3)).
Notice that P,H = P,Dg(A*) C Dy (A®), since P,H is a finite-dimensional sub-
space generated by the eigenvectors of A corresponding to the first n eigenvalues
of A. These spectral projections commute with the operators e=4* for t > 0, i.e.,
Ppe=4t = e~ AP, and Qe = e~ 4*Q,,. Moreover, we have the following estimate

le”*@Qnulla < sup {Ae M }H|Quull < bpa(t)]|Quull < bn.o(®)]lull,
j>n+1
where

(0%

(e_t) for 0<t<a/Ai1
bn.o(t) =

A e At for £ > /Ay
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Therefore,

(5) HAae*Ath < bpalt).

Z(H,H)

Within this general setting, one can prove the local existence and uniqueness of
solutions of (2) (see Henry [19] for details). In particular, it follows from Henry [19,
Lemma 3.3.2] that the solution of the nonlinear equation (2), with initial condition
u(to) = uo € D (A%), is given by the variation of constants formula

¢
(6) u(t) = e~ Aty +/ efA(tfs)F(u(s)) ds,

to
for t > tq.

Thus, we can define {®;};>0 to be the semigroup in Dy (A®) generated by (2)
such that, for any initial condition ug € Dy (A®), there exists a unique solution
given by u(t; ug) = ®rug. We assume that this system is dissipative, i.e. that there
exists a compact invariant absorbing set in Dg(A%). It follows from standard
results that (2) possesses a global attractor 4, the maximal compact invariant set
in Dy (A%) that uniformly attracts the orbits of all bounded sets (see Babin and
Vishik [2], Hale [17], Robinson [34], Temam [44]).

3. Finite-dimensionality of flows

As discussed in the Section 1, inertial manifolds are a convenient, although indi-
rect, method to obtain a system of ordinary differential equations that reproduces
the asymptotic dynamics on the global attractor. Romanov considered in [39] a
more general definition of what it means for a system to be asymptotically finite-
dimensional. We will see that this definition implies the existence of a Lipschitz
manifold that contains the attractor, but does not require it to be exponentially
attracting. Romanov defined the dynamics on a global attractor A to be Lipschitz
finite-dimensional if for some N > 1 there exist:

(i): an ordinary differential equation & = H(z) with a Lipschitz vector field
H(z) in RY,
(ii): a corresponding flow {S;} on RY and
(iii): a bi-Lipschitz embedding IT : A — R¥ such that II(®;u) = S;I1(u) for
any u € A and ¢t > 0.
(Note that nothing is required of the attractor of {S;}, which may be much larger
than ILA.)
It follows from this definition that the evolution operators ®; are injective on
A for t > 0. If we set ®_; = II~1S_,II, then we see that in fact ®; is Lipschitz on
A even for t < 0. Hence, we obtain a Lipschitz flow {®,} defined on A for all t € R.
In particular, there exist C' > 1 and p > 0 such that

(7) e = @evl],, < Cllu = o] e,

for every t € R.

Considering the general Banach space case, Romanov [39] proved that the finite-
dimensionality of the dynamics on the attractor A is equivalent to five different
criteria. In this paper we single out one of these, and recall here Romanov’s proof
that if the attractor A4 has ‘finite-dimensional dynamics’ in Romanov’s sense, then
it must lie on a finite-dimensional manifold, defined as the graph of a Lipschitz
function over P, H, for some n < co. It seems worth reproducing the elegant proof
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here, since our setting is much simpler and so the argument becomes much more
transparent. These results are also discussed in the review paper by Zelik [46].

THEOREM 3.1. (Romanov [39]) If the dynamics on A is finite-dimensional,
then given any v with o <y < 1 there exists an ng such that for any n > ng

(8) HQn(u — ’U)H’Y < cHPn(u — v)Ha for all wu,v € A,
where ¢ = ¢(A, n, 7, a).

