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Abstract. In this paper, we consider suitable weak solutions of incompress-
ible Navier–Stokes equations in four spatial dimensions. We obtain two ε-
regularity criteria in terms of certain scale-invariant quantities. As a conse-
quence, we show that the two-dimensional space-time Hausdorff measure of
the set of singular points is equal to zero.
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1. Introduction

In this paper we consider the incompressible Navier–Stokes equations in four
spatial dimensions with unit viscosity and an external force:

ut + u · ∇u−∆u+∇p = f,(1.1)
∇ · u = 0(1.2)

in a bounded cylindrical domain QT ≡ Ω×(0, T ), where Ω ⊂ R4. We are interested
in the partial regularity of suitable weak solutions (u, p) to (1.1)-(1.2).

We say that a pair of functions (u, p) is a suitable weak solution to (1.1)-(1.2)
in QT if u ∈ L∞(0, T ;L2(Ω; R4)) ∩ L2(0, T ;W 1

2 (Ω; R4)) and p ∈ L3/2(QT ) satisfy
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(1.1)-(1.2) in the weak sense and additionally they satisfy the generalized local
energy inequality:

(1.3) ess sup
0<s≤t

∫
Ω

|u(x, s)|2ψ(x, s) dx+ 2
∫

Qt

|∇u|2ψ dx ds

≤
∫

Qt

|u|2(ψt + ∆ψ) + (|u|2 + 2p)u · ∇ψ + 2f · uψ dx ds

for any non-negative functions ψ ∈ C∞0 (QT ). We prove that for any suitable weak
solution (u, p), the two dimensional space-time Hausdorff measure of the set of
singular points is equal to zero.

The problem of the global regularity of solutions to the Navier–Stokes equations
in three and higher space dimensions is a fundamental question in fluid dynamics
and is still widely open. Meanwhile, many authors have studied the partial regular-
ity of solutions. In three dimensional case, Scheffer established various regularity
results for weak solutions in [13, 14]. In a celebrated paper [1], Caffarelli, Kohn,
and Nirenberg introduced the notion of suitable weak solutions, which satisfy a
local energy inequality. They proved that for any suitable weak solution, there is
an open subset where the velocity field u is regular and the 1D Hausdorff measure
of the complement of this subset is equal to zero. In [12], Lin gave a more direct
and simplified proof of Caffarelli, Kohn and Nirenberg’s result with zero external
force, under a slightly different assumption on the pressure term. Ladyzhenskaya
and Seregin provided yet another and detailed proof of Caffarelli–Kohn–Nirenberg’s
and Lin’s results in [10]. We also refer the reader to Tian and Xin [18], Seregin
[16], Gustafson, Kang, and Tsai [5], Vasseur [19], Kukavica [9], and the references
therein for extended results.

For the four or higher dimensional Navier–Stokes equations, the problem is
more super-critical. In [15], Scheffer showed that there exists a weak solution u in
R4 × R+, which may not satisfy the local energy inequality, such that u is contin-
uous except for a set whose 3D Hausdorff measure is finite. In [2], the first author
and D. Du showed that for any local-in-time smooth solution to 4D Navier–Stokes
equations, the 2D Hausdorff measure of the set of singular points at the first poten-
tial blow-up time is equal to zero. For stationary high dimensional Navier–Stokes
equations, Struwe [17] proved that suitable weak solutions are regular outside a
singular set of zero 1D Hausdorff measure in R5, and Kang [7] improved Struwe’s
result up to the boundary for a smooth domain Ω ⊂ R5. Recently, the first author
and Strain [3] studied the partial regularity for suitable weak solutions of 6D sta-
tionary Navier–Stokes equations, and proved that solutions are regular outside a
singular set of zero 2D Hausdorff measure. Based on Campanato’s approach, the
main idea in [3] is to first establish a weak decay estimate of certain scale-invariant
quantities, and then successively improve this decay estimate by using a bootstrap
argument and the elliptic regularity theory.

Because time corresponds two space dimensions, in some sense the 4D non-
stationary Navier–Stokes equations is similar to 6D stationary problem. Given the
result in [3], it is natural to ask whether Caffarelli–Kohn–Nirenberg’s theorem can
be extended the 4D non-stationary case. Here the main difficulty stems from the
fact that certain compactness arguments appeared, for instance, in the original
paper [1] as well as [12, 10] break down in the 4D case. We note that the results
obtained in [2] cannot be considered as a genuine extension of the theorem, as the
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set of singular points is only estimated at the first blow-up time for local smooth
solutions. The objective of this paper is to give a complete answer to this question.

We state our main results, where we use some notation introduced at the be-
ginning of the next section.

Theorem 1.1. Let Ω be an open set in R4 and f ∈ L6,loc(QT ). Let (u, p) be a
pair of suitable weak solution of (1.1)-(1.2) in QT . There is a positive number ε0
satisfying the following property. Assume that for a point z0 ∈ QT , the inequality

lim sup
r↘0

E(r) ≤ ε0

holds. Then z0 is a regular point.

Theorem 1.2. Let Ω be an open set in R4 and f ∈ L6,loc(QT ). Let (u, p) be a
pair of suitable weak solution of (1.1)-(1.2) in QT . There is a positive number ε0
satisfying the following property. Assume that for a point z0 ∈ QT and for some
ρ0 > 0 such that Q(z0, ρ0) ⊂ QT and

C(ρ0) +D(ρ0) + F (ρ0) +G(ρ0) ≤ ε0.

