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Abstract. In this paper, we are concerned with a three-dimensional deriv-
ative Ginzburg-Landau equation with a periodic initial value condition. The
smoothing property of the solution is established by a uniform priori esti-
mates. The existence of the global attractors, Ai ⊂ Hi

p(Ω) (i = 2, 3, · · · ),
for the semi-group {S(i)(t)}t≥0 of the operators generated by the equation is
proved by using the compactness principle. Finally, the regularity of the global
attractors, namely, A2 = A3 = · · · = Am, is proved by using the method of
semi-group decomposition.
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1. Introduction

Many physical and chemical phenomena can be described by nonlinear equa-
tions, such as the Korteweg-de Vries equation for propagated waves on shallow water
surfaces [1] and the Ginzburg-Landau equation for a phase transition in supercon-
ductivity [2]. In applied mathematics and theoretical physics, the description of
spatial pattern formation or chaotic dynamics in continuum systems, in particular
biological systems or fluid dynamical systems, has been a challenging task. The
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mathematical theory behind these systems appears rich and interesting, and in the
broad sense, is a topic which continuously attracts considerable attention from a
variety of scientific fields. Due to the complexity of the corresponding nonlinear
evolution equations, simpler model equations for which the mathematical issues can
be solved with greater success, have been derived. The complex Ginzburg-Landau
equation (GLE) is one of these models which takes the form

(1.1) ut − (1 + iν)4u + (1 + iµ)|u|2σu− γu = 0.

This equation describes the evolution of the amplitude of perturbations to steady-
state solutions at the onset of instability [3, 4]. In the past decades, this equation
was widely studied for instability waves in hydrodynamics, such as the nonlinear
growth of Rayleigh-Bénard convective rolls [5], the appearance of Taylor vortices
in the Couette flow between counter-rotating cylinders [6], the development of
Tollmien-Schlichting waves in plane Poiseuille flows [7], and the transition to tur-
bulence in chemical reactions [8],

The derivative Ginzburg-Landau equation (DGLE)

(1.2) ut = ρu + (1 + iν)4u− (1 + iµ)|u|2σu + λ1 · ∇(|u|2u) + (λ2 · ∇u)|u|2

arises as the envelope equation for a weakly subcritical to counter-propagating
waves, and it is also important for a number of physical systems including the
onset of oscillatory convection in binary fluid mixture [9]. In the case of one or two
dimensions, finite dimensional global attractors and regularity of solutions were
explored in [10, 11]. When ν = 0, the equation (1.2) incorporates to the derivative
nonlinear Schrödinger equation [12].

In the past decades, equations (1.1) and (1.2) have been extensively studied in
the one or two spatial dimension. For example, Ghidaglia and Héron [13], Doer-
ing et al [14], Promislow [15], Bu [16] studied the finite-dimensional attractor and
related dynamical properties for 1D or 2D GLE (1.1) with σ = 1 or 2. Lü [17]
investigated the upper semi-continuity of approximate attractors of GLE (1.1) in
one-dimensional space with σ = 1. Guo et al [18, 19] and Gao [20, 21, 22] dealt
with the 1D and 2D DGLE (1.2) and explored the existence of the global solution
and the finite-dimensional global attractor of DGLE (1.2) with periodic boundary
conditions, Cauchy conditions or Dirichlet inhomogeneous boundary value condi-
tions in the case of σ = 2.

Nevertheless, relevant theoretical results for the case of three spatial dimen-
sions for the Ginzburg-Landau equation appear scarce. The main reason lies in the
fact that the Sobolev interpolation inequalities used in one- or two-dimensional case
become invalid for the three-dimensional case. Thus, it is necessary to make more
subtle estimates for the nonlinear terms to overcome this difficulty. Doering et al
[23] and Okazawa et al [24] considered the case of three-dimensional space for GLE
(1.1) with periodic boundary conditions and initial boundary value conditions, re-
spectively. They established the existence and uniqueness of global solution under
certain parametric conditions. In [25, 26, 27], Lü et al also discussed the periodic
initial-value problem of GLE (1.1) in three-dimensional space, and proved the ex-
istence and uniqueness of global solution under a weaker restriction of parametric
conditions. Furthermore, the existence of global attractor and exponential attractor
with finite dimensions as well as the upper semi-continuity of global attractor was
also explored. Nader and Hatem [28] constructed a solution to DGLE (1.2) in N -
dimensional space. Karachlios and Zographoppulos [29] investigated a degenerate
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case of DGLE (1.2) with the Dirichlet boundary value condition in N -dimensional
space (N ≥ 2) and proved the existence of the global attractor in L2.

In this paper, we consider a periodic initial-value problem of a more general
derivative 3D Ginzburg-Landau equation:

ut = (1 + iν)4u− (1 + iµ)|u|2σu + γu−(1.3)
λ1 · |u|2∇u− λ2 · u2∇ū, (x, t) ∈ R3 × R+,(1.4)
u(x, 0) = u0(x), x ∈ R3,(1.5)
u(x + ej , t) = u(x, t), j = 1, 2, 3, (x, t) ∈ R3 × R+,(1.6)

where ν, µ and γ > 0 are real constants, λ1 and λ2 are complex constant vectors,
and the over-line denotes the complex conjugate. We assume that the parameters
µ and σ satisfy the condition

(1.7) |µ| <
√

2σ + 1
σ

, σ > 2.

The existence of the unique solution, the finite-dimensional global attractor and the
exponential attractor was investigated under the assumption (1.7) in [30] and the
upper semi-continuity of global attractor was described in [31], but the regularity
of global attractor was not discussed therein. Since regularity and global attractor
are two of the most important qualities for dynamical systems and any possible
regularity of the attractor is extremely helpful for a better understanding of the
long term behavior of the semigroup, in this paper our main purpose is to present
some regularity results on the global attractor for the problem (1.4)–(1.6).

On the assumption that the dissipative dynamical system associated with a
partial differential equation possesses an global attractor A in the Sobolev space,
say H2(Ω), the regularity is to be understood here in the sense of the theory of
partial differential equations. That is, if the data are sufficiently regular, then
the global attractor lies in a set of more (spatially) regular functions, a Sobolev
subspace Hm(Ω), for an appropriate m. In other words, the regularity of attractor
means that even the system starts with a initial state u0(x) in a lower order Sobolev
space H2(Ω), its long-time state may be a more (spatially) regular function in a
higher order Sobolev space Hm(Ω). The data mentioned here indicate the different
functions and parameters appearing in the partial differential equation.

