
Dynamics of PDE, Vol.10, No.3, 283-312, 2013

Dynamics of non-autonomous equations of non-Newtonian

fluid on 2D unbounded domains
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Abstract. This paper studies the asymptotic behavior of solutions for a

non-autonomous incompressible non-Newtonian fluid on two-dimensional un-
bounded domains. We first prove the existences of the L2-regularity uniform
attractors AH

H(g0)
and H2-regularity uniform attractor AV

H(g0)
, respectively.

Then we establish the regularity of the uniform attractors by showing

A
H
H(g0) = AV

H(g0),

which implies the uniform (with respect to the external forces) asymptotic
smoothing effect of the non-autonomous fluid in the sense that the solutions
become eventually more regular than the initial data.
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1. Introduction

In this paper, we study the existence and regularity of the uniform attrac-
tors for the following non-autonomous incompressible non-Newtonian fluid on two-
dimensional (2D) unbounded channel-like domains

∂u

∂t
+ (u · ∇)u −∇ · τ(e(u)) + ∇p = g(x, t),(1.1)

div u = ∇ · u = 0, x = (x1, x2) ∈ Ω,(1.2)

where Ω = R×(−L, L) ⊂ R
2 and L > 0 is a positive constant. Equations (1.1)-(1.2)

describe the motion of an isothermal incompressible viscous fluid, where u denotes
the velocity field of the fluid, g is the time-dependent external force function, the
scalar function p is the pressure, and τ(e(u)) = (τij(e(u)))2×2, which is usually
called the extra stress tensor of the fluid, is a matrix of order 2 × 2 defined as

τij(e(u)) = 2µ0(ε + |e(u)|2)−α/2eij(u) − 2µ1∆eij(u), i, j = 1, 2,(1.3)

where

eij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, |e(u)|2 =

2
∑

i,j=1

|eij(u)|2,(1.4)

and µ0, µ1, α, ε are parameters associated to the fluid. In this paper we assume
that µ0, µ1, ε are positive constants and α ∈ (0, 1).

In equation (1.3) if τij(e(u)) depends linearly on eij(u) then we say the cor-
responding fluid is a Newtonian one. Generally speaking, gases, water, motor oil,
alcohols, and simple hydrocarbon compounds tend to be Newtonian fluids and their
motions can be described by the Navier-Stokes equations. If the relation between
τij(e(u)) and eij(u) is nonlinear, then the fluid is called to be non-Newtonian. For
instance, molten plastics, polymer solutions and paints tend to be non-Newtonian
fluids. One can refer to [4, 5, 6, 21, 24, 28] and the references therein for de-
tailed physical significance. Factually, equations (1.1)-(1.3) were firstly formulated
by Ladyzhenskaya as a modification to the Navier-Stokes equations when the gra-
dient |∇u| of the velocity is relatively large ([21]). Clearly, equations (1.1)-(1.3)
reduce into Navier-Stokes equations when α = µ1 = 0 and into Euler equations as
µ1 = µ0 = 0.

The first objective of this paper is to prove the existence of uniform attractors
AH

H(g0) in space H and AV
H(g0) in space V (see notations in section 2) for the family

of processes corresponding to equations (1.1)-(1.3), respectively. In studying time
asymptotic behavior of solutions of PDEs defined on unbounded spatial domains,
one will find a considerable obstacle. If the spatial domain is unbounded, we loose
the compactness of the Sobolev embedding related to the phase spaces. This ab-
sence of compactness is also the main difficulty when we prove the existence of the
uniform attractor in the present paper. For example, we have V →֒ H , but the
embedding is not compact because that the spatial domain Ω is unbounded.

To obtain the existence of the uniform attractor AH
H(g0) in space H , we use the

truncation function and decomposition of spatial domain, as well as the compact
Sobolev embedding on bounded spatial domain, to prove the asymptotic compact-
ness of the associated family of processes. The technique of truncation function has
been successfully used by some researchers, see e.g. [2, 31, 32, 41].
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To obtain the existence of the uniform attractor in space V , we use the approach
of enstrophy equation of the fluid to prove the asymptotic compactness of the
associated family of processes. The idea of energy equation was essentially due
to Ball [3] and it has been extended and generalized in some directions [11, 19,
20, 22, 33, 34]. This technique was later presented by Moise, Rosa and Wang
in a systematic way and in a general abstract framework in [26, 27]. Also, this
technique has been successfully extended to study the pullback asymptotic behavior
of non-autonomous systems (see e.g. [8, 9, 10]).

