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Abstract. We show the existence and the analyticity of solitons (solitary
waves of finite energy) for a 2D-Boussinesq-Benney-Luke type system that
emerges in the study of the evolution of long water waves with small amplitude
in the presence of surface tension. We follow a variational approach by char-
acterizing travelling waves as minimizers of some functional under a suitable
constrain. Using Lion’s concentration-compactness principle, we prove that
any minimizing sequences converges strongly, after an appropriate translation,
to a minimizer. The Boussinesq-Benney-Luke system is formally close to the
Benney-Luke equation and to the Kadomtsev-Petviashivili (KP) equation. For
wave speed small and surface tension large, we assure some physical sense for
this water wave system by establishing that a suitable (renormailized) family
of solitons of the Boussinesq-Benney-Luke system converges to a nontrivial
soliton for the KP-I equation.
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1. Introduction

Models for dispersive and weakly nonlinear long water waves with small am-
plitude in finite depth are derived from the full water wave problem through an
approximation process, under the imposition of some restrictions on the parameters
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that affect the propagation of gravity water waves, as the nonlinearity (amplitude
parameter) and the dispersion (long-wave parameter), and also by assuming that
the free surface elevation, its derivatives, and the derivatives of the velocity po-
tential are small quantities compared with the amplitude parameter and the long
wave parameter. As it is well known, roughly speaking, the study of water waves
is reduced to determine the free surface elevation and the velocity potential on
the free surface. So, if the vertical variable is eliminated from the equations by
using Taylor expansion approximation about some height with respect to the ver-
tical spatial variable, then it is possible to obtain some water wave models in two
spatial variables. This approach to derive dispersive water wave models through
out expansions in the vertical spatial variable of the velocity potential, related with
the (KP) equation, the Benney-Luke models, and Boussinesq systems, has been
followed in some recent works by M. Ablowitz, A. Fokas, and H. Musslimani in [1],
A. Montes in [12], J. Quintero in [13], J. Quintero and R. Pego in [14] (in the last
three works including the effect of the surface tension). We also must mention the
important work done by D. Benney and J. Luke in [2], in which the derivation of
a model is performed under the assumption that the amplitude parameter and the
long wave parameter were equal in the absence of surface tension. For a dispersive
model without the long-wave assumption, we are aware of the work of P. Milewski
and J. Keller in [10]. It is important to point out that some Benney-Luke models
have been described using a single equation for the velocity potential about some
hight, by eliminating the free surface elevation from the system describing the full
water wave problem.

In this work, we will show that the analysis of the evolution of long water waves
with small amplitude in the presence of surface tension is reduced to looking for a
couple (Φ, η)(x, y, t) satisfying the Boussinesq-Benney-Luke type system

(BBL)


(
I − µ

2 ∆
)
ηt + ∆Φ− 2µ

3 ∆2Φ + ε∇ · (η∇Φ) = 0,(
I − µ

2 ∆
)
Φt + η − µσ∆η + ε

2 |∇Φ|2 = 0.

where ε is the amplitude parameter (nonlinearity coefficient),
√
µ = h0

L is the
long-wave parameter (dispersion coefficient), σ is the inverse of the Bond num-
ber (associated with the surface tension). The variable Φ represents the rescale
nondimensional velocity potential on the bottom z = 0, and the variable η cor-
responds the rescaled free surface elevation. We want to point out that system
(BBL) is rather close to one derived by M. Boussinesq (cf. system (θ) on p. 314
of [5], taking account of the relation at the bottom of p. 323). We consider that
the Boussinesq-Benney-Luke system (BBL) could provide a better approximation,
from the physical view point, to the full water wave equations than some Benney-
Luke type models for long water wave with small amplitude in the sense that in
the derivation of those models the surface elevation η is eliminated up to order two
in ε and µ, in order to obtain a single equation in the variable Φ (essentially the
rescaled velocity potential φ expanded at the bottom z = 0) up to order two in ε
and µ.

The Boussinesq-Benney-Luke system has some sort of physical sense since some
well known water wave models as the generalized Benney-Luke equation ([14]-
[16]), a Boussinesq-KdV system ([13]) and the generalized Kadomtsev-Petviashivili
equation emerge from this Boussinesq type system (BBL) (up to some order with
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respect to ε and µ), making the system (BBL) very interesting from the physical
and numerical view points.

According with the assumption made to derive the system (BBL), it is necessary
to establish for ε, µ and c (in some range) the existence of solitons, but also to
provide some physical relevance of this model. In that direction, we will show that
appropriate order-one solutions exist for arbitrarily small value of the parameters.
Note that if we balance the effect of nonlinearity and dispersion (µ = ε), and seek
a travelling-wave solution of the form (η,Φ)(x, y, t) = (v, ϕ)(x − ct, y) with c > 0,
then (v, ϕ) should satisfy the system of the single equations,

(1− c2)vxx + vyy = O(ε), (1− c2)ϕxx + ϕyy = O(ε).

This fact is indicating us that making the wave speed c close to one and having weak
dependence on y could provide an appropriate regime to find physically meaningful
finite-energy solutions, as done when deriving the Kadomtsev-Petviashivili equation
(KP) as an approximation for the full water wave problem. One the mayor goals in
this paper is to exhibit some physical relevance of the system, by establishing that
in an appropriate scaling there are sequences of solitons for this Boussinesq type
system that, after an appropriate translation, converge as ε→ 0 to a soliton of the
Kadomtsev-Petviashivili equation (KP-I) equation.

The paper is organized as follows. In section 2, we derive formally the Boussinesq-
Benney-Luke system (BBL) from the full water problem reduced to the case of
weakly nonlinear long wave propagation in shallow water. We also describe the
Hamiltonian structure for the Boussinesq type system (BBL) derived. In section 3,
from the Hamiltonian structure, we find the natural finite-energy space for solitons
(solitary-wave solutions), and characterize solitary waves variationally as critical
points of an action functional. We prove the existence solitons for the Boussinesq
type system (BBL) by using the Lions’ concentration-compactness principle for
ε > 0, µ > 0, σ > 0 and wave speed 0 < c < c∗ . In Section 4, we show that any
sequence {(ηε,µ,c,Φε,µ,c)}ε,µ,c of solitons for the Boussinesq-Benney-Luke system
(BBL) converges strongly in the (KP) energy space, after a renormalization and an
appropiate translation, to a soliton for the (KP-I) equation, provided that σ > 3

8

and that c→ 1− as ε→ 0+. In section 5, we show that the solitary wave solutions
for the Boussineq-Benney-Luke system (BBL) are analytic.

2. A Boussinesq-Benney-Luke system

Suppose that −→u represents the velocity of a particle in an irrotational, three-
dimensional flow of an inviscid, incompressible fluid which at rest occupies the
region −∞ < x <∞, −∞ < y <∞, 0 < z < h0, then for some distribution φ, the
velocity potential −→u takes the form −→u = (∇φ, ∂zφ), where∇ = (∂x, ∂y) . Moreover,
the study of the water waves with surface tension reduces to find solutions of the
linear equation

∆φ+ φzz = 0 for 0 < z < h0 + η, (∆ = ∂2
x + ∂2

y)(1)
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with the boundary and interface nonlinear conditions

φz = 0 at z = 0,(2)

ηt +∇η · ∇φ− φz = 0 at z = h0 + η,(3)

φt +
1
2
|∇φ|2 +

1
2
φ2

z + gη − 2TH
ρ

= 0 at z = h0 + η,(4)

where z = 0 represents the solid boundary, z = h0 + η is the disturbed free surface,
T is the coefficient of surface tension, ρ is density (assumed constant), g is the
gravitational acceleration, and the Mean Curvature of the free surface z = η(x, y, t)
is given by

H =
1
2
∇ ·

(
∇η√

1 + |∇η|2

)
.

In order to study long water wave with small amplitude, we introduce the
amplitude parameter ε and the long wave parameter µ = (h0/L)2, where L stands
for the horizontal length of motion. The long-wave regime corresponds to µ � 1.
The system is introduced through the following rescaling of the variables x, y, and
z:

x = Lx̂, y = Lŷ, z = h0ẑ, t = L(gh0)−
1
2 t̂,

and the definition of the functions φ̂ and η̂ as φ = ε h0√
µ (gh0)

1
2 φ̂ and η = εh0η̂. Note

that a simple computation shows that ∂xφ and ∂yφ are of order O(ε), as long as
∂x̂φ̂ and ∂ŷφ̂ are of order O(1) with respect to ε. Taking T = h2

0ρgσ and after
dropping hats, we obtain that the couple (φ, η) satisfies the nonlinear system

µ∆φ+ φzz = 0 for 0 < z < 1 + εη,(5)

φz = 0 at z = 0,(6)

ηt + ε∇η · ∇φ− 1
µ
φz = 0 at z = 1 + εη,(7)

φt +
ε

2
|∇φ|2 +

ε

2µ
φ2

z + η − µσ∇ ·

(
∇η√

1 + ε2µ|∇η|2

)
= 0 at z = 1 + εη,

(8)

where ∆ and ∇ are the laplacian and the gradiant with respect to the variables
x, y, respectively. Now, to derive the Boussinesq-Benney-Luke model we have to
assume that ∇φ, η, and its derivatives with respect to variables x and y are O(1)
with respect to ε. Defining

Φ(x, y, t) = φ(x, y, z = 0, t)

and using Taylor expansion to the velocity potential at the bottom z = 0, one can
see that

(9) φ = Φ− µz2

2
∆Φ +

µ2z4

4!
∆2Φ +O(µ3).