Throughout this paper we shall use the following notions: Let Ω = [0, 1] ×
[0, 1] × [0, 1]. We denote by (·, ·) the usual inner product of L2(Ω), by ‖ · ‖m the
norm of Sobolev spaces Hm(Ω), and ‖ · ‖ = ‖ · ‖0 and ‖ · ‖∞ = ‖ · ‖L∞(Ω). Let

L2
p(Ω) = {φ ∈ L2(Ω)|φ(x + ej) = φ(x), j = 1, 2, 3}

with the norm defined as that of L2(Ω). Let

Hm
p (Ω) = {φ ∈ H2

p (Ω)|φ(x + ej) = φ(x), j = 1, 2, 3}

with the norm defined as that of H2(Ω).
In our study, we need the following technical three Lemmas in the proofs of our

main results.

Lemma 1.1 (Sobolev Interpolation Inequality [32]). Let u ∈ Lq(Ω), Dmu ∈
Lr(Ω) and Ω ⊂ Rn, where 1 ≤ r ≤ ∞ and 0 ≤ j ≤ m. Then there exists a constant
c = c(j, m,Ω, p, q, r) independent of u such that

‖Dju‖Lp ≤ c‖u‖a
W m,r(Ω)‖u‖

1−a
Lq ,
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where
1
p

=
j

n
+ a

(
1
r
− m

n

)
+ (1− a)

1
q
,

j

m
< a < 1.

Lemma 1.2 (Gronwall’s Inequality [33]). Let y(t), g(t) and h(t) be three non-
negative functions satisfying

y′(t) ≤ g(t)y(t) + h(t), ∀ t ≥ t0 ≥ 0.

and ∫ t+r

t

g(s)ds ≤ α1,

∫ t+r

t

h(s)ds ≤ α2,

∫ t+r

t

y(s)ds ≤ α3, ∀ t ≥ t0.

Then we have
y(t + r) ≤

(α3

r
+ α2

)
eα1 , ∀ t ≥ t0.

Lemma 1.3 ([34]). Let E be a Banach space. Suppose that {S(t)}t≥0 is a
semi-group of continuous operators, i.e. S(t) : E → E, with

S(t) · S(τ) = S(t + τ), S(0) = I,

where I is the identical operator. Suppose that the operator S(t) satisfies the fol-
lowing three conditions.

(i) The operator S(t) is bounded, i.e. for any given R > 0, if ‖u‖E ≤ R, then
there exists a constant C(R) such that

‖S(t)u‖E ≤ C(R), for t ∈ [0,+∞).

(ii) There is a bounded absorbing set B0 ⊂ E, i.e., for any given bounded set
B ⊂ E, there exists a constant T = T (B) such that

S(T )B ⊂ B0, for t ≥ T.

(iii) S(t) is a completely continuous operator for the sufficiently large t > 0.
Then the semi-group {S(t)}t≥0 of operators has a compact global attractor A ⊂ E.

The rest of this paper is organized as follows. In Section 2, the smoothness
of solutions is obtained by a priori estimates under a weaker restriction on the
parameter σ. The existence of global attractors Ai ⊂ Hi

p(Ω) (i = 3, 4, · · ·m)
for the semi-group of operators {S(i)(t)}t≥0 generated by the system (1.4)–(1.6) is
proved. In Section 3, the solution operator S(2)(t) is decomposed as S

(2)
1 (t)+S

(2)
2 (t),

where S
(2)
1 (t)u0 is more regular than S(2)(t)u0, and ‖S(2)

2 u0‖2 approaches zero as t
tends to infinity uniformly for u0 bounded in H2

p (Ω). Section 4 is dedicated to the
regularity of global attractors.

2. Existence of High-Order Attractors

In this section, we prove the existence of the global attractor Am ⊂ Hm
p (Ω)

(m = 2, 3, · · · ,).

Lemma 2.1 ([30]). Suppose that the condition (1.7) holds and u0(x) ∈ H2
p (Ω).

Then the problem (1.4)–(1.6) possesses a unique global solution

u(x, t) ∈ L∞(R+;H2
p (Ω)) ∩ L2([0, T ;H3

p (Ω)),
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and for any R > 0 given, there exists t2 = t2(R) such that

‖u‖2 ≤ E2, ∀ t ≥ 0,

‖u‖2 ≤ M2, ∀ t ≥ t2,

if ‖u0‖2 ≤ R, where the constant E2 depends on the parameters σ, ν, µ, γ, λ1, λ2

and R; and M2 only depends on the parameters σ, ν, µ, γ, λ1 and λ2.

Furthermore, the semi-group {S(t)}t≥0 of operators generated by the problem

(1.4)–(1.6) has a compact global attractor A2
4
= A ⊂ H2

p (Ω), i.e. there exists a set
A ⊂ H2

p (Ω) such that
(a) S(t)A = A for all t ≥ 0;
(b) dist(S(t)B,A) → 0 for any bounded set B ⊂ H2

p (Ω), where

dist(X, Y ) = sup
x∈X

inf
y∈Y

‖x− y‖2.

Next, we show the high-order smoothness of the global solution for the problem
(1.4)–(1.6).

Proposition 2.1. Under the conditions of Lemma 2.1, suppose that m ≥ 2
is a positive integer, σ ≥ 1

2

[
m
2 − 1

]
or σ is a positive integer. Then there exists

tm = tm(R) such that

(2.1) ‖u‖m ≤ Mm, ∀ t ≥ tm, ‖u0‖2 ≤ R,

and

(2.2) ‖u‖m ≤ Em, ∀ t ≥ 0, ‖u0‖m ≤ R,

where the constant Em depends on the parameters σ, ν, µ, γ, λ1, λ2, m and R;
and Mm only depends on the parameters σ, ν, µ, γ, λ1, λ2 and m.

Thus, the problem (1.4)–(1.6) possesses the global smooth solution

u ∈ C(R+; Hm
p (Ω)) ∩ C1(R+; Hm−2

p (Ω)),

and the closed ball
Bm = {ϕ ∈ Hm

p (Ω)
∣∣ ‖ϕ‖m ≤ Mm}

is the bounded absorbing set of the semi-group of operators {S(m)(t)}t≥0.

Proof. We prove that (2.1) and (2.2) by using the principle of mathematical
induction.

When m = 2, (2.1) and (2.2) can be deduced by Lemma 2.1 directly.
Suppose that (2.1) and (2.2) hold for m = 2, 3, · · · , k − 1, i.e.

(2.3) ‖u‖m ≤ Mm for all t ≥ tm if ‖u0‖2 ≤ R, m = 2, 3, · · · , k − 1;

‖u‖m ≤ Em for all t ≥ 0 if ‖u0‖m ≤ R, m = 2, 3, · · · , k − 1.

By using the Sobolev interpolation inequality, there exist constants E′
m = E′

m(R)
and M ′

m such that

(2.4) ‖u‖W m−2,∞ ≤ M ′
m, ∀ t ≥ tm, 3 ≤ m ≤ k − 1,

and
‖u‖W m−2,∞ ≤ E′

m, ∀ t ≥ 0, 3 ≤ m ≤ k − 1.

