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Regularity of solutions of a phase field model
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Abstract. Phase field models are widely-used for modelling phase transition
processes such as solidification, freezing or CO2 sequestration. In this paper,
a phase field model proposed by G. Caginalp is considered. The existence
and uniqueness of solutions are proved in the case of nonsmooth initial data.
Continuity of solutions with respect to time is established. In particular, it is
shown that the governing initial boundary value problem can be considered as
a dynamical system.
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1. Introduction

Nowadays, phase field techniques for modeling of solidification and freezing
processes become very popular (see e.g. [1], [6], [2], [5], [8], and [17]). They are
based on the consideration of the Gibbs free energy which depends on an order
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parameter that assumes values from -1 (solid) to 1 (liquid) and changes sharply
but smoothly over the solidification front so that the sharp liquid/solid interface
becomes smoothed. The rate of smoothing is controlled by a small parameter,
which enables to reach arbitrary approximation of the sharp interface.

Phase field models are also appropriate for the description of phase transitions
when modeling CO2 sequestration. The supercritical carbon dioxide, CO2 that has
been pressurized to a phase between gas and liquid, may be injected into a saline
aquifer where it may either dissolve in the brine, react with the dissolved minerals
or the surrounding rock, or become trapped in the pore space of the aquifer.

In this paper, we consider a phase field model proposed by G. Caginalp in [1].
The aim of the investigation is to prove the existence and uniqueness of solutions
to this model for very general initial data (comp. with [13], [9], [4], [3], [16], and
[14]). Moreover, it will be proved that the solutions are continuous in time, and
their values at each time instant lie in the same space as the initial data. Thus, the
model can be considered as a dynamical system.

The paper is structured as follows. Section 2 introduces the phase field model.
The precise formulation of the main results of the paper are given in Section 3.
Approximate solutions are constructed in Section 4, and the existence of weak
solutions is shown in Section 5. Uniqueness, stability and continuity in time of
solutions are proved in Section 6.

2. The Model

The phase field model derived by G. Caginalp (see [1]) is given by system
(2.1). The temperature u and the phase-function φ are defined on a bounded
domain Ω ⊂ RN , N ∈ {2, 3}. The evolution of these functions is given by the
initial boundary value problem

(2.1)

ut +
l

2
φt − κ∆u = 0 in Ω× (0, T ),

τ φt − 2u+
1
2

(
φ3 − φ

)
− ξ2∆φ = 0 in Ω× (0, T ),

−κ ∂νu = λ(u− g), −∂νφ = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), φ(x) = φ0(x) for t = 0 on Ω.

The constants κ and l appearing in (2.1) denote the heat conductivity and the
latent heat, respectively. The boundary temperature regime is defined by a given
function g. The region Ω is assumed to be a bounded domain in RN with Lipschitz
boundary, i.e. ∂Ω is of class C0,1. The evolution of u and φ is considered on the
time interval [0, T ] where the finial time instant T is an arbitrary positive and finite
real number.

In order to analyze the regularity of solutions of system (2.1), we rewrite the
equations in terms of different unknowns. Instead of considering the unknown
temperature u with an initial value u0, introduce the functions

(2.2) v := u+
l

2
φ, v0(x) := u0(x) +

l

2
φ0(x).
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If the functions u and φ satisfy system (2.1), the unknowns v and φ solve the
following initial-boundary value problem:

(2.3)

vt − κ∆v +
κ l

2
∆φ = 0 in Ω,

τφt − 2v +
(
l − 1

2

)
φ+

1
2
φ3 − ξ2∆φ = 0 in Ω,

−κ ∂νv = λ

(
v − l

2
φ− g

)
, −∂νφ = 0 on ∂Ω,

v(x) = v0(x), φ(x) = φ0(x) for t = 0 on Ω.

3. Statement of the problem and main result

In this section, we first introduce some notations that will be used throughout
the paper and then formulate the main results, see Th. 3.2 and Cor. 3.3 below.