We want to point out here that the method of energy equation seems difficult to
be used in the present paper to obtain the asymptotic compactness of the associated
family of processes in space H . The obstacle comes from the nonlinear term µ0(ε+
|e(u)|2)−α/2eij(u). We are not easy to prove the corresponding convergence of this
term in the energy equation. This is the reason that we use the truncation function
in space H .

The second purpose of this paper is to establish the regularity of the uniform
attractors. We prove that AH

H(g0) = AV
H(g0) ⊂ V . There are two conclusions can

be concluded from this result. The one is that the uniform attractor associated to
equations (1.1)-(1.3) does not depend on the energy space chosen for the mathe-
matical studying; the other is the uniform (with respect to (w.r.t. for short) the
external forces) asymptotic smoothing effect of the fluid in the sense that the so-
lutions become eventually more regular (possessing H2-regularity) than the initial
data (possessing L2-regularity).

There are some results on the regularity of global attractors for autonomous
dynamical systems, see e.g. [15, 16, 17, 23, 25, 35]. However, to our knowledge,
there are only a little of reference on the regularity of uniform attractor for non-
autonomous dynamical systems in the unbounded spatial domain case.

Other than the global attractor of a semigroup in the autonomous case, the
uniform attractor of a family of processes does not possess the invariance property.
We will first use the minimality of the uniform attractor to show that AV

H(g0) =

AH
H(g0) ⊂ H . Then we utilize the Uniform Gronwall Lemma to establish that

the solutions of (1.1)-(1.3) with initial values in any bounded set of H will enter
a bounded set of V after large enough time. And then by the structure of the
uniform attractor, we show that AH

H(g0) is indeed a bounded set of space V . So we

get AV
H(g0) = AH

H(g0) ⊂ V .

The paper is organized as follows. Section 2 is preliminaries. We first introduce
some notations, and then we show the unique existence, as well as some a priori
estimates of solutions. In Section 3, we prove some properties and the existence of
uniform attractor for the family of processes corresponding to the non-Newtonian
fluid in space H . In Section 4, we verify some properties and the existence of
uniform attractor in space V . In Section 5, we establish the regularity of the
uniform attractors.

2. Preliminaries

In this paper, we will use the following notations.
L

p(Ω) = Lp(Ω)×Lp(Ω)-the 2D vector Lebesgue space with norm ‖ · ‖Lp(Ω); partic-
ularly, ‖ · ‖L2(Ω) = ‖ · ‖;
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H
m(Ω) = Hm(Ω)×Hm(Ω)–the 2D vector Sobolev space {φ = (φ1, φ2) ∈ L

2(Ω),∇kφ ∈
L

2(Ω), k ≤ m} with norm ‖ · ‖Hm(Ω);(see [1])

H
1
0(Ω) = {φ : φ = (φ1, φ2) ∈ C∞

0 (Ω) × C∞
0 (Ω)}

H
1(Ω)

;
V = {φ ∈ C∞

0 (Ω) × C∞
0 (Ω) : φ = (φ1, φ2), ∇ · φ = 0};

H = V
L
2(Ω)

with norm ‖ · ‖ and dual space H ′;

V = V
H

2(Ω)
with norm ‖ · ‖V and dual space V ′;

X
Y

-the closure of space X under the norm of Y ;
(·, ·)-the inner product in H , 〈·, ·〉–the dual pairing between V and V ′;
B(H)-the union of all bounded sets of H ;
B(V )-the union of all bounded sets of V ;
L2

b(R; H)-the set of functions g ∈ L2
loc(R; H) satisfying

(2.1) ‖g‖2
L2

b
= ‖g‖2

L2
b
(R;H) = sup

t∈R

t+1
∫

t

‖g(s)‖2ds < +∞;

L2
c(R; H)-the set of functions g(s) ∈ L2

loc(R; H) satisfying

{g(s + h) : h ∈ R}
L2

loc(R;H)
is compact in L2

loc(R; H); (see [7], P101)

H(g0) = {g0(t + ·) : g0 ∈ L2
c(R; H)}

L2
loc(R;H)

;
Rτ = [τ, +∞), R+ = [0, +∞);
distM (X, Y )-the Hausdorff semidistance between X ⊂ M and Y ⊂ M defined as
distM (X, Y ) = supx∈X infy∈Y ‖x − y‖M ;
“ −→ ” denotes convergence in strong topology;
“ ⇀ ” denotes convergence in weak topology;
“ →֒ ” denotes embedding between spaces;
c is the generic constant that can take different values in different places.