Plugging this in equations (7)-(8), formally we obtain the following system

ηt + ε∇η · ∇Φ + (1 + εη)∆Φ− µ

6
∆2Φ = O(ε2, µ2),(10)

Φt −
µ

2
∆Φt +

ε

2
|∇Φ|2 + η − µσ∆η = O(ε2, µ2).(11)
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This system was originally derived by J. Quintero and R. Pego (see [14]) in their
study of the Benney-Luke equation. In this work, J. Quintero et. al. showed that
evolution of long water waves with small amplitude can be reduced to determine
the potential velocity at the bottom Φ as solution of the Benney-Luke equation,

(BL) Φtt −∆Φ + µ(a∆2Φ− b∆Φtt) + ε(Φt∆Φ + 2∇Φ · ∇Φt) = 0.

In this work we are interested in deriving a model for long water waves of small
amplitude, including the free surface elevation η. From (10) we observe that

ηt + ∆Φ = O(ε, µ).

Then by using this expression in (10) and neglecting terms of order O(ε2, µ2) we
have the system,

(BBL)


(
I − µ

2 ∆
)
ηt + ∆Φ− 2µ

3 ∆2Φ + ε∇ · (η∇Φ) = 0,(
I − µ

2 ∆
)
Φt + η − µσ∆η + ε

2 |∇Φ|2 = 0.

The (BBL) system is a Boussinesq type system that we will classify as a Boussinesq-
Benney-Luke system for its relation with the Benney-Luke (BL) equation. From
the physical view point, it turns out that the (BBL) system could be a better
approximation that some Benney-Luke type model to describe the evolution of
long waves of small amplitude where the surface elevation η has been eliminated
up to some order with respect to the amplitude and log wave parameters.

We observe now that the system (BBL) arise as the Euler-Lagrange for the
action functional

Ŝ = −
∫ t2

t1

(∫
R2

(
Φt −

µ

2
∆Φt

)
η dxdy +H(η,Φ)

)
dt

with Hamiltonian given by

(12) H(η,Φ) =
1
2

∫
R2

(
|∇Φ|2 + η2 +

2µ
3
|∆Φ|2 + µσ|∇η|2 + εη|∇Φ|2

)
dxdy,

for which the system (BBL) takes the form

(ηt,Φt) = J∇H(η,Φ) J =
(
I − µ

2
∆
)−1

(
0 1
−1 0

)
.

A very interesting fact is that we obtain the Benney-Luke equation (BL) from
the system (BBL). Also we can formally reduce this system to a Kadomtsev-
Petviashvili (KP) type equation in appropriate limits. In fact, from the second
equation of (BBL) we see that

Φt + η = O(ε, µ),

then, again from the second equation,

ηt = −Φtt − µ
(
σ − 1

2

)
∆Φtt − ε∇Φ · ∇Φt + O(ε2, µ2).

Plugging this expression in the first equation of (BBL) and using

ηt + ∆Φ = O(ε, µ),

we obtain the equation

Φtt −∆Φ + µ
(

1
6∆2Φ + (σ − 1

2 )∆Φtt

)
+ ε
(
Φ∆Φ + 2∇Φ · ∇Φt

)
= O(ε2, µ2).
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Thus, choosing a, b such that

(13) a− b = σ − 1
3
,

and neglecting the terms of order O(ε2, µ2), we obtain the so-called Benney-Luke
equation (BL). This equation has been studied, see for example [7], [11], [14]-[18].
Note that we are able to show, formally, that travelling waves for the Boussinesq
system (BBL) formally reduce to travelling waves for a KP type equation, when
we consider waves propagating predominantly in the x-direction, weakly in the y-
direction, having slowly evolving in time and balancing the effects of nonlinearity
and dispersion. In fact, we start balancing the effects of nonlinearity and dispersion
by setting µ = ε, and defining the following KP type scaling, X = x − ct and
Y = ε1/2 y. Let (η,Φ) be a solution of the (BBL) system, take c2 = 1 − ε and
consider (u, v) defined as

(η,Φ)(x, y, t) = (u, v)(X,Y ).

Then plugging this into the (BBL) system and using c = 1 − 1
2ε + O(ε2) give us

that

− cuX + vXX − ε
[
−vY Y + 2

3vXXXX − 1
2uXXX − (uvX)X

]
= O(ε2).(14)

− cvX + u− ε
[
σuXX − 1

2vXXX − 1
2 (v2

X)
]

= O(ε2).(15)

From (15) we see that −cvX + u = O(ε), then using this in (14), we obtain that

(16) −cuX + vXX − ε
(
−vY Y + 1

6vXXXX −
(
v2

X

)
X

)
= O(ε2).

Multiplying by c and differentiating with respect to X the equation (15), and using
(16), we get that

(1− c2)vXX − ε
(
−vY Y +

(
σ − 1

3

)
vXXXX − 3

2

(
v2

X

)
X

)
= O(ε2).

Using that ε = 1− c2 we obtain,

(17) vXX + vY Y −
(
σ − 1

3

)
vXXXX + 3

2

(
v2

X

)
X

= O(ε).

If we differentiate (17) with respect to X and neglect the O(ε) term, then we find
that the couple (u, v) satisfies the system

u = vX(18) (
uX −

(
σ − 1

3

)
uXXX + 3uuX

)
X

+ uY Y = 0.(19)

In other words, u = vX (up to order O(ε)) is a solution for the travelling wave
equation of a (KP-I) type equation.

3. Existence of solitary wave solutions

By a solitary wave solution we shall mean a solution (η,Φ) of (BBL) of the
form

(20) η(x, y, t) =
1
ε
u

(
x− ct
√
µ
,
y
√
µ

)
, Φ(x, y, t) =

√
µ

ε
v

(
x− ct
√
µ
,
y
√
µ

)
.

Then, one sees that (u, v) must satisfy

(21)


2
3∆2v −∆v + c

(
I − 1

2∆
)
ux −∇ · (u∇v) = 0,

u− σ∆u− c
(
I − 1

2∆
)
vx + 1

2 |∇v|
2 = 0.
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We establish the existence of a solution of (21) in the weak sense by using a varia-
tional approach in which weak solutions correspond to critical points of an energy
under a special constrain, associated with the Hamiltonian structure given by (12)
which provides the natural space to look for travelling waves. For k ∈ R, let Hk(U)
be Sobolev space the Hilbert space defined as the closure of C∞(U) with inner
product

(u, v)Hk =
∑
|α|≤k

∫
U

Dαu ·Dαv dx.

We denote V the closure of C∞0 (R2) with respect to the norm given by

‖v‖2V :=
∫

R2

(
|∇v|2 + |∆v|2

)
dxdy =

∫
R2

(
v2

x + v2
y + v2

xx + 2v2
xy + v2

yy

)
dx dy.

Note that V is a Hilbert space with respect to the inner product

(v, w)V = (vx, wx)H1(R2) + (vy, wy)H1(R2).

Also, we define the Hilbert space X = H1(R2)× V with respect to the norm

‖(u, v)‖2X = ‖u‖2H1(R2) + ‖v‖2V =
∫

R2

(
u2 + |∇u|2 + |∇v|2 + |∆v|2

)
dxdy.

If we multiply the travelling wave system (21) with a test couple (w, z) ∈ X , then,
after integrating by parts, a travelling wave solution (u, v) ∈ X satisfies the system
(22)∫

R2

[(
∇v · ∇z + 2

3∆v∆z
uw + σ∇u · ∇w

)
+ c

(
−(uzx + 1

2ux∆z)
−(wvx + 1

2wx∆v)

)
+
(
u∇v · ∇z
1
2w|∇v|

2

)]
dxdy = 0,

which can be written in terms of suitable functionals A, B1,c and B2 as

(23) A((u, v), (w, z)) +B1,c((u, v), (w, z)) +B2((u, v), (w, z)) = 0.

Definition 3.1. We say that (u,v) is a weak solution of (21) if for all (w, z) ∈
X , the system (23) holds.

Our strategy to prove the existence of a weak solution of (21) is to consider the
following minimization problem

(24) Ic := inf {Ic(u, v) : (u, v) ∈ X with G(u, v) = 1} ,
where the energy Ic and the constrain G are functionals defined in X given by

Ic(u, v) =
∫

R2

(
u2 + σ|∇u|2 + |∇v|2 + 2

3 (∆v)2 − 2cuvx − cux∆v
)
dxdy,(25)

G(u, v) =
∫

R2
u|∇v|2 dx dy.(26)

We start by showing some properties of Ic and G, assuming in this section that
σ > 0, 0 < c < min

{
1, 8σ

3

}
, and that C denotes a generic constant whose value

may change from instance to instance.

Lemma 3.1. (1) The functionals Ic and G are well defined in X and
smooth.

(2) The functional Ic is nonnegative. Moreover, there is C1 = C1(σ, c) > 1
such that

(27) C−1
1 Ic(u, v) ≤ ‖(u, v)‖2X ≤ C1Ic(u, v).

(3) Ic is finite and positive.
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Proof. 1) Ic is clearly well defined for (u, v) ∈ X . Now, note that if v ∈ V
then vx, vy ∈ H1(R2). Using the Young inequality and the fact that the embedding
H1(R2) ↪→ Lq(R2) is continuous for q ≥ 2, we see that there is a constant C > 0
such that

(28) |G(u, v)| ≤ C
(
‖u‖3H1(R2) + ‖∇v‖3H1(R2)

)
.