PROOF. First consider the variation of constants formula (6) with ¢ = 0 and
u(0) = u € A. If we apply the projection operator @,, to both sides of (6), then

0
Quu = QneAt“u(tO) + / eASQnF(u(S)) ds.
to
Now, since the compact set A is bounded in Dy (A%) and u(t) € A, it follows from
(5) that limy, oo ||@ne™u(to)||a = 0. Consequently, letting ¢y tend to —oo we
obtain 0
Qnu = / e QuF(Pyu) ds,

which converges in Dy (A%). It follows from (7) that, for u,v € A,

0
HQ"U_Q"UHV = / HeASQn(F((I)SU)_F((I)SU))HV ds
0
< K[ JaetQu oo,
— oo op
0
< KOfu=ul, [ 4] o
PSS op

Using estimate (5) with ¢t = —s, we find that

0
|Quit = Quol], < KClJu— UHQ/ by (—s)eHods
from which we obtain the inequality

9) 1Quu = Quoll,, < Duflu =],

where
- 1- —Y(App1 —H)s
e () () T e )
KC |\~ An+1 L= Appr—p

can be obtained by simple algebraic manipulation.

Note that, since v < 1 and A, 41 tends to infinity as n — oo, one can choose n
o

sufficiently large to ensure that 19,1)\";? < 1. Since P, + @, = I, it follows that

[@n(uo —vo)lly < Fnl|Pa(uo = vo)lla + InlQn(uo = vo)lla
< DnllPa(o = v0)lla + In Ay 7 1 Qn(uo — vo)lly,

whence

Un
([P (1o = o) la-

n(uo — vo)|ly < —————
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Under the assumption that the non-linear term F is in C?(Dg(A%), H), Ro-
manov [39] showed that the finite-dimensionality of .4 implies that the vector field
G(u) = —Au + F(u) is Lipschitz®. However, it is not clear how to adapt his argu-
ment to prove that A is Lipschitz. Here we give a simple argument that shows that
finite-dimensionality implies that the operator A® is Lipschitz in A, provided that
a+p<1.

COROLLARY 3.2. If the dynamics on A is finite-dimensional, then, for B with
a+ B <1, AP is Lipschitz on A, i.e.

HAﬁ(u— v)Ha < MHu—vHa, for all wu,ve A,
where a is given by (4).
PROOF. It follows from Theorem 3.1 that, for all u,v € A,
[A%@ =), = fle=vll,p5 < [|1Pale=0) 5+ [@nlu =)l

Un
(4 i Il < ol

IN

O

Note, however, that the requirement in Romanov’s definition that A admits a
bi-Lipschitz embedding into some R is very strong and unlikely to be satisfied in
general. A sensible way to weaken this definition would be to relax the bi-Lipschitz
assumption and assume the embedded vector field H to be just log-Lipschitz, but
the argument would not work in this case.

Another possible option would be to remove the assumption that the flow is
generated by an ODE. The following is a reasonable minimal definition of what it
might mean for the dynamics on the attractor to be finite-dimensional.

DEFINITION 3.3. The dynamics on a global attractor A is finite-dimensional if,
for some N > 1, there exist an embedding I1 : A — RN that is injective on A, a
flow {S;} in RN with an invariant set X, such that the dynamics on A and X are
conjugate under II via II(Pyu) = S Il(u), for any u € A and t > 0.

(One could strengthen this definition somewhat by requiring X to be the attractor of
{S:}, but as remarked above this is not contained in Romanov’s original definition.)
However, even in this weak sense, it is still an open problem whether the finite-
dimensionality of the global attractor A implies that the dynamics on A is finite-
dimensional.

4. Smoothness of the linear term

In the last section, we showed that if the dynamics on the attractor is finite-
dimensional, then A” is Lipschitz on A provided that o+ 3 < 1, where « is given
by (4). It is relatively easy to show that the converse is also true.

3If F e ¢? (DH(AO‘),H)7 then it follows from Henry [19, Corollary 3.4.6] that the map
(up,t) — u(t) is also in C2(R* x Dy (A®),Dy(A%)). Hence, the function (ug,t) — du(t)/dt
is C1 with respect to (ug,t). Since du(t)/dt = G(u(t)), for a fixed time (we choose t = 1),
the map ug — g(u(l)) is also a C''-function and, consequently, a Lipschitz function. The finite
dimensionality of the dynamics on A implies that the map ug — wu(1) is bi-Lipschitz on A. And,
therefore, the map u(1) — G(u(1)) is Lipschitz continuous.
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PROPOSITION 4.1 (Robinson [35]). Suppose that A® is Lipschitz continuous on
the attractor from Dy (A%) into itself, i.e.

|A%u — APv||o < M||u—v|lo forall w,ve A

for some M > 0. Then, the attractor is a subset of a Lipschitz manifold given as a
graph over PN H for some N.