Then z0 is a regular point.

Theorem 1.3. Let Ω be an open set in R4 and f ∈ L6,loc(QT ). Let (u, p) be a
pair of suitable weak solution of (1.1)-(1.2) in QT . Then the 2D Hausdorff measure
of the set of singular points in QT is equal to zero.

In [2], local-in-time smooth solutions to 4D Navier–Stokes equations were con-
sidered, and the main idea is to apply Schoen’s trick to get a priori estimates at
the first potential blow-up time. In our paper, we shall consider suitable weak
solutions, and thus Schoen’s trick is no longer applicable. Our proofs exploit the
aforementioned idea in [3] and use Campanato’s approach. There are two main
differences between our problem with the one in [3]. The first one is that we do not
have the same end-point Sobolev embedding inequality used in [3]. To this end,
we introduce an additional scale-invariant quantity F , which is a mixed space-time
norm of the pressure p, and use an interpolation inequality. As a consequence, we
cannot achieve the same optimal decay rate as in [3]. Nevertheless, it turns out
that the decay rate, although not optimal, still suffices for our purpose in the sub-
sequent step. The other difference is that, as our problem is time-dependent, we
cannot use the elliptic regularity theory to improve the decay rate in the final step
as in [3]. Naturally, we appeal to the parabolic regularity theory instead as well
as a Poincaré type inequality for solutions to divergence form parabolic equations.
We note that our definition of the scale-invariant quantity involving the pressure is
different from those in [2] and [3]. This makes the proof below slightly simpler.

It remains an interesting open problem whether a similar result can be obtained
for five or higher dimensional non-stationary Navier–Stokes equations. It seems
to us that four is the highest dimension to which our approach (or any existing
approach) applies. In fact, by the embedding theorem, we have

L∞((0, T );L2(Ω)) ∩ L2((0, T );W 1
2 (Ω)) ↪→ L2(d+2)/d((0, T )× Ω),

which implies nonlinear term in the energy inequality cannot be controlled by the
energy norm alone when d ≥ 5.

We organize this paper as follows: In Section 2, we introduce some scale-
invariant quantities and the setting which will be used throughout the paper. In
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Section 3, we prove our results in three steps. In the first step, we give some esti-
mates of the scale-invariant quantities, which essentially follow from the argument
in [2]. In the second step, we establish a weak decay estimate of certain scale-
invariant quantities based on the estimate we proved in the first step by using an
iteration method. In the last step, we improve the decay estimate by a bootstrap
argument, and apply the parabolic regularity theory to get a good estimate of the
L3/2-mean oscillations of u, which yields the Hölder continuity of u according to
Campanato’s characterization of Hölder continuous functions.

2. Notation and Setting

In this section, we will introduce the notation which will be used throughout
the article. Let Ω be a domain in some finite-dimensional space. Denote Lp(Ω; Rn)
and W k

p (Ω; Rn) to be the usual Lebesgue and Sobolev spaces of functions from Ω
into Rn. Let p ∈ (1,∞) and −∞ ≤ S < T ≤ ∞. We denote H1

p to be the solution
spaces for divergence form parabolic equations. Precisely,

H1
p(Ω× (S, T )) = {u : u,Du ∈ Lp(Ω× (S, T )), ut ∈ H−1

p (Ω× (S, T )},

where H−1
p (Ω×(S, T )) is the space consisting of all generalized functions v satisfying

inf
{
‖f‖Lp(Ω×(S,T )) + ‖g‖Lp(Ω×(S,T )) | v = ∇ · g + f

}
<∞.

We shall use the following notation of spheres, balls, parabolic cylinders, and
parabolic boundary

S(x0, r) = {x ∈ R4 | |x− x0| = r}, S(r) = S(0, r), S = S(1);

B(x0, r) = {x ∈ R4 | |x− x0| < r}, B(r) = B(0, r), B = B(1);

Q(z0, r) = B(x0, r)× (t0 − r2, t0), Q(r) = Q(0, r), Q = Q(1);

∂pQ(z0, r) = (S(x0, r)× [t0 − r2, t0)) ∪ {(t0 − r2, y) | y ∈ B(x0, r)},

where z0 = (x0, t0).
We also denote mean values of summable functions as follows:

[u]x0,r(t) =
1

|B(r)|

∫
B(x0,r)

u(x, t) dx,

(u)z0,r =
1

|Q(r)|

∫
Q(z0,r)

u dz.

Here |A| as usual denotes the Lebesgue measure of the set A.
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Now we introduce the following quantities:

A(r) = A(r, z0) = ess sup
t0−r2≤t≤t0

1
r2

∫
B(x0,r)

|u(x, t)|2 dx,

E(r) = E(r, z0) =
1
r2

∫
Q(z0,r)

|∇u|2 dz,

C(r) = C(r, z0) =
1
r3

∫
Q(z0,r)

|u|3 dz,

D(r) = D(r, z0) =
1
r3

∫
Q(z0,r)

|p− [p]x0,r|3/2 dz,

F (r) = F (r, z0) =
1
r2

[ ∫ t0

t0−r2

( ∫
B(x0,r)

|p− [p]x0,r|1+α dx
) 1

2α dt
] 2α

1+α

,

G(r) = G(r, z0) = r4
[ ∫

Q(z0,r)

|f |6 dz
] 1

3
,

where α ∈ (0, 1) is a number to be specified later. Notice that all these quantities
are invariant under the natural scaling:

uλ(x, t) = λu(λx, λ2t),

pλ(x, t) = λ2p(λx, λ2t),

fλ(x, t) = λ3f(λx, λ2t).

