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Abstract. The main purpose of this paper is to investigate a class of Sobolev
type semilinear fractional evolution systems in a separable Banach space. Ap-
plying a suitable fixed point theorem as well as condensing mapping, con-
trollability results for two class of control sets are established by means of the
theory of propagation family and technique of measure of noncompactness. An
application involving a partial differential equation with a Caupto fractional
derivative is considered.
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1. Introduction

In this paper, we consider the following Sobolev type fractional evolution system
in a separable Banach space X:

(1)
{

C
0 D

q
t (Ex(t)) = Ax(t) + Ef(t, x(t)) + EBu(t), t ∈ J := [0, a],

Ex(0) = Ex0, x0 ∈ D(E),

where C
0 D

q
t is the Caputo fractional derivative of order 0 < q < 1 with the lower

limit zero (see Definition 1.3), A : D(A) ⊂ X → X and E : D(E) ⊂ X → X are
two closed linear operators and the pair (A,B) generates an exponentially bounded
propagation family {W (t), t ≥ 0} of D(E) to X (see Definition 2.11, Liang and
Xiao [1]). The state x(·) takes values in X and the control function u(·) is given in
U , the Banach space of admissible control functions, where

U :=
{
Lp(J, U), for q ∈ ( 1

p , 1) with 1 < p <∞,

L∞(J, U), for q ∈ (0, 1),

and U is a Banach space. B is a bounded linear operator from U into D(E) and
f : J ×X → D(E) ⊂ X will be specified later.

Sobolev type evolution equations often arise in various applications such as in
the flow of fluid through fissured rocks, thermodynamics and shear in second order
fluids. Meanwhile, fractional calculus was planted over three hundred years ago
and provided an excellent tool for the description of memory and hereditary prop-
erties of various materials and processes. In particular, the subject of fractional
differential equations is gaining much importance and attention. So-called frac-
tional differential equations are specified by generalizing the standard integer order
derivative to arbitrary order. Due to the effective memory function of fractional
derivative, fractional differential equations have been widely used to describe many
physical phenomena such as seepage flow in porous media and in fluid dynamic
traffic model. For more interesting theory results and scientific applications of frac-
tional differential equations, we cite the monographs [2, 3, 4, 5, 6], the research
papers [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31] and the references therein.

In the past decade, many researchers have studied the existence and controlla-
bility of the mild solutions for Cauchy problem of all kinds of Sobolev type evolution
equations under the various of conditions on the pair (A,E). After reviewing these
interesting results, the reader can find that D(A) ⊂ D(E), boundedness or com-
pactness of E−1 are posed (see [10, 32, 33]). In particular, Li et al. [34] obtained
new existence results for Sobolev type fractional evolution equations by virtue of
the theory of propagation family which generated by the pair (A,E) via the tech-
niques of the measure of noncompactness and the condensing maps. The restrict
conditions on the D(A), D(E) and E−1 are removed.

However, to the best of our knowledge, controllability results of Sobolev type
fractional evolution systems via the theory of propagation family have not been
explored. Thus, we offer to study the controllability of the system (1) via the
theory of propagation family {W (t), t ≥ 0} generating by the pair (A,E). Our
aim in this paper is to present sufficient conditions for the controllability results
corresponding to two class of the possible admissible control sets. To simplify the
process, we construct {T(A,E)(t), t ≥ 0} and {S(A,E)(t), t ≥ 0} associated with the
pair (A,E) and give their boundedness and norm continuity in the sense of uniform
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operator topology. Here, we mixed and modify the conditions and techniques used
in [26, 32, 34, 35] to prove the controllability results.

To end this section, we recall the following known definitions of fractional cal-
culus (see, e.g., [3, 4, 5]).

Definition 1.1. The fractional integral of order γ with the lower limit zero for
a function f is defined as

0I
γ
t f(t) =

1
Γ(γ)

∫ t

0

f(s)
(t− s)1−γ

ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma
function.

Definition 1.2. The Riemann-Liouville derivative of order γ with the lower
limit zero for a function f : [0,∞) → R can be written as

L
0D

γ
t f(t) =

1
Γ(n− γ)

dn

dtn

∫ t

0

f(s)
(t− s)γ+1−n

ds, t > 0, n− 1 < γ < n.

Definition 1.3. The Caputo derivative of order γ for a function f : [0,∞) → R
can be written as

C
0 D

γ
t f(t) = L

0D
γ
t

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n.

Remark 1.4. (i) If f(t) ∈ C1[0,∞), then C
0 D

γ
t f(t) = 0I

1−γ
t f ′(t), t > 0,

0 < γ < 1. (ii) The Caputo derivative of a constant is equal to zero. (iii) If f is an
abstract function with values in X, then integrals which appear in Definitions 1.1
and 1.2 are taken in Bochner’s sense.