To put equations (1.1)-(1.3) into an abstract form, we now introduce some
operators. Firstly, we set

(2.2) a(u, v) =

2
∑

i,j,k=1

∫

Ω

∂eij(u)

∂xk

∂eij(v)

∂xk
dx, u, v ∈ V.

Lemma 2.1 (Bloom and Hao [5]). There exist two positive constants c1 and
c2 which depends only on Ω such that

(2.3) c1‖u‖
2
V ≤ a(u, u) ≤ c2‖u‖

2
V , ∀u ∈ V.

From the definition of a(·, ·) and Lemma 2.1 we see that a(·, ·) defines a positive
definite symmetric bilinear form on V . By the Lax-Milgram Lemma, we obtain an
isometric operator A ∈ L(V, V ′) via

(2.4) 〈Au, v〉 = a(u, v), ∀u, v ∈ V.

Moreover, let D(A) = {u ∈ V : Au ∈ H}, then D(A) is a Hilbert space. Indeed,
A = P∆2, where P is the Leray projector from L

2(Ω) to H . Also by Lemma 2.1,
we have
(2.5)

c1‖u‖
2
V ≤ a(u, u) = 〈Au, u〉 = (Au, u) ≤ ‖Au‖ ‖u‖ ≤ ‖Au‖ ‖u‖V , ∀u ∈ D(A),

thus

(2.6) c1‖u‖V ≤ ‖Au‖, ∀u ∈ D(A).
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Secondly, we define a continuous trilinear form on H
1
0(Ω) × H

1
0(Ω) × H

1
0(Ω) as

b(u, v, w) =

2
∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wj dx, u, v, w ∈ H

1
0(Ω).

Since V ⊂ H
1
0(Ω), b(·, ·, ·) is continuous on V × V × V and one can check

b(u, v, w) = −b(u, w, v), b(u, v, v) = 0, ∀u, v, w ∈ V.(2.7)

Now we can define a continuous mapping B(u) from V × V to V ′ by

(2.8) 〈B(u), v〉 = b(u, u, v), ∀ v ∈ V.

Finally, we set

µ(u) = 2µ0(ε + |e(u)|2)−α/2, ∀u ∈ V,

and define the mapping N(·) as

(2.9) 〈N(u), v〉 =

2
∑

i,j=1

∫

Ω

µ(u)eij(u)eij(v) dx, ∀ v ∈ V.

Then N(·) is continuous from V to V ′. When u ∈ D(A), N(u) can be extended to
H via

(2.10) 〈N(u), v〉 = −

∫

Ω

{∇ · [µ(u)e(u)]} · v dx, ∀ v ∈ H.

From the viewpoint of physics, the initial boundary value problem of (1.1)-(1.3)
can be formulated as follows:

∂u

∂t
+ (u · ∇)u −∇ ·

(

2µ0(ε + |e|2)−α/2e − 2µ1∆e
)

+ ∇p = g(x, t),(2.11)

∇ · u = 0,(2.12)

u = 0, τijlnjnl = 0, x ∈ ∂Ω,(2.13)

u|t=τ = uτ , x ∈ Ω, τ ∈ R,(2.14)

where τijl = 2µ1
∂eij

∂xl
(i, j, l = 1, 2) and n = (n1, n2) denotes the exterior unit

normal to the boundary ∂Ω. The first condition in (2.13) represents the usual no-
slip condition associated with a viscous fluid, while the second one expresses the fact
that the first moments of the traction vanish on ∂Ω. It is a direct consequence of
the principle of virtual work. We refer to [4, 5, 6, 21, 24, 28] and the references
therein for detailed physical background. There are many works concerning the
unique existence, regularity and long-term behavior of solutions to equations (2.11)-
(2.14) or its associated versions (see e.g. [4, 5, 6, 12, 13, 14, 18, 21, 24, 28, 34,
36, 37, 38, 39, 40, 41, 42]).