If not stated differently, the following notation is used throughout the paper:

(3.1)

ΩT := Ω× (0, T ), ∂ΩT := ∂Ω× (0, T ),

H := H1(ΩT ), HT := {f ∈ H : f(x, T ) = 0 for a. a. x ∈ Ω} ,

C1
T ([0, T ]) :=

{
f ∈ C1([0, T ]) : f(T ) = 0

}
,

Y := L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

‖y‖Y = ‖y‖L2(0,T ;H1(Ω)) + ‖y‖L∞(0,T ;L2(Ω)) ,

X := L2(0, T ;H1(Ω)) ∩ L4(ΩT ),

‖x‖X = ‖x‖L2(0,T ;H1(Ω)) + ‖x‖L4(ΩT ) ,

X ′ := L2(0, T ; (H1(Ω))′) + L4/3(ΩT ),

‖f‖X′ = inf
f1∈L2(0,T ;(H1(Ω))′)

f2∈L4/3(ΩT )
f1+f2=f

max
{
‖f1‖L2(0,T ;(H1(Ω))′) , ‖f2‖L4/3(ΩT )

}
,

W := {u ∈ X : ut ∈ X ′} , ‖u‖W := ‖u‖X + ‖ut‖X′ .

Indeed, (X ′, ‖·‖X′) is the normed dual of the separable and reflexive Banach space
(X, ‖·‖X), see [7, Chap. IV].

The next definition states the sense of weak solutions.

Definition 3.1. A pair of functions (v, φ) with v ∈ L2(0, T ;H1(Ω)) and φ ∈ X
is called weak solution of problem (2.3), if the following equation

(3.2)

0 =−
∫

Ω

[
v0 ψ0 + τφ0 η0

]
dx−

∫ T

0

∫
Ω

[v ψt + τφ ηt] dxdt

+
∫ T

0

∫
Ω

[
κ∇v − κ l

2
∇φ

]
∇ψ dxdt+ λ

∫ T

0

∫
∂Ω

[
v − l

2
φ− g

]
ψ dsdt

+
∫ T

0

∫
Ω

[{
−2v +

(
l − 1

2

)
φ+

1
2
φ3

}
η + ξ2∇φ · ∇η

]
dxdt,

holds true for all ψ, η ∈ H with η ∈ L4(ΩT ).



356 T. G. AMLER, N. D. BOTKIN, K.-H. HOFFMANN, AND K. A. RUF

The main result on problem (2.3) is stated in the following theorem.

Theorem 3.2. Let v0, φ0 ∈ L2(Ω), g ∈ L2(∂ΩT ) be arbitrary functions. Then
system (2.3) has a unique weak solution (v, φ) in the sense of Definition 3.1. The
components v and φ of the solution have regularity: v, φ ∈ C

(
[0, T ];L2(Ω)

)
. More-

over, if v0
i , φ

0
i ∈ L2(Ω), and gi ∈ L2(∂ΩT ), i = 1, 2, then

(3.3) ‖v̄‖2
Y ,

∥∥φ̄∥∥2

Y
≤ C

(
1 + T eT

) [∥∥v̄0
∥∥2

L2(Ω)
+

∥∥φ̄0
∥∥2

L2(Ω)
+ ‖ḡ‖2

L2(∂ΩT )

]
,

where ḡ = g1 − g2, v̄ = v1 − v2, φ̄ = φ1 − φ2, v̄0 = v0
1 − v0

2, and φ̄0 = φ0
1 − φ0

2. The
constant C is independent of vi, φi, v0

i , φ
0
i , and gi, i = 1, 2.

The proof of Th. 3.2 is given in Sections 5 and 6: the existence of weak solutions
is stated in Lemma 5.1, the continuity in time follows from the technical Lemma 6.1,
and the stability estimate (3.3) is given in Lemma 6.2.

The following corollary is a consequence of the continuity in time of the solution
components v and φ asserted in Th. 3.2.

Corollary 3.3. Assume the hypotheses of Th. 3.2. Model (2.3) can be con-
sidered as a dynamical system with state space (L2(Ω))2 and evolution function

Ψ : [0, T ]× (L2(Ω))2 → (L2(Ω))2, (t, v0, φ0) 7→ (v(t), φ(t)).

To show Cor. 3.3, notice that Ψ is a well-defined mapping under the assumptions
of Th. 3.2. More precisely, weak solutions of problem (2.3) are unique by estimate
(3.3), and the mapping Ψ(t, v0, φ0) = (v(t), φ(t)) is defined for each time instant,
t ∈ [0, T ], since v and φ are continuous in time with values in L2(Ω).