We are going to estimate them in Section 3. We point out that the quantity F is
auxiliary and will only be used in the first two steps of the proof in order to give a
weak decay estimate of other quantities.

We finish this short section by introducing a pressure decomposition which
would play a important role in our proof. Let η(x) be a smooth function on R4

supported in the unit ball B(1), 0 ≤ η ≤ 1 and η ≡ 1 on B̄(2/3). Let z0 be a given
point in QT and r > 0 a real number such that Q(z0, r) ⊂ QT . It’s known that for
a.e. t ∈ (t0 − r2, t0), in the sense of distribution, one has

∆p = −∂i∂j(uiuj) +∇ · f
= −∂i∂j

(
(ui − [ui]x0,r/2)(uj − [uj ]x0,r/2)

)
+∇ · f in B(x0, r).

For these t, we consider the decomposition

(2.1) p = p̃x0,r + hx0,r in B(x0, r),

where p̃x0,r is the Newtonian potential of

−∂i∂j

(
(ui − [ui]x0,r/2)(uj − [uj ]x0,r/2)η(2(x− x0)/r)

)
+∇ ·

(
fη(2(x− x0)/r)

)
.

Then hx0,r is harmonic in B(x0, r/3).

3. The proof

In our proof of the main results, we will make use of the following well-known
interpolation inequality.
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Lemma 3.1. For any function u ∈ W 1
2 (R4) and real numbers q ∈ [2, 4] and

r > 0,∫
Br

|u|q dx ≤ N(q)
[( ∫

Br

|∇u|2 dx
)q−2( ∫

Br

|u|2 dx
)2−q/2

+ r−2(q−2)
( ∫

Br

|u|2 dx
)q/2

]
.

Let L := ∂t − ∂i(aij∂j) be a (possibly degenerate) divergence form parabolic
operator with measurable coefficients which are bounded by a constant K > 0. We
will use the following Poincaré type inequality for solutions to parabolic equations.
See, for instance, [8, Lemma 3.1].

Lemma 3.2. Let z0 ∈ Rd+1, p ∈ (1,∞), r ∈ (0,∞), u ∈ H1
p,loc(Rd+1), g =

(g1, . . . , gd), f ∈ Lp,loc(Rd+1). Suppose that u is a weak solution to Lu = ∇ · g + f
in Q(z0, r). Then we have∫

Q(z0,r)

|u(t, x)− (u)z0,r|p dz ≤ Nrp

∫
Q(z0,r)

(
|∇u|p + |g|p + rp|f |p

)
dz,

where N = N(d,K, p).

We shall prove the main theorems in three steps.

3.1. Step 1. First, we control the quantities A,C,D, F in a smaller ball by
their values in a larger ball under the assumption that E is sufficiently small. Here
we follow the arguments in [2], which in turn used some ideas in [10, 12].

Lemma 3.3. Suppose γ ∈ (0, 1), ρ > 0 are constants and Q(z0, ρ) ⊂ QT . Then
we have

(3.1) C(γρ) ≤ N
[
γ−3A1/2(ρ)E(ρ) + γ−9/2A3/4(ρ)E3/4(ρ) + γC(ρ)

]
,

where N is a constant independent of γ, ρ, and z0.

The proof can be found in [2].

Lemma 3.4. Suppose that α ∈ [1/11, 1/2], γ ∈ (0, 1/8], ρ > 0 are constants and
Q(z0, ρ) ⊂ QT . Then for any z1 ∈ Q(z0, ρ/8) we have

(3.2) F (γρ, z1) ≤ N(α)
[
γ−2A

1−α
1+α (

ρ

2
)E

2α
1+α (

ρ

2
) + γ

3−α
1+αF (ρ) + γ−2G1/2(ρ)

]
,

where N(α) is a constant independent of γ, ρ and z0. In particular, for α = 1/2 we
have

(3.3) D(γρ, z1) ≤ N
[
γ−3A1/2(

ρ

2
)E(

ρ

2
) + γ5/2D(ρ) + γ−3G3/4(ρ)

]
.

Moreover, it holds that

D(γρ, z1)

≤ N(α)
[
γ−3(A(

ρ

2
) + E(

ρ

2
))3/2 + γ

9−3α
2+2αF 3/2(ρ) + γ−3G3/4(ρ)

]
.(3.4)
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Proof. First, we assume 1/3 ≤ α ≤ 1/2. Denote r = γρ. Recall the decom-
position of p introduced in (2.1) and the definition of η. By using the Calderón–
Zygmund estimate, Lemma 3.1 with q = 2(1 +α), the Poincaré inequality, and the
Sobolev embedding inequality, one has∫

B(x0,r)

|p̃x0,r|1+α dx

≤ N

∫
B(x0,r/2)

|u− [u]x0,r/2|2(1+α) dx

+N

∫
B(x0,r)

|∆−1∇ · (fη(2(x− x0)/r))|1+α dx

≤ N
( ∫

B(x0,r/2)

|∇u|2 dx
)2α( ∫

B(x0,r/2)

|u− [u]x0,r/2|2 dx
)1−α

+Nr−4α
( ∫

B(x0,r/2)

|u− [u]x0,r/2|2 dx
)1+α +N

( ∫
B(x0,r/2)

|f |
4+4α
5+α dx

) 5+α
4

≤ N
( ∫

B(x0,r/2)

|∇u|2 dx
)2α( ∫

B(x0,r/2)

|u|2 dx
)1−α

+N
( ∫

B(x0,r/2)

|f |
4+4α
5+α dx

) 5+α
4 ,(3.5)

where 4+4α
5+α ≥ 1. Here we also used the obvious inequality∫

B(x0,r/2)

|u− [u]x0,r/2|2 dx ≤
∫

B(x0,r/2)

|u|2 dx.