Excluding the pressure p, we can express the weak form of equations (2.11)-
(2.14) in the solenoidal vector fields as follows (see [5, 36]):

∂u

∂t
+ 2µ1Au + B(u) + N(u) = g(x, t),(2.15)

u|t=τ = uτ ∈ H, τ ∈ R.(2.16)
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We now take in equation (2.15) an external force function g0(x, t) ∈ L2
c(R; H)

and take (Σ, σ) = (H(g0), g) as the symbol space. Note that L2
c(R; H) ⊂ L2

b(R; H)
and for any g ∈ L2

c(R; H) we have (see [7])

(2.17) ‖g‖L2
b
≤ ‖g0‖L2

b
.

Lemma 2.2 (I) If g0 ∈ L2
b(R; H), then for ∀ g ∈ H(g0) and ∀uτ ∈ H, problem

(2.15)-(2.16) admits a unique solution u satisfying

u ∈ C(Rτ ; H) ∩ L∞(Rτ ; H) ∩ L2
loc(Rτ ; V ), ∂tu ∈ L2

loc(Rτ ; V ′),(2.18)

and

‖u(t)‖2 ≤ ‖uτ‖
2e−c1µ1(t−τ) +

1

c1µ1
(1 +

1

c1µ1
)‖g0‖

2
L2

b
, ∀ t ≥ τ,(2.19)

‖u(t)‖2 + c1µ1

t
∫

τ

‖u(s)‖2
V ds ≤ ‖uτ‖

2 +
1

c1µ1

t
∫

τ

‖g(s)‖2ds,(2.20)

hereafter the positive constant c1 comes from Lemma 2.1.
(II) Suppose g0 ∈ L2

b(R; H), then for ∀ g ∈ H(g0) and ∀uτ ∈ V , problem
(2.15)-(2.16) possesses a unique solution u satisfying

(2.21) u ∈ C(Rτ ; V ) ∩ L∞(Rτ ; V ) ∩ L2
loc(Rτ ; D(A)), ∂tu ∈ L2

loc(Rτ ; H).

Moreover,

(2.22) (t − τ)‖u(t)‖2
V ≤ Q



t − τ, ‖uτ‖
2,

t
∫

τ

‖g(s)‖2ds



 , ∀ t ≥ τ, τ ∈ R,

where Q(z1, z2, z3) is an increasing continuous function of z1 = t − τ, z2 and z3.
Proof. The unique existence of solutions, (2.18) and (2.21) can be proved sim-

ilarly to that of [5] by using Galerkin approximations and some a priori estimates.
The inequalities (2.19),(2.20) and (2.22) can be established analogously to that of
[37]. We omit the detailed proof here. �

Remark 2.1 From Lemma 2.2 (II), we see that for all g ∈ H(g0) and ∀ t ≥ τ ,
there holds

(2.23) (t − τ)‖u(t)‖2
V ≤ Q

(

t − τ, ‖uτ‖
2, (t − τ)‖g0‖

2
L2

b

)

.

The bound in the right hand side of (2.23) is independent of g ∈ H(g0). In fact,
for any given uτ and ∀ g ∈ H(g0), denote by ug(t) = Ug(t, τ)uτ the solution corre-
sponding to initial value uτ and symbol g. Then we have for each T > τ that

(2.24) sup
t∈[τ,T ]

‖ug(t)‖
2
V < +∞, ∀ g ∈ H(g0),

and

(2.25)

T
∫

τ

‖Aug(t)‖
2dt < +∞, ∀ g ∈ H(g0).
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3. Existence of the uniform attractor in space H

The aim of this section is to prove the existence of uniform attractor for the
family of processes corresponding to problem (2.15)-(2.16) in space H . We will
establish the existence of uniform (w.r.t. g ∈ H(g0)) absorbing set and the (H ×
H(g0), H)-continuity of the family of processes. Then we use the truncation of
functions, as well as decomposition of spatial domain, to verify the asymptotic
compactness of the family processes, which plays an important role when we prove
the existence of uniform (w.r.t. g ∈ H(g0)) attractor in space H .