4. Construction of Approximations

In this section, we construct approximate solutions to problem (2.3) that will
be used in Section 5 to establish the existence of weak solutions in the sense of
Definition 3.1.

Let {ωi}∞i=1 be an orthogonal basis in H1(Ω) and L2(Ω) simultaneously (such
a basis really exists). Consider Galerkin-Approximations of the form

(4.1) vm(x, t) =
m∑

i=0

am
i (t)ωi(x) , φm(x, t) =

m∑
i=0

bmi (t)ωi(x),

where am
i (t) and bmi (t) are unknown functions.

To determine the coefficients am
i and bmi , we derive a system of ordinary dif-

ferential equations. Extend g by zero for t > T , and (similar to [10, Chap. II, §4])
let gm be the Steklov average of g

gm(x, t) = m

∫ t+1/m

t

g(x, τ) dτ.

Then gm ∈ C(R;L2(∂Ω)) ∩L2(∂ΩR), and gm → g strongly in L2(∂ΩT ) as m→∞.
Substitute the approximations (4.1) into (3.2), cancel the integration over time,

and replace the couples of test functions (ψ, η) first by (ωj , 0) and second by (0, ωk),
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j, k = 1, . . . ,m. This yields the ordinary differential equations

(4.2)

0 =
m∑

i=1

ȧm
i (t)

∫
Ω

ωi ωj dx− λ

∫
∂Ω

gm(t)ωj ds

+
m∑

i=1

[
κ am

i (t) +
κ l

2
bmi (t)

] ∫
Ω

∇ωi · ∇ωj dx

+ λ

m∑
i=1

∫
∂Ω

[
am

i (t)− l

2
bmi (t)

]
ωi ωj ds (j = 1, . . . ,m),

0 =
m∑

i=1

τ ḃmi (t)
∫

Ω

ωi ωk dx +
m∑

i=1

ξ2 bmi (t)
∫

Ω

∇ωi · ∇ωk dx

+
1
2

∫
Ω

( m∑
i=1

bmi (t)ωi

)3

ωk dx

+
m∑

i=1

∫
Ω

[{
−2 am

i (t) +
(
l − 1

2

)
bmi (t)

}
ωi ωk dx

]
(k = 1, . . . ,m).

Assuming that {ωi} is also orthonormal in L2(Ω), equation (4.2) can be written as
a system of ordinary differential equations determining the coefficients am

i (t) and
bmi (t) as follows:

ȧm
j (t) +Am

j (t, am
1 , ..., a

m
m, b

m
1 , ..., b

m
m) = 0

τ ḃmj (t) +Bm
j (t, am

1 , ..., a
m
m, b

m
1 , ..., b

m
m) = 0

}
for j = 1, ...,m,

where the functions Am
j and Bm

j depend analytically on their variables. This system
can be rewritten as

(4.3)
[
Im 0
0 τ Im

] [
ȧm

ḃ
m

]
+

[
Am

Bm

]
= 0,

where Im denotes the m×m identity-matrix. The initial conditions for system (4.3)
are given by

(4.4) am
j (0) =

∫
Ω

ωj v
0 dx, bmj (0) =

∫
Ω

ωj φ
0 dx, for j = 1, ...,m.

Since the functions Am and Bm are smooth with respect to all their variables, the
theory of ordinary differential equations shows that, for each fixed m, there exists
a non-empty time interval [0, Tm] on which (4.3) is solvable.

Next, we show that Tm can be chosen independently of m. To this end, note
that if am

i and bmi are the solution of (4.3), they are continuously differentiable.
Multiply the first equations in (4.2) by am

j (t) and sum up over j = 1, . . . ,m. Multi-
ply the second equations in (4.2) by α bmk (t) (the constant α will be specified later)
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and sum up over k = 1, . . . ,m. By the ansatz (4.1) this yields

0 =
∫

Ω

[
vm vm

t + κ |∇vm|2 − κ l

2
∇φm · ∇vm

]
dx

+ λ

∫
∂Ω

[
|vm|2 − l

2
φm vm − gm vm

]
ds

+ α

∫
Ω

[
τ φm φm

t +
(
l − 1

2

)
|φm|2 +

1
2
|φm|4 + ξ2 |∇φm|2

]
dx.