Similarly,∫
B(x0,ρ)

|p̃x0,ρ|1+α dx ≤N
( ∫

B(x0,ρ/2)

|∇u|2 dx
)2α( ∫

B(x0,ρ/2)

|u|2 dx
)1−α

+N
( ∫

B(x0,ρ/2)

|f |
4+4α
5+α dx

) 5+α
4 .(3.6)

Since hx0,ρ is harmonic in B(x0, ρ/3), any Sobolev norm of hx0,ρ in a smaller
ball can be estimated by its Lp norm in B(x0, ρ/3) for any p ∈ [1,∞]. Thus, by
using the Poincaré inequality one can obtain, for a.e. t,∫

B(x1,r)

|hx0,ρ − [hx0,ρ]x1,r|1+α dx

≤ Nr1+α

∫
B(x1,r)

|∇hx0,ρ|1+α dx

≤ Nr5+α sup
B(x1,r)

|∇hx0,ρ|1+α

≤ N(
r

ρ
)5+α

∫
B(x0,ρ/3)

|hx0,ρ(x, t)− [p]x0,ρ|1+α dx

≤ N(
r

ρ
)5+α[

∫
B(x0,ρ)

|p(x, t)− [p]x0,ρ|1+α + |p̃x0,ρ(x, t)|1+α dx].(3.7)
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Since p̃x0,r + hx0,r = p = p̃x0,ρ + hx0,ρ in B(x1, r), from (3.5), (3.6), and (3.7)
we get, for a.e. t,∫

B(x1,r)

|p(x, t)− [p]x1,r|1+α dx

≤
∫

B(x1,r)

|p̃x0,ρ − [p̃x0,ρ]x1,r|1+α dx+
∫

B(x1,r)

|hx0,ρ − [hx0,ρ]x1,r|1+α dx

≤
∫

B(x1,r)

|p̃x0,ρ|1+α dx+
∫

B(x1,r)

|hx0,ρ − [hx0,ρ]x1,r|1+α dx

≤ N
( ∫

B(x0,ρ/2)

|∇u|2 dx
)2α( ∫

B(x0,ρ/2)

|u|2 dx
)1−α

+N
( r
ρ

)5+α
∫

B(x0,ρ)

|p(x, t)− [p]x0,ρ|1+α dx+N
( ∫

B(x0,ρ)

|f |
4+4α
5+α dx

) 5+α
4 .(3.8)

Raising to power
1
2α

, integrating with respect to t in (t1−r2, t1), and using Hölder’s

inequality complete the proof of (3.2) and (3.3).
In the case 1/11 ≤ α < 1/3, we cannot use the Sobolev embedding inequality

directly in (3.5) because 4+4α
5+α < 1. However, since η has compact support, by using

Hölder’s inequality, we can get

N

∫
B(x0,r)

|∆−1∇ · (fη(2(x− x0)/r))|1+α dx

≤ Nr4(1−
1+α
1+β )

( ∫
B(x0,r)

|∆−1∇ · (fη(2(x− x0)/r))|1+β dx
) 1+α

1+β

≤ Nr4(1−
1+α
1+β )

( ∫
B(x0,r/2)

|f |
4+4β
5+β dx

) 5+β
4

1+α
1+β ,

where 1/3 ≤ β ≤ 1/2. Noting that 4+4β
5+β < 6 and 1+α

2α ≤ 6, we then prove (3.2) in
the same way as the case 1/3 ≤ α ≤ 1/2.

To prove (3.4), we use a slightly different estimate from (3.7). Again, since h
is harmonic in B(x0, ρ/3), we have∫

B(x1,r)

|hx0,ρ − [hx0,ρ]x1,r|3/2 dx

≤ Nr3/2

∫
B(x1,r)

|∇hx0,ρ|3/2 dx

≤ Nr11/2 sup
B(x1,r)

|∇hx0,ρ|3/2

≤ N
r11/2

ρ3/2+6/(1+α)

[ ∫
B(x0,ρ/3)

|hx0,ρ(x, t)− [p]x0,ρ|1+α dx
] 3

2(1+α)

≤ N
r11/2

ρ3/2+6/(1+α)

{[ ∫
B(x0,ρ)

|p(x, t)− [p]x0,ρ|1+α dx
] 3

2(1+α)

+ [
∫

B(x0,ρ)

|p̃x0,ρ(x, t)|1+α dx]
3

2(1+α)

}
.
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Similar to (3.8), we obtain, for a.e. t,∫
B(x1,r)

|p(x, t)− [p]x1,r|3/2 dx

≤ N
( ∫

B(x0,ρ/2)

|∇u|2 dx
)( ∫

B(x0,ρ/2)

|u|2 dx
)1/2

+N
r11/2

ρ3/2+6/(1+α)

{[∫
B(x0,ρ)

|p(x, t)− [p]x0,ρ|1+α dx
] 3

2(1+α)

+
( ∫

B(x0,ρ)

|∇u(x, t)|2 dx
) 3α

1+α
( ∫

B(x0,ρ)

|u(x, t)|2 dx
) 3(1−α)

2(1+α)

}
+N

( ∫
B(x0,ρ)

|f | 1211 dx
) 11

8 .