We first define a natural translation semigroup {S(t)}t≥0 on H(g0) as

(3.1) S(h)g(·) = g(· + h), ∀h ≥ 0, g ∈ H(g0).

By Lemma 2.2, we see that for each g ∈ H(g0), the process {Ug(t, τ)}t≥τ :
Ug(t, τ)uτ = u(t), is well defined from H to H , where uτ ∈ H is arbitrarily given
and u(t) is the solution of problem (2.15)-(2.16) with initial value uτ and with
symbol g. Analogously, the family of processes {Ug(t, τ)}t≥τ,g∈H(g0) is well defined
from H to H . Moreover, we have the following translation identities in space H

US(h)g(t, τ) = Ug(t + h, τ + h), ∀h ≥ 0, t ≥ τ, τ ∈ R, g ∈ H(g0),(3.2)

Ug(τ, τ) = Id(identity operator), τ ∈ R, g ∈ H(g0),(3.3)

Ug(t, s)Ug(s, τ) = Ug(t, τ), ∀ t ≥ s ≥ τ, g ∈ H(g0).(3.4)

We now introduce some definitions.
Definition 3.1 A set B0 ⊂ H is said to be a uniformly (w.r.t. g ∈ H(g0))

absorbing set for the family of processes {Ug(t, τ)}t≥τ,g∈H(g0), if for ∀B ∈ B(H)
and ∀τ ∈ R, there exists a t0 = t0(B, τ) ≥ τ such that

⋃

g∈H(g0) Ug(t, τ)B ⊆ B0 for

all t ≥ t0.
Definition 3.2 The family of processes {Ug(t, τ)}t≥τ,g∈H(g0) is said to be (H×

H(g0), H)-continuous if for any fixed t, τ ∈ R (t ≥ τ), the mapping (u, g) 7→
Ug(t, τ)u is continuous from H ×H(g0) to H.

Definition 3.3 The family of processes {Ug(t, τ)}t≥τ,g∈H(g0) is said to be asymp-

totically compact in H if {Ug(n)(tn, τ)u
(n)
τ }∞n=1 is pre-compact in H, whenever

{u
(n)
τ }∞n=1 is bounded in H, {g(n)}∞n=1 ⊂ H(g0) and {tn}

∞
n=1 ⊂ Rτ with tn → +∞

as n → ∞.
Definition 3.4 A set Λ ⊂ H is said to be the uniformly (w.r.t. g ∈ H(g0))

attracting set of {Ug(t, τ)}t≥τ,g∈H(g0) in H if for ∀B ∈ B(H) and any fixed τ ∈ R,

lim
t→+∞

sup
g∈H(g0)

distH (Ug(t, τ)B, Λ) = 0.

The family of processes {Ug(t, τ)}t≥τ,g∈H(g0) possessing a compact uniformly at-
tracting set in H is said to be uniformly (w.r.t. g ∈ H(g0)) asymptotically compact
in H.

Definition 3.5 A closed set Λ ⊂ H is said to be the uniform (w.r.t. g ∈ H(g0))
attractor of {Ug(t, τ)}t≥τ,g∈H(g0) if Λ satisfies

(i) (Uniformly attracting property) For ∀B ∈ B(H) and any fixed τ ∈ R, there
holds

lim
t→+∞

sup
g∈H(g0)

distH (Ug(t, τ)B, Λ) = 0.

(ii) (Minimal property) Λ is the minimal set (for inclusion relation) among
the closed sets satisfying (i).
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Lemma 3.1 Let g0 ∈ L2
b(R; H), then the family of processes {Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) possesses a bounded uniformly (w.r.t. g ∈
H(g0)) absorbing set BH

0 ⊂ H, where

BH
0 =

{

u ∈ H : ‖u‖2 ≤
2

c1µ1
(1 +

1

c1µ1
)‖g0‖

2
L2

b

.
= R2

0

}

.(3.5)

Proof. We see from (2.19) that for arbitrarily given B ∈ B(H), ∀uτ ∈ B and
∀g ∈ H(g0), the corresponding solution of (2.15)-(2.16) satisfies

‖Ug(t, τ)uτ‖
2 ≤ ‖uτ‖

2e−c1µ1(t−τ) +
1

c1µ1
(1 +

1

c1µ1
)‖g0‖

2
L2

b
, ∀ t ≥ τ,

which implies that there exists a time t0
.
= t0(τ,B) ≥ τ such that

‖Ug(t, τ)uτ‖
2 ≤

2

c1µ1
(1 +

1

c1µ1
)‖g0‖

2
L2

b

.
= R2

0, ∀ t ≥ t0.