Integrating over a time interval (0, t), t ∈ (0, Tm], using the product rule for the
time derivatives and applying Young’s inequality yield (with ε > 0)

(4.5)

1
2

∫
Ω

[
vm(t)2 + α τ φm(t)2

]
dx + λ

∫ t

0

∫
∂Ω

|vm|2 dsdτ

+
∫ t

0

∫
Ω

[
κ |∇vm|2 +

α

2
|φm|4 + α ξ2 |∇φm|2

]
dxdτ

≤ 1
2

∫
Ω

[
|v0|2 + α τ |φ0|2

]
dx

+ λ

∫ t

0

∫
∂Ω

[
ε|vm|2 +

|gm|2

2ε
+
l2

8ε
|φm|2

]
dsdτ

+
∫ t

0

∫
Ω

[
α

(
l − 1

2

)
|φm|2 +

κ

2
|∇vm| +

l2 κ

2
|∇φm|2

]
dxdτ.

Choose ε = 1/2 and use the embedding H1(Ω) ↪→ L2(∂Ω) to obtain

(4.6)
l2 λ

4

∫
∂Ω

|φm|2 ds ≤ C

∫
Ω

[
|φm|2 + |∇φm|2

]
dx,

where C is a constant that is independent of φm. Now, choose α such that

(4.7) β := α ξ2 − l2 κ

2
− C > 0.

Reinserting (4.6) and (4.7) into (4.5) yields

(4.8)

1
2

∫
Ω

[
vm(t)2 + α τ φm(t)2

]
dx +

λ

2

∫ t

0

∫
∂Ω

|vm|2 dsdτ

+
∫ t

0

∫
Ω

[κ
2
|∇vm|2 +

α

2
|φm|4 + β ξ2 |∇φm|2

]
dxdτ

≤ 1
2

∫
Ω

[
|v0|2 + α τ |φ0|2

]
dx + λ

∫ t

0

∫
∂Ω

|gm|2dsdτ

+
∫ t

0

∫
Ω

(
C + l − 1

2

)
|φm|2 dxdτ.

By Gronwall’s inequality we obtain that

(4.9)
vm, φm bounded in L∞(0, Tm;L2(Ω)) ∩ L2(0, Tm;H1(Ω)),

φm bounded in L4(0, Tm;L4(Ω))
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and moreover the bounds are independent of m and t. Due to the choice of {ωj}j∈N
it holds

‖vm(t)‖2
L2(Ω) =

m∑
i=1

|am
i (t)|2 and ‖φm(t)‖2

L2(Ω) =
m∑

i=1

|bmi (t)|2.

Therefore (4.9) shows that am
i and bmi (i = 1, . . . ,m) are bounded on [0, Tm] and

can be continued beyond Tm. Consequently, there exists no maximal Tm, and am
i

and bmi can be defined on [0,∞) for each m.

5. Existence of weak solutions

In this section, we show that weak solutions to problem (2.3) can be extracted
from the sequences {vm} and {φm} constructed in Section 4. The next lemma
establishes the existence of solutions to problem (2.3) and a regularity result for
the time derivatives of the solution components. This regularity is needed in Section
6 to show the uniqueness of the solution.

Lemma 5.1. Problem (2.3) has at least one weak solution (v, φ) in the sense
of Definition 3.1. Each of the weak solutions satisfies: vt ∈ L2(0, T ; (H1(Ω))′) and
φt ∈ L2(0, T ; (H1(Ω))′) + L4/3(ΩT ).

Proof. Due to (4.9), there exist functions v, φ and ζ such that (up to subse-
quences)

(5.1)

vm ∗
⇀ v in Y,

φm ∗
⇀ φ in Y ∩X,

(φm)3 ∗
⇀ ζ in L4/3(ΩT ),

see definitions (3.1). By the construction of the approximate solutions in (4.1),
(4.2), and (4.4) the functions vm and φm satisfy the equation

(5.2)

0 =−
∫

Ω

[
v0,m ψ0 + φ0,m η0

]
dx

+
∫ T

0

∫
Ω

[
−vm ψt +

(
κ∇vm − κ l

2
∇φm

)
∇ψ

]
dxdt

+ λ

∫ T

0

∫
∂Ω

(
vm − l

2
φm − gm

)
ψ dsdt

+
∫ T

0

∫
Ω

[
−τφm ηt +

{
−2vm +

(
l − 1

2

)
φm +

1
2
(φm)3

}
η

]
dxdt

+
∫ T

0

∫
Ω

ξ2∇φm∇η dxdt

for all ψ and η which are linear combinations of functions cj(t)ωj(x), cj(t) ∈
C1