Integrating with respect to t in (t1 − r2, t1) and applying Hölder’s inequality com-
plete the proof of (3.4). �

Lemma 3.5. Suppose that θ ∈ (0, 1/2], ρ > 0 are constants and Q(z0, ρ) ⊂ QT .
Then we have

A(θρ) + E(θρ) ≤ Nθ−2
[
C2/3(ρ) + C(ρ) + C1/3(ρ)D2/3(ρ) +G(ρ)

]
.

In particular, when θ = 1/2 we have

(3.9) A(ρ/2) + E(ρ/2) ≤ N
[
C2/3(ρ) + C(ρ) + C1/3(ρ)D2/3(ρ) +G(ρ)

]
.

Proof. Let r = θρ. In the energy inequality (1.3), we set t = t0 and choose a
suitable smooth cut-off function ψ such that

ψ ≡ 0 in Qt0\Q(z0, ρ), 0 ≤ ψ ≤ 1 in QT ,

ψ ≡ 1 in Q(z0, r), |∇ψ| < Nρ−1, |∂tψ|+ |∇2ψ| ≤ Nρ−2 in Qt0 .

By using (1.3) and because u is divergence free, we get

A(r) + 2E(r) ≤ N

r2

[ 1
ρ2

∫
Q(z0,ρ)

|u|2 dz +
1
ρ

∫
Q(z0,ρ)

(|u|2 + 2|p− [p]x0,ρ|)|u| dz

+
∫

Q(z0,ρ)

|f ||u| dz
]
.

Using Hölder’s inequality and Young’s inequality, one can obtain∫
Q(z0,ρ)

|u|2 dz ≤
( ∫

Q(z0,ρ)

|u|3 dz
)2/3( ∫

Q(z0,ρ)

dz
)1/3 ≤ ρ4C2/3(ρ),

∫
Q(z0,ρ)

|p− [p]x0,ρ||u| dz

≤
( ∫

Q(z0,ρ)

|p− [p]x0,ρ|3/2 dz
)2/3( ∫

Q(z0,ρ)

|u|3 dz
)1/3

≤ Nρ3D2/3(ρ)C1/3(ρ),
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and ∫
Q(z0,ρ)

|f ||u| dz ≤ ρ2

∫
Q(z0,ρ)

|f |2 dz +
1
ρ2

∫
Q(z0,ρ)

|u|2 dz

≤ ρ6
[ ∫

Q(z0,ρ)

|f |6 dz
]1/3

+
1
ρ2

∫
Q(z0,ρ)

|u|2 dz.

Then the conclusion follows immediately. �

As a conclusion, we can obtain

Proposition 3.6. For any ε0 > 0, there exists ε1 > 0 small such that for any
z0 ∈ QT satisfying

(3.10) lim sup
r↘0

E(r) ≤ ε1,

we can find ρ0 sufficiently small such that

(3.11) A(ρ0) + E(ρ0) + C(ρ0) +D(ρ0) + F (ρ0) ≤ ε0.

Proof. First, we prove (3.11) without the presence of F on the left-hand side.
For a given point

z0 = (x0, t0) ∈ QT

satisfying (3.10), choose ρ1 > 0 such that Q(z0, ρ1) ⊂ QT . Then for any ρ ∈ (0, ρ1]
and γ ∈ (0, 1/8), by using (3.9) and Young’s inequality,

A(γρ) + E(γρ) ≤ N
[
C2/3(2γρ) + C(2γρ) +D(2γρ) +G(2γρ)

]
.

Then, combining with (3.1) and (3.3) and using Young’s inequality again, we have

A(γρ) + E(γρ) + C(γρ) +D(γρ)

≤ N
[
γ2/3C2/3(ρ) + γ5/2D(ρ) + γC(ρ) + γA(ρ)

]
+Nγ−100

(
E(ρ) + E3(ρ) +G(ρ)

)
+Nγ2/3

≤ Nγ2/3
[
A(ρ) + E(ρ) + C(ρ) +D(ρ)

]
+Nγ2/3

+Nγ−100
(
E(ρ) + E3(ρ) +G(ρ)

)
.(3.12)

Since f ∈ L6,loc(QT ), we have

(3.13) G(ρ) ≤ ‖f‖2L6(Q(z0,ρ1))
ρ4.

It is easy to see that for any ε0 > 0, there are sufficiently small real numbers
γ ≤ 1/(2N)3/2 and ε1 such that if (3.10) holds then for all small ρ we have

Nγ2/3 +Nγ−100
(
E(ρ) + E3(ρ) +G(ρ)

)
< ε0/2.

By using (3.12), we can obtain

A(ρ0) + C(ρ0) +D(ρ0) ≤ ε0

for some ρ0 > 0 small enough. To include F in the estimate, it suffices to use
(3.2). �
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3.2. Step 2. In the second step, first we will estimate the values of A, E, C,
and F in a smaller ball by the values of themselves in a larger ball.

Lemma 3.7. Suppose that ρ > 0, θ ∈ (0, 1/16] are constants and Q(z1, ρ) ⊂ QT .
Then we have

(3.14) A(θρ) + E(θρ) ≤ Nθ2A(ρ) +Nθ−3
[
A(ρ) + E(ρ) + F (ρ)

]3/2

+Nθ−3G3/4(ρ) +Nθ−6G(ρ),

where N is a constant independent of ρ, θ, and z1.