2. Preliminaries

Let’s recall some definitions and properties of measure of noncompactness and
condensing maps (see, e.g., [36, 37, 38]).

Definition 2.1. Let Y + be the positive cone of an order Banach space (Y,≤).
A function Φ defined on the set of all bounded subsets of the Banach space X with
values in Y + is called a measure of noncompactness (MNC) on X if Φ(coΩ) = Φ(Ω)
for all bounded subsets Ω ⊂ X, where coΩ stands for the closed convex hull of Ω.

The MNC Φ is said to be:
(i) Monotone: if for all bounded subsets Ω1, Ω2 of X, Ω1 ⊆ Ω2 implies Φ(Ω1) ≤

Φ(Ω2);
(ii) Nonsingular: if Φ({θ} ∪ Ω) = Φ(Ω) for every θ ∈ X and every nonempty

subset Ω ⊆ X;
(iii) Regular: if Φ(Ω) = 0 if and only if Ω is relatively compact in X.
One of the most important examples of MNC is the noncompactness measure

of Hausdorff χ defined on each bounded subset Ω of X by

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net in X}.
It is well known that Hausdorff MNC χ enjoys the above properties (i)-(iii)

and other properties (see [37, 38]).
(iv) χ(Ω1 + Ω2) ≤ χ(Ω1) + χ(Ω2), where Ω1 + Ω2 = {x+ y : x ∈ Ω1, y ∈ Ω2};
(v) χ(Ω1 ∪ Ω2) ≤ max{χ(Ω1), χ(Ω2)};
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(vi) χ(λΩ) ≤ |λ|χ(Ω) for any λ ∈ R;
(vii) If the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k,

then χZ(QΩ) ≤ kχ(Ω) for any bounded subset Ω ⊆ D(Ω), where Z is a Banach
space.

Now, let G : J → 2X be a multifunction where 2X denotes the class of all
nonempty subsets of X. It is called:

(i) Integrable: if it admits a Bochner integrable selection g : J → X, g(t) ∈ G(t)
for a.e. t ∈ J .

(ii) Integrably bounded: if there exists a function κ(·) ∈ L1(J,R+) such that
‖G(t)‖ := sup{‖g‖ : g ∈ G(t)} ≤ κ(t) for a.e. t ∈ J .

Lemma 2.2. (see Theorem 4.2.3, [38]) For an integrable, integrably bounded
multifunction G : J → 2X where X is a separable Banach space, let χ(G(t)) ≤ g(t)
for a.e. t ∈ J , where g ∈ L1(J,R+). Then χ(

∫ t

0
G(s)ds) ≤

∫ t

0
g(s)ds for all t ∈ J .

We also recall definition of condensing maps and fixed point theorems via con-
densing maps (see, e.g., [36, 38]).

Definition 2.3. Let β be a monotone nonsingular MNC in Banach space Y .
A continuous map P : Y ⊆ Y → Y is called condensing with respect to a MNC
β (or β-condensing) if for every bounded set Ω ⊆ Y which which is not relatively
compact, we have β(P(Ω)) � β(Ω).

Theorem 2.4. Let B be a bounded convex closed subset of Y and P : B → B
a β-condensing map. Then FixP = {x : x = P(x)} is nonempty.

Theorem 2.5. Let V ⊂ Y be a bounded open neighborhood of zero and H :
V → Y a β-condensing map satisfying the boundary condition x 6= λ̂H (x) for all
x ∈ ∂V and λ̂ ∈ (0, 1]. Then FixH = {x : x = H (x)} is a nonempty compact set.

Next, we recall the concept of exponentially bounded propagation family (see
Definition 1.4, [1]).

Definition 2.6. A strongly continuous operator family {W (t), t ≥ 0} of D(E)
to a Banach space X satisfying that {W (t), t ≥ 0} is exponentially bounded, which
means that there exist ω > 0 and M > 0 such that ‖W (t)x‖ ≤ Meωt‖x‖ for any
x ∈ D(E) and t ≥ 0, is called an exponentially bounded propagation family for the
following abstract degenerate Cauchy problem

(2)
{

(Ex(t))′ = Ax(t), t ∈ J,
Ex(0) = Ex0, x0 ∈ D(E),

if for λ > ω,

(3) (λE −A)−1Ex =
∫ ∞

0

e−λtW (t)xdt, x ∈ D(E).

In this case, we say that the problem (2) has an exponentially bounded propagation
family {W (t), t ≥ 0}.

Moreover, if (3) holds, we also say that the pair (A,E) generates an exponen-
tially bounded propagation family {W (t), t ≥ 0}.