T ([0, T ]), j = 1, . . . ,m. Consider the limit as m → ∞. Due to (4.4), the initial
functions v0,m and φ0,m can be replaced by v0 and φ0 in the first integral on the
right-hand side. By the properties of Steklov averages, gm can be replaced by g
and, by (5.1), (vm, φm, (φm)3) can be replaced by the limiting functions (v, φ, ζ)
in (5.2). Notice that linear combinations of functions cj(t)ωj(x), cj ∈ C1

T [0, T ] lie
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dense in the spaces HT and HT ∩L4(ΩT ). Therefore v, φ, and ζ satisfy the equation

(5.3)

0 =−
∫

Ω

[
v0 ψ0 + φ0 η0

]
dx

+
∫ T

0

∫
Ω

[
−v ψt − τφ ηt +

(
κ∇v − κ l

2
∇φ

)
∇ψ

]
dxdt

+ λ

∫ T

0

∫
∂Ω

(
v − l

2
φ g

)
ψ dsdt

+
∫ T

0

∫
Ω

[{
−2v +

(
l − 1

2

)
φ+

1
2
ζ

}
η + ξ2∇φ · ∇η

]
dxdt

for all ψ ∈ HT and η ∈ HT ∩ L4(ΩT ).
It remains to show that ζ = φ3. To this end, show first that φm → φ in

L2(0, T ;H1−ε(Ω)) strongly (ε > 0) by applying [18, Section 8, Corollary 4]. To
apply this corollary, φt has to be estimated. Choose ψ = 0 in (5.3), use the
boundedness of ΩT and the embedding H1(ΩT ) ↪→ L4(ΩT ) and apply Hölder’s
inequality to derive the estimate

(5.4)

|〈φt; η〉| =

∣∣∣∣∣−
∫ T

0

∫
Ω

φ ηt dxdt

∣∣∣∣∣
=

∣∣∣∣∣1τ
∫ T

0

∫
Ω

[{
−2v +

(
l − 1

2

)
φ+

1
2
ζ

}
η + ξ2∇φ∇η

]
dxdt

∣∣∣∣∣
≤ C

[
‖v‖L3/4(ΩT ) + ‖φ‖L3/4(ΩT ) + ‖ζ‖L3/4(ΩT )

]
· ‖η‖L4(ΩT )

+ C ‖φ‖L2(0,T ;H1(Ω)) · ‖η‖L2(0,T ;H1(Ω))

for all η of the form η(x, t) = c(t)ω(x), c ∈ D(0, T ) and ω ∈ H1(Ω). Inequality (5.4)
and the bounds (4.9) show that φt is a continuous functional on L2(0, T ;H1(Ω))∩
L4(ΩT ). Therefore (see also the proof of Lemma 6.1) it holds

φt ∈
(
L2(0, T ;H1(Ω)) ∩ L4(ΩT )

)′
= L2(0, T ; (H1(Ω))′) + L4/3(ΩT ) ⊂ L1

(
0, T ; (H1(Ω))′

)
,

because T is finite. Applying [18, Section 8, Corollary 4] with X = H1(Ω), B =
H1−ε(Ω), Y =

(
H−1(Ω)

)′ and p = 2 we obtain

φm → φ strongly in L2(0, T ;H1−ε(Ω))

for a subsequence still denoted by {φm}. This implies the convergence φm(x, t)3 →
φ(x, t)3 almost everywhere in ΩT . Now ζ = φ3 follows from (φm)3 ⇀ ζ in L4/3(ΩT )
(see (5.1)) and [12, Chap. 1, Lemma 1.3]. �

6. Uniqueness and stability

In order to show the uniqueness of the solution (v, φ) obtained in Sections 4 and
5, we need a certain regularity of the phase function φ. Using methods presented in
book [7], the following lemma that provides a formula for the integration by parts
can be proved.