This implies that (2.1) and (2.2) also hold for m = k.
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Setting l =
[

k−1
2

]
and differentiating (1.4) for l times with respect to t, we have

(2.5) utl+1−(1+iν)4utl+(1+iµ)(|u|2σu)tl−γutl+λ1·(|u|2∇u)tl+λ2·(u2∇ū)tl = 0,

If k = 2l + 1, by taking the real part of the L2- inner product of (2.5) with −4utl ,
we have

1
2

d
dt
‖∇utl‖2 + ‖4utl‖2

= γ‖∇utl‖2 + Re
(

(1 + iµ)
∫

Ω

(|u|2σu)tl4ūtldx

)
−Re

∫
Ω

λ1 · (|u|2∇u)tl4ūtldx− Re
∫

Ω

λ2 · (u2∇ū)tl4ūtldx.(2.6)

For t ≥ tk−1 = t2l, σ ≥ 1
2 (l − 1) = 1

2

(
[k
2 ] − 1

)
or σ is a positive integer, in view

of Hölder’s inequality, the Sobolev interpolation inequality and Young’s inequality
together with (2.3) and (2.4), the four terms on the right hand side of (2.6) can be
estimated as∣∣∣∣Re

(
(1 + iµ)

∫
Ω

(|u|2σu)tl4ūtldx

) ∣∣∣∣ ≤ 1
8
‖4utl‖2 + c(Mk−1,M

′
k−1),

γ‖∇utl‖2 ≤ γ‖4utl‖ ‖utl‖

≤ 1
8
‖4utl |2 + 2γ2‖utl‖2

≤ 1
8
‖4utl‖2 + c(Mk−1,M

′
k−1),∣∣∣∣Re

∫
Ω

λ1 · (|u|2∇u)tl4ūtldx

∣∣∣∣ ≤ 1
8
‖4utl‖2 + c(Mk−1,M

′
k−1),

and ∣∣∣∣Re
∫

Ω

λ2 · (u2∇ū)tl4ūtldx

∣∣∣∣ ≤ 1
8
‖4utl‖2 + c(Mk−1, M ′

k−1).

So (2.6) can be simplified as

d
dt
‖∇utl‖2 + ‖4utl‖2 ≤ C1(M ′

k−1,Mk−1), ∀ t ≥ tk−1.(2.7)

By taking the L2-inner product of (2.5) with utl and using a similar way to the
derivation of (2.7), we get

d
dt
‖utl‖2 + ‖∇utl‖2 ≤ C2(Mk−1,M

′
k−1), ∀ t ≥ tk−1.(2.8)

That is, ∫ t+1

t

‖∇utl(s)‖2ds ≤ ‖utl(t)‖2 + C2(M ′
k−1,Mk−1)

≤ C(Mk−1) + C2(M ′
k−1,Mk−1)

4
= α3, ∀ t ≥ tk−1.

Set
α2 = C1(M ′

k−1,Mk−1).
Applying the Gronwall’s inequality to (2.7), we have

‖∇utl(t + 1)‖2 ≤ α3 + α2, ∀ t ≥ tk−1,(2.9)
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which leads to

‖∇ku‖2 = ‖∇2l+1u‖2 ≤ C(α2, α3), ∀ t ≥ tk−1 + 1.

Let Mk =
√

C(α2, α3) + M2
k−1 and tk = tk−1 + 1. So (2.1) holds for m = k.

If u0 ∈ Hk
p (Ω), by using an analogous way to the derivation of (2.7), (2.6) can

be re-expressed as

(2.10)
d
dt
‖∇utl‖2 + ‖∇utl‖2 + ‖4utl‖2 ≤ C3(E′

k−1, Ek−1), ∀ t ≥ 0.

Multiplying (2.10) by et and integrating it with respect to t yields

‖∇utl‖2 ≤ ‖∇utl(0)‖2 + C3 ≤ C(R2) + C3
4
= E′′

k , ∀ t ≥ 0.

Let Ek =
√

E′′
k + E2

k−1. So (2.2) holds for m = k too.

When k = 2l + 2, by taking the L2-inner products of (2.5) with 42utl and
−4u, respectively, we have

d
dt
‖4utl‖2 + ‖∇4utl‖2 ≤ C ′

1(Mk−1,M
′
k−1), ∀ t ≥ tk−1,

and
d
dt
‖∇utl‖2 + ‖4utl‖2 ≤ C ′

2(Mk−1,M
′
k−1), ∀ t ≥ tk−1.

Using an analogue discussion to the derivation of (2.9), we have

‖4utl(t + 1)‖2 ≤ α′3 + α′2, ∀ t ≥ tk−1,

which leads to

‖∇ku‖2 = ‖∇2l+2u‖2 ≤ C ′(α′2, α
′
3), ∀ t ≥ tk−1 + 1.

Let Mk =
√

C(α′2, α
′
3) + M2

k−1 and tk = tk−1 + 1, so (2.1) holds for m = k.

If u0 ∈ Hk
p (Ω), it is deduced that

(2.11)
d
dt
‖4utl‖2 + ‖4utl‖2 ≤ C ′

3(Ek−1, E
′
k−1), ∀ t ≥ 0.

Multiplying (2.11) by et and integrating it with respect to t yields

‖4utl‖2 ≤ ‖4utl(0)‖2 + C1 ≤ C(R2) + C ′
3
4
= E′′

k , ∀ t ≥ 0.

Let Ek =
√

E′′
k + E2

k−1, thus (2.2) holds for m = k too.
Consequently, we conclude that (2.1) and (2.2) hold for any positive integer

m ≥ 2. The proof of Proposition 2.1 is completed. �

In order to prove the existence of the high-order global attractor Am, we intro-
duce another proposition as follows.

Proposition 2.2. Suppose that the conditions of Proposition 2.1 hold with σ ≥
1
2

[
m−1

2

]
or σ is a positive integer. Then the semi-group of operations Sm(t) (t ≥

0) : Hm
p (Ω) → Hm

p (Ω) is uniformly compact for the sufficiently large t > 0.
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Proof. If m = 2l, we consider the real parts of the inner product of (2.5)
with −4utl and utl , respectively. It follows from Proposition 2.1 that there exist
constants C1 = C1(M ′

m,Mm) and C2 = C2(M ′
m,Mm) such that

(2.12)
d
dt
‖∇utl‖2 + ‖4utl‖2 ≤ C1(M ′

m,Mm), ∀ t ≥ tm,

and

(2.13)
d
dt
‖utl‖2 + ‖∇utl‖2 ≤ C2(Mm,M ′

m), ∀ t ≥ tm.