Remark 2.7. Since D(E) ⊂ X is dense, W (t) can be uniquely extended on X
as a linear bounded mapping so that ‖W (t)x‖ ≤Meωt‖x‖ for any x ∈ X and t ≥ 0.
From now on, we consider such W (t) on X directly.
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Denote

T(A,E)(t) =
∫ ∞

0

ξq(θ)W (tqθ)dθ, S(A,E)(t) = q

∫ ∞

0

θξq(θ)W (tqθ)dθ,(4)

where

ξq(θ) =
1
q
θ−(1+ 1

q )$q(θ−
1
q ) ≥ 0,(5)

$q(θ) =
1
π

∞∑
n=1

(−1)n−1θ−qn−1 Γ(nq + 1)
n!

sin(nπq).

And, ξq is a probability density function defined on (0,∞), that is

ξq(θ) ≥ 0, θ ∈ (0,∞),
∫ ∞

0

ξq(θ)dθ = 1, and
∫ ∞

0

θξq(θ)dθ =
1

Γ(1 + q)
.(6)

Using the similar method in [12, 13, 34], we can introduce the following defi-
nition of mild solution for the system (1).

Definition 2.8. For each u ∈ U and x0 ∈ D(E), a mild solution of the system
(1) we mean a function x ∈ C(J,X) which satisfies

x(t) = T(A,E)(t)x0 +
∫ t

0

(t− s)q−1S(A,E)(t− s)f (s, x(s)) ds

+
∫ t

0

(t− s)q−1S(A,E)(t− s)Bu(s)ds, t ∈ J.

The following results of T(A,E)(·) and S(A,E)(·) will be used throughout this
paper.

Lemma 2.9. Suppose the pair (A,E) generates an exponentially bounded prop-
agation family {W (t), t ≥ 0}. If {W (t), t ≥ 0} is a norm continuous family for
t > 0 and ‖W (t)‖ ≤M1 for t ≥ 0, then the following two properties hold:

(i) For any fixed t ≥ 0, T(A,E)(t) and S(A,E)(t) are bounded operators on X,
i.e., for any x ∈ X,

‖T(A,E)(t)x‖ ≤M1‖x‖ and ‖S(A,E)(t)x‖ ≤
M1

Γ(q)
‖x‖.

(ii) {T(A,E)(t), t ≥ 0} and {S(A,E)(t), t ≥ 0} are norm continuous family for
t > 0 in the sense of uniform operator topology.

Proof. The first assertion has been proved (see Remark 2.1.3, [34]). Next, we
verify the second assertion. We only need to prove that ‖T(A,E)(t1)− T(A,E)(t2)‖
and ‖S(A,E)(t1)−S(A,E)(t2)‖ tend to zero as t1 → t2 respectively in the sense of
uniform operator topology.

For 0 < t1 < t2 <∞, a simple computation implies

‖T(A,E)(t1)−T(A,E)(t2)‖ ≤
∫ ∞

0

ξq(θ)‖W (tq1θ)−W (tq2θ)‖dθ,(7)

‖S(A,E)(t1)−S(A,E)(t2)‖ ≤ q

∫ ∞

0

θξq(θ)‖W (tq1θ)−W (tq2θ)‖dθ.(8)

Note that ‖W (tq1θ) − W (tq2θ)‖ → 0 as t1 → t2 in the sense of uniform operator
topology for any fixed θ > 0. Linking (6) and (7), (8), one can obtain the second
assertion immediately. The proof is complete. 2
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3. Main results

In this section, we study the controllability of the system (1) by utilizing the
theory of propagation family and techniques of measure of noncompactness.

Definition 3.1. The system (1) is said to be controllable on the interval J if
for every x0 ∈ D(E) and every x1 ∈ D(E) there exists a control u ∈ U such that
the mild solution x of system (1) satisfies x(a) = x1.

We pose the following assumptions:
[H1]: The pair (A,B) generates an exponentially bounded propagation family

{W (t), t ≥ 0} of D(E) to X.
[H2]: {W (t), t ≥ 0} is norm continuous family for t > 0 and ‖W (t)‖ ≤ M1 for

t ≥ 0.
[H3]: The control function u(·) takes from U , the Banach space of admissible

control functions, either U := Lp(J, U) for q ∈ ( 1
p , 1) with 1 < p < ∞ or U :=

L∞(J, U) for q ∈ (0, 1) where U is a Banach space.
[H4]: B : U → D(E) is a bounded linear operator and a linear operator

W : U → X defined by

Wu =
∫ a

0

(a− s)q−1S(A,E)(a− s)Bu(s)ds

has a bounded right inverse operator W−1 : X → U .
It is easy to see that Wu ∈ X and W is well defined due to the following fact:

‖Wu‖ =
∥∥∥∥∫ a

0

(a− s)q−1S(A,E)(a− s)Bu(s)ds
∥∥∥∥

≤ M1‖B‖
Γ(q)

∫ a

0

(a− s)q−1‖u(s)‖ds

≤


M1‖B‖

Γ(q)

(
p−1
qp−1a

qp−1
p−1

) p−1
p ‖u‖U , if q ∈ ( 1

p , 1),
u ∈ U = Lp(J, U), 1 < p <∞,
M1‖B‖aq

Γ(q+1) ‖u‖U , if q ∈ (0, 1), u ∈ U = L∞(J, U).

Meanwhile, ∫ t

0

(t− s)q−1‖u(s)‖ds ≤ Kq‖u‖U ,(9)

where

Kq :=


(

p−1
qp−1a

qp−1
p−1

) p−1
p ‖u‖U , if q ∈ ( 1

p , 1), u ∈ U = Lp(J, U), 1 < p <∞,
aq

q ‖u‖U , if q ∈ (0, 1), u ∈ U = L∞(J, U),

for any t ∈ J .
Next we assume:
[H5]: f satisfies the following two conditions:
(i) For each x ∈ X the function f(·, x) : J → D(E) ⊂ X is strongly measurable

and for each t ∈ J , the function f(t, ·) : X → D(E) ⊂ X is continuous.
(ii) For each k > 0, there is a measurable function gk such that

sup
‖x‖≤k

‖f(t, x)‖ ≤ gk(t), with ‖gk‖∞ := sup
s∈J

gk(s) <∞,
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sup
t∈J

∫ t

0

(t− s)q−1gk(s)ds ≤ γk,

for any k > 0 sufficiently large and some γ.
(iii) There exists a positive constant L > 0 such that

χ(f(t,D)) ≤ Lχ(D),

for any bounded set D ⊂ X and a.e. t ∈ J .
The first step in studying the controllability problem is to determine if an

objective can be reached by some suitable control. A standard approach is to
transform the controllability problem into a fixed point problem for an appropriate
operator in a function space. For the sake of simplicity, we present the standard
framework to deal with controllability problems here.

Based on our assumptions, for an arbitrary function x(·), it is suitable to define
the following control formula

(10) u(t) = W−1

[
x1 −T(A,E)(a)x0 −

∫ a

0

(a− s)q−1S(A,E)(a− s)f(s, x(s))ds
]
.

In what follows, it is necessary to show that when using the control u in (10),
the operator P defined by

(Px)(t) = T(A,E)(t)x0 +
∫ t

0

(t− s)q−1S(A,E)(t− s)f(s, x(s))ds

+
∫ t

0

(t− s)q−1S(A,E)(t− s)Bu(s)ds, for t ∈ J,(11)

from C(J,X) into C(J,X), has a fixed point. Clearly, this fixed point is just a mild
solution of system (1). Further, one can check

(Px)(a) = T(A,E)(a)x0 +
∫ a

0

(a− s)q−1S(A,E)(a− s)f(s, x(s))ds

+
∫ a

0

(a− s)q−1S(A,E)(a− s)

×BW−1

[
x1 −T(A,E)(a)x0

−
∫ a

0

(a− τ)q−1S(A,E)(a− τ)f(τ, x(τ))dτ
]
ds

= x1,

which means that u steers the fractional system (1) from x0 to x1 in finite time a.
Consequently, we can claim the system (1) is controllable on J .

For each number k > 0, define

Bk = {x ∈ C(J,X) : ‖x(t)‖ ≤ k, t ∈ J}.
Of course, Bk is clearly a bounded, closed, convex subset in C(J,X).

Under the assumptions [H1] − [H5] , we will establish some important results
as follows.

Lemma 3.2. Assuming

ρ :=


γM1
Γ(q)

(
1 +

√
aM1‖B‖Kq‖W−1‖

Γ(q)

)
< 1, if U = L2(J, U),

γM1
Γ(q)

(
1 + M1‖B‖Kq‖W−1‖

Γ(q)

)
< 1, if U = L∞(J, U),

(12)
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there exists a constant K ≥ M∗

1−ρ such that PBK ⊂ BK , where

M∗ :=


M1‖x0‖+

√
aM1‖B‖
Γ(q) Kq‖W−1‖

(
‖x1‖+M1‖x0‖

)
, if U = L2(J, U),

M1‖x0‖+ M1‖B‖
Γ(q) Kq‖W−1‖

(
‖x1‖+M1‖x0‖

)
, if U = L∞(J, U).