The proof is complete. �

Lemma 3.2 Let g0 ∈ L2
c(R; H). Then the family of processes {Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) is (H ×H(g0), H)-continuous.
The proof is similar to Lemma 3.2 of [39] with the bounded spatial domain

replaced by the unbounded spatial domain. We omit the detailed proof here.

Lemma 3.3 Let g0 ∈ L2
c(R; H) and u

(n)
τ ⇀ uτ weakly in H. Set Ωr = {x ∈

Ω : |x| < r} for r > 0, {g(n)}∞n=1 ⊂ H(g0) and g(n) −→ g strongly in H(g0). Then

Ug(n)(t, τ)u(n)
τ ⇀ Ug(t, τ)uτ weakly in H,(3.6)

Ug(n)(·, τ)u(n)
τ ⇀ Ug(·, τ)uτ weakly in L2(τ, T ; V ), ∀T > τ.(3.7)

Proof. We get (3.6) directly from Lemma 3.2. Also, we can show that the

sequence {Ug(n)(t, τ)u
(n)
τ }∞n=1 is bounded in L∞(Rτ ; H) ∩ L2

loc(Rτ ; V ) and the se-

quence { ∂
∂tUg(n)(t, τ)u

(n)
τ }∞n=1 is bounded in L2

loc(Rτ ; V ′). The rest proofs of (3.7)
are essentially the same as that of Lemma 2.1 of [29]. The proof is complete. �

Lemma 3.4 Let g0 ∈ L2
c(R; H) and B ∈ B(H). Then for any ǫ > 0, there

exists an r0 > 0 and a time T∗
.
= T∗(τ,B) > τ , such that

‖Ug(t, τ)uτ‖
2
L2(Ω\Ωr) ≤ ǫ, ∀ g ∈ H(g0), ∀uτ ∈ B, ∀r > r0, t > T∗.(3.8)

Proof. Let χ(·) ∈ C2(R2) such that

χ(x) =

{

0, |x| < 1,

1, |x| ≥ 2.

Set χr(x) = χ(x
r ), r ≥ 1. Then ‖∇χr‖L∞(R2) ≤ cr−1, ‖D2χr‖L∞(R2) ≤ cr−2, where

c > 0. Assume that p is the corresponding pressure. We remark that the following
deduction will be rigorous for the solutions of problem (2.15)-(2.16) with initial
data uτ ∈ V . By passing limit and the fact that Ug(t, τ) is continuous in H for any
g ∈ H(g0), it is also true for uτ ∈ H . For any given g ∈ H(g0) and uτ ∈ B, set
u = u(t) = Ug(t, τ)uτ . We see from (2.11) that

∆p = −

2
∑

i,j=1

∂2

∂xixj
(uiuj) +

2
∑

i,j=1

∂2

∂xixj

(

2µ0(ε + |e|2)−α/2eij(u)
)

.
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The right hand side of the above equation is at least in L2
loc(Rτ ; H−2(Ω)), thus

p ∈ L2
loc(Rτ ; L2(Ω)) and for each fixed T > 0,

(3.9)

t+T
∫

t

‖p‖2
L2(Ω) dt ≤ c(T ), ∀ t ≥ τ.

Taking the inner product of (2.11) with χ2
ru, noting ∇ · u = 0, we obtain

1

2

d

dt
‖χru‖

2 +

2
∑

i,j,k=1

(

2µ1

∫

Ω

∂eij(χru)

∂xk

∂eij(χru)

∂xk
dx +

∫

Ω

ui
∂uj

∂xi
χ2

ruj dx
)

=

∫

Ω

gχ2
ru dx + 2

∫

Ω

pχr∇χr · u dx − 2

2
∑

i,j,k=1

∫

Ω

µ(u)eij(u)eij(χ
2
ru) dx

+2µ1

∫

Ω

Φ(χr, u) dx,(3.10)

where

Φ(χr, u) =

2
∑

i,j,k=1

(

∂eij(χru)

∂xk

∂eij(χru)

∂xk
−

∂eij(u)

∂xk

∂eij(χ
2
ru)

∂xk

)

.

