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Trace formula for fourth order operators on the circle
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Abstract. We determine the trace formula for the fourth order operator on
the circle. This formula is similar to the famous trace formula for the Hill
operator obtained by Dubrovin, Its-Matveev and McKean-van Moerbeke.
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1. Introduction and main results

In the present paper we determine the trace formula for the fourth order oper-
ator on the circle. Before we recall the famous trace formula for the second order
operator [6], [7], [11]. Consider the differential equation

(1.1) −y′′ + qy = λy, λ ∈ C,

where q is the 1-periodic potential and C is a complex plane. Denote by α+
0 <

α−1 6 α+
1 < α−2 6 ... eigenvalues of the equation (1.1) with the 2-periodic boundary

conditions.
Consider the equation (1.1) with the Dirichlet boundary conditions for the

shifted potential q(· + t) by any fix parameter t ∈ T = R/Z. Denote the corre-
sponding eigenvalues by β1(t) < β2(t) < .... It is well-known that

(1.2) βn(t) ∈ [α−n , α+
n ] ∀ (n, t) ∈ N× T.
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Now we can recall the famous trace formula, i.e., the identity given by

(1.3) q(t) = α+
0 +

∞∑
n=1

(
α+

n + α−n − 2βn(t)
)

∀ t ∈ T.

Dubrovin [6] and Its – Matveev [7] determined the trace formula (1.3) for the so-
called N band potential, when βn(t) = α−n = α+

n for all n > N, t ∈ T and some
N > 1. In this case the sum in (1.3) is finite. McKean – van Moerbeke [11] and
Trubowitz [23] determined the trace formula (1.3) for sufficiently smooth potential.
Korotyaev [8] determined the trace formula (1.3) for the case q ∈ L2(T).

We discuss the trace formula for the fourth order operator. Introduce the
Sobolev space W s

m(A), where A is the finite interval or the circle, by

(1.4) W s
m(A) = {f, f (m) ∈ Ls(A)}, s > 1, m = 0, 1, 2, ..

Our main goal is to extend the trace formula (1.3) for the fourth order equation

(1.5) y′′′′ + 2(py′)′ + qy = λy, λ ∈ C,

where the 1-periodic real functions p, q satisfy the conditions

(1.6) p ∈ W 1
4 (T), q ∈ W 1

2 (T).

Consider the equation (1.5) with the 2-periodic boundary conditions. Let

λ+
0 , λ±n , n ∈ N,

be the corresponding spectrum labeled by λ+
0 6 λ−1 6 λ+

1 6 λ−2 6 ..., counted
with multiplicities. Note that the eigenvalues have multiplicity 6 4. The following
asymptotics hold true:

(1.7) λ±n = (πn)4 − 2p0(πn)2 +
p2
0 − ‖p‖2

2
+ q0 + o(n−

3
2 ),

as n → +∞, see [1], where

f0 =
∫ 1

0

f(t)dt, ‖f‖2 =
∫ 1

0

|f(t)|2dt.

Consider the equation (1.5) with the shifted coefficients by any fix parameter
t ∈ R:

(1.8) y′′′′ + 2(p(x + t)y′)′ + q(x + t)y = λy, λ ∈ C,

with the Dirichlet type boundary conditions

(1.9) y(0) = y′′(0) = y(1) = y′′(1) = 0.

Let µn(t), n > 1, be the corresponding spectrum labeled by µ1(t) 6 µ2(t) 6 µ3(t) 6
..., counted with multiplicities. Note that the eigenvalues have multiplicity 6 2. The
following asymptotics hold true:

(1.10) µn(t) = (πn)4 − 2p0(πn)2 +
p2
0 − ‖p‖2

2
+ q0 +

O(1)
n2

as n → +∞ uniformly on t ∈ T, see [2].
Now we present trace formulas, which are similar to the second order case (1.3).
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Theorem 1.1. Let (p, q) ∈ W 1
4 (T)×W 1

2 (T). Then the following identity

(1.11) q(x)− p′′(x)
2

= λ+
0 +

∞∑
n=1

(
λ+

n + λ−n − 2µn(x)
)

∀ x ∈ T,

holds true, where the series converges absolutely and uniformly on x ∈ T.
In particular, if p = const, then

(1.12) q(x) = λ+
0 +

∞∑
n=1

(
λ+

n + λ−n − 2µn(x)
)

∀ x ∈ T,

where the series converges absolutely and uniformly on x ∈ T.