So, G is well defined.
2) Let σ be a fixed positive number and 0 < c < min

{
1, 8σ

3

}
. Then

Ic(u, v) =
∫

R2

(
(u− cvx)2 + σu2

y + (1− c2)v2
x + v2

y

)
dxdy(29)

+
∫

R2

(
σ
(
ux −

c

2σ
∆v
)2

+
(

2
3
− c2

4σ

)
(∆v)2

)
dxdy

=
∫

R2

(
(1− c2)u2 +

(
σ − 3c2

8

)
u2

x + σu2
y + v2

y

)
dxdy

+
∫

R2

(
(vx − cu)2 +

2
3

(
∆v − 3c

4
ux

)2
)
dxdy ≥ 0.

Now, using (25) and Young inequality we obtain that

Ic(u, v) ≤
∫

R2

(
(1 + c)u2 +

(
σ +

c

2

)
u2

x + σu2
y

+ (1 + c)v2
x + v2

y +
(

2
3

+
c

2

)
(∆v)2

)
dxdy

≤ max
(

1 + c,
2
3

+
c

2
, σ +

c

2

)
‖(u, v)‖2X .(30)

Moreover,

Ic(u, v) =
∫

R2

(
(1− c)u2 + σ(1− c)u2

x + σu2
y+

(1− c)v2
x + v2

y +
(

2
3
− c

4σ

)
(∆v)2

)
dxdy

+
∫

R2

(
c (u− vx)2 + σc

(
ux −

1
2σ

∆v
)2
)
dxdy

≥ min
(

1− c, σ(1− c),
2
3
− c

4σ

)
‖(u, v)‖2X ,

showing that the inequality (27) holds.
3) Note that there exist (u, v) ∈ X such that G(u, v) 6= 0. Then for some t we have
that G(tu, tv) = t3G(u, v) = 1. On the other hand, for any (u, v) ∈ X such that
G(u, v) = 1 the inequalities (27)-(28) implies that there is C > 0 such that

C (Ic(u, v))
3
2 ≥ C

(
‖u‖3H1 + ‖∇v‖3H1

)
≥ G(u, v) = 1,

meaning that the infimum Ic is finite and positive. �

To simplify the notation, we observe that

Ic(u, v) = I1(u) + I2(v) + I3(u, v),



BOUSSINESQ-BENNEY-LUKE SYSTEM 321

where

I1(u) =
∫

R2

(
u2 + σ|∇u|2

)
dxdy, I2(v) =

∫
R2

(
|∇v|2 + 2

3 (∆v)2
)
dxdy,

I3(u, v) = −c
∫

R2
(2uvx + ux∆v) dxdy.

Theorem 3.1. If (u0, v0) is a minimizer for (24), then (u, v) = −k(u0, v0) is
a nontrivial weak solution of (21) for k = 2

3Ic.

Proof. By the Lagrange Theorem there is a multiplier k such that for any
(w, z) ∈ X ,

I ′c(u0, v0)(w, z)− kG′(u0, v0)(w, z) = 0.

Now, a direct calculation shows that

(31) A((u0, v0), (w, z)) +B1,c((u0, v0), (w, z))− kB2((u0, v0), (w, z)) = 0.

In particular, if we put (w, z) = (u0, v0) in the previous equation, we have that

I2(v0) + 1
2I3(u0, v0)− kG(u0, v0) = 0(32)

I1(u0) + 1
2I3(u0, v0)− k

2G(u0, v0) = 0.(33)

Combining (32) and (33) we obtain,

Ic(u0, v0)− 3
2kG(u0, v0) = 0.

Then k = 2
3Ic, and −k(u0, v0) is a nontrivial weak solution of (21). �

3.1. Existence of minimizers. The existence of travelling waves solutions
for (21) as a minimizer of the minimization problem (24) is based on the existence
of a compact embedding (local) result and also on an important result by L. P.
Lions, which characterizes completely the convergence of measures, known as the
Concentration-Compactness principle (see [8], [9]).

Theorem 3.2. (L. Lions, [8], [9]) Suppose {νm} is a sequence of nonnegative
measures on R2 such that

lim
m→∞

∫
R2
dνm = I.

Then there is a subsequence of {νm} (which denote the same) that satisfy only one
of the following properties.
V anishing. For any R > 0,

(34) lim
m→∞

(
sup

(x,y)∈R2

∫
BR(x,y)

dνm

)
= 0,

where BR(x, y) is the ball of radius R centered at (x, y).

Dichotomy. There exist θ ∈ (0, I) such that for any γ > 0, there are R > 0 and
a sequence {(xm, ym)} in R2 with the following property: Given R′ > R there are
nonnegative measures ν1

m, ν
2
m such that

(1) 0 ≤ ν1
m + ν2

m ≤ νm,

(2) supp (ν1
m) ⊂ BR(xm, ym), supp (ν2

m) ⊂ R2 \BR′(xm, ym),

(3) lim supm→∞
(
|θ −

∫
R2 dν

1
m|+ |(I − θ)−

∫
R2 dν

2
m|
)
≤ γ.
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Compactness. There exists a sequence {(xm, ym)} in R2 such that for any γ > 0,
there is R > 0 with the property that

(35)
∫

BR(xm,ym)

dνm ≥ I − γ, for all m.

In order to apply this result to our case, let us assume that {(um, vm)} in X
is a minimizing sequence for Ic, then we define the positive measures {νm} by
dνm = ρm dxdy, where ρm is defined as

(36) ρm = u2
m + σ|∇um|2 + |∇vm|2 + 2

3 (∆vm)2 − 2cum∂xvm − c∂xum∆vm,

which correspond to the integrand of Ic(um, vm). From the Concentration Com-
pactness Theorem, there exists a subsequence of {νm} (which denote the same)
that satisfy either vanishing, or dichotomy, or compactness. We will see that van-
ishing and dichotomy can be ruled out, and so using compactness we will establish
that the minimizing sequence {(um, vm)} is compact in X , up to translation, as a
consequence of local compact embedding.

We will establish some technical result. The first one is related with the character-
ization of “vanishing sequences” in X .

Lemma 3.2. (Vanishing sequences) Let R > 0 be given and let {(um, vm)}m be
a bounded sequence in X such that

lim
m→∞

(
sup

(x,y)∈R2

∫
BR(x,y)

dνm

)
= 0.

Then we have that

lim
m→∞

G(um, vm) = lim
m→∞

∫
R2
um|∇vm|2 dxdy = 0.

In particular, if {(um, vm)}m is a minimizing sequence for Ic, then vanishing is
ruled out.

Proof. Let B1 = B1(x, y). Since the embedding H1(B1) ↪→ L3(B1) is contin-
uous, we obtain that∫

B1

um|∇vm|2 dxdy ≤ C
(
‖um‖3H1(B1)

+ ‖∇vm‖3H1(B1)

)
≤ C

(
‖um‖2H1(B1)

+ ‖∇vm‖2H1(B1)

)(∫
B1

dνm

)1/2

.

But we know that R2 can be covered with balls of radius 1 in such a way that each
point of R2 is contained in at most 3 balls. Then we conclude that∫

R2
um|∇vm|2 dV ≤ 3C

(
‖um‖2H1(R2) + ‖∇vm‖2H1(R2)

)(
sup

(x,y)∈R2

∫
B1

dνm

)1/2

≤ 3CIc(um, vm)
(

sup
(x,y)∈R2

∫
B1

dνm

)1/2

.

As a consequence of this we see that

lim
m→∞

G(um, vm) = lim
m→∞

∫
R2
um|∇vm|2 dxdy = 0.
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Now assume that {(um, vm)}m is a minimizing sequence for Ic. Then we have that
G(um, vm) = 1, but from the previous fact we reach a contradiction. �

In order to rule out dichotomy, we will establish a splitting result for a sequence
{(um, vm)}m in X . Fix a function φ ∈ C∞0 (R2,R+) such that supp φ ⊂ B2(0, 0)
and φ ≡ 1 in B1(0, 0). If R > 0 and (x0, y0) ∈ R2, we define a split for (u, v) ∈ X
given by

u = u1
R + u2

R and v = v1
R + v2

R,

where

u1
R = uφR, u

2
R = u(1− φR), v1

R = (v − aR)φR, v
2
R = (v − aR)(1− φR) + aR,

with
φR(x, y) = φ

(x− x0

R
,
y − y0
R

)
,

and

aR =
1

vol (AR(x0, y0))

∫
AR(x0,y0)

v(x, y) dxdy,AR(x0, y0) = B2R(x0, y0)\BR(x0, y0).

We note that the decomposition of v is non standard and reflects the nature of the
space V.

In the coming result, we use the following Poincaré type inequality

(37)
(∫

AR(x0,y0)

|v − aR|q dxdy
)1/q

≤ CR2/q

(∫
AR(x0,y0)

|∇v|2 dxdy
)1/2

,

where 2 ≤ q ≤ ∞ and C does not depend on R (see [4], [14]).

Lemma 3.3. (A splitting result) Let Rm > 0 and (xm, ym) ∈ R2 be sequences.
Define A(m) = ARm(xm, ym) and φm(x, y) = φ

(
x−xm

Rm
, y−ym

Rm

)
. If

(38) lim sup
m→∞

(∫
A(m)

dνm

)
= 0,

then as m→∞ we have that
a.- Ic(um, vm) = Ic(u1

m, v
1
m) + Ic(u2

m, v
2
m) + o(1).

b.- G(um, vm) = G(u1
m, v

1
m) +G(u2

m, v
2
m) + o(1).