In this section, we will show that if the linear term A on A is log-Lipschitz
continuous, then there exists of a family of Lipschitz manifolds My such that

dist(Mpy, A) < ce kA1

where My is an N-dimensional manifold and ¢ and k are positive constants. This
result has a close relationship with the concept of an approximate inertial manifold.
Introduced by [12], these are finite-dimensional Lipschitz manifolds whose neigh-
bourhood contains the global attractor A (cf. [8] and [42] for the construction of
explicit families that are also of ‘exponential order’, as here). The following result
is obtained without appealing directly to any dynamical property.

PROPOSITION 4.2. Suppose that, for some constants v > 0 and C > 0,
(10) HA(u — U)H < Cllu—vl||log (M7 /|lu — ’UHQ)’Y, for all u,v € A,

where My > 4sup,c 4 ||u|l. Then, for each n > 0, there exists a Lipschitz function
®,: P,H— Q,H,

|®n(p1) — ®n(p2)|| < llpr — p2ll forall py,ps € PoH,
such that A lies within a IM2e= PN 12C° Y eiahbourhood of the graph P,
1 g grap )
G[®,|={ue H:u=p+®u(p),pc P,H}.

The proof of this result uses an argument similar to the one developed in [12], and
can also be used to prove Proposition 4.1.

PRrROOF. Let w = u—w, for u,v € A. We can split w = P,w+ Q,w, and observe
that

| Aw|)? = | A(Pyw + Quw)||” = [[A(P,w)||* + || A(Qnw) |

> A llQuwl®.

It follows from (13) that
2y
| Aw]® < C2lw | 10g (M7 /w]|?)]
2y
< C2(| Pawl? + | Quw]?) [10g (MZ/|Quuw|?)]
Since log (M/||Qnw|?) > 1,
Al Quw]?
[10g (M2 /1 Quu]?) |
Consider a subset Y of A that is maximal for the relation
(11) HQn(u—v)H < HPn(u—v)H forall w,veY.

55 < ClPawl? + €2 Quul®
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Note that if the P,, components of u and v agree, so that P,u = P,v, then Q,u =
Qnv. Hence, for every u € Y, we can define uniquely ¢, (P,u) = Q,u such that
u = Pyu+ ¢n(Pyu). Moreover, it follows from (11) that

|¢n(p1) = dn(p2)|| < llpr — p2ll for all pi,ps € P,Y.

Standard results (see Wells and Williams [45], for example) allow one to extend ¢y,
to a function ®,, : P,H — @, H, that satisfies the same Lipschitz bound.
Now, if u € A but u ¢ Y, it follows that

1@n (= v)[| = || Palu = )]
for some v € Y. Thus, if w = u — v, then

A1 @nw]?

7 < 207 Quul®.
[10g (22 /1 Quuw]?) |

Hence,
HanH2 < M12€7{>\3L+1/2cz}1/27,

which implies that

[w]]? = || Pawl]? + [|Qnw|? < 2(|Qnuw)|?

< M2 N /20717
Therefore,
(12) dist (u, G[®,]) < 2MZe~ N1 /20%H7
O

Given a > 0, one can replace the linear term A by A% and obtain the same result
with A2%, instead of just A2, ;. Therefore, if there exist constants C' > 0 and
My > 4sup,c 4 ||u| such that

1/2
|AY2w]| < Cllw| log (Mg /[|w]|?)

as obtained in [23]), then there exists a family of Lipschitz manifolds M, such
y
that
dist(M,,, A) < 2M2eAn+1/207,

The existence of a family of approximating Lipschitz manifolds for a dissipative
equation of the form of (2) implies that the global attractor A has zero Lipschitz
deviation, a concept which we will define below. Introduced by Olson and Robinson
[30] and refined in [32], the Lipschitz deviation is a variant of the ‘thickness expo-
nent’ of [20], and measures how well a compact set X in a Hilbert space H can be
approximated by graphs of Lipschitz functions (with prescribed Lipschitz constant)
defined over a finite-dimensional subspace of H.