There are numerous results about the trace formulas for the higher order op-
erators, see McKean [10], Ostensson [16], Nazarov, Stolyarov and Zatitskiy [15],
Sadovnichii [20], [21], Sadovnichii and Podol’skii [22] and see references therein.
The inverse spectral results for the fourth order operators on a finite interval were
obtained by Caudill, Perry and Schueller [5], McLaughlin [12], Papanicolaou and
Kravvaritis [19]. The spectral problem for the fourth and higher order operator
with periodic coefficients considered by Badanin and Korotyaev [3], [4], Mikhailets
and Molyboga [14], Papanicolaou [17], [18], Tkachenko [24].

2. The resolvents

Let B, B1, B2 be the set of all bounded, trace class and Hilbert-Schmidt class
operators on L2(R), respectively. The norms of B, B1, B2 are denoted by ‖ · ‖, ‖ ·
‖1, ‖ · ‖2, respectively.

2.1. The second order operators. We recall the following well known re-
sults about the second order operators h1, h2, see, for instance, in [13], [9].

Firstly, we consider the operator h2y = −y′′ − py acting in L2(0, 2) with the
2-periodic boundary conditions. The spectrum of h2 is discrete and its eigenvalues
α+

0 , α±n , n ∈ N, are simple or have multiplicity two. They can enumerated, counting
with multiplicity, so that α+

0 < α−1 6 α+
1 < α−2 6 α+

2 < .... The following
asymptotics hold true:

(2.1) α±n = (πn)2 + O(1) as n → +∞.

Secondly, we consider the operator h1 acting in L2(0, 1) with the Dirichlet
boundary conditions given by

(2.2) h1y = −y′′ − py, y(0) = y(1) = 0.

All eigenvalues βn, n ∈ N, of the operator h1 are simple. We enumerate their in the
increasing order β1 < β2 < ... Recall that βn ∈ [α−n , α+

n ] for all n > 1. Moreover,
the following trace formula holds true:

(2.3) p2(0) +
p′′(0)

2
= (α+

0 )2 +
∑
n>1

(
(α+

n )2 + (α−n )2 − 2β2
n

)
where the series converges absolutely, see [11, p.254].
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2.2. The fourth order operators. Introduce the self-adjoint operator H2

in L2(0, 2) by

(2.4) H2 = ∂4 + 2∂p∂ + q on [0, 2],

with 2-periodic boundary conditions.
It is sufficiently to prove identity (1.11) at x = 0. Thus we need to define the

operator H1 in L2(0, 1) by

H1 = ∂4 + 2∂p∂ + q on [0, 1],

with the Dirichlet type boundary conditions

f(0) = f ′′(0) = f(1) = f ′′(1) = 0.

Using the identity

(2.5) ∂4 + 2∂p∂ + q = (−∂2 − p)2 + V, V = q − p′′ − p2,

and V ∈ L∞(0, 1), we obtain

(2.6) Hj = h2
j + V, j = 1, 2,

where the operators h1 and h2 are introduced above. Let the operator h0
j , j = 1, 2,

be equal to the operator hj at p = 0. Introduce the resolvents

(2.7) Rj(λ) = (Hj − λ)−1, Rj(λ) = (h2
j − λ)−1, R0

j (λ) =
(
(h0

j )
2 − λ

)−1
,

where j = 1, 2. We have

(2.8) Rj = R0
j −Rj(−h0

jp− ph0
j + p2)R0

j .