Proof. Let x ∈ BK . For t ∈ J , using our assumptions and Lemma 2.9(i), we
obtain

‖(Px)(t)‖ ≤ M1‖x0‖+
M1

Γ(q)

∫ t

0

(t− s)q−1gK(s)ds+

M1‖B‖
Γ(q)

∫ t

0

(t− s)q−1‖u(s)‖ds

≤ M1‖x0‖+
M1γK

Γ(q)
+
M1‖B‖

Γ(q)
Kq‖u‖U

= ρK +M∗

≤ K,

where we note that the control u defined in (10) satisfies

‖u(t)‖ ≤ ‖W−1‖
∥∥∥∥x1 −T(A,E)(a)x0 −

∫ a

0

(a− s)q−1S(A,E)(a− s)f(s, x(s))ds
∥∥∥∥

≤ ‖W−1‖
(
‖x1‖+M1‖x0‖+

M1

Γ(q)
γK

)
,

which implies that

‖u‖U ≤


√
a‖W−1‖

(
‖x1‖+M1‖x0‖+ M1

Γ(q)γK
)
, if U = L2(J, U),

‖W−1‖
(
‖x1‖+M1‖x0‖+ M1

Γ(q)γK
)
, if U = L∞(J, U).

(13)

Hence, PBK ⊂ BK for any K ≥ M∗

1−ρ sufficiently large. The proof is complete. 2

Lemma 3.3. The operator P defined by (11) is continuous.

Proof. Let {xm}m∈N ⊆ BK be a sequence such that xm → x as m → ∞.
Note that (t − s)q−1f(s, xm(s)) → (t − s)q−1f(s, x(s)) as m → ∞ for very t ∈ J
and almost each s ∈ [0, t] and

(t− s)q−1‖f(s, xm(s))− f(s, x(s))‖ ≤ 2(t− s)q−1gK(s).
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Since
∫ t

0
(t− s)q−1gK(s) ≤ ‖gK‖∞

q , by the Lebesgue’s Dominated Convergence The-
orem, we get

‖(Pxm)(t)− (Px)(t)‖

≤ M1

Γ(q)

∫ t

0

(t− s)q−1

[
‖f(s, xm(s))− f(s, x(s))‖

+ ‖B‖‖W−1‖
∫ a

0

(a− z)q−1‖f(z, xm(z))− f(z, x(z))‖dz

]
ds

=
M1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, xm(s))− f(s, x(s))‖ds

+
M1‖B‖‖W−1‖aq

Γ(q + 1)

∥∥∥∥∫ a

0

(a− s)q−1‖f(s, xm(s))− f(z, x(s))
∥∥∥∥ ds

→ 0, as m→∞,

for t ∈ J . This yields that P is continuous. The proof is complete. 2

Let χ be a Hausdorff MNC in X. Consider the measure of noncompactness
ν in the space C(J,X) with values in the cone R2 of the way: for every bounded
subset Ω ⊂ C(J,X),

ν := (ψ(Ω),modc(Ω))

where ψ(Ω) := supt∈J χ(Ω(t)) and modc(Ω) = limδ→0 supx∈Ω max|t1−t2|≤δ ‖x(t1)−
x(t2)‖.

Lemma 3.4. Assume

aqM1

Γ(q + 1)
L

[
1 +

aqM1

Γ(q + 1)
‖B‖‖W−1‖

]
< 1.(14)

If ν(P(BK)) ≥ ν(BK) then ψ(BK) = 0.

Proof. Clearly BK ⊂ C(J,X) is nonempty and bounded. For any t ∈ J , we
set

Θ(BK(t)) =
∫ t

0

G(s)ds,

where a function s ∈ [0, t] ( G(s) is defined as:

G(s) =
{

(t− s)q−1S(A,E)(t− s)f(s, x(s))

+(t− s)q−1S(A,E)(t− s)Bu(s) : x ∈ BK

}
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and u(t) is given by (10). It is obvious that G is integrable and integrably bounded.
Moreover, a simple computation implies that

χ(G(s)) ≤ M1

Γ(q)
(t− s)q−1χ

({
f(s, x(s))

+BW−1

[
x1 −T(A,E)(a)x0

−
∫ a

0

(a− s)q−1S(A,E)(a− s)f(s, x(s))ds
]

: x ∈ BK

})
≤ M1

Γ(q)
(t− s)q−1

[
χ

({
f(s,BK(s))

})
+χ

({
BW−1

[
x1 −T(A,E)(a)x0

−
∫ a

0

(a− s)q−1S(A,E)(a− s)f(s,BK(s))ds
]})]

≤ M1

Γ(q)
(t− s)q−1

[
Lχ(BK(s))

+
M1

Γ(q)
‖B‖‖W−1‖

( ∫ a

0

(a− s)q−1Lχ(BK(s))ds
)]

≤ M1

Γ(q)
(t− s)q−1L

[
1 +

aqM1

Γ(q + 1)
‖B‖‖W−1‖

]
ψ(BK) := κ(s).