DEFINITION 4.3. (Olson and Robinson [30]) Let X be a compact subset of a
real Hilbert space H. Let 6,,(X,€) be the smallest dimension of a linear subspace
U C H such that

dist(X, Gy[P]) < e,

for some m-Lipschitz function ® : U — U™, i.e.

Hfl)(u) — fI)(v)H <mlu—v| forall wu,veU,
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where U~ is orthogonal complement of U in H and Gy[®] is the graph of ® over
U:
Gu[®] = {u+®(u): ueU}.
The m-Lipschitz deviation of X, dev,,(X), is given by
log 6.m (X,
dev,, (X) = limsup L(e).
-0 —loge

Since this quantity is bounded and non-increasing in m, the limit as m tends to
infinity exists and is equal to the infimum. It is therefore natural to define (Pinto
de Moura and Robinson [32]) the Lipschitz deviation of X, dev(X), as

dev(X) = lim dev,,(X).
Just as in [32], we show that the existence of a family of approximating Lispchitz

manifolds, such as that provided by Proposition 4.2, implies that the associated
global attractor have zero Lipschitz deviation.

COROLLARY 4.4. Suppose that, for some constants v > 0 and C > 0,
(13) HA(u - v)H < Cllu— vl log (M} /|ju — ’UH2)’Y, for all w,v € A,
where My > 4sup,¢c 4 ||ull, and that

1
(14) lim sup ogn

n—ooo  An

=0.

Then dev(A) = 0.

PROOF. Let ¢, = 2M126*)‘"+1/\/§C. It follows from Proposition 4.2 that the
global attractor A is contained in an €,-neighbourhood of a finite-dimensional Lip-
schitz manifold M,,, defined as a graph of ®: P, H — @, H , with

|@(p1) — ®(p2)|| < llpr — p2l| forall py,ps € PH.
Hence, 61(A, €,) = n and
I n I
imsup 1280 A ) o loem
n—oo - 10g €n n—oo U)\nJrl - 10g Co

Therefore, the global attractor A for a dynamical system generated by a partial
differential equation of the form (2), such that A satisfies (13), has devi(A) =0. O

Having Lipschitz deviation zero is interesting, since one can then apply the
following abstract embedding result due to Olson and Robinson [30] (see also [32]);
this is essentially the embedding result of Hunt & Kaloshin [20], with their ‘thickness
exponent’ replaced by the Lipschitz deviation.

THEOREM 4.5 ([30]). Let A be a compact subset of a real Hilbert space H with
box-counting dimension d and Lipschitz deviation 7. Let N > 2d be an integer and
let 6 be a real number with

N —2d
(15) 0<f<

N(1+71/2)
Then for a prevalent set of linear maps L : H — RY there exists a C > 0 such that
C|L(z) — L(y)|® > ||z —y| forall z,ye A.

In particular, these maps are injective on A.
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Note that the Lipschitz deviation is used to bound explicitly the Holder exponent
of the inverse of a linear map L restricted to the image of A, and that if 7 = 0 it
follows that 6 can be chosen to satisfy

2d
0<1l——.
0<0< N

Coupled with the result of Corollary 4.4 this yields a weakened version of Proposition
4.1 (if A is Lipschitz continuous on A then there exists a bi-Lipschitz embedding
of the attractor into a Euclidean space of sufficiently high dimension): if A is log-
Lipschitz continuous on A then there are Hélder embeddings of A into RN with
exponent arbitrarily close to one (for N large enough).

We will show in the following section that A is 1-log-Lipschitz on A for a wide
class of parabolic equations, from which it follows that they have zero Lipschitz
deviation and hence can be ‘nicely embedded’ in the above sense.

Note that while we have already shown in [32] that many attractors have zero
Lipschitz deviation, using the dynamical ‘squeezing property’ [9] and ideas from the
theory of approximate inertial manifolds (see [12]), the analysis here shows that this
can also be seen as a consequence of regularity properties of the attractor in a way
that is independent of the dynamics.