Applying the Gronwall’s inequality to (2.12) and using (2.13), we get

‖∇utl‖2 ≤ C3(Mm,M ′
m), ∀ t ≥ tm+1 = tm + 1,

which leads to

‖∇m+1u‖2 = ‖∇2l+1u‖2

≤ C(Mm,M ′
m)‖∇utl‖2

≤ Mm+1, ∀ t ≥ tm+1 = tm + 1.

If m = 2l + 1, using the same arguments as the above we have

(2.14)
d
dt
‖4utl‖2 + ‖∇4utl‖2 ≤ C ′

1(Mm,M ′
m), ∀ t ≥ tm,

and

(2.15)
d
dt
‖∇utl‖2 + ‖4utl‖2 ≤ C ′

2(Mm,M ′
m), ∀ t ≥ tm.

Again, applying the Gronwall’s inequality to (2.14) and using (2.15) gives

‖∇m+1u‖2 = ‖∇2l+2u‖2 ≤ C(Mm,M ′
m)‖4utl‖2 ≤ Mm+1, ∀ t ≥ tm+1 = tm + 1.

By virtue of the Sobolev compact imbedding theorem, we know that the semi-
group of operators S(m)(t) is uniformly compact for t ≥ tm+1. So the proof of
Proposition 2.2 is completed. �

On the other hand, if σ ≥ 1
2

[
m
2

]
or σ > 2 is an integer, according to Proposi-

tions 2.1 and 2.2, one can see that S(m)(t) is strongly continuous. Making use of
Lemma 1.3, we obtain the following theorem:

Theorem 2.3. Suppose that all conditions of Proposition 2.2 hold. Then there
exists a global attractor Am ⊂ Hm

p (Ω) of the semi-group {S(m)(t)}t≥0 of the oper-
ators generated by the problem (1.4)–(1.6).

3. Decomposition of Semigroup

In order to prove the regularity of global attractor, it is necessary to decom-
pose S(2)(t) appropriately. In this section, we decompose S(2)(t) as S

(2)
1 (t)+S

(2)
2 (t);

where S
(2)
1 (t)u0 is more regular than the solution S(2)(t)u0, and ‖S(2)

2 (t)u0‖2 ap-
proaches zero as t tends to infinity uniformly for the bounded u0 in H2

p (Ω).
For any given positive integer N , let SN = Span{e2πik·x : |k| ≤ N} and denote

the orthogonal projection operator by PN : L2
p(Ω) → SN and QN = I − PN [32].

Then there have
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Lemma 3.1 ([35]). If v ∈ Hm
p (Ω), then there exists a constant c independent

of v and N such that

‖PNv‖m ≤ cNm−j‖PNv‖j , ∀ 0 < j ≤ m,

‖QNv‖j ≤ cN j−m‖QNv‖m, ∀ j = 0, 1, · · · ,m,

and
‖∇jQNv‖ ≤ cN j−m‖∇mQNv‖, ∀ j = 0, 1, · · · ,m.

We also decompose the solution u(x, t). Let u0 ∈ H2
p (Ω) and u = S(t)u0 be

the solution of the problem (1.4)–(1.6), then it has

u = PNu + QNu = p(t) + q(t),

where p(t) = PNu represents the low-frequency part of u and q(t) = QNu represents
the high-frequency part of u.

We split the high-frequency part q(t) as

q(t) = y + z,

where y, z ∈ QNL2
p(Ω) are the solutions of the following equations for t ≥ t2:

yt − (1 + iν)4y − γy

= −(1 + iµ)QN

(
|u|2σ(p + y)

)
−QN

(
λ1 · |u|2∇(p + y) + λ2 · u2∇(p̄ + ȳ)

)
,(3.1)

y(x, t) = y(x + ej , t), j = 1, 2, 3; y(x, t2) = 0,(3.2)

zt − (1 + iν)4z = γz − (1 + iµ)QN

(
|u|2σz

)
−QN

(
λ1 · |u|2∇z + λ2 · u2∇z̄

)
,(3.3)

z(x, t) = z(x + ej , t), j = 1, 2, 3; z(x, t2) = QNu(t2),(3.4)

respectively. For t ≤ t2, y(t) = 0 and z(t) = QNu(t), where t2 is given by Proposi-
tion 2.1.

We first prove that y is smooth for t ≥ tm and z converges toward zero in
H2

p (Ω) when t goes to infinity.

Theorem 3.1. Under the condition (1.7), if u0 ∈ H2
p (Ω) satisfies ‖u0‖2 ≤ R,

then there exists a unique solution y of (3.1)–(3.2) and a unique solution z of
(3.3)–(3.4) satisfying

y, z ∈ C1
(
[0,∞); L2

p(Ω)
)
∩ C

(
[0,∞); H2

p (Ω)
)
.

Moreover, If σ is a positive integer or σ ≥ 1
2

[
m
2

]
, then there exists N3 large enough,

and constants Km = Km(N) and δ = δ(N) > 0 such that for any given N ≥ N3,
the following estimates hold:

(3.5) ‖y(t)‖m ≤ Km, ∀ t ≥ tm, m = 2, 3, · · · ,

(3.6) ‖z(t)‖2 ≤ ‖u(t2)‖2e−δ(t−t2) ≤ M2e−δ(t−t2), ∀ t ≥ t2,

where M2, tm and R are given by Lemma 2.1 and Proposition 2.1, respectively.

Proof. The existence and uniqueness can be proved directly by using the
Galerkin method [30]. We separate our proof for estimates (3.5) and (3.6) into
three steps.

Step 1. Consider the estimates for y in H2
p (Ω).
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By taking the real part of the inner product of (3.1) with y, we get

1
2

d
dt
‖y‖2 + ‖∇y‖2 − γ‖y‖2 + Re

(
(1 + iµ)

∫
Ω

QN

(
|u|2σ(p + y)

)
ȳdx

)
= −Re

(
λ1 ·

∫
Ω

QN

(
|u|2∇(p + y)

)
ȳdx

)
− Re

(
λ2 ·

∫
Ω

QN

(
u2∇(p̄ + ȳ)

)
ȳdx

)
.(3.7)

For the last term in the left-hand side of the equation (3.7), using the definition of
QN gives

Re
(
(1 + iµ)

[
QN

(
|u|2σ(p + y), y

)])
=

∫
Ω

|u|2σ|y|2dx+Re
(

(1 + iµ)
∫

Ω

|u|2σpȳdx

)
.