By Lemma 2.2, we have

χ(Θ(BK(t))) ≤
∫ t

0

κ(s)ds

≤ tqM1

Γ(q + 1)
L

[
1 +

aqM1

Γ(q + 1)
‖B‖‖W−1‖

]
ψ(BK).

Thus,

ψ(P(BK(t))) ≤ χ(Θ(BK(t)))

≤ aqM1

Γ(q + 1)
L

[
1 +

aqM1

Γ(q + 1)
‖B‖‖W−1‖

]
ψ(BK),

which implies ψ(BK) = 0 due to the condition (14) and ν(P(BK)) ≥ ν(BK). The
proof is complete. 2

Lemma 3.5. If ν(P(BK)) ≥ ν(BK) then modc(BK) = 0.
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Proof. To achieve our aim, we need to prove P(BK) is equicontinuous. Let
x ∈ BK and t′, t′′ ∈ J such that 0 < t′ < t′′, then

‖(Px)(t′′)− (Px)(t′)‖
≤ ‖T(A,E)(t′′)x0 −T(A,E)(t′)x0‖

+
∥∥∥∥∫ t′′

0

(t′′ − s)q−1S(A,E)(t′′ − s)f (s, x(s)) ds

−
∫ t′

0

(t′ − s)q−1S(A,E)(t′ − s)f (s, x(s)) ds
∥∥∥∥

+
∥∥∥∥∫ t′′

0

(t′′ − s)q−1S(A,E)(t′′ − s)Bu(s)ds

−
∫ t′

0

(t′ − s)q−1S(A,E)(t′ − s)Bu(s)ds
∥∥∥∥

≤ ‖T(A,E)(t′′)−T(A,E)(t′)‖‖x0‖

+
∫ t′′

0

|(t′′ − s)q−1 − (t′ − s)q−1|
∥∥S(A,E)(t′′ − s)f (s, x(s))

∥∥ ds
+

∫ t′

0

(t′ − s)q−1
∥∥[S(A,E)(t′′ − s)−S(A,E)(t′ − s)]f (s, x(s))

∥∥ ds
+

∫ t′′

0

|(t′′ − s)q−1 − (t′ − s)q−1|
∥∥S(A,E)(t′′ − s)Bu(s)

∥∥ ds
+

∫ t′

0

(t′ − s)q−1
∥∥[S(A,E)(t′′ − s)−S(A,E)(t′ − s)]Bu(s)

∥∥ ds
+

∫ t′′

t′
(t′ − s)q−1

∥∥S(A,E)(t′′ − s)f (s, x(s))
∥∥ ds

+
∫ t′′

t′
(t′ − s)q−1

∥∥S(A,E)(t′′ − s)Bu(s)
∥∥ ds

≤ I1 + I2 + I3 + I4 + I5 + I6 + I7,

where

I1 = ‖T(A,E)(t′′)−T(A,E)(t′)‖‖x0‖,

I2 =
M1

Γ(q)

∫ t′′

0

[(t′ − s)q−1 − (t′′ − s)q−1]gK(s)ds,

I3 = sup
s∈[0,t′]

‖S(A,E)(t′′ − s)−S(A,E)(t′ − s)‖
∫ t′

0

(t′ − s)q−1gK(s)ds,
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I4 =
M1‖B‖

Γ(q)

∫ t′′

0

[(t′ − s)q−1 − (t′′ − s)q−1]‖u(s)‖ds,

I5 = sup
s∈[0,t′]

‖S(A,E)(t′′ − s)−S(A,E)(t′ − s)‖‖B‖
∫ t′

0

(t′ − s)q−1‖u(s)‖ds

I6 :=
M1

Γ(q)

∫ t′′

t′
(t′ − s)q−1gK(s)ds,

I7 :=
M1‖B‖

Γ(q)

∫ t′′

t′
(t′ − s)q−1‖u(s)‖ds.

Note that Lemma 2.9(ii), T(A,E)(t) and S(A,E)(t) are continuous in the uniform
operator topology for t ≥ 0, sups∈J |gK(s)| < ∞ and u(·) is bounded by (13). We
can obtain the terms I1, I3, I5, I6, I7 → 0 as t′′ → t′. Moreover, applying∫ t′′

0

[(t′ − s)q−1 − (t′′ − s)q−1]ds =
t′q − t′′q + (t′′ − t′)q

q

one can check the terms I2, I4 → 0 as t′′ → t′. Thus, P(BK) is equicontinuous.
Hence, modc(P(BK)) = 0. This implies that modc(BK) = 0 from ν(P(BK)) ≥

ν(BK). The proof is complete. 2

Lemma 3.6. The operator P defined by (11) is ν-condensing on BK .