Proof. Let r = θρ. Define the backward heat kernel as

Γ(x, t) =
1

(4π)2(r2 + t1 − t)2
e
− |x−x1|

2

4(r2+t1−t) .

In the energy inequality (1.3) we put t = t1 and choose ψ = Γφ := Γφ1(x)φ2(t),
where φ1 and φ2 are suitable smooth cut-off functions satisfying

φ1 ≡ 0 in R4\B(x1, ρ), 0 ≤ φ1 ≤ 1 in R4, φ1 ≡ 1 in B(x1, ρ/2),

φ2 ≡ 0 in (−∞, t1 − ρ2) ∪ (t1 + ρ2,+∞), 0 ≤ φ2 ≤ 1 in R,
φ2 ≡ 1 in (t1 − ρ2/4, t1 + ρ2/4), |∂tφ2| ≤ Nρ−2 in R,
|∇φ1| ≤ Nρ−1, |∇2φ1| ≤ Nρ−2 in R4.(3.15)

By using the equality
∆Γ + Γt = 0,

we have∫
B(x1,ρ)

|u(x, t)|2Γ(t, x)φ(x, t) dx+ 2
∫

Q(z1,ρ)

|∇u|2Γφdz

≤
∫

Q(z1,ρ)

{
|u|2(Γφt + Γ∆φ+ 2∇φ∇Γ) + (|u|2 + 2p)u · (Γ∇φ+ φ∇Γ)

}
dz

+
∫

Q(z1,ρ)

2|f ||u||Γφ| dz.

(3.16)

With straightforward computations, it is easy to see the following three prop-
erties:
(i) For some constant c > 0, on Q̄(z1, r) it holds that

Γφ = Γ ≥ cr−4.

(ii) For any z ∈ Q(z1, ρ), we have

|Γ(z)φ(z)| ≤ Nr−4, |φ(z)∇Γ(z)|+ |∇φ(z)Γ(z)| ≤ Nr−5.

(iii) For any z ∈ Q(z1, ρ)\Q(z1, r), we have

|Γ(z)φt(z)|+ |Γ(z)∆φ(z)|+ |∇φ∇Γ| ≤ Nρ−6.

These properties together with (3.15) and (3.16) yield

(3.17) A(r) + E(r) ≤ N
[
θ2A(ρ) + θ−3(C(ρ) +D(ρ)) + θ−6G(ρ)

]
.

Owing to (3.1) with q = 3, we can get

(3.18) C(ρ/8) ≤ NC(ρ) ≤ N
[
A(ρ) + E(ρ)

]3/2
.
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By using (3.4) with γ = 1/8, we have

(3.19) D(ρ/8) ≤ N
[
A(ρ) + E(ρ) + F (ρ)

]3/2 +NG3/4(ρ).

Upon combining (3.17) (with ρ/8 in place of ρ) to (3.19) together, the lemma is
proved. �

Lemma 3.8. Suppose that ρ > 0 is constant and Q(z1, ρ) ⊂ QT . Then we can
find θ1 ∈ (0, 1/256] small such that

(3.20) A(θ1ρ) + E(θ1ρ) + F (θ1ρ) ≤
1
2
[
A(ρ) + E(ρ) + F (ρ)

]
+N(θ1)

[
A(ρ) + E(ρ) + F (ρ)

]3/2 +N(θ1)
[
G(ρ) +G1/2(ρ)

]
,

where N is a constant independent of ρ and z1.

Proof. Due to (3.2) and (3.14), for any γ, θ ∈ (0, 1/16], we have

F (γθρ) ≤N
[
γ−2(A(θρ) + E(θρ)) + γ(3−α)/(1+α)F (θρ) + γ−2G1/2(θρ)

]
≤Nγ−2θ2A(ρ) + γ(3−α)/(1+α)θ−2F (ρ) + γ−2G1/2(ρ)

+Nγ−2θ−3
[
A(ρ) + E(ρ) + F (ρ)

]3/2
,(3.21)

and

A(γθρ) + E(γθρ) ≤ N(γθ)2A(ρ) +N(γθ)−3
[
A(ρ) + E(ρ) + F (ρ)

]3/2

+N(γθ)−6G(ρ) +N(γθ)−3G3/4(ρ).(3.22)

Now we set α = 1/5 such that (3−α)/(1+α) = 7/3 > 2, and choose and fix γ and
θ sufficiently small such that

N
[
γ−2θ2 + γ7/3θ−2 + γ2θ2

]
≤ 1

2
.

Upon adding (3.21) and (3.22), we obtain

A(γθρ) + E(γθρ) + F (γθρ) ≤ 1
2
A(ρ) +N

[
A(ρ) + E(ρ) + F (ρ)

]3/2

+N
[
G(ρ) +G1/2(ρ) +G3/4(ρ)

]
,

where N only depends on θ and γ. After putting θ1 = γθ, the lemma is proved. �

In the next proposition we will study the decay property of A, C, E, and F as
the radius ρ goes to zero.

Proposition 3.9. There exists ε0 > 0 satisfying the following property. Sup-
pose that for some z0 ∈ QT and ρ0 > 0 satisfying Q(z0, ρ0) ⊂ QT we have

(3.23) C(ρ0) +D(ρ0) + F (ρ0) +G(ρ0) ≤ ε0.