Furthermore, according to Proposition 2.1 and definitions of PN and p(t), and
by using Hölder’s inequality and the Sobolev interpolation inequality, we deduce
that

Re
(

(1 + iµ)
∫

Ω

|u|2σp ȳdx

)
≤ |1 + iµ|

(∫
Ω

|u|2σ|y|2dx

) 1
2

(∫
Ω

|u|2σ|p|2dx

) 1
2

≤ 1
4

∫
Ω

|u|2σ|y|2dx + |1 + iµ|2
∫

Ω

|u|2σ|p|2dx

≤ 1
4

∫
Ω

|u|2σ|y|2dx + |1 + iµ|2‖u‖2σ
∞‖u‖2.(3.8)

Separate the first term in the right-hand side of (3.7) as

Re
(

λ1 ·
∫

Ω

QN

(
|u|2∇(p + y)

)
ȳdx

)
= Re

(
λ1 ·

∫
Ω

|u|2∇p ȳdx

)
+ Re

(
λ1 ·

∫
Ω

|u|2∇y ȳdx

)
.(3.9)

Notice that

Re
(

λ1 ·
∫

Ω

|u|2∇y ȳdx

)
≤ |λ1|

(∫
Ω

|u|2σ|y|2dx

) 1
σ

‖y‖
σ−2

σ ‖∇y‖

≤ 1
4

∫
Ω

|u|2σ|y|2dx +
1
4
‖∇y‖2 + 4

2
σ−2 |λ1|

2σ
σ−2 ‖y‖2,

and

Re
(

λ1 ·
∫

Ω

|u|2∇p ȳdx

)
≤ |λ1| ‖u‖2∞‖∇p‖ ‖y‖ ≤ γ

2
‖y‖2 +

|λ1|2

2γ
‖u‖4∞‖∇u‖2.

So (3.9) can be rewritten as

Re
(

λ1 ·
∫

Ω

QN

(
|u|2∇(p + y)

)
ȳdx

)
≤ 1

4

∫
Ω

|u|2σ|y|2dx +
1
4
‖∇y‖2 +

(
4

2
σ−2 |λ1|

2σ
σ−2

+
γ

2

)
‖y‖2 +

|λ1|2

2γ
‖u‖4∞‖∇u‖2.(3.10)
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Similarly, from the second term in the right-hand side of the equation (3.7) we
have

Re
(

λ2 ·
∫

Ω

QN

(
u2∇(p + ȳ)

)
ydx

)
≤ 1

4

∫
Ω

|u|2σ|y|2dx +
1
4
‖∇y‖2 +

(
4

2
σ−2 |λ2|

2σ
σ−2

+
γ

2

)
‖y‖2 +

|λ1|2

2γ
‖u‖4∞‖∇u‖2.(3.11)

Substituting (3.8)–(3.11) into (3.7), we get

d
dt
‖y‖2 + ‖∇y‖2 −

(
4γ + 2

σ+2
σ−2 |λ1|

2σ
σ−2 + 2

σ+2
σ−2 |λ2|

2σ
σ−2

)
‖y‖2 ≤ C(M2).(3.12)

From Lemma 3.1, we know that

‖∇y‖2 ≥ c0N
2‖ y‖2.

So (3.12) can be simplified as

d
dt
‖y‖2 +

(
c0N

2 − 4γ + 2
σ+2
σ−2 |λ1|

2σ
σ−2 + 2

σ+2
σ−2 |λ2|

2σ
σ−2

)
‖y‖2 ≤ C(M2).(3.13)

Let N0 be large enough such that

c0N
2
0 − 4γ − 2

σ+2
σ−2 |λ1|

2σ
σ−2 − 2

σ+2
σ−2 |λ2|

2σ
σ−2 > 0.

Then for N ≥ N0, multiplying (3.13) by eδ0t and integrating it from t2 to t with
y(t2) = 0, we have

‖y‖2 ≤ C(M2)
δ0

4
= K2

0 , ∀ t ≥ t2,(3.14)

where
δ0 = δ0(N) = cN2 − 4γ − 2

σ+2
σ−2 |λ1|

2σ
σ−2 − 2

σ+2
σ−2 |λ2|

2σ
σ−2 .

By taking the real part of the inner product of (3.1) with −4y, we have

1
2

d
dt
‖∇y‖2 + ‖4y‖2

= γ‖∇y‖2 + Re
(
(1 + iµ)

∫
Ω

QN

(
|u|2σ(p + y)

)
4ȳdx

)
+Re

(
λ1 ·

∫
Ω

QN

(
|u|2∇(p + y)

)
4ȳdx

)
+

Re
(
λ2 ·

∫
Ω

QN

(
u2∇(p̄ + ȳ)

)
4ȳdx

)
.(3.15)

Using the Sobolev interpolation inequality, the four terms in the right hand side of
(3.15) can be estimated as∣∣∣∣(1 + iµ)

∫
Ω

QN

(
|u|2σ(p + y)

)
4ȳdx

∣∣∣∣ ≤ 1
8
‖4y‖2 + C(K0,M2),

γ‖∇y‖2 ≤ 1
8
‖4y‖2 + 2γ2K2

0 ,∣∣∣∣λ1 ·
∫

Ω

QN

(
|u|2∇(p + y)

)
4ȳdx

∣∣∣∣ ≤ 1
8
‖4y‖2 + C(K0,M2),
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and ∣∣∣∣λ2 ·
∫

Ω

QN

(
u2∇(p̄ + ȳ)

)
4ȳdx

∣∣∣∣ ≤ 1
8
‖4y‖2 + C(K0,M2),

respectively. Thus, (3.15) can be simplified as
d
dt
‖∇y‖2 + ‖4y‖2 ≤ C(K0,M2).

Since ‖4y‖2 ≥ cN2‖∇y‖2, we further have
d
dt
‖∇y‖2 + cN2‖∇y‖2 ≤ C(K0,M2).

Multiplying the above inequality by ecN2t and integrating it from t to t2 with
y(t2) = 0 yields

‖∇y‖2 ≤ C(M0,K0)
cN2

4
= K2

1 , ∀ t ≥ t2.(3.16)

Using the same procedure, by considering the real part of the inner product of
(3.1) with 42y, we have

1
2

d
dt
‖4y‖2 + ‖∇4y‖2

= −Re
(

(1 + iµ)
∫

Ω

QN

(
|u|2σ(p + y)

)
42ȳdx

)
−Re

(
λ1 ·

∫
Ω

QN

(
|u|2∇(p + y)

)
42ȳdx

)
+γ‖4y‖2 − Re

(
λ2 ·

∫
Ω

QN

(
u2∇(p̄ + ȳ)

)
42ȳdx

)
.(3.17)

We estimate each term of the right side in (3.17) for σ ≥ 1
2 . By using Hölder’s

inequality, the Sobolev interpolation inequality, as well as (3.14)–(3.16), we have∣∣∣∣(1 + iµ)
∫

Ω

QN

(
|u|2σ(p + y)

)
42ȳdx

∣∣∣∣ ≤ 1
8
‖∇4y‖2 + C(K0,K1,M2),

γ‖4y‖2 ≤ 1
8
‖∇4y‖2 + 2γ2K2

1 ,∣∣∣∣λ1 ·
∫

Ω

QN

(
|u|2∇(p + y)

)
42ȳdx

∣∣∣∣ ≤ 1
8
‖4y‖2 + C(K0,K1,M2),

and ∣∣∣∣λ2 ·
∫

Ω

QN

(
u2∇(p̄ + ȳ)

)
42ȳdx

∣∣∣∣ ≤ 1
8
‖4y‖2 + C(K0,K1,M2).