Proof. We need to recall that

Ic(u, v) = I1(u) + I2(v) + I3(u, v).

We will see that

(39) Ij(zm) = Ij(z1
m) + Ij(z2

m) + o(1), as m→∞,

where zm = um for j = 1, zm = vm for j = 2, and zm = (um, vm) for j = 3.

First note that

δ(0)um :=
∫

R2

{
(um)2 − (u1

m)2 − (u2
m)2

}
dxdy = 2

∫
A(m)

φm(1− φm)(um)2 dxdy.

Then

|δ(0)um| ≤ C

∫
A(m)

(um)2 dxdy ≤ C

∫
A(m)

dνm → 0.
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For i = 1, 2, we have that

δ(i)um :=
∫

R2

{
(∂ium)2 − (∂iu

1
m)2 − (∂iu

2
m)2

}
dxdy

= 2
∫

A(m)

{
φm(1− φm)(∂ium)2 + (1− 2φm)(um∂ium)(∂iφm)

− u2
m(∂iφm)2

}
dxdy.

Consequently,

|δ(i)um| ≤ C

∫
A(m)

{
(um)2 + (∂ium)2

}
dxdy ≤ C

∫
A(m)

dνm → 0.

Then we obtain that

lim
m→∞

[
I1(um)− I1(u1

m)− I1(u2
m)
]

= 0.

Now,

δ(i)vm :=
∫

R2

{
(∂ivm)2 − (∂iv

1
m)2 − (∂iv

2
m)2

}
dxdy

= 2
∫

A(m)

{
φm(1− φm)(∂ivm)2 − (vm − am)2(∂iφm)2

+ (1− 2φm)(∂ivm)(vm − am)(∂iφm)
}
dxdy.

But |∂iφm| ≤ C/Rm, and using the Poincaré type inequality (37) we obtain that

|δ(i)vm| ≤ C

∫
A(m)

{
(∂ivm)2 +

(vm − am)2

R2
m

}
dxdy

≤ C

∫
A(m)

{
|∂ivm|2 + |∇vm|2

}
dxdy

≤ C

∫
A(m)

dνm → 0.

If wm = (vm−am)∂ijφm +∂ivm∂jφm +∂jvm∂iφm a simple calculation shows that

∂ijv
1
m = (∂ijvm)φm + wm, ∂ijv

2
m = (∂ijvm)(1− φm)− wm.

Therefore

δ(ij)vm :=
∫

R2

{
(∂ijvm)2 − (∂ijv

1
m)2 − (∂ijv

2
m)2

}
dxdy

= 2
∫

A(m)

{
φm(1− φm)(∂ijvm)2 − w2

m + (1− 2φm)(∂ijvm)wm

}
dxdy.

Since |∂ijφm| ≤ C/R2
m we have that

|δ(ij)vm| ≤ C

∫
A(m)

{
(∂ijvm)2 +

(vm − am)2

R4
m

+
(∂ivm)2 + (∂jvm)2

R2
m

}
dxdy

≤ C

∫
A(m)

dνm.

Then we conclude that

lim
m→∞

[
I2(vm)− I2(v1

m)− I2(v2
m)
]

= 0.
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Now we show the result for I3. First note that

δ
(0)
i :=

∫
R2

{
um∂ivm − u1

m∂iv
1
m − u2

m∂iv
2
m

}
dxdy

=
∫

A(m)

2φm(1− φm)um∂ivm + (1− 2φm)um(vm − am)∂iφm dxdy.

Then, using again that |∂iφm| ≤ C/Rm , Young inequality and inequality (37) we
obtain that

|δ(0)i | ≤ C

∫
A(m)

dνm → 0.

On the other hand,

δ
(1)
ii :=

∫
R2

{
∂1um∂iivm − ∂1u

1
m∂iiv

1
m − ∂1u

2
m∂iiv

2
m

}
dxdy

=
∫

A(m)

{
2φm(1− φm)∂1um∂iivm + (1− φm)(∂iφm)um∂iivm

+ (1− 2φm)(∂1um)wm − 2(∂1φm)umwm

}
dxdy.

In a similar fashion one checks that

|δ(1)ii | ≤ C

∫
A(m)

dνm → 0,

which concludes (39). Now, we will show the item (b). For i = 1, 2, we have that∫
R2

∣∣um(∂ivm)2 − u1
m(∂iv

1
m)2 − u2

m(∂iv
2
m)2

∣∣ dxdy
=
∫

A(m)

∣∣∣2(1− 2φm)um(∂ivm)(vm − am)∂iφm

+ 3φm(1− φm)um(∂ivm)2 − um(vm − am)2(∂iφm)2
∣∣∣ dxdy

≤ C

∫
A(m)

{
(um)2 + (∂ivm)2 + |um|3 + |∂ivm|3 +

(vm − am)2

R2
m

+
|vm − am|3

R3
m

}
dxdy

≤ C

∫
A(m)

dνm +

(∫
A(m)

dνm

)3/2
 → 0.

Then we conclude as m→∞ that

G(um, vm) = G(u1
m, v

1
m) +G(u2

m, v
2
m) + o(1).

�

Using the previous result we have that

Lemma 3.4. Let {(um, vm)}m be a minimizing sequence for Ic. Then dichotomy
is not possible.
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Proof. Assume that dichotomy occurs, then we can choose sequences γm → 0
and Rm →∞ such that

(40) supp (ν1
m) ⊂ BRm(xm, ym), supp(ν2

m) ⊂ R2 \B2Rm(xm, ym)

and

(41) lim sup
m→∞

(∣∣∣θ − ∫
R2
dν1

m

∣∣∣+ ∣∣∣(Ic − θ)−
∫

R2
dν2

m

∣∣∣) = 0.

Using these facts, we have that

(42) lim sup
m→∞

(∫
A(m)

dνm

)
= 0.

In fact,∫
A(m)

dνm =

(∫
R2

−
∫

BRm (xm,ym)

−
∫

R2\B2Rm (xm,yy)

)
dνm

≤
∫

R2
dνm −

∫
R2
dν1

m −
∫

R2
dν2

m

≤
(∫

R2
dνm − Ic

)
+
∣∣∣∣θ − ∫

R2
dν1

m

∣∣∣∣+ ∣∣∣∣(Ic − θ)−
∫

R2
dν2

m

∣∣∣∣ .
Using (42) and Lemma 3.3 we conclude that

lim
m→∞

[
Ic(um, vm)− Ic(u1

m, v
1
m)− Ic(u2

m, v
2
m)
]

= 0,

lim
m→∞

[
G(um, vm)−G(u1

m, v
1
m)−G(u2

m, v
2
m)
]

= 0.

Now, let λm,i = G(ui
m, v

i
m) , for i = 1, 2. We will show that λi := limm→∞ λm,i 6= 0.

Assume that limm→∞ λm,1 = 0, then limm→∞ λm,2 = 1 (we proceed in a similar
way in the other case). Therefore λm,2 > 0, for m large enough. Then we consider

(wm, zm) = λ
− 1

3
m,2(u

2
m, v

2
m).

So that,

(wm, zm) ∈ X , G(wm, zm) = 1.

Using that φm ≡ 1 in BRm(xm, ym) we have a contradiction since

Ic = lim
m→∞

(
Ic(u1

m, v
1
m) + Ic(u2

m, v
2
m)
)

≥ lim
m→∞

(∫
BRm (xm,ym)

dνm + λ
2
3
m,2Ic(wm, zm)

)

≥ lim
m→∞

(∫
R2
dν1

m + λ
2
3
m,2Ic

)
= θ + Ic.

In other words, |λm,i| > 0 for m large enough. Then we are allowed to define

(wm,i, zm,i) = λ
− 1

3
m,i(u

i
m, v

i
m), i = 1, 2.
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Note that (wm,i, zm,i) ∈ X and G(wm,i, zm,i) = 1. So that,

Ic = lim
m→∞

(
Ic(u1

m, v
1
m) + Ic(u2

m, v
2
m)
)

= lim
m→∞

(
|λm,1|

2
3 Ic(wm,1, zm,1) + |λm,2|

2
3 Ic(wm,2, zm,2)

)
≥
(
|λ1|

2
3 + |λ2|

2
3

)
Ic.

Then
1 ≥ |λ1|

2
3 + |λ2|

2
3 ≥

(
|λ1|+ |λ2|

) 2
3≥ |λ1 + λ2|

2
3 = 1.

Hence, |λ1| + |λ2| = 1. Using that λ1 + λ2 = 1 and λi 6= 0 , we have that λi > 0
and

(43) λ
2
3
1 + λ

2
3
2 = (λ1 + λ2)

2
3 .

But (43) gives us a contradiction, because for t ∈ R+ the function f(t) = t
2
3 is

strictly concave, meaning that

f(t1 + t2) > f(t1) + f(t2).

In other words, we have ruled out dichotomy.
�

Now we are in position to obtain the main result in this section: the existence
of a minimizer for Ic. Since we ruled out vanishing and dichotomy above for a min-
imizing sequence of Ic, then by Lion’s Concentration Compactness Theorem, there
exists a subsequence of {νm} (which denote the same) satisfying compactness. We
will see as a consequence of local compact embedding that a minimizing sequence
{(um, vm)} is compact in X , up to translation.