Due to asymptotics (1.7), (1.10), (2.1) all resolvents satisfy

(2.9) Rj(λ), Rj(λ), h0
jR0

j (λ) ∈ B1,

on the corresponding resolvent sets. Define the contours Kn ⊂ C by

(2.10) Kn =
{
λ ∈ C : |λ| 14 = π

(
n + 1

2

)}
, n > 1.

We present results about the asymptotics, proved in Section 3.

Lemma 2.1. Let j = 1, 2 and let n →∞. Then the following asymptotics hold
true:

(2.11) ‖R0
j (λ)‖2 + ‖Rj(λ)‖2 + ‖Rj(λ)‖2 = O(n−3),

(2.12) ‖h0
jR0

j (λ)‖2 = O(n−1)

uniformly on the contours Kn, and

(2.13)
∮

Kn

(
λ TrVR2

j (λ) + TrVR0
j (λ)

)
dλ = o(1).
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2.3. Proof of the main results. Introduce the function

(2.14) Φ = Tr(R2 −R2)− 2 Tr(R1 −R1).

Lemma 2.2. The following identity holds true:

(2.15) lim
n→+∞

1
2πi

∮
Kn

λΦ(λ)dλ = −V (0).

Proof. Substituting the identities

Rj = Rj −RjVRj = Rj −RjVRj + RjVRjVRj , j = 1, 2,

into (2.14) we obtain

(2.16) Φ = Φ0 + Φ1,

where

(2.17) Φ0 = −TrVR2
2 + Tr 2VR2

1, Φ1 = Tr VR2VR2R2 − Tr 2VR1VR1R1.

Let n →∞. Identities (2.17), (2.13) yield∮
Kn

(
λΦ0(λ)− F (λ)

)
dλ = o(1),

where

(2.18) F = Tr VR0
2 − 2 TrVR0

1.

Estimates (2.11) give

|TrVRj(λ)VRj(λ)Rj(λ)| 6 ‖Rj(λ)‖2‖Rj(λ)‖2
2‖V ‖2 = O(n−9), j = 1, 2,

uniformly on contours Kn, which yields Φ1(λ) = O(n−9) and then∮
Kn

λΦ1(λ)dλ = o(1).

Then identity (2.16) gives

(2.19)
∮

Kn

(
λΦ(λ)− F (λ)

)
dλ = o(1).

We have the Fourier series

(2.20) V (x) = V0 + 2
∞∑

n=1

(
Vcn cos 2πnx + Vsn sin 2πnx

)
,

where

Vsn =
∫ 1

0

V (x) sin 2πnxdx, Vcn =
∫ 1

0

V (x) cos 2πnxdx, V0 =
∫ 1

0

V (x)dx.

Let en = 1√
2
eiπnx, n ∈ Z, and sn = sinπnx, n ∈ N. Define the scalar products

〈f, g〉 =
∫ 2

0
fgdx and (f, g) =

∫ 1

0
fgdx in L2(0, 2) and L2(0, 1) respectively. Identity

(2.18) gives

F (λ) =
〈V e0, e0〉

−λ
+

∞∑
n=1

〈V en, en〉+ 〈V e−n, e−n〉 − 4(V sn, sn)
(πn)4 − λ

= −V0

λ
+

∞∑
n=1

2Vcn

(πn)4 − λ
,
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since we have the identities

〈V en, en〉 = V0 ∀ n ∈ Z,

(V sn, sn) =
∫ 1

0

V sin2 πnxdx =
V0 − Vcn

2
, n > 1.

Then
1

2πi

∮
KN

F (λ)dλ = −V0 − 2
N∑

n=1

Vcn

for all N > 1. Identity (2.19) give

1
2πi

∮
KN

λΦ(λ)dλ = −
(
V0 + 2

N∑
n=1

Vcn

)
+ o(1) as N →∞,

then (2.20) yields (2.15).
Proof of Theorem 1.1. Asymptotics (1.7), (1.10) show that the series

S = λ+
0 +

∑
n>1

(
λ+

n + λ−n − 2µn

)
converges absolutely. Let S0 be given by

S0 = (α+
0 )2 +

∑
n>1

(
(α+

n )2 + (α−n )2 − 2β2
n

)
.