So, (3.17) can be simplified as
d
dt
‖4y‖2 + ‖∇4y‖2 ≤ C(K0,K1,M2).

Since ‖∇4y‖2 ≥ cN2‖4y‖2, we further have

(3.18)
d
dt
‖4y‖2 + cN2‖4y‖2 ≤ C(K0,K1,M2).

Multiplying (3.18) by ecN2t and integrating it from t from t2 with y(t2) = 0
yields

‖4y‖2 ≤ C(K0,K1,M2)
cN2

4
= K̃2, ∀ t ≥ t2.
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Set K2 =
√

K2
0 + K2

1 + K̃2
2 . So it is easy to see that (3.5) holds for m = 2.

Step 2. Estimates for y in Hm
p (Ω) (m ≥ 3).

We prove that (3.5) holds for any m ≥ 3 by using the mathematical induction.
For m = 3, differentiating (3.1) with respect to t and using the real part of the

L2-inner product with −4yt, we have

1
2

d
dt
‖∇yt‖2 + ‖4yt‖2

= Re
(

λ1 ·
∫

Ω

QN

(
|u|2∇(p + y)

)
t
4ȳtdx

)
+Re

(
λ2 ·

∫
Ω

QN

(
u2∇(p̄ + ȳ)

)
t
4ȳtdx

)
+γ‖∇yt‖2 + Re

(
(1 + iµ)

∫
Ω

QN

(
|u|2σ(p + y)

)
t
,4ȳtdx

)
.(3.19)

For t ≥ t2, we estimate the four terms in the right hand side of (3.19). By using
Hölder’s inequality, the Sobolev interpolation inequality and Proposition 2.1, we
deduce that∣∣∣∣(1 + iµ)

∫
Ω

QN

(
|u|2σ(p + y)

)
t
,4ȳtdx

∣∣∣∣ ≤ 1
8
‖4yt‖2 + C(K2,M2),

γ‖∇yt‖2 ≤
1
8
‖4yt‖2 + C(K2,M2),∣∣∣∣λ1 ·

∫
Ω

QN

(
|u|2∇(p + y)

)
t
4ȳtdx

∣∣∣∣ ≤ 1
8
‖4yt‖2 + C(K2,M2),

and ∣∣∣∣λ2 ·
∫

Ω

QN

(
u2∇(p̄ + ȳ)

)
t
4ȳtdx

∣∣∣∣ ≤ 1
8
‖4yt‖2 + C(K2,M2).

Thus, (3.19) can be simplified as

d
dt
‖∇yt‖2 + ‖4yt‖2 ≤ C(K2,M2).

Since ‖4yt‖2 ≥ cN2‖∇yt‖2, we further have

(3.20)
d
dt
‖∇yt‖2 + cN2‖∇yt‖2 ≤ C(K2,M2).

Multiplying (3.20) by ecN2t, integrating it from t from t2 and using the inequality

‖∇y(t2)‖ ≤ c
(
‖u(t2)‖2σ+1

2 + ‖u(t2)‖32
)

≤ C(M2),

we have

‖∇yt‖2 ≤ e−cN2(t−t2)‖∇yt(t2)‖2 +
C(K2,M2)

cN2

≤ e−cN2(t−t2)C(M2) +
C(K2,M2)

cN2

4
= ρ2

3, ∀ t ≥ t2.
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That is,

‖∇4y‖ ≤ ‖∇yt‖+ C0(M2,K2)
≤ ρ3 + C(M2,K2)
4
= K̃3, ∀ t ≥ t3 = t2 + 1.

Set K3 =
√

K2
2 + K̃2

3 . So (3.5) holds for m = 3.
Suppose that (3.5) holds for any 3 < m ≤ k−1 (k is a positive integer), namely,

there exists a constant Km such that

‖y‖m ≤ Km, ∀ t ≥ tm, m ≤ k − 1.(3.21)

It follows from the Sobolev interpolation inequality that

‖y‖W m−2,∞ ≤ K ′
m, ∀ t ≥ tm, m ≤ k − 1,(3.22)

where the constant K ′
m depends on Km. From Proposition 2.1 and the definition

of PN we have

‖p‖m ≤ Mm, ‖p‖W m−2,∞ ≤ C(K ′
m), ∀ t ≥ tm, m ≤ k − 1,(3.23)

where tm in (3.21)–(3.23) is the same as the one given in Proposition 2.1.
Now, we consider the case of m = k.
Let l =

[
k−1
2

]
. Differentiating (3.1) for l times with respect to t gives

ytl+1 − (1 + iν)4ytl + (1 + iµ)QN (|u|2σ(p + y))tl − γytl

= −QN

(
λ1 · |u|2∇(p + y) + λ2 · u2∇(p̄ + ȳ)

)
tl .(3.24)

If k = 2l + 1, by considering the real part of the inner product of (3.24) with
−4ytl , we have

1
2

d
dt
‖∇ytl‖2 + ‖4ytl‖2

= γ‖∇ytl‖2 + Re
(

(1 + iµ)
∫

Ω

QN (|u|2σ(p + y))tl4ȳtldx

)
+Re

(∫
Ω

QN

(
λ1 · |u|2∇(p + y)

)
tl 4ȳtldx

)
+Re

(∫
Ω

QN

(
λ2 · u2∇(p̄ + ȳ)

)
tl4ȳtldx

)
.(3.25)

We estimate each term in the right hand side of (3.25) by applying Hölder’s inequal-
ity, the Sobolev interpolation inequality, Young’s inequality, as well as (3.21)–(3.23).
When t ≥ tk−1 = t2l and σ is a positive integer or σ ≥ l

2 , we have∣∣∣∣(1 + iµ)
∫

Ω

(|u|2σ(p + y))tl4ȳtldx

∣∣∣∣ ≤ 1
8
‖4ytl‖2 + C(Kk−1,K

′
k−1,Mk−1,M

′
k−1),

γ‖∇ytl‖2 ≤ 1
8
‖4ytl |2 + C(Kk−1,K

′
k−1,Mk−1,M

′
k−1),∣∣∣∣ ∫

Ω

QN

(
λ1 · |u|2∇(p + y)

)
tl4ȳtldx

∣∣∣∣ ≤ 1
8
‖4ytl‖2 + C(Kk−1,K

′
k−1,Mk−1,M

′
k−1),

and∣∣∣∣ ∫
Ω

QN

(
λ2 · u2∇(p̄ + ȳ)

)
tl4ȳtldx

∣∣∣∣ ≤ 1
8
‖4ytl‖2 + C(Kk−1,K

′
k−1,Mk−1,M

′
k−1).
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Substituting the above four inequalities into (3.25) yields

(3.26)
d
dt
‖∇ytl‖2 + ‖4ytl‖2 ≤ C1(Kk−1,K

′
k−1,M

′
k−1,Mk−1), ∀ t ≥ tk−1.