Theorem 3.3. If {(um, vm)} is a minimizing sequence for (24), then there is
a subsequence (which we denote the same), a sequence of points (xm, ym) ∈ R2, and
a minimizer (u0, v0) ∈ X of (24), such that the translated functions

(ũm, ṽm) = (um(·+ xm, ·+ ym), vm(·+ xm, ·+ ym))

converge to (u0, v0) strongly in X .

Proof. Let {(um, vm)} be a minimizing sequence for (24). In other words,

lim
m→∞

Ic(um, vm) = Ic and G(um, vm) = 1.

By compactness, there exists a sequence (xm, ym) in R2 such that for a given γ > 0,
there exists R > 0 with the following property,

(44)
∫

BR(xm,ym)

dνm ≥ Ic − γ, for all m ∈ N.

Using this we may localize the minimizing sequence {(um, vm)}m around the origin
by defining

ρ̃m(x, y) = ρm(x+ xm, y + ym), (ũm, ṽm)(x, y) = (um, vm)(x+ xm, y + ym).

Thus, we have the following localized inequality

(45)
∫

BR(0,0)

ρ̃mdxdy =
∫

BR(xm,ym)

dνm ≥ Ic − γ, for all m ∈ N,
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and also that

(46) G(ũm, ṽm) = G(um, vm) = 1, lim
m→∞

Ic(ũm, ṽm) = lim
m→∞

Ic(um, vm) = Ic.

Then we note that {(ũm, ṽm)}m is a bounded sequence in X = H1(R2) × V. On
the other hand, since ũm,∇ṽm ∈ H1(U) for any bounded open set U and the
embedding H1(U) ↪→ Lq(U) is compact for q ≥ 2, then there exist a subsequence
of {(ũm, ṽm)}m (which we denote the same) and (u0, v0) ∈ H1 × V such that for
i = 1, 2,

ũm ⇀ u0 in H1(R2), ũm ⇀ u0 in L2(R2),

ṽm ⇀ v0 in V, ∂iṽm ⇀ v0 in L2(R2)

and we also have that

ũm → u0 in L2
loc(R2), ∂iṽm → ∂iv0 in L2

loc(R2).

Moreover,

ũm → u0 a.e. in R2, ∂iṽm → ∂iv0 a.e in R2 for i = 1, 2.

Using these facts we will show that some subsequence of {(ũm, ṽm)}m (which we
denote the same) converges strongly in X to a nontrivial minimizer (u0, v0) of (24).
We first see that

(47) ũm → u0, ∂iṽm → ∂iv0 in L2(R2).

In fact, using (45), (46) and the definition of Ic we have that for γ > 0, there exists
R > 0 such that for m large enough,∫

BR(0,0)

|ũm|2dxdy ≥
∫

R2
|ũm|2 dxdy − 2γ.

Then we have that∫
R2
|u0|2dxdy ≤ lim inf

m→∞

∫
R2
|ũm|2dxdy

≤ lim inf
m→∞

∫
BR(0,0)

|ũm|2dxdy + 2γ

≤
∫

BR(0,0)

|u0|2dxdy + 2γ

≤
∫

R2
|u0|2dxdy + 2γ.

Therefore,

lim inf
m→∞

∫
R2
|ũm|2dxdy =

∫
R2
|u0|2dxdy.

Thus, there exist a subsequence of {ũm} such that ũm → u0 in L2(R2). Using a
similar argument we prove the other part of (47). Moreover, also we can see that

∂iũm → ∂iu0, ∂ij ṽm → ∂ijv0 in L2(R2).(48)

Now, using (47)-(48) and the fact that the inclusionH1(R2) ↪→ L4(R2) is continuous
we have that

(49) G(u0, v0) = lim
m→∞

G(ũm, ṽm) = 1.
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In fact, from definition of G we see that

G(ũm, ṽm)−G(u0, v0) =
∫

R2

(
ũm|∇ṽm|2 − u0|∇v0|2

)
dxdy

=
∫

R2

[
(ũm − u0)|∇ṽm|2 + u0

(
|∇ṽm|2 − |∇v0|2

)]
dxdy.

But ∫
R2

(ũm − u0)|∇vm|2dxdy ≤ ‖ũm − u0‖L2‖∇vm‖2L4

≤ C ‖ũm − u0‖L2‖∇vm‖2H1

≤ C Ic(ũm, ṽm) ‖ũm − u0‖L2

≤ C ‖ũm − u0‖L2 → 0,

and also∫
R2
u0

(
|∇ṽm|2 − |∇v0|2

)
dxdy ≤ ‖∇(ṽm − v0)‖L2‖∇(ṽm + v0)‖L4‖u0‖L4

≤ C‖∇(ṽm − v0)‖L2‖∇(ṽm + v0)‖H1‖u0‖H1

≤ C‖∇(ṽm − v0)‖L2

(
‖u0‖2H1 + ‖∇(ṽm + v0)‖2H1

)
≤ C‖∇(ṽm − v0)‖L2 (Ic(ũm, ṽm) + Ic(u0, v0)) → 0.

Then we conclude that (49) holds, which implies that

(u0, v0) 6= (0, 0), Ic(u0, v0) ≥ Ic.

On the other hand,

lim
m→∞

[
Ic(ũm, ṽm)− Ic(ũm − u0, ṽm − v0)

]
= Ic(u0, v0).

Hence we have that

0 ≤ lim
m→∞

Ic(ũm−u0, ṽm−v0) = lim
m→∞

Ic(ũm, ṽm)− Ic(u0, v0) = Ic− Ic(u0, v0) ≤ 0.

Thus, we see that

lim
m→∞

Ic(ũm, ṽm) = Ic(u0, v0) = Ic, lim
m→∞

Ic(ũm − u0, ṽm − v0) = 0.

Moreover, the sequence {(ũm, ṽm)}m converges to (u0, v0) in X , since

‖(ũm − u0, ṽm − v0)‖X ≤ C1Ic(um − u0, vm − v0).

Then we concluded that {(ũm, ṽm)} converges to (u0, v0) in X and (u0, v0) is a
minimizer for Ic. �

4. Inter-relation between (BBL) and (KP) solitons

In this Section we will establish that after an appropriate choice of (ε, µ, c) and
a renormalization of the family of solitons{(

u(ε,µ,c), v(ε,µ,c)

)}
(ε,µ,c)

for the system (BBL), it is possible to obtain solitons for the (KP-I) equation. We
must remember that the derivation of the (BBL) system required the parameters
ε and µ to be small, while the free surface elevation η and the derivatives of Φ to
be of order one with respect to ε and µ. Up to now, we have not shown that the
solitons for system (BBL) are physically meaningful for the water wave model. In
order to give some physical sense of the solitons for the (BBL), we will prove that
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as the parameter ε, µ are small enough and c is close to 1−, we are able to recover
a soliton for a (KP-I) type equation. The reason to adjust the wave speed (c near
1− ) to obtain a soliton for the (KP-I) equation is related with the fact that in the
derivation the KP model the variation in the y variable is weaker that the variation
in the x variable.

We know the following characterization of solitons for the (KP-I) model given
by A. de Bouard and J. C. Saut in [3] and [4]. First consider the space Z defined
as the closure of C0(R2) with respect to the norm given by

‖w‖2Z =
∫

R2

(
w2

x + w2
y + w2

xx

)
dxdy,

and the functionals defined in Z by

J0(w) =
∫

R2

(
w2

x + w2
y +

(
σ − 1

3

)
w2

xx

)
dxdy,

K0(w) =
∫

R2
w3

xdxdy,

and the minimization problem

(50) J 0 := inf{J0(w) : w ∈ Z, K0(w) = 1}.

Then we have the next theorem.

Theorem 4.1. ([3], [4]) Let σ > 1
3 . If {wm}m≥1 is a minimizing sequence for

J 0, then there exist a subsequence (denoted the same) and a nonzero distribution
w0 ∈ Z such that

J0(w0) = J 0 > 0,

and there exists a sequence of points {ζm}m≥1 in R2 such that wm(· + ζm) → w0

in Z. Moreover, w0 is a solution in the sense of distributions of the equation

(51) −wxx − wyy +
(
σ − 1

3

)
wxxxx + (2J 0)wxwxx = 0.

So that, w = −
(

2
3J

0
)
∂xw0 is a nontrivial solitary wave solution in the sense of

distributions for the (KP-I) equation (19).

Now we introduce a (KP-I) type scaling for obtain a soliton of the (KP-I)
equation from a renormalized family of solitons of the system (BBL). Set σ > 0,
ε > 0, µ = ε, c2 = 1 − ε and for a given couple (u, v) ∈ X define the functions w
and z by

u(x, y) = ε
1
2 z(X,Y ), v(x, y) = w(X,Y ), X = ε

1
2x, Y = εy.

Then a simple calculation shows that

Ic(ε)(u, v) = ε
1
2 Iε(z, w), G(u, v) = Gε(z, w),
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where Iε and Gε are given by

Iε(z, w) =
∫

R2

(
ε−1z2 + σ(z2

x + εz2
y) + ε−1w2

x + w2
y

+
2
3
(
w2

xx + 2εw2
xy + ε2w2

yy

))
dxdy

− c

∫
R2

(
2ε−1zwx + zx(wxx + εwyy)

)
dxdy,

Gε(z, w) =
∫

R2
z
(
w2

x + εw2
y

)
dxdy.