Then due to (2.14) we have

S − S0 = − 1
2πi

lim
n→+∞

∮
Kn

λΦ(λ)dλ.

Identity (2.3) yields

(2.21) S − p2(0)− p′′(0)
2

= − 1
2πi

lim
n→+∞

∮
Kn

λΦ(λ)dλ.

Substituting identity (2.15) into (2.21) we obtain

S − p2(0)− p′′(0)
2

= V (0).

Substituting (2.5) into the last identity we have S = q(0) − p′′(0)
2 , which yields

(1.11).

3. Proof of Lemma 2.1

Proof of Lemma 2.1. We will prove (2.11) for R1(λ). The proof for other
R2,Rj ,R0

j is similar. Let

ak = |µk|
1
4 , a = |λ| 14 , λ ∈ Kn, k, n > 1.

Then we have

(3.1) |µk − λ| >
∣∣|µk| − |λ|

∣∣ = |ak − a|(ak + a)(a2
k + a2) > |ak − a|a3.

Asymptotics (1.10) yields

(3.2) ak = πk + πεk, where |εk| <
1
4

∀ k > N,

(3.3) |ak − a| > 1 ∀ k 6 N
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for n ∈ N large enough and for some N ∈ N large enough. We have

(3.4) |ak − a| = π
∣∣∣k − n− 1

2
+ εk

∣∣∣ > π
(
|k − n| − 1

4

)
∀ k > N.

Estimates (3.1) – (3.4) give

‖R1(λ)‖2
2 =

∞∑
k=1

1
|µk − λ|2

6
1
a6

∞∑
k=1

1
|ak − a|2

6
1
a6

(
N +

∞∑
k=N+1

1
π2(|k − n| − 1

4 )2

)
6

C

a6
,

where C = N + 1
π2

∑
k∈Z(k − 1

4 )−2 < ∞ and this yields (2.11) for R1(λ).
We will prove (2.12) for j = 1. The proof for j = 2 is similar. We have

|(πk)4 − λ| >
∣∣|(πk)4 − |λ|

∣∣ = |πk − a|(πk + a)
(
(πk)2 + a2

)
> a|πk − a|

(
(πk)2 + a2

)
.(3.5)

This estimate implies

‖h0
jR0

j (λ)‖2
2 =

∞∑
k=1

(πk)4

|(πk)4 − λ|2
6

1
a2

∞∑
k=1

1
|πk − a|2

6
1

π2a2

∞∑
k=1

1
|k − n− 1

2 |2
6

C1

a2
,

where C1 = 1
π2

∑
k∈Z(k − 1

2 )−2 < ∞, which yields (2.12) for j = 1.

We will prove asymptotics (2.13) for j = 2. The proof for j = 1 is similar. The
integration by parts gives∮

Kn

λ TrVR2
2(λ)dλ =

∮
Kn

λ TrV (R2(λ))′dλ = −
∮

Kn

TrVR2(λ)dλ

for all n ∈ N. Using identity (2.8) we obtain

(3.6)

∮
Kn

(
λ TrVR2

2(λ) + TrVR0
2(λ)

)
dλ =

∮
Kn

TrV
(
R0

2(λ)−R2(λ)
)
dλ

=
∮

Kn

Tr
(
VR2(λ)QR0

2(λ)
)
dλ, where Q = −h0

2p− ph0
2 + p2.