Considering the inner product of (3.24) with ytl and using a similar argument
as the derivation of (3.26), we deduce

(3.27)
d
dt
‖ytl‖2 + ‖∇ytl‖2 ≤ C2(Kk−1,K

′
k−1,Mk−1,M

′
k−1), ∀ t ≥ tk−1.

When t ≥ tk−1, it follows from (3.27) that∫ t+1

t

‖∇ytl(s)‖2ds ≤ ‖ytl(t)‖2 + C2(Kk−1,K
′
k−1,M

′
k−1,Mk−1)

≤ C(Kk−1) + C2(Kk−1,K
′
k−1,M

′
k−1,Mk−1)

4
= α3.

On the other hand, setting α2 = C1(Kk−1,K
′
k−1,M

′
k−1,Mk−1) and applying

the Gronwall’s inequality to (3.26), we have

(3.28) ‖∇ytl(t + 1)‖2 ≤ α3 + α2, ∀ t ≥ tk−1,

which leads to

‖∇ky‖2 = ‖∇2l+1y‖2 ≤ C(α2, α3), ∀ t ≥ tk−1 + 1.

Set Kk =
√

C(α2, α3) + K2
k−1 and tk = tk−1 + 1. So (3.5) holds for m = k.

Similarly, if k = 2l+2, considering the real parts of the inner products of (3.24)
with 42ytl and −4ytl , respectively, and using an analogous way to the derivation
of (3.26) and (3.27), we derive that

d
dt
‖4ytl‖2 + ‖∇4ytl‖2 ≤ C ′

1(Kk−1,K
′
k−1,M

′
k−1,Mk−1), ∀ t ≥ tk−1,

d
dt
‖∇ytl‖2 + ‖4ytl‖2 ≤ C ′

2(Kk−1,K
′
k−1,M

′
k−1,Mk−1), ∀ t ≥ tk−1.

Following the derivation of (3.28), we get

‖4ytl(t + 1)‖2 ≤ α′3 + α′2, ∀ t ≥ tk−1,

which implies

‖∇ky‖2 = ‖∇2l+2y‖2 ≤ C ′(α2, α3), ∀ t ≥ tk−1 + 1.

By setting Kk =
√

C ′(α′2, α
′
3) + K2

k−1 and tk = tk−1 + 1, we see that (3.5) holds
for m = k.

Consequently, the proof of (3.5) is completed.
Step 3. Estimates for z in H2

p (Ω).
By considering the real part of the inner product of the equation (3.3) with z,

we have
(3.29)
1
2

d
dt
‖z‖2 + ‖∇z‖2 +

∫
Ω

|u|2σ|z|2dx− γ‖z‖2 = −Re
∫

Ω

(
λ1 · |u|2∇z + λ2 · u2∇z̄

)
z̄dx.
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We estimate the right hand side of (3.29) by applying Hölder’s inequality and
Young’s inequality:

Re
∫

Ω

λ1 · |u|2∇zz̄dx ≤ |λ1| ‖∇z‖
(∫

Ω

|u|2σ|z|2dx

) 1
σ

(∫
Ω

|z|2dx

)σ−2
2σ

≤ 1
4
‖∇z‖2 +

1
2

∫
Ω

|u|2σ|z|2dx + (σ − 2)|λ1|
2σ

σ−2 2
4−σ
σ−2 ‖z‖2,

and

Re
∫

Ω

λ2 · u2∇z̄z̄dx ≤ 1
4
‖∇z‖2 +

1
2

∫
Ω

|u|2σ|z|2dx + (σ − 2)|λ2|
2σ

σ−2 2
4−σ
σ−2 ‖z‖2.

By Lemma 3.1, we know that

‖∇z‖2 ≥ c0N
2‖z‖2.

Thus, (3.29) can be rewritten as
d
dt
‖z‖2 +

(
c0N

2 − 2γ − 2
4−σ
σ−2 (σ − 2)(|λ1|

2σ
σ−2 + |λ2|

2σ
σ−2 )

)
‖z‖2 ≤ 0.(3.30)

Choose N1 ≥ N0 sufficient large such that

δ1(N1) = c0N
2
1 − 2γ − 2

4−σ
σ−2 (σ − 2)

(
|λ1|

2σ
σ−2 + |λ2|

2σ
σ−2

)
> 0.

For N ≥ N1, multiplying (3.30) with eδ1t and integrating it for from t2 to t yields

‖z(t)‖2 ≤ ‖z(t2)‖2e−δ1(t−t2), ∀ t ≥ t2,

where
δ1 = δ1(N) = c0N

2 − 2γ − 2
4−σ
σ−2 (σ − 2)

(
|λ1|

2σ
σ−2 + |λ2|

2σ
σ−2

)
.

Then, we consider the real part of the inner product of (3.3) with −4z and
obtain

1
2

d
dt
‖∇z‖2 + ‖4z‖2 − γ‖∇z‖2

= Re
(

(1 + iµ)
∫

Ω

|u|2σz4z̄dx

)
+ Re

∫
Ω

(
λ1 · |u|2∇z + λ2 · u2∇z̄

)
4z̄dx.(3.31)

For the right hand side of (3.31), using Hölder’s inequality and Young’s inequality
again yields

Re
(

(1 + iµ)
∫

Ω

QN (|u|2σz)4z̄dx

)
≤ 1

4
‖4z‖2 + ‖u‖4σ

∞‖z‖2,(3.32)

and ∣∣∣∣ ∫
Ω

(
λ1 · |u|2∇z + λ2 · u2∇z̄

)
4z̄dx

∣∣∣∣
≤ 1

4
‖4z‖2 + 54(|λ1|4 + |λ2|4)‖u‖8∞‖z‖2.(3.33)

Substituting (3.32) and (3.33) into (3.31), we have
d
dt
‖∇z‖2 + ‖4z‖2 − 2γ‖∇z‖2 − C(M2))‖z‖2 ≤ 0.(3.34)

Thanks to Lemma 3.1, we know that

‖4z‖2 ≥ c1N
2‖∇z‖2, ‖z‖2 ≤ c2N

−2‖∇z‖2.
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Substituting the above expressions into (3.34), we further have

(3.35)
d
dt
‖∇z‖2 + (c1N

2 − (2γ2 + c2C(M2))N−2)‖∇z‖2 ≤ 0.