Note that if σ > 3
8 then there is a family {(uc, vc)}c such that

Ic(uc, vc) = Ic, G(uc, vc) = 1, 0 < c < 1.

Then, if we denote

Iε := inf {Iε(z, w) : (z, w) ∈ X with Gε(z, w) = 1} ,
there is a correspondent family {(zε, wε)}ε such that

Iε = Iε(zε, wε), Gε(zε, wε) = 1, Ic = ε
1
2 Iε .

Moreover, (zε, wε) is a solution, in the sense of distributions, of the system
(52)

2
3

(
wxxxx + 2εwxxyy + ε2wyyyyy

)
− ε−1wxx − wyy + c

(
ε−1zx − 1

2 (zxxx + εzxyy)
)

+( 2
3I

ε) ((zwx)x + ε(zwy)y) = 0,

ε−1z − σ(zxx + εzyy)− c
(
ε−1wx − 1

2 (wxxx + εwxyy)
)
− ( 1

3I
ε)(w2

x + εw2
y) = 0.

We are interested in relating the family {(zε, wε)}ε as ε goes to zero with solitons
for the (KP-I) equation. To do this, we define in V the functionals

Jε(w) = Iε(cwx, w)

=
∫

R2

(
w2

x + w2
y +

(
(σ − 1)c2 +

2
3

)
w2

xx + ε

(
(σ − 1) c2 +

4
3

)
w2

xy

+
2
3
ε2w2

yy

)
dxdy,

Kε(w) = Gε(cwx, w) = c

∫
R2

(
w3

x + εwxw
2
y

)
dxdy,

Note that if σ > 1
3 and ε small enough, the functional Jε is nonnegative. Then

we define the number J ε by

(53) J ε = inf {Jε(w) : w ∈ V with Kε(w) = 1} ,
and establish the following important result.

Lemma 4.1. Let σ > 3
8 . Then we have that

(54)
lim

ε→0+
Iε = lim

ε→0+
J ε = J 0, lim

ε→0+
K0(wε) = lim

ε→0+
Kε(wε) = lim

ε→0+
Gε(zε, wε) = 1.

Moreover, for any sequence εj → 0, the sequence {
(
K0(wεj )

)−1/3
wεj} is a mini-

mizing sequence for J 0.
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Proof. Let w ∈ V be such that
∫

R2 w
3
x dxdy = 1, then for ε > 0 small enough

we have that
Kε(w) = c

∫
R2

(
w3

x + εwxw
2
y

)
dxdy 6= 0.

Then we see that

(55) Iε ≤ Iε

(
1

Gε(cwx, w)1/3
(cwx, w)

)
=

Iε(cwx, w)
Gε(cwx, w)2/3

=
Jε(w)

Kε(w)2/3

and

J ε ≤ Jε

(
1

Kε(w)1/3
w

)
=

Jε(w)
Kε(w)2/3

.

On the other hand,

lim
ε→0+

Jε(w) = J0(w), lim
ε→0+

Kε(w) = 1.

Hence, if w ∈ V and
∫

R2 w
3
x dxdy = 1 we conclude that

lim sup
ε→0+

Iε ≤ J0(w), lim sup
ε→0+

J ε ≤ J0(w).

So that,

(56) lim sup
ε→0+

Iε ≤ J 0, lim sup
ε→0+

J ε ≤ J 0.

Moreover, for ε small enough we have that

ε−
1
2 Ic(uc, vc) = Iε ≤ 2J 0.

Then, using that c2 = 1− ε and the definition of Ic(ε) (see Eq. (29)), we have that

(57) ‖uc − c∂xvc‖L2(R2) + ‖∂yvc‖H1(R2) = O(ε
1
4 ), ‖∂xvc‖L2(R2) = O(ε

−1
4 ).

Now, since H1(R2) ↪→ L4(R2), as ε→ 0+ we see that

ε

∣∣∣∣∫
R2

(zε − c∂xw
ε)(∂yw

ε)2dxdy
∣∣∣∣ = ∣∣∣∣∫

R2
(uc − c∂xvc)(∂yvc)2dxdy

∣∣∣∣(58)

≤ C‖(uc − c∂xvc)‖L2(R2)‖∂yvc‖2H1(R2)

≤ Cε
3
4 → 0.

and also that

ε

∣∣∣∣∫
R2
∂xw

ε(∂yw
ε)2dxdy

∣∣∣∣ ≤ C‖∂xvc‖L2(R2)‖∂yvc‖2H1(R2) ≤ Cε
1
4 → 0.(59)

Hence, we find that

lim
ε→0+

K0(wε) = lim
ε→0+

c

∫
R2

(∂xw
ε)3dxdy

= lim
ε→0+

c

∫
R2

(
(∂xw

ε)3 + ε∂xw
ε(∂yw

ε)2
)
dxdy

= lim
ε→0+

Gε(c∂xw
ε, wε).

We want to show that
lim

ε→0+
K0(wε) = 1.

Since limε→0+ Gε(zε, wε) = 1, then we will establish that

(60) lim
ε→0+

Gε(zε, wε) = lim
ε→0+

Gε(c∂xw
ε, wε).
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For this, by using (58) it is sufficient to establish that the following limit holds.

lim
ε→0+

∫
R2

(zε − c∂xw
ε)(∂xw

ε)2dxdy = 0.(61)

In fact, from the second equation of (52) we have that (zε, wε) satisfy, in the sense
of distributions, the equation

c∂xyw = zy − εσ(∂xxyz + ε∂yyyz) +
1
2
cε(∂xxxyw + ε∂xyyyw)(62)

−
(1

3
εIε
)((

∂xw
2
)
y

+ ε
(
∂yw

2
)
y

)
= 0.

Using a duality argument we will show that in L2(R2) the right hand side of (62)
is of order O(1). First, using that the sequence {Iε(zε, wε)}ε is uniformly bounded
we note that

(63) ‖zε‖L2(R2) = O(1), ‖wε
x‖L2(R2) = O(1), ‖wε

yy‖L2(R2) = O(ε−1)

Then for any ψ ∈ C∞0 (R2) we have that

| 〈zε, ψy〉 | ≤ ‖ψy‖L2(R2)‖zε‖L2(R2) ≤ C‖zε‖L2(R2).

We illustrate only some calculations: Also we have that

| 〈∂yyw
ε, ψxy〉 | ≤ ‖ψxy‖L2(R2)‖wyy‖L2(R2) ≤ C‖wyy‖L2(R2).

Moreover, ∣∣∣〈(∂xw
ε)2 , ψy

〉∣∣∣ ≤ ‖ψy‖∞‖∂xw
ε‖2L2(R2) ≤ C‖∂xw

ε‖L2(R2).

Similarly one work the other terms. Then using (62)-(63) we see that

‖∂xyw
ε‖L2(R2) = O(1).

In a similar way we have that

(64) ‖zε − c∂xw
ε‖H1(R2) = O(ε).

We will use (64) in the proof of following theorem. Now, we also have that

(65) ‖zε
x‖L2(R2) = O(1), ‖wε

xx‖L2(R2) = O(1), ‖zε
y‖L2(R2) = O(ε

−1
2 ).

Then we see that∣∣∣∫
R2

(zε − c∂xw
ε)(∂xw

ε)2dxdy
∣∣∣ ≤ C‖zε − c∂xw

ε‖L2(R2)‖∂xw
ε‖2H1(R2) → 0,

as desired. Thus, we conclude that

lim
ε→0+

K0(wε) = lim
ε→0+

Kε(wε) = lim
ε→0+

Gε(zε, wε) = 1.

Hence, we have for ε small enough that K0(wε) 6= 0, then it follows that

J 0 ≤ J0

(
wε

K0(wε)1/3

)
=

J0(wε)
K0(wε)2/3

.

But, as ε→ 0, we have that

(66) Jε(wε)− J0(wε) = o(1), Iε(zε, wε)− Jε(wε) = o(1).

Then

(67) J 0 ≤ lim inf
ε→0+

Iε.
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Combining (56) and (67) we obtain,

lim
ε→0+

Iε = J0.

Now note that if Kε(w) = 1, by using (55), we have that Iε ≤ Jε(w), so that
Iε ≤ J ε. Hence

J 0 = lim
ε→0+

Iε ≤ lim inf
ε→0+

J ε.

From (56) we conclude that

lim
ε→0+

J ε = J 0,

and so the proof follows.
�

Now, we establish the main result in this section. More exactly, we will see that
a translate subsequence of the renormalized sequence (zε, wε) converges weakly to
a couple (z0, w0) that satisfies the system (18)-(19), and so z0 = ∂xw0 is a weak
solution of a (KP-I) equation.

Theorem 4.2. Let σ > 3
8 . For any sequence εj → 0, there is a translate subse-

quence (denoted the same) of {(zεj , wεj )}j and there exist nontrivial distributions
w0 ∈ Z and z0 ∈ H1(R2) such that as j →∞,

(68) wε → w0 in Z and zεj − ∂xw
εj → 0, zεj → z0 in H1(R2).

Moreover, (z0, w0) is a nontrivial weak solution of the system (18)-(19), and so
z0 = ∂xw0 ∈ H1(R2), with ∂xw0 being a solution of the travelling wave equation
for a (KP-I) equation in the sense of distributions.

Proof. Let {εj}j a sequence of positive number such that εj → 0. Then from
Lemma 4.1 we have that {(K0(wεj ))−1/3

wεj}j is a minimizing sequence for J0

and

K0(wεj ) → 1.