Then we can find N > 0 and α0 ∈ (0, 1) such that for any ρ ∈ (0, ρ0/8) and
z1 ∈ Q(z0, ρ/8), the following inequality will hold uniformly

(3.24) A(ρ, z1) + C(ρ, z1) + E(ρ, z1) + F (ρ, z1) +D(ρ, z1) ≤ Nρα0 ,

where N is a positive constant independent of ρ and z1.
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Proof. Fix the constant θ1 ∈ (0, 1/256] from Lemma 3.8 and let N(θ1) > 0
be the same constant from (3.20). Due to (3.9), (3.23), and (3.2), we first choose
ε′ > 0 and then ε0 = ε0(ε′) > 0 sufficiently small such that,

(3.25) N(θ1)
√
ε′ ≤ 1/4, N(θ1)

(
ε0 + ε

1/2
0

)
≤ ε′/2,

A(ρ0/2) + E(ρ0/2) ≤ ε′

32
,

and for any z1 ∈ Q(z0, ρ0/8),

F (ρ0/8, z1) ≤ N
[
A2/3(

ρ0

2
)E1/3(

ρ0

2
) + F (ρ0) +G1/2(ρ0)

]
≤ ε′

32
.

By using

Q(z1, ρ0/8) ⊂ Q(z0, ρ0/2) ⊂ QT ,

we then have

φ(ρ0) := A(ρ0/8, z1) + E(ρ0/8, z1) + F (ρ0/8, z1) ≤ ε′.

From (3.20) and (3.25) with ρ = ρ0/8, we obtain inductively that

φ(θk
1ρ0) = A(θk

1ρ0/8, z1) + E(θk
1ρ0/8, z1) + F (θk

1ρ0/8, z1) ≤ ε′

(holding for k = 1, 2, ...). It then similarly follows from (3.20) and (3.25) that

(3.26) φ(θk
1ρ0) ≤

3
4
φ(θk−1

1 ρ0) +N1(θk−1
1 ρ0)2,

where we have used the estimate

G(θk−1
1 ρ0/8, z1) +G1/2(θk−1

1 ρ0/8, z1) ≤ N(‖f‖L6(Q(z0,ρ0/2))(θk−1
1 ρ0)2.

By a standard iteration argument, we obtain the decay rate of φ as follows. We
iterate (3.26) to obtain

φ(θk
1ρ0) ≤ (

3
4
)k

[
φ(ρ0) +

2N1

1− θ1
ρ2
0

]
,

where we have used that θ1 < 3/4. Since ρ ∈ (0, ρ0/8) we can find k such that
θk
1

ρ0

8
< ρ ≤ θk−1

1

ρ0

8
. Then

A(ρ, z1) + E(ρ, z1) + F (ρ, z1) ≤ N(θ1)(
3
4
)k

[
φ(ρ0) +

2N1

1− θ1
ρ2
0

]
≤ Nρα0 ,

where N = N(θ1, φ(ρ0), N1, ρ0) and α0 =
log(3/4)
log(θ1)

> 0. This yields (3.24) for

the terms A, E, and F . The inequality for C(ρ, z1) follows from (3.18) and the
inequality for D(ρ, z1) follows by (3.4). �
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3.3. Step 3. In the final step, we are going to use a bootstrap argument to
successively improve the decay estimate (3.24). However, as we will show below,
the bootstrap argument itself only gives the decay of E(ρ) no more than ρ5/3, for
instance, one can get an estimate like∫

Q(z1,ρ)

|∇u|2 dz ≤ Nρ2+ 5
3

for any ρ sufficiently small. Unfortunately, this decay estimate is not enough for
the Hölder regularity of u since the spatial dimension is four (so that we need the
decay exponent 4 + ε according to Morrey’s lemma). We shall use the parabolic
regularity theory to fill in this gap.

First we prove Theorem 1.2. We begin with the bootstrap argument. We shall
choose an increasing sequence of real numbers {αk}m

k=0 ∈ (α0, 5/3]. Under the
condition (3.24), we claim that the following estimates hold uniformly for all ρ > 0
sufficiently small and z1 ∈ Q(z0, ρ0/8) over the range of {αk}m

k=0:

A(ρ, z1) + E(ρ, z1) ≤ Nραk , C(ρ, z1) +D(ρ, z1) ≤ Nρ3αk/2.(3.27)

We prove this via iteration. The k = 0 case for (3.27) was proved in (3.24) with a
possibly different exponent α0.

Now we suppose (3.24) holds with the exponent αk. We first estimate A(ρ, z1)
and E(ρ, z1). Let ρ = θ̃ρ̃, where θ̃ = ρµ, ρ̃ = ρ1−µ and µ ∈ (0, 1) to be determined.
We use (3.17), (3.27) (for αk), and (3.13) to obtain

A(ρ) + E(ρ) ≤ Nρ2µραk(1−µ) +Nρ−3µρ
3
2 αk(1−µ) +Nρ4(1−µ)ρ−6µ.

Setting µ =
αk

10 + αk
gives (3.27) for A(ρ) + E(ρ) with the exponent of

α̃k+1 := min
{

2µ+ αk(1− µ),
3
2
αk(1− µ)− 3µ, 4(1− µ)− 6µ

}
=

12
10 + αk

αk ∈ (αk, 2).

The estimate in (3.27) (with α̃k+1) for C(ρ, z1) follows from (3.18). To prove the
estimate in (3.27) (with αk+1) for D(ρ, z1) we use Lemma 3.4. From (3.3) and
(3.13), we have

D(γρ, z1) ≤ N
[
γ−3ρ

3
2 α̃k+1 + γ5/2D(ρ, z1) + γ−3ρ3

]
.