5. Log-Lipschitz continuity of the vector field

In general, the regularity of the vector field G is determined by the regularity
of the linear term A, which can be related to the smoothness of functions on the
attractor A. For example, it follows from the standard interpolation inequality

(16) |Au — Av|| < [lu—o||*= DA™ (u —0)||M7,  for u,v € A,

that, if A is bounded in Dy (A"), then A is Holder continuous on A. In this way,
the continuity of F' on A can be deduced from the regularity of solutions on the
attractor.

As an example of how one can develop this approach, suppose that A is bounded

in the Gevrey class DH(eTAl/z), i.e. that

(17) ™A *ull < M forall we A,

where

& k/2
1/2 A u
e‘l’A U=

N k!
k=0

(see Foias & Temam [16]). If (17) holds then, using the expansion of A* in terms
of a basis of eigenfunctions, elementary manipulations lead to the identity

A s e (27)F
Jlem A2 = 3 ST AN,
k=0 ’

whence it follows that
M2k
(27)k

AR |? <



222 ELEONORA PINTO DE MOURA AND JAMES C. ROBINSON

Inequality (16) therefore implies that

27.1 2/k
HAU’_AUH < (M) H,UJ_,UHI*(4/k) _ L(k')2/kQ4/kHuH

(27)F 472
Q4/kk2
< 472 HU’_UHa
T
where Q = 2M/||u — v||. Minimising with respect to k yields
2 oM 1°
= 0 < (£) hu ol oz 22
T llu =]l

ie. A: A— H is 2-log-Lipschitz (cf. [35]).

Such a result relies only on the smoothness of solutions. But one can do much
better by making use of the underlying equation. Indeed, Kukavica [23] used the
structure of the differential equation (2) and far less restrictive conditions on A
than above to show that A2 : A — H is 1/2-log-Lipschitz. We briefly outline
his argument, which was primarily developed to study the problem of backwards
uniqueness for nonlinear equations with rough coefficients, and then show that it
can be used to prove that A : A — H is 1-log-Lipschitz.

In what follows we will consider the same equation as in Section 2

(18) ]

In order to simplify the presentation we will assume here that o = 1/2, i.e. that the
nonlinear term F is locally Lipschitz from Dy (A'/?) into H, although the following
argument works for 0 < o < 1/2. Moreover, we assume that the maximal invariant
set A is bounded in Dy (A'/2?). The argument that follows is simple — the key
observation is that the result is sufficiently abstract that one can make a variety of
choices of H (e.g. we will take H = L? and then H = Dr2(A'/?)).

Let u(t) and v(t) be solutions of (18). The equation for the evolution of the
difference w(t) := u(t) — v(t) can be expressed as

dw

(19) T + Aw = f,

where f(t) := F(u(t)) — F(v(t)). Our assumptions imply that

(20) %%(Aw, w) = (wy, Aw) = —(Aw, Aw) + (f, Aw)
and

1d 2 2 2
(21) §£(Aw,Aw):(wt,A w) = —(Aw, A*w) + (f, A*w).

Moreover, it follows from (4) with o = 1/2 that

(22) Sl S IF(w) = F)|| < K(JAY2ul, A 20])| A 2w] < K1 A 2|
and, consequently,

(23) (fsw) = —Ka|wl||A?w]

for some K1, Ko > 0.
Under these mild regularity assumptions, Kukavica [23] proved the following
backward uniqueness property: if w : [Ty, 0] — H is a solution of (19), then w(0) = 0
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implies that w(t) = 0 for all ¢ € [Ty, 0]. His approach consists in establishing upper
bounds for the log-Dirichlet quotient

~ (Aw(t), w(t))
Q) = S
lew@)1?( Tog 12572 )

where M is a sufficiently large constant. This quantity is a variation of the stan-
dard Dirichlet quotient Q(t) = ||AY/?w||?/|lw||? (see [28], [3] for details). Kukavica
showed that, for equations of the form of (19), the log-Dirichlet quotient is bounded
for all ¢ > 0 and, as an application of this result, stated the following theorem in
the particular case of the two-dimensional Navier—Stokes equations.