Proof. It follows from Lemmas 3.4 and 3.5 that ν(BK) = (0, 0). The regularity
property of v implies the relative compactness of BK . It follows from Definition 2.3
that P is ν-condensing on BK . 2

For λ̂ ∈ (0, 1], consider a one-parameter family of maps H : [0, 1]× C(J,X) →
C(J,X) given by

(λ̂, x) → H(λ̂, x) = λ̂P(x).

Lemma 3.7. The fixed point set of the family of maps H:

FixH = {x ∈ H(λ̂, x) for some λ̂ ∈ (0, 1]}
has a priori bounded.

Proof. The result can be derived by Lemma 3.2 immediately. We omit it
here. 2

Now we are ready to state the main results in this paper.

Theorem 3.8. Assume [H1]− [H5] are satisfied. Then the system (1) is con-
trollable on J provided that the conditions (12) and (14) hold.

Proof. To obtain our conclusion, we need to prove P has a fixed point in BK .
In fact, it follows from Lemmas 3.2 and 3.6 that P : BK → BK is ν-condensing
map. By Theorem 2.5, P has a fixed point in BK . This implies that any fixed point
of P is just a mild solution of the system (1) on J which satisfying (Px)(a) = x1

with u(t) given by (10). Therefore, the system (1) is controllable on J . 2

Corollary 3.9. Let the assumptions of Theorem 3.8 be satisfied. The set of
mild solutions of the system (1) is a nonempty and compact subset of C(J,X) with
u(t) given by (10).

Proof. It follows from Lemma 3.7 that we can take a closed ball BK to contain
the set FixH inside itself. Moreover, P maps BK into C(J,X) and is ν-condensing
map. By Theorem 2.5, we have the conclusion. 2
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4. Example

Take X = U = L2[0, π]. We consider the following fractional partial differential
equation with control


C
0 D

4
5
t (x(t, y)− xyy(t, y)) = xyy(t, y) + µt2

(
sin x(t,y)

t − sinyy
x(t,y)

t

)
+Bu(t),

y ∈ [0, π], t ∈ J1 = [0, 1], 0 < µ <∞,
x(t, 0) = x(t, π) = 0, t ≥ 0,
x(0, y)− xyy(0, y) = x0(y), 0 ≤ y ≤ π.

(15)

Define A : D(A) ⊂ X → X by Ax = xyy and E : D(E) ⊂ X → X by Ex =
x−xyy respectively, where each domain D(A), D(E) is given by {x ∈ X : x, xy are
absolutely continuous, xyy ∈ X, x(0) = x(π) = 0}.

It follows from Theorem 2.2 in [1] that the pair (A,E) can generate a prop-
agation family {W (t), t ≥ 0} of uniformly bounded and {W (t), t ≥ 0} is norm
continuous for t > 0 and ‖W (t)‖ ≤ 1. Meanwhile, it follows from [39] that A
and E can be written as Ax = −

∑∞
n=1 n

2〈x, xn〉, x ∈ D(A) and Ex =
∑∞

n=1(1 +

n2)〈x, xn〉xn, x ∈ D(E), respectively, where xn(y) =
√

2
π sinny, n = 1, 2, · · · is

the orthonormal set of eigenfunctions of A. Hence for any x ∈ D(E), λ > 0 we
obtain

(λE −A)−1Ex =
∞∑

n=1

1 + n2

λ(1 + n2) + n2
〈x, xn〉xn =

∞∑
n=1

∫ ∞

0

e−λte
− n2

1+n2 t
dt〈x, xn〉xn.

Therefore, {W (t), t ≥ 0} can be generated by −AE−1 and written as

W (t)x :=
∞∑

n=1

e
− n2

1+n2 t〈x, xn〉xn.

Then, T(A,E)(·) and S(A,E)(·) can be written as

T(A,E)(t)x =
∫ ∞

0

ξ 4
5
(θ)

∞∑
n=1

e
− n2

1+n2 t
4
5 θ

〈x, xn〉xndθ,

S(A,E)(t)x =
4
5

∫ ∞

0

θξ 4
5
(θ)

∞∑
n=1

e
− n2

1+n2 t
4
5 θ

〈x, xn〉xndθ.

Clearly, ‖T(A,E)(t)‖ ≤ 1 and ‖S(A,E)(t)‖ ≤ 1
Γ( 4

5 )
for t ≥ 0.