For any r small, we take the supremum on both sides with respect to ρ ∈ (0, r) and
get

sup
ρ∈(0,r]

D(γρ, z1) ≤ Nγ−3r
3
2 α̃k+1 +Nγ5/2 sup

ρ∈(0,r]

D(ρ, z1) + γ−3r3.

Set

(3.28) αk+1 = min
{5

3
, α̃k+1

}
.

By using a well-known iteration argument, similar to (3.26), we obtain the estimate
in (3.27) (with αk+1) for D(ρ). Since αk+1 ≤ α̃k+1, the estimates in (3.27) for
A(ρ) + E(ρ) and C(ρ) still holds with αk+1 in place of α̃k+1. Therefore, we have
shown how to build the increasing sequence of {αk} for which (3.27) holds.
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Note that

2− α̃k+1 =
10

10 + α̃k
(2− α̃k) ≤ 10

10 + α0
(2− α̃k).

Thus, we can find a m that αm =
5
3

according to (3.28) because otherwise αk =
α̃k → 2 as k →∞.

We have derived the following estimates via the bootstrap argument:

(3.29) sup
t1−ρ2≤t≤t1

∫
B(x1,ρ)

|u(x, t)|2 dx ≤ Nρ2+ 5
3 ,

(3.30)
∫

Q(z1,ρ)

|u|3 + |p− [p]x1,ρ|3/2 dz ≤ Nρ3+ 5
2 .

Next we rewrite (1.1) (in the weak sense) into

(3.31) ∂tui −∆ui = −∂j(uiuj)− ∂ip+ fi.

Finally, we use the parabolic regularity theory to improve the decay estimate
of mean oscillations of u and then complete the proof. Due to (3.29) and (3.30),
there exists ρ1 ∈ (ρ/2, ρ) such that
(3.32)∫

B(x1,ρ1)

|u(x, t1 − ρ2
1)|2 dx ≤ Nρ2+ 5

3 ,

∫ t1

t1−ρ2
1

∫
S(x1,ρ1)

|u|3 dx dt ≤ Nρ2+ 5
2 .

Let v be the unique weak solution to the heat equation

∂tv −∆v = 0 in Q(z1, ρ1)

with the boundary condition vi = ui on ∂pQ(z1, ρ1). It follows from the standard
estimates for the heat equation, Hölder’s inequality, and (3.32) that

sup
Q(z1,ρ1/2)

|∇v|

≤ Nρ−6
1

∫ t1

t1−ρ2
1

∫
S(x1,ρ1)

|v| dx dt+Nρ−5
1

∫
B(x1,ρ1)

|v(x, t1 − ρ2
1)| dx

≤ Nρ−2+ 5
6 .(3.33)

Denote w = u− v. Then w satisfies the linear parabolic equation

∂twi −∆wi = −∂j(uiuj)− ∂i(p− [p]x1,ρ) + fi

with the zero boundary condition. By the classical Lp estimate for parabolic equa-
tions, we have

‖∇w‖L3/2(Q(z1,ρ1)) ≤ N‖|u|2‖L3/2(Q(z1,ρ1)) +N‖p− [p]x1,ρ‖L3/2(Q(z1,ρ1))

+Nρ1‖f‖L3/2(Q(z1,ρ1)),

which together with (3.30) and the condition f ∈ L6,loc yields

(3.34)
∫

Q(z1,ρ1)

|∇w|3/2 dz ≤ Nρ11/2.

Since |∇u| ≤ |∇w| + |∇v|, we combine (3.33) and (3.34) to obtain, for any r ∈
(0, ρ/4), that ∫

Q(z1,r)

|∇u|3/2 dz ≤ Nρ11/2 + r6ρ−3+ 5
4 .
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Upon taking r = ρ29/24/4 (with ρ small), we deduce

(3.35)
∫

Q(z1,r)

|∇u|3/2 dz ≤ Nrβ ,

where

β =
132
29

> 6− 3
2
.

Since u ∈ H1
3/2,loc is a weak solution to (3.31), it then follows from Lemma 3.2,

(3.35), and (3.30) with r in place of ρ that∫
Q(z1,r)

|u− (u)z1,r|3/2 dz

≤ Nr3/2

∫
Q(z1,r)

∣∣∇u|3/2 + (|u|2)3/2 + |p− [p]x1,r|3/2 + r3/2|f |3/2
)
dz

≤ Nrβ+3/2.

By Campanato’s characterization of Hölder continuous functions (see, for instance,
[11, Lemma 4.3]), u is Hölder continuous in a neighborhood of z0. This completes
the proof of Theorem 1.2.

Theorem 1.1 then follows from Theorem 1.2 by applying Proposition 3.6. Fi-
nally, Theorem 1.3 is deduced from Theorem 1.1 by using a standard argument in
the geometric measure theory, which is explained, for example, in [1].

Final Remarks: Finally we mention that in [6] Han and He studied the partial
regularity for 4D MHD equations, which reduce to the Navier–Stokes equations by
setting the magnetic field to be zero. However, it seems to us that their argument,
in particular the proof of Lemma 2.6 there, does not seem to be complete.

After we finished this paper, we learned that a result similar to Theorem 1.1 was
obtained recently in Wang and Wu [20] by following the proof in [19]. Compared to
[6, 20], apart from a standard argument to get some estimates of the scale-invariant
quantities, our methodology is completely different. Our proof can also be adapted
to other situations, for instance, the boundary partial regularity problems, which
we plan to study in a subsequent paper [4].
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