THEOREM 5.1 (After Kukavica [23]). Suppose that F : Dy (AY?) — H and A
is a bounded subset of Dy (A'Y/?), invariant for the flow generated by

up = —Au+ F(u)
and such that
|F(u) — Fo)|| < K1||AY?(u —v)|| for all u,v € A
Then there exists a constant C' > 0 such that
[AY2(u —0)||? < Cllu—v||?log(M?/|lu —v|?), forall u,veA u#wv,
where M = 4sup,,¢ 4 ||ul|-

We give a quick summary of Kukavica’s proof, filling in some details in the closing
part of the argument. An expanded version of this proof can be found in Robinson
[37].

PROOF. Let

2

M
E(lwl) =108 g

where M is any constant such that

M > 4 sup ||luol|.

upeA

Note that L(||w(t)||) > 1 for all ¢ € [0, Tp]. For ¢ € [0, Ty], denote L(t) = L(Jlw®)|)-
Define the log-Dirichlet quotient as

Qu) A AV
A= Z(wl) = TPE(wl) ~ [wlPZe)

where Q(t) = || A"?w]|?/||w]|?.
Using (20) and (21), Kukavica [23] showed in the proof of his Theorem 2.1 that

(24) Q'(t) + K3Q(1)* < Ky,
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with K3 = 1/2 and K, = 2K¢. Applying a variant of Gronwall’s inequality* proved
in Temam [44, Lemma 5.1] to (24), we obtain that there exists T such that

Q) < C(Ks,Ky4), forall t>T,

where C(K3, K4) and T are constants independent of Q(0).

Now, consider ug, vy € A. Since solutions in the attractor exist for all time, we
know there exists t > T such that ug = S(t)u(—t) and vo = S(t)v(—t) with ug # vo.
So, u(—t) # v(—t). Moreover, Q(—t) < oo implies that Q(0) < C(K3, K4). Hence,

sup Q(t) < C(K3, Ky).

u0,V0€A, uoFvo

O

We now show how this result can be used to obtain the 1-log-Lipschitz continuity
of A: A— H.

COROLLARY 5.2. Suppose that A is a bounded subset of Dy (A), invariant for
the flow generated by
uy = —Au+ F(u)
and such that for all u,v € A
|F(u) = F(u)l| < Ki[|AY2(u = o) and |AV2(F(u) = F(v)]| < Ka| A(u = )]
Then there exists a constant K > 0 such that
JA(w = v)]| < Klju— ol log(M?/u—v]2), for all w,ve A, u v,
for some M > 4sup,c 4 | A 2u).

PROOF. Write w = u—v. Since (22) (and hence (23)) holds with H = L?, then
there exits a constant Cy > 0 such that

(27) 1A 2w]|F2 < CollwlZalog (M§/|wlZ2),
where
Mo > 4 sup [|ul[zz.
ucA
Now we use the fact that A is bounded in Dy (A). Since (22) also holds with
H = Dy (AY?), there exits a constant C; > 0 such that
(28) [Aw|[72 < C1l| A wl|7 log (ME /|| A wl|Z.)
where

My > 4sup || AY 2w 12
ueA

So,
[Aw][72 < CoCul|wl|3log (Mg /||wl]|7) log (MF /|| A *w][7.).
‘Lemma 5.1 (p167 in Temam [44]): Let y be a positive absolutely continuous function on
(0,00), which satisfies
(25) Y+ <6
withp >1,v> 0,8 > 0. Then, fort>0

1/
(26) y(t) < (%) Ty (v(p— 1)t) /@Y,
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Since ||wl|g> < ¢ AY 2w,
[ Aw][Z2 < CoCrllwlZ log (Mg /|[w][72) log (¢* M/ ||w]|72).-
One can choose My, My, and M such that My < cM; < M. Hence,
(29) [Awl| 2 < K||wl]| 2 log (M?/||wl|72),
where K = /CyC;. O

Using either Theorem 5.1 or Corollary 5.2, it follows from Proposition 4.2 to
show that there exists a family of approximating Lipschitz manifolds My, such that
the global attractor A associated with equation (18) lies within an exponentially
small neighbourhood of My and hence has zero Lipschitz deviation. It is interesting
to note that our earlier proof of this [32] used the ‘squeezing property’, which in fact
follows from an appropriate form of control over the classical Dirichlet quotient, see
[9] for details. As remarked above, however, it is less our purpose here to reprove
the fact that ‘many attractors have zero Lipschitz deviation’ than to investigate the
relationship between regularity of A on A and other properties of the attractor.