Next, B : U → D(E) is defined by B = bI, b > 0 and defined by

Wu = b

∫ 1

0

(1− s)−
1
5 S(A,E)(1− s)u(s, y)ds.
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Since q = 4
5 >

1
2 , we can take p = 2 and U = L2(J1, U) and so K 4

5
=

√
5
3 . It is

easy to show that W is surjective. Indeed, if u(s, y) := x(y) ∈ U . Then

Wu = b

∫ 1

0

(1− s)−
1
5
4
5

∫ ∞

0

θξ 4
5
(θ)

∞∑
n=1

e
− n2

1+n2 (1−s)
4
5 θ〈x, xn〉xndθds

= b

∫ ∞

0

ξ 4
5
(θ)

∞∑
n=1

∫ 1

0

4
5
θ(1− s)−

1
5 e
− n2

1+n2 (1−s)
4
5 θ
ds〈x, xn〉xndθ

= b

∫ ∞

0

ξ 4
5
(θ)

∞∑
n=1

∫ 1

0

1 + n2

n2

d

ds

[
e
− n2

1+n2 (1−s)
4
5 θ

]
ds〈x, xn〉xndθ

= b

∫ ∞

0

ξ 4
5
(θ)

∞∑
n=1

1 + n2

n2

[
1− e

− n2

1+n2 θ
]
〈x, xn〉xndθ

= b

∞∑
n=1

1 + n2

n2

[
1− E 4

5

(
− n2

1 + n2

)]
〈x, xn〉xn,

where E 4
5

is a Mittag-Leffler function [40, 41]. So we can define a right inverse
W−1 : X → U by

(W−1x)(t, y) :=
1
b

∞∑
n=1

n2

1 + n2

〈x, xn〉xn

1− E 4
5

(
− n2

1+n2

) , for x =
∞∑

n=1

〈x, xn〉xn,

with

‖W−1‖ =
1

b
(
1− E 4

5

(
− n2

1+n2

)) ≤ 1

b
(
1− E 4

5

(
− 1

2

)) .
Now f : J1 × R → R is defined by f(t, x(t, y)) = µt2 sin x(t,y)

t . It is easy
to see that f is measurable for the first variable and f(t, x) is continuous for
the second variable. Moreover, clearly lim supk→∞

1
k supt∈J1,|x|≤k |f(t, x)| = 0 and

χ(f(t,D1)) ≤ µtχ(D1) ≤ µχ(D1) for any bounded set D1 ⊂ X and t ∈ J1. Hence
γ = 0 and L = µ.

Define F : J1 × C(J,X) → D(E) by F (t, z)(y) = f(t, z(y)). Now, the system
(15) can be abstracted as{

C
0 D

4
5
t (Ex(t)) = −Ax(t) + EF (t, x(t)) + EBu(t), t ∈ J1,

Ex(0) = Ex0.

From the above discussion, all the assumptions in Theorem 3.8 are satisfied, since
by γ = 0, (12) holds, while (14) holds when:

µ

Γ( 9
5 )

1 +
1

Γ( 9
5 )

(
1− E 4

5

(
− 1

2

))
 < 1.

Then the system (15) is controllable on J1.
Finally, one can numerically find that µ < 0.229071. It is key to compute

E 4
5

(
− 1

2

)
.



CONTROLLABILITY OF FRACTIONAL EVOLUTION SYSTEMS 85

We only provide a possible way to compute E 4
5

(
− 1

2

)
. In fact, we can use the

definition

E 4
5

(
−1

2

)
=

∞∑
k=0

(−1)k

2kΓ(1 + 5i
4 )

=
25∑

k=0

(−1)k

2kΓ(1 + 5i
4 )

+
∞∑

k=26

(−1)k

2kΓ(1 + 5i
4 )
.

Using Mathematica we get
25∑

k=0

(−1)k

2kΓ(1 + 5i
4 )

.= 0.626879.

On the other hand, it holds
∞∑

k=26

(−1)k

2kΓ(1 + 5i
4 )

≤
∞∑

k=26

1
2k

=
1

225

.= 2.98023× 10−8.

Hence E 4
5

(
− 1

2

) .= 0.626879. The rest computations to estimate µ is given again by
Mathematica, since Γ is built in Mathematica.

We also remark that one can compute E 4
5

(
− 1

2

)
by using the formula (21) in

[41].
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49, 814 73 Bratislava, Slovakia

E-mail address: Michal.Feckan@fmph.uniba.sk

Department of Mathematics, Xiangtan University, Xiangtan, Hunan 411105, P.R.
China

E-mail address: yzhou@xtu.edu.cn