Lemma 6.1. Let H be a Hilbert space and V1 and V2 be reflexive and separable
Banach spaces which are continuously embedded in H. Assume that V := V1∩V2 is
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dense in H. For given 1 < p1, p2 ≤ ∞, denote by p′1 and p′2 the Lebesgue conjugate
exponents. Define the following normed spaces

X := Lp1(0, T ;V1) ∩ Lp2(0, T ;V2), ‖x‖X := ‖x‖Lp1 (0,T ;V1)
+ ‖x‖Lp2 (0,T ;V2)

,

W := {u ∈ X : ut ∈ X ′} , ‖u‖W := ‖u‖X + ‖ut‖X′ .

Then W ⊂ C([0, T ];H) with the continuous embedding (because T is finite). The
formula

〈u(t); v(t)〉H×H − 〈u(s); v(s)〉H×H

=
∫ t

s

[
〈ut(τ); v(τ)〉V ′×V + 〈vt(τ);u(τ)〉V ′×V

]
dτ

(integration by parts) holds for arbitrary u, v ∈W and s, t ∈ [0, T ].

Proof. Denote the norms in Vi by ‖ · ‖i, i = 1, 2. The spaces V1 ∩ V2 and
V1 + V2 are Banach spaces when they are endowed with the norms

‖v‖V1∩V2
:= ‖v‖V1

+ ‖v‖V2
, v ∈ V1 ∩ V2.

‖z‖V1+V2
:= inf

v1∈V1,
v2∈V2,

v1+v2=z.

max
{
‖v1‖V1

, ‖v2‖V2

}
.

Since Vi ↪→ H and H is locally convex, [7, Chap. I, Th. 5.13] yields the relations

(6.1) V ′1 + V ′2 = (V1 ∩ V2)
′
, (V1 + V2)

′ = V ′1 ∩ V ′2 .

Set V := V1 ∩ V2, then (6.1) implies that V ′ = V ′1 + V ′2 . The normed dual X ′ of X
(defined in the lemma) is given by

X ′ := Lp′1(0, T ;V ′1) + Lp′2(0, T ;V ′2),

‖f‖X′ := inf
f1∈L

p′1 (0,T ;V ′1),

f2∈L
p′2 (0,T ;V ′2),

f1+f2=f.

max
{
‖f ′1‖Lp1 (0,T ;V1)

, ‖f2‖Lp′2 (0,T ;V ′
2 )

}
,

see [7, Chap. I, Th. 5.13 and Chap. IV, Th. 1.14] which also imply that X is
reflexive.

The space W defined in the lemma is a Banach space, see [7, Chap. IV, Th.
1.16]. Using the method of the proof of [7, Chap. IV, Lemma 1.11], we obtain
the continuity of the embedding W ↪→ C([0, T ];V ′1 + V ′2) because T is assumed
to be finite. Adopting the proof of [7, Chap. IV, Lemma 1.12], we deduce that
C1([0, T ];V ) ∩W is dense in W . Moreover, the proof of [7, Chap. IV, Th. 1.17]
shows that the embedding W ↪→ C([0, T ];H) is continuous because T is finite.

It remains to show the formula for integration by parts.
Let u, v ∈W and un, vn ∈ C1([0, T ];V ) ∩W , n ∈ N, be such that

‖u− un‖W , ‖v − vn‖W ≤ 1/n.

Then un and vn satisfy

(6.2)
〈un(t); vn(t)〉H×H − 〈un(s); vn(s)〉H×H

=
∫ t

s

[
〈un

t (τ); vn(τ)〉V ′×V + 〈vn
t (τ);un(τ)〉V ′×V

]
dτ

for arbitrary s, t ∈ [0, T ] and for all n ∈ N.
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Consider the limit as n → ∞ in the first summand on the left-hand side of
(6.2). The embedding W ↪→ C([0, T ];H) implies that∣∣〈un(t); vn(t)〉H×H − 〈u(t); v(t)〉H×H

∣∣
≤

∣∣〈un(t); vn(t)− v(t)〉H×H + 〈un(t)− un(t); v(t)〉H×H

∣∣
≤ CW

n

[
CW

n
+ ‖u‖C([0,T ];H) + ‖v‖C([0,T ];H)

]
,

where CW is the norm of the identity map from W → C([0, T ];H). A similar
argument with t replaced by s shows that the left-hand side of (6.2) satisfies