Using integrating by parts, we have

∫

Ω

ui
∂uj

∂xi
χ2

ruj dx = −

∫

Ω

uiujχ
2
r

∂uj

∂xi
dx − 2

∫

Ω

uiujujχr
∂χr

∂xi
dx.

Thus

∣

∣

∣

∣

∣

∣

∫

Ω

ui
∂uj

∂xi
χ2

ruj dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

Ω

uiujujχr
∂χr

∂xi
dx

∣

∣

∣

∣

∣

∣

≤ ‖χr∇χ‖L∞(Ω)‖u‖
3
L3(Ω)

≤ cr−1‖u‖5/2‖u‖
1/2
H2(Ω) ≤ cr−1

(

‖u‖10/3 + ‖u‖2
H2(Ω)

)

≤ cr−1 + cr−1‖u‖2
H2(Ω). (t > t0(τ,B))(3.11)

Since

eij(χ
2
ru) = χreij (χru) +

1

2
χr

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)

,

χreij(u) = eij(χru) −
1

2
χr

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)

,
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we get
∣

∣

∣

∣

∣

∣

−2

∫

Ω

µ(u)eij(u)eij(χ
2
ru) dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−2

2
∑

i,j=1

∫

Ω

µ(u)

[

(eij(χru))2 −
1

4

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)2
]

dx

∣

∣

∣

∣

∣

∣

≤
1

2

2
∑

i,j=1

∫

Ω

µ(u)

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)2

dx

≤
1

2
µ0ǫ

−α/2‖u‖2‖∇χr‖
2
L∞(Ω) ≤ cr−2. (t > t0(τ,B))(3.12)

Similarly, we have

∂eij(χ
2
ru)

∂xk
= χr

∂

∂xk

{

eij(χru) +
1

2

(

uj
∂χr

∂xj
+ ui

∂χr

∂xj

)}

+
∂χr

∂xk

{

eij(χru) +
1

2

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)}

,

χr
∂eij(u)

∂xk
=

∂

∂xk

{

eij(χru) −
1

2

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)}

−
∂χr

∂xk
eij(u),

Φ(χr, u) =
1

4

2
∑

i,j,k=1

{

∂

∂xk

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)}2

−
∂χr

∂xk
eij(u)

∂

∂xk

(

uj
∂χr

∂xi
+ ui

∂χr

∂xj

)

+
∂χr

∂xk

∂eij(u)

∂xk

(

ui
∂χr

∂xj
+ uj

∂χr

∂xi

)

.

Hence
∣

∣

∣

∣

∣

∣

∫

Ω

Φ(χr, u) dx

∣

∣

∣

∣

∣

∣

≤ 2‖u‖2
H2(Ω)(‖∇χr‖

2
L∞(Ω) + ‖D2χr‖

2
L∞(Ω))

+‖∇χr‖
2
L2(Ω)‖u‖

2
H1(Ω)(‖∇χr‖L∞(Ω) + ‖∇χr‖

2
L∞(Ω))

≤ cr−2‖u‖2
H2(Ω). (t > t0(τ,B))(3.13)

Note that on the spatial domain Ω we have the Poincaré inequality

λ1

∫

Ω

|u|2dx ≤

∫

Ω

|∇u|2dx, ∀u ∈ H
1
0(Ω),

so we have

λ2
1

∫

Ω

|u|2dx ≤

∫

Ω

|∆u|2dx ≤ ‖u‖2
H2(Ω), ∀u ∈ H

1
0(Ω) ∩ H

2
0(Ω),
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where λ1 is a positive constant depending only on Ω. The rest terms in (3.10) are
estimated as

∣

∣

∣

∣

∣

∣

∫

Ω

gχ2
ru dx

∣

∣

∣

∣

∣

∣

≤ ‖χrg‖ ‖χru‖ ≤
µ1λ

2
1

2
‖χru‖

2 + c‖χrg‖
2,(3.14)

∣

∣

∣

∣

∣

∣

∫

Ω

2pχr∇χr · u dx

∣

∣

∣

∣

∣

∣

≤ 2‖p‖L2(Ω) ‖χru‖ ‖∇χr‖L∞(Ω)