Choose N2 ≥ N1 large enough such that

δ2(N2) = c1N
2
2 − (2γ2 + c2C(M2))N−2

2 > 0.

For N ≥ N2, multiplying (3.35) by eδ2t and integrating it from t2 to t yields

‖∇z‖2 ≤ ‖∇z(t2)‖2e−δ2(t−t2), ∀ t ≥ t2.

where
δ2 = δ2(N) = c1N

2 − (2γ2 + c2C(M2))N−2 > 0.

By considering the real part of the inner product of equation (3.1) with 42z
and using the same discussion as the derivation of (3.34), we have

(3.36)
d
dt
‖4z‖2 + ‖∇4z‖2 − 2γ‖4z‖2 − C(M2)‖z‖21 ≤ 0.

From Lemma 3.1, we know that

‖∇4z‖2 ≥ c3N
2‖4z‖2, ‖z‖21 ≤ c4N

−2‖4z‖2.
Thus, (3.36) can be rewritten as

(3.37)
d
dt
‖4z‖2 + (c3N

2 − 2γ − c4C(M2)N−2)‖4z‖2 ≤ 0.

Similarly, take N3 ≥ N2 large enough such that

δ3(N3) = c3N
2
3 − (2γ + c4C(M2))N−2

3 > 0.

For N ≥ N3, multiplying (3.37) with eδ3t and integrating it from t2 to t leads to

‖4z‖2 ≤ ‖4z(t2)‖2e−δ3(t−t2), ∀ t ≥ t2,

where
δ3 = δ3(N) = c3N

2 − (2γ + c4C(M2))N−2.

Let δ =
1
2

min(δ1, δ2, δ3). It is easy to see that (3.6) holds. Consequently, the
proof of Theorem 3.1 is completed. �

In virtue of Theorem 3.1, the solution operator S(t) = S(2)(t) : H2
p (Ω) →

H2
p (Ω) generated by the problem (1.4)–(1.6) can be decomposed as

S(2)(t) = S
(2)
1 (t) + S

(2)
2 (t), ∀ t ≥ 0,

where S
(2)
1 (t) and S

(2)
2 (t) are defined by

(3.38) S
(2)
1 (t)u0 =

{
PNu(t) + y(t) = p(t) + y(t), ≥ t2,

PNu(t) = p(t), t ≤ t2,

and

(3.39) S
(2)
2 (t)u0 =

{
z(t), t ≥ t2,

QNu(t) = q(t), t ≤ t2.

Here u(t) = S(2)u0 for t ≥ t2, and y(t) and z(t) are solutions of systems (3.1)-(3.2)
and (3.3)-(3.4), respectively. Hence, for every u ∈ H2

p (Ω), we have

(3.40) S(2)(t)u = S
(2)
1 (t)u + S

(2)
2 (t)u.
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4. Regularity of Attractor

Theorem 4.1. Suppose that the condition (1.7) holds and σ is a positive integer
or σ ≥ 1

2 ([m
2 ]) for any positive integer m ≥ 2. Let Am be the global attractors of

the semi-group of operators, and {S(m)(t)}t≥0 generated by the problem (1.4)–(1.6).
Then we have

(i) For any m ≥ 3, A2 is a bounded and closed set in Hm
p (Ω).

(ii) A2 = Am for m ≥ 3.

Proof. (i) Suppose that u ∈ A2. We shall prove u ∈ Hm
p (Ω) for any m ≥ 3.

Owing to the well-known characterization of the ω-limit set [29], there exists
a sequence of elements un in B2 and a sequence of positive real numbers t′n which
approaches infinity as n tends to infinity such that

(4.1) S(2)(t′n)un → u in H2
p (Ω), as n → +∞.

From (3.40) it holds

(4.2) S(2)(t′n)un = S
(2)
1 (t′n)un + S

(2)
2 (t′n)un, ∀ n ∈ N.

Based on the definitions of S
(2)
1 (t) and S

(2)
2 (t) (i.e. (3.38) and (3.39)) and using

Theorem 3.1, if N is large enough, then we have

(4.3)
∥∥S

(2)
1 (t′n)un

∥∥
m
≤ C(N,m), ∀ n ∈ N,

and

(4.4)
∥∥S

(2)
2 (t′n)un

∥∥
2
≤ ce−δt′n‖un‖2, ∀ n ∈ N.

From (4.3), there exists a subsequences {t′n′}n′>0 and w ∈ Hm
p (Ω) such that

(4.5) S
(2)
1 (t′n′)un′ ⇀ w weakly in Hm

p (Ω), as n′ →∞,

and

(4.6) ‖w‖m ≤ lim
n′→∞

inf
∥∥S

(2)
1 (t′n′)un′

∥∥
m
≤ C(N,m).

Taking account of ϕ ∈ L2
p(Ω), from (4.2) we get(

S(2)(t′n′)(un′), ϕ
)

=
(
S

(2)
1 (t′n′)(un′), ϕ

)
+

(
S

(2)
2 (t′n′)(un′), ϕ

)
.

Letting n′ tends to +∞ in the above expression and using (4.1), (4.4) and (4.5),
we find

(u, ϕ) = (w,ϕ), ∀ ϕ ∈ L2
p(Ω).

Setting ϕ = (−4)mu and using (4.6), we have

‖∇mu‖ ≤ ‖w‖m ≤ C(N,m),

which shows u ∈ Hm
p (Ω). In other words, A2 is a bounded set in Hm

p (Ω).
(ii) We show that A2 ⊂ Am.
Since Am attracts all bounded sets in Hm

p (Ω) and A2 is bounded in Hm
p (Ω),

we get

distHm
p (Ω)(S(2)(t)A2,Am) = distHm

p (Ω)(S(m)(t)A2,Am) → 0, as t →∞.

In addition, A2 is an invariant set of S(2)(t), namely, S(2)(t)A2 = A2, which leads
to

distHm
p (Ω)(A2,Am) = 0.
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Hence, in view of Am being closed in Hm
p (Ω), we have

A2 ⊂ Am.

Next, we show that Am ⊂ A2. Since A2 attracts the bounded set Am in H2
p (Ω),

it implies that

distH2
p(Ω)(S(m)(t)Am,A2) = distH2

p(Ω)(S(2)(t)Am,A2) → 0, as t →∞.

It follows from S(m)(t)Am = Am and the Sobolev embedding theorem that

distH2
p(Ω)(Am,A2) = 0,

that is,
Am ⊂ A2.

Consequently, the proof of Theorem 4.1 is completed. �
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