(6.3)
〈un(t); vn(t)〉H×H − 〈un(s); vn(s)〉H×H

−→ 〈u(t); v(t)〉H×H − 〈u(s); v(s)〉H×H

as n → ∞. Consider the limit as n → ∞ of the first summand on the right-hand
side of (6.2) to obtain:∣∣∣∣∫ t

s

[
〈un

t (τ); vn(τ)〉V ′×V − 〈ut(τ); v(τ)〉V ′×V

]
dτ

∣∣∣∣
≤

∣∣∣∣∫ t

s

[
〈un

t (τ); vn(τ)− v(τ)〉V ′×V + 〈un
t (τ)− ut(τ); v(τ)〉V ′×V

]
dτ

∣∣∣∣
≤ 1
n

[
1
n

+ ‖ut‖X′ + ‖v‖X

]
.

Interchanging the roles of u and v shows that the right-hand side of (6.2) satisfies

(6.4)

∫ t

s

[
〈un

t (τ); vn(τ)〉V ′×V − 〈vn
t (τ);un(τ)〉V ′×V

]
dτ

−→
∫ t

s

[
〈ut(τ); v(τ)〉V ′×V − 〈vt(τ);u(τ)〉V ′×V

]
dτ

as n→∞. Substituting (6.3) and (6.4) into (6.2) yields the claimed formula. This
completes the proof of the lemma. �

Lemma 6.1 is applied with V1 = H1(Ω), p1 = 2, V2 = L4(Ω), p2 = 4 and
H = L2(Ω). Using the notation introduced in (3.1), we obtain from (5.4) that
φt ∈ X ′. Thus, Lemma 6.1 yields φ ∈W ↪→ C([0, T ];L2(Ω)). The following lemma
establishes the uniqueness of weak solutions to problem (2.3) and a stability result
in space Y .

Lemma 6.2. Let v0
i , φ

0
i ∈ L2(Ω), and gi ∈ L2(∂ΩT ), i = 1, 2 be given functions.

Let (vi, φi) be weak solutions of problem (2.3) in the sense of Definition 3.1. Then

‖v̄‖2
Y ,

∥∥φ̄∥∥2

Y
≤ C

(
1 + T eT

) [∥∥v̄0
∥∥2

L2(Ω)
+

∥∥φ̄0
∥∥2

L2(Ω)
+ ‖ḡ‖2

L2(∂ΩT )

]
,

where ḡ = g1 − g2, v̄ = v1 − v2, and φ̄ = φ1 − φ2. The constant C is independent
of vi, φi, v

0
i , φ

0
i and gi, i = 1, 2.
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Proof. Use the notations from (3.1). Let ḡ, v̄, and φ̄ be the functions defined
in the lemma. Set ζ = φ2

1 + φ1 φ2 + φ2
2 ≥ 0. Then v̄ and φ̄ satisfy the equation

(6.5)

0 = 〈v̄t;ψ〉+
∫ T

0

∫
Ω

(
κ∇v̄ − κ l

2
∇φ̄

)
∇ψ dxdt

+ λ

∫ T

0

∫
∂Ω

(
v̄ − l

2
φ̄− g

)
ψ dsdt+ τ

〈
φ̄t; η

〉
X′×X

+
∫ T

0

∫
Ω

[{
−2v̄ +

(
l − 1

2
+

1
2
ζ

)
φ̄

}
η + ξ2∇φ̄∇η

]
dxdt,

where 〈· ; ·〉 denotes the duality product between L2(0, T, (H1(Ω))′) and L2(0, T ;H1(Ω)).
The right-hand side of (6.5) is a continuous linear functional defined on functions
ψ ∈ L2(0, T ;H1(Ω)) and η ∈ X. Therefore, (ψ, η) = (v̄, φ̄) is an admissible choice
and φ̄ ∈W .