Asymptotics (2.11), (2.12) give∣∣ Tr
(
R0

2(λ)Q(λ)R0
2(λ)Q(λ)R2(λ)

)∣∣
6 ‖R0

2(λ)Q(λ)‖2
2‖R2(λ)‖2 = O(n−5) as n →∞(3.7)

uniformly on all contours Kn. Substituting (2.8) into (3.6) and using (3.7) we
obtain ∮

Kn

(
λ TrVR2

2(λ) + TrVR0
2(λ)

)
dλ

=
∮

Kn

TrVR0
2(λ)QR0

2(λ)dλ + o(1) as n →∞.(3.8)
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Thus we need to consider TrVR0
2(λ)QR0

2(λ), where Q = p2−h0
2p−ph0

2. Firstly,
we consider the case p2. Estimate (2.11) as n →∞ yields∮

Kn

TrVR0
2(λ)p2R0

2(λ)dλ = O(1)
∮

Kn

‖R0
2(λ)‖2

2|dλ|

=
∮

Kn

O(n−6)|dλ| = O(n−2).(3.9)

Secondly, we consider the case −h0
2p−ph0

2. Using f̂k =
∫ 2

0
f(x)eiπkxdx and the

identity

〈(−h0
2p− ph0

2)em, ek〉 =
∫ 2

0

e−iπkx(∂2
xp(x)+ p(x)∂2

x)eiπmxdx = −π2(k2 +m2)p̂m−k,

where em = 1√
2
eiπmx and 〈f, g〉 =

∫ 2

0
fgdx, we have

Tr(VR0
2(h

0
2p + ph0

2)R0
2) = −

∞∑
m,k=−∞

F (k, m, λ)

= −
∞∑

k=−∞

8π2V0p0k
2

((πk)4 − λ)2
−

∞∑
m,k=−∞

m 6=k

F (k, m, λ),

F (k, m, λ) =
π2(k2 + m2)V̂m−kp̂m−k

((πm)4 − λ)((πk)4 − λ)
,(3.10)

where the series converge uniformly on each contour Kn, n ∈ N. Moreover, the
identity

∮
Kn

dλ
((πk)4−λ)2 = 0 and the decomposition {|k| 6= |m|} = D1 ∪ D2 ∪ D3,

where D1, D2, D3 are given by

D1 = {|k| 6= |m|, |k| 6 n, |m| 6 n} ∪ {|k| 6= |m|, |k| > n, |m| > n},
D2 = {|k| 6 n, |m| > n}, D3 = {|k| > n, |m| 6 n},

give ∮
Kn

Tr(VR0
2(h

0
2p + ph0

2)R0
2)dλ

=
∮

Kn

∞∑
m,k=−∞

m 6=k

F (k, m, λ)dλ = I1(λ) + I2(λ) + I3(λ)(3.11)

for all n ∈ N, where

Ij(λ) =
∮

Kn

∑
Dj

F (k, m, λ)dλ.

We have I1(λ) = 0 and thus we need to consider I2, I3.
Consider I3, the proof for I2 is similar. Identity (3.11) gives

(3.12) I3(λ) =
∮

Kn

∑
D3

F (k, m, λ)dλ =
2
iπ

∑
D3

V̂m−kp̂m−k

m2 − k2
.
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Consider the case k > n, |m| 6 n, the proof for the other case is similar. Using
V ∈ W 1

2 (0, 2) and p ∈ W 1
4 (0, 2) we obtain

(3.13)
|V̂m−kp̂m−k|
|m2 − k2|

6
C

|k −m|6|m2 − k2|
6

C

|k −m|7(|m|+ |k|)
for some constant C. Define k′ = k − n > 1 and m′ = n − m ∈ [0, 2n]. Then we
obtain

1
|k −m|7(|m|+ |k|)

6
1

|k′ + m′|7n
.

This yields∑
k>n,|m|6n

|V̂m−kp̂m−k|
|m2 − k2|

6
∑

k′>1,m′>0

C

|k′ + m′|7n
=

C1

n
, C1 =

∑
k′>1,m′>0

C

|k′ + m′|7
.

Similar arguments show that ∑
k<−n,|m|6n

|V̂m−kp̂m−k|
|m2 − k2|

6
C2

n

for some C2 > 0 and then (3.12) yields I3(λ) = O(n−1) as n →∞. Similar estimates
yield I2(λ) = O(n−1). Then (3.11) gives∮

Kn

Tr(VR0
2(h

0
2p + ph0

2)R0
2)dλ = O(n−1).

Substituting this asymptotics and (3.9) into (3.8) we obtain (2.13).
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