Considering this and Theorem 4.1 we have that there exist a translate sequence of
{(zεj , wεj )}j (denote the same) and there exist a nonzero distribution w0 ∈ Z such
that wε → w0 in Z and w0 is a solution of the equation (51). Then using (64) we
have that there exist z0 ∈ H1(R2) such that zεj → z0 in H1(R2). Thus, we obtain
(68) and z0 = ∂xw0.
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Now, multiply by cj and differentiating with respect to x the second equation in
(52) we find that

ε−1
j (cjzεj

x − wεj
xx)

= −2
3
wεj

xxxx −
4
3
εjw

εj
xxyy −

2ε2j
3
wεj

yyyy + wεj
yy

+
cj
2
zεj
xxx +

cjεj
2
zxyy(69)

−
(2

3
Iεj

)(
(zεjwεj

x )x + εj
(
zεjwεj

y

)
y

)
,

cjε
−1
j (zεj

x − cjw
εj
xx)

= σcjz
εj
xxx + σcjεjz

εj
xyy

−
c2j
2
wεj

xxxx −
c2jεj

2
wεj

xxyy(70)

+
(cj

3
Iεj

)(
(wεj

x )2x + εj
(
wεj

y

)2
x

)
.

Using c2j = 1− εj and replacing (69) in (70) we have that

− wεj
xx + cjσz

εj
xxx(71)

+ σcjεjz
εj
xyy −

c2j
2
wεj

xxxx −
c2jεj

2
wεj

xxyy

+
(cj

3
Iεj

) (
(wεj

x )2x + εj(wεj
y )2x

)
(72)

= −2
3
wεj

xxxx −
4
3
εjw

εj
xxyy −

2ε2j
3
wεj

yyyy + wεj
yy +

cj
2
zxxx +

cjεj
2
zxyy

−
( 2

3
Iεj

) (
(zεjwεj

x )x + εj(zεjwεj
y )y

)
.

For any test function ψ ∈ C∞0 (R2) we have that

εj

∣∣∣〈cj(σ − 1
2

)
zεj
xyy +

(4
3
−
c2j
2

)
wεj

xxyy +
2εj
3
wεj

yyyy, ψ
〉∣∣∣

≤ Cεj
(
‖zεj

y ‖2 + ‖wεj
xy‖+ εj‖wεj

yy‖2
)
‖ψy‖H1(R2) → 0.

Since limj→0 Iεj = J 0, also we have that

εjIεj

3

(
cj
∣∣〈(wεj

y )2, ψx

〉∣∣
+ 2

∣∣〈zεjwεj
y , ψy

〉∣∣)
≤ Cεj ‖wεj

y ‖2
(
‖wεj

y ‖2 + ‖zεj‖2
)
‖∇ψ‖∞ → 0.

On the other hand, using (68) we find that

lim
j→∞

〈
cj
3
Iεj (wεj

x )2 +
2
3
Iεj (zεjwεj

x ), ψx

〉
= J 0

〈
(∂xw0)2, ψx

〉
.

So that,

lim
j→∞

〈
cj
3
Iεj (wεj

x )2x +
2
3
Iεj (zεjwεj

x )x, ψ

〉
= 2J 0 〈∂xw0∂xxw0, ψ〉 .
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Finally, we see that

lim
j→∞

〈
−wεj

xx − wεj
yy +

(2
3
−
c2j
2

)
wεj

xxxx + cj

(
σ − 1

2

)
zεj
xxx, ψ

〉
=
〈
−∂xxw0 − ∂yyw0 +

(
σ − 1

3

)
∂xxxxw0, ψ

〉
.

Then since we assume that σ > 3
8 >

1
3 , using (71) we concluded that the nonzero

distribution w0 is a nontrivial solution of the equation

−wxx − wyy +
(
σ − 1

3

)
wxxxx +

(
2J 0

)
(wxwxx) = 0.

In particular, the couple (z0, w0) = −
(

2
3J

0
)
(z0, w0) is a nontrivial solution of the

system (18)-(19), and so z0 = ∂xw
0 is a solution for the equation (19) in the sense

of distributions.
�

5. Analyticity of Solitons

In this section, we will establish that travelling wave solutions of (21) are ana-
lytic functions. We have the following result.

Theorem 5.1. Let σ > 3
8 and 0 < c < 1. If (u, v) ∈ X is travelling wave

solution of system (21) then u and v are analytic.

Proof. First we will establish that u, vx, vy ∈ Hk(R2) for any k ≥ 1, if (u, v) ∈
X is a weak solution of (21). Since u, vx, vy ∈ H1(R2) ↪→ L4(R2), then we have for
i = 1, 2 that the functions

hi = −u∂iv, gi = −1
2

(∂iv)
2

belong to L2(R2). Taking Fourier transform on the system (21) we obtain that
(û, v̂)(ξ, η) satisfies the system
(73)

[
(ξ2 + η2)

(
2
3 (ξ2 + η2) + 1

)]
v̂ + icξ(1 + 1

2 (ξ2 + η2))û+ i(ξĥ1 + ηĥ2) = 0,(
1 + σ(ξ2 + η2)

)
û− icξ

(
1 + 1

2 (ξ2 + η2)
)
v̂ − (ĝ1 + ĝ2) = 0.

Then solving this system, we have that

û(ξ, η) =
cξ
(
1 + 1

2 (ξ2 + η2)
)
(ξĥ1 + ηĥ2) +

[
(ξ2 + η2)

(
2
3 (ξ2 + η2) + 1

)]
(ĝ1 + ĝ2)

P (ξ, η)

where P is a polynomial of sixth degree given by

P (ξ, η) = (ξ2 + η2)
[
2
3 (ξ2 + η2) + 1

] (
1 + σ(ξ2 + η2)

)
− c2ξ2

(
1 + 1

2 (ξ2 + η2)
)2
.

Since σ > 3
8 and 0 < c < 1, we notice that there exist M = M(σ, c) such that

P (ξ, η) ≥M(ξ2 + η2)
(
1 + (ξ2 + η2)

)2
,

then there exist M1 > 0 such that

(74) |û| ≤M1

(
|ĥ1|+ |ĥ2|+ |ĝ1|+ |ĝ2|

1 + ξ2 + η2

)
.
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From inequality (74) it follows that u ∈ H2(R2). On the other hand, from the
second equation of (73) we note that

v̂x =

(
1 + σ(ξ2 + η2)

)
û− (ĝ1 + ĝ2)

c
(
1 + 1

2 (ξ2 + η2)
) .

Then there is M2 = M2(σ, c) > 0 such that

|v̂x| ≤M2

(
|û|+ |ĝ1|+ |ĝ2|

1 + ξ2 + η2

)
.

This implies that vx ∈ H2(R2). By a similar argument we have that vy ∈ H2(R2),
and a simple bootstrapping argument then yields that u, vx, vy ∈ Hk(R2) for all
k ≥ 1.

Now, we will prove the analyticity of (u, v). First we establish the result under the
assumption of the existence of R > 0 such that for all α = (α1, α2) ∈ N2, with
|α| = α1 + α2 ≥ 1,

(75) ‖∂αu‖H1(R2) + ‖∂αv‖H2(R2) ≤ C
|α|!

|α|+ 2
R|α|,

where ∂α = ∂α1
x ∂α2

y . If (x0, y0) ∈ R2, we will show that there exists r > 0 such that
we have the following Taylor expansion for u and v in Br(x0, y0),

u(x, y) =
∑
α

∂αu(x0, y0)
α!

(x− x0, y − y0)α

v(x, y) =
∑
α

∂αv(x0, y0)
α!

(x− x0, y − y0)α.

We establish the result for v. If we set ζ0 = (x0, y0) and ζ = (x, y) − ζ0, then by
the Taylor Theorem (with remainder) we have that

v(x, y) =
N−1∑
k=0

∑
|α|=k,α∈N2

∂αv(ζ0)
α!

ζα + EN (x, y),

where

EN (x, y) =
∑

|α|=N,α∈N2

∂αv(ζ0 + tζ)
α!

ζα.

On the other hand, for |α| ≥ 1 we have that

(76) |∂αv(x, y)| ≤ ||∂αv||H2(R2) ≤ CR|α|
|α|!

|α|+ 2
.
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If we take r > 0 in such a way that 22r2R < 1. Then using that |α|!
α! ≤ 2|α|, we

conclude for ||ζ|| < r that

|EN (x, y)| ≤ C
∑

|α|=N,α∈N2

|α|!R|α|

(|α|+ 2)α!
‖ζ‖2|α|

≤ C
∑

|α|=N,α∈N2

2NRN

N + 2
r2N

≤ C
2NRN (N + 1)r2N

(N + 2)

≤ C(2Rr2)N

≤ C2−N .

In other words, the Taylor series for v converges in Br(x0, y0). In order to show
that the Taylor series for u converges, we only need to follow the same steps used
for the function v, after noting that we have an estimate like (76) for the function
u given by

|∂αu(x, y)| ≤ ||∂αu||H2(R2) ≤ CR|α|+1 (|α|+ 1)!
|α|+ 3

.

Now, to complete the proof, we only need to prove that there exists R > 0 such
that for all α ∈ N2, with |α| ≥ 1,

(77) ‖∂αu‖H1(R2) + ‖∂αv‖H2(R2) ≤ C
|α|!

|α|+ 2
R|α|.