Denote by χ(0,t) the characteristic function of the interval (0, t) for fixed t ∈
(0, T ]. Let the constants α and β satisfy (4.7) and set (ψ, η) = (χ(0,t) v̄, α χ(0,t) φ̄)
in (6.5) to obtain

(6.6)

1
2

∫
Ω

[
|v̄(t)|2 + ατ |φ̄(t)|2

]
dx + λ

∫ t

0

∫
∂Ω

|v̄|2 dsdτ

+
∫ t

0

∫
Ω

[
κ |∇v̄|2 + α ξ2|∇φ̄|2 +

α

2
ζ|φ̄|2

]
dxdτ

≤ 1
2

∫
Ω

[
|v̄0|2 + ατ |φ̄0|2

]
dx + λ

∫ t

0

∫
∂Ω

[
|v̄|2 +

l2

4
|φ̄|2 +

1
2
|ḡ|2

]
dsdτ

+
∫ t

0

∫
Ω

[
α|v̄|2 + α

(
l +

1
2

)
|φ̄|2 +

l2 κ

8
|∇φ̄|2 +

κ

2
|∇v̄|2

]
dxdτ.

Note that Lemma 6.1 is used here to evaluate 〈φ̄t; φ̄〉X′×X . Due to (4.7) and the
imbedding H1(Ω)

∣∣
∂Ω

⊂ L2(∂Ω), inequality (6.6) yields the estimate∫
Ω

[
|v̄(t)|2 + |φ̄(t)|2

]
dx +

∫ T

0

∫
Ω

[
|∇v̄|2 + |∇φ̄|2

]
dxdt

≤ C

{∫
Ω

[
|v̄0|2 + |φ̄0|2

]
dx +

∫ T

0

∫
∂Ω

|ḡ|2 dsdt+
∫ T

0

∫
Ω

[
|v̄|2 + |φ̄|2

]
dxdt

}
with a constant C that is independent of v̄ and φ̄. By Lemma 6.1 it holds v̄, φ̄ ∈
C([0, T ];L2(Ω)) so that Gronwall’s inequality yields

‖v̄‖2
Y ,

∥∥φ̄∥∥2

Y
≤ C

(
1 + T eT

) [∥∥v̄0
∥∥2

L2(Ω)
+

∥∥φ̄0
∥∥2

L2(Ω)
+ ‖ḡ‖2

L2(∂ΩT )

]
.

In particular, for v̄0 = φ̄0 = ḡ ≡ 0, we obtain the uniqueness of the solution. This
proves the lemma. �

Remark 6.3. It should be noticed that model (2.3) is considered in a domain
whose boundary is of class C0,1. This assumption is done to allow the consider-
ation of problems related to cryopreservation where regions of freezing may have
boundaries with sharp and concave kinks. In the case of smooth domains, say
of class C2, the regularity of solutions can be improved, see [10, 15, 11]. The
following scheme shows that (v, φ) is a strong solution of problem (2.3) provided
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the data have additional regularity v0, φ0 ∈ W
1
2
4
3
(Ω), and g ∈ W

1
4 , 1

8
4
3

(∂ΩT ), see

[10, 15] for a definition of this space. The embedding Y ⊂ L
4
3 (ΩT ) and relations

(5.1) imply that −v + (l − 1
2 )φ+ 1

2φ
3 ∈ L 4

3 (ΩT ). Therefore, application of the Lp-
estimate technique to the second parabolic equation in (2.3) yields the regularity
φ ∈ W 2, 1

4
3

(ΩT ) = {f ∈ L 4
3 (0, T ; W 2

4
3
(Ω)) : ft ∈ L

4
3 (ΩT )}. Using the first equation

in (2.3), observing that ∆φ ∈ L
4
3 (ΩT ), and applying the Lp-estimate technique

yield the regularity v ∈ W 2, 1
4
3

(ΩT ). Notice again that the estimation of the Lp-
norm of the time derivatives and second spatial derivatives is only possible in the
case of smooth domains and regular data.

Remark 6.4. Finally, we remark that model (2.3) can be considered as a
dynamical system with state space (L2(Ω))2 and evolution function Ψ(t, v0, φ0) :=
(v(t), φ(t)). To see this, notice that Ψ is a well-defined mapping from [0, T ] ×
(L2(Ω))2 → (L2(Ω))2 since weak solutions of problem (2.3) are unique by Lemma
6.2 and satisfy v, φ ∈ C([0, T ], L2(Ω)) by Lemma 6.1.

7. Conclusions

A phase field model proposed by G. Caginalp is analyzed in bounded Lipschitz
domains. The well-posedness of the problem is established for square integrable ini-
tial data. The continuity in time properties of the temperature and phase function
show that the model can be considered as a dynamical system.
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