To illustrate Corollary 5.2, we consider the incompressible Navier-Stokes equa-
tions

ou —vAu+u-Vu+ Vp=F,
V.-u=0,

with periodic boundary conditions on © = [0,27]? and initial condition u(z,0) =
uo(t) . Here u(z,t) is the velocity vector field, p(z,t) the pressure scalar function,
v the kinematic viscosity and F'(z,t) represents the volume forces that are applied
to the fluid. We restrict ourselves to the space-periodic case for simplicity. Let H
be the space of all the C'*° periodic divergence-free functions that have zero average

on Q. Let H be the closure of H with scalar product (-,-)r2 and norm | - ||z2, and
let V' be similarly the closure of H with scalar product (-,-)g1 and norm || - || g.
Let A be the Stokes operator defined by

Au = —Au,

for all w in the domain D(A) of A in H. Now consider the Navier-Stokes equations
written in its functional form

du
dt
using the operator A and the bilinear operator B from V' x V into V' defined by

(30) + vAu+ B(u,u) = F,

(B(u,v),w) =b(u,v,w), forall u,v,weV.

If F € H is independent of time, then the equation (30) possesses a global attractor

A= {uo € H : S(t)ug exists for all t € R, sup [[S(t)uollr2,,(0) < oo},
teR
where S(t)ug denotes a solution starting at ug on its maximal interval of existence
(cf. Constantin and Foias [6]). Under these assumptions, the difference of solutions
w = u — v will satisfy
dw

n + vAw = —[B(w, u) + B(v,w)].
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So, in this case we use Kukavica’s Theorem with f = —[B(w,u) + B(v,w)]. Note
that

£l < K[| AY 2],
and consequently
(fs Aw) = —Kol|wl| g | AV 2w | 1.

Therefore, one can apply Proposition 4.2 to the two dimensional Navier-Stokes
equation with forcing F' € L? to show the existence of a family of approximate
inertial manifolds of exponential order.

6. Conclusion

We first discussed in this paper the concept of finite-dimensionality of a flow.
We then studied the consequences of the regularity of the vector field on the global
attractor associated with certain parabolic equations. Namely, if the linear term A is
Lipschitz continuous, then the global attractor A is a subset of a Lipschitz manifold
given as a graph over a finite-dimensional eigenspace of A. If A is only log-Lipschitz
continuous, then A lies within a small neighbourhood of a finite-dimensional Lips-
chitz manifold. Nevertheless, we are able to obtain in this case linear embeddings of
the attractor into RY, whose inverse is Hélder continuous with exponent arbitrarily
close to one by choosing N sufficiently large. Finally, we prove that the linear term
A of the 2D Navier-Stokes equations is actually 1-Log-Lipschitz continuous when
restricted to the attractor.

All the results presented in this paper were motivated by the problem of con-
structing a system of ordinary differential equation whose asymptotic behaviour
reproduces the dynamics on an arbitrary finite-dimensional global attractor. We
have shown in [33] that if the global attractor has finite Assouad dimension and the
vector field restricted to the attractor is log-Lipschitz with exponent v < 1/2, then
there exists a system of ODEs with unique solutions that reproduces the dynamics
on the global attractor.

Since this paper was written, Eden et al. [10] have constructed an abstract
evolution equation of the form u; +Au = F(u) whose attractor cannot be embedded
into any Euclidean space in a log-Lipschitz way; and Zelik [46] adapts the proof
of Theorem 5.1 to show that when ||F(u) — F(v)|| < Ki|jlu — v|| then A is 1/2-log-
Lipschitz on the attractor, but that this exponent is optimal.

While these results are grave obstacles in applying our programme to construct
such a system of ODEs, this remains a significant and important open problem. As
Eden et al. remark, these counterexamples ‘do not imply at least in a straightforward
way that the idea with Lipschitz and Log-Lipschitz Mane projections will not work
for the concrete classes of equations of mathematical physics, like reaction-diffusion
systems, or 2D Navier-Stokes equations on a torus.’
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