We will argue by induction on |α|. First assume that |α| = 1. Since u, vx, vy ∈
Hk(R2) for all k ≥ 1 we have the result. Now, suppose that (75) holds for |α|
and R (which will be choosen later). Applying the operator ∂α to system (21) and
computing the L2- inner product with (∂αu, ∂αv), we obtain that

Ic(∂αu, ∂αv) = −〈∂α(uvx), ∂αvx〉 − 〈∂α(uvy), ∂αvy〉

− 1
2
〈
∂α
(
v2

x

)
, ∂αu

〉
− 1

2
〈
∂α
(
v2

y

)
, ∂αu

〉
.

Then applying inequality (27) and Hölder inequality, we obtain that

‖∂αu‖H1(R2) + ‖∂α∇v‖H1(R2) ≤ C1

(
‖∂α(uvx)‖2

+‖∂α(uvy)‖2 + ‖∂α
(
v2

x

)
‖2 + ‖∂α

(
v2

y

)
‖2
)
.

Note that if u,w ∈ H l for any l ≥ 1, we have for α = (α1, α2) that

∂α(uw) = (∂αu)w + u∂αw +
|α|−1∑
k=1

∑
β < α

|β| = k

(
α1

β1

)(
α2

β2

)
(∂α−βu)(∂βw).
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Then we conclude that
(78)

∂α(u∂iv) = ∂αu∂iv +
|α|−1∑
k=1

∑
β < α

|β| = k

(
α1

β1

)(
α2

β2

)
(∂α−βu)(∂β(∂iv)) + u∂α(∂iv).

Since, Hr(R2) ↪→ L∞(R2) for r > 1, then

‖(∂αu)w‖2 ≤ ‖∂αu‖2‖w‖∞ ≤ ‖∂αu‖2‖w‖H2(R2)

and
‖(∂αw)u‖2 ≤ ‖∂αw‖2‖u‖∞ ≤ ‖∂αw‖2‖u‖H2(R2).

Moreover, we also have that

‖(∂α−βu)(∂βw)‖2 ≤ ‖∂α−βu‖2‖∂βw‖∞ ≤ ‖∂α−βu‖2‖∂βw‖H2(R2)

Using the previous inequalities with w = ∂iv and using the induction hypothesis
on the right hand side, we conclude that

‖(∂αu)∂iv‖2 ≤ ‖∂αu‖2‖∂iv‖H2(R2)

≤ C2

(
(|α| − 1)!
3(|α|+ 1)

)
R|α|

≤
(
CR|α|+1 (|α|+ 1)!

|α|+ 3

)(
CR−1

(
|α|+ 3
|α|+ 1

))
.(79)

Similarly we obtain that

‖(∂α∂iv)u‖2 ≤ ‖∂α∂iv‖2‖u‖H2(R2)

≤ C2

(
(|α| − 1)!
3(|α|+ 1)

)
R|α|

≤
(
CR|α|+1 (|α|+ 1)!

|α|+ 3

)(
CR−1

(
|α|+ 3
|α|+ 1

))
.(80)

We also have that

‖(∂α−βu)(∂β∂iv)‖2 ≤ ‖∂α−βu‖2‖∂β∂iv‖H2(R2)

≤ C2

(
(|α| − |β| − 1)!(|β|+ 1)!
(|α| − |β|+ 1)(|β|+ 3)

)
R|α|.

Using the induction hypothesis and the previous inequality, we have that∑
β < α

|β| = k

(
α1

β1

)(
α2

β2

)∥∥(∂α−βu)(∂β(∂iv))
∥∥

2

≤ C2
∑
β < α

|β| = k

α1!α2!(|α| − k − 1)!(k + 1)!R|α|

(α1 − β1)!(α2 − β2)!β1!β2!(|α| − k + 1)(k + 3)
.

But we know that for any (n1, n2) ∈ N2 (see Proposition 16 (b) in Soriano [15]),

|α|! =
∑

A(α,n1,n2)

α!|ρ1|!|ρ2|!
ρ1!ρ2!

,
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where A(α, n1, n2) = {(ρ1, ρ2) : ρ1 + ρ2 = α, |ρi| = ni, for 1 ≤ i ≤ 2}. Note that
for α = (α1, α2), ρ1 = (α1−β1, α2−β2) and ρ2 = (β1, β2), we have that ρ1+ρ2 = α,
that k = β1 + β2 = |ρ2|, and also that |α| − k = |(α1 − β1, α2 − β2)| = |ρ1|. Using
the above property, we conclude that

α!|ρ1|!|ρ2|!
ρ1!ρ2!

=
α1!α2!(|α| − k)!k!

(α1 − β1)!(α2 − β2)!β1!β2!
≤ |α|!.

and also that

α1!α2!(|α| − k − 1)!(k + 1)!R|α|

(α1 − β1)!(α2 − β2)!β1!β2!(|α| − k + 1)(k + 3)
≤ |α|!(k + 1)R|α|

(|α| − k)(|α| − k + 1)(k + 3)
.

From these estimates, we get that∑
β < α
|β| = k

(
α1

β1

)(
α2

β2

)∥∥(∂α−βu)(∂β(∂iv))
∥∥

2

≤ C2
∑
β < α

|β| = k

|α|!(k + 1)R|α|

(|α| − k)(|α| − k + 1)(k + 3)

≤ C2|α|!R|α|
∞∑

k=0

1
k2
,

which implies that

|α|−1∑
k=1

∑
β < α

|β| = k

(
α1

β1

)(
α2

β2

)∥∥(∂α−βu)(∂β(∂iv))
∥∥

2
≤ C2(|α|!)|α|R|α|

∞∑
k=0

1
k2

(81)

≤ C2(|α|+ 1)!R|α|
∞∑

k=0

1
k2

(82)

So, taking R large enough such that

CR−1

(
|α|+ 3
|α|+ 2

) ∞∑
k≥0

1
k2

 < 1.

and using estimates (79), (80) and (81), we conclude that,

|α|−1∑
k=1

∑
β < α

|β| = k

(
α1

β1

)(
α2

β2

)∥∥(∂α−βu)(∂β(∂iv))
∥∥

2
≤ C

(|α|+ 1)!
|α|+ 3

R|α|+1

and also that

‖∂α(u∂iv)‖2 ≤ C
(|α|+ 1)!
|α|+ 3

R|α|+1.



BOUSSINESQ-BENNEY-LUKE SYSTEM 341

Now note that ∂α
((
∂iv)2

))
= ∂α (w∂iv) for w = ∂iv. Then the couple (w, v)

satisfies the induction hypothesis (75), since

‖∂αw‖H1(R2) = ‖∂α∂iv‖H1(R2) ≤ ‖∂αv‖H2(R2) ≤ C

(
|α|!

|α|+ 2

)
R|α|.

Then we conclude that

‖∂α
((
∂iv)2

))
‖2 ≤ C

(|α|+ 1)!
|α|+ 3

R|α|+1.

In other words, we have shown that

‖∂αu‖H1(R2) + ‖∂α∇v‖H1(R2)

≤ C1

(
‖∂α(uvx)‖2 + ‖∂α(uvy)‖2 + ‖∂α

(
v2

x

)
‖2 + ‖∂α

(
v2

y

)
‖2
)
≤ C

(|α|+ 1)!
|α|+ 3

R|α|+1.

Now we have to estimate terms of the form:

||∂α∂iu||H1(R2), ||∂α∂i∇v||H1(R2), for i = 1, 2.

To do this, we apply operator ∂α∂i to equation (21) and compute the L2- inner
product with (∂α∂iu, ∂

α∂iv). Thus, we have that

(83) Ic(∂α∂iu, ∂
α∂iv) = −〈∂α∂i(uvx), ∂α∂ivx〉 − 〈∂α∂i(uvy), ∂α∂ivy〉

− 1
2
〈
∂α∂i(v2

x), ∂α∂iu
〉
− 1

2
〈
∂α∂i(v2

y), ∂α∂iu
〉
.

To illustrate the type of computation, we only consider the typical term

〈∂α∂i(uvx), ∂α∂ivx〉

to exhibit the calculation

|〈∂α∂i(uvx), ∂α∂ivx〉| =
∣∣〈∂α(uvx), ∂α∂2

i vx

〉∣∣
≤ ‖∂α(uvx)‖2‖∂α∂2

i vx‖2
≤ ‖∂α(uvx)‖2||∂α∂x∇v||H1(R2).

We observe that the left hand side of (83) can be written as

Ic(∂α∂iu, ∂
α∂iv) ' ‖∂α∇u‖2H1(R2) + ||∂α∂x∇v||2H1(R2) + ||∂α∂y∇v||2H1(R2),

and so the therm ||∂α∂x∇v||H1(R2) is absorbed in the right hand side of previous
equivalence. Using this fact, we end up with the estimate

‖∂α∇u‖H1(R2) + ||∂α∂x∇v||H1(R2) + ||∂α∂y∇v||H1(R2)

≤ C1

(
‖∂α(uvx)‖2 + ‖∂α(uvy)‖2 + ‖∂α(v2

x)‖2 + ‖∂α(v2
y)‖2

)
.

Putting the previous estimates together, we conclude for R large enough that

‖∂α∇u‖H1(R2) + ‖∂α∇v‖H2(R2)

≤ ‖∂α∇u‖2H1(R2) + ||∂α∂x∇v||2H1(R2) + ||∂α∂y∇v||2H1(R2) ≤ C
(|α|+ 1)!
|α|+ 3

R|α|+1,

as desired. �
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