≤
µ1λ

2
1

2
‖χru‖

2 + c‖∇χr‖
2
L∞(Ω) ‖p‖

2
L2(Ω)

≤
µ1

2
‖χru‖

2
H2(Ω) + cr−2‖p‖2

L2(Ω),(3.15)

where λ1 is the constant in the Poincaré inequality. Therefore,

d

dt
‖χru‖

2 + 2µ1λ
2
1‖χru‖

2

≤
d

dt
‖χru‖

2 + 2µ1‖χru‖
2
H2(Ω)

≤ c‖χrg‖ + cr−2
(

‖u‖2
H2(Ω) + ‖p‖2

L2(Ω)

)

+ cr−1.(3.16)

Setting η = 2µ1λ
2
1, we get by using Gronwall inequality

‖χru‖
2 ≤

c

r2

t
∫

τ

e−η(t−s)
(

‖u(s)‖2
H2(Ω) + ‖p(s)‖2

L2(Ω) + ‖χrg(s)‖2
)

ds

+‖χruτ‖e
−η(t−τ) +

c

ηr
.(3.17)

Now (2.20) shows that for any T > 0

τ+T
∫

τ

‖u(s)‖2
H2(Ω) ≤ c‖uτ‖

2 + c

τ+T
∫

τ

‖g(s)‖2ds ≤ c(‖uτ‖
2 + ‖g0‖

2
L2

b
T ).
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Combining (3.9) (fixing T = 1), we get

t
∫

τ

e−η(t−s)
(

‖u(s)‖2
H2(Ω) + ‖p(s)‖2

L2(Ω) + ‖χrg(s)‖2
)

ds

≤

t
∫

t−1

e−η(t−s)
(

‖u(s)‖2
H2(Ω) + ‖p(s)‖2

L2(Ω) + ‖χrg(s)‖2
)

ds

+

t−1
∫

t−2

e−η(t−s)
(

‖u(s)‖2
H2(Ω) + ‖p(s)‖2

L2(Ω) + ‖χrg(s)‖2
)

ds

+

t−2
∫

t−3

e−η(t−s)
(

‖u(s)‖2
H2(Ω) + ‖p(s)‖2

L2(Ω) + ‖χrg(s)‖2
)

ds

+ · · ·

≤ (1 + e−η + e−2η + e−3η + · · · )(c + ‖χrg‖
2
L2

b
)

≤
1

1 − e−η
(c + ‖χrg‖

2
L2

b
) ≤

c + ‖χrg0‖
2
L2

b

1 + η
.(3.18)

(3.17) and (3.18) imply

(3.19) ‖χru‖
2 ≤ ‖χruτ‖

2e−η(t−τ) +
c

ηr
+

c

r2

c + ‖χrg0‖
2
L2

b

1 + η
, ∀ t > τ.

Since g0 ∈ L2
c(R; H), we have lim

r→+∞
‖χrg0‖L2

b
= 0. Hence, by (3.19) we see that for

any ǫ > 0, there exists an r0 > 0 and a T∗ > max{t0(τ,B), τ} such that ‖χ r0
2

u‖2 < ǫ

for t > T∗. When r > r0

‖u‖2
L2(Ω\Ωr) ≤ ‖χ r0

2
u‖2 < ǫ, t > T∗.

The proof is complete. �

Lemma 3.5 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) is asymptotically compact in space H.

Proof. Let {u
(n)
τ }∞n=1 be a bounded sequence in H , {g(n)}∞n=1 ⊂ H(g0) and

{tn}
∞
n=1 ⊂ Rτ with tn → +∞ as n → ∞. Without loss of generality we may

assume that tn > t0 (see Lemma 3.1). Let {ug(n)(tn) = Ug(n)(tn, τ)u
(n)
τ }∞n=1 be

the corresponding solution sequence. Then {ug(n)(tn)}∞n=1 is bounded in H . We
can also prove that {ug(n)(t)}∞n=1 is bounded in V (see Lemma 5.2 later). Thus
{ug(n)(tn)}∞n=1 converges weakly to some v ∈ V in space V . Obviously, for any
ǫ > 0, there exists an r1 > 0 such that

‖v‖L2(Ω\Ωr1 ) <
ǫ

3
.

By Lemma 3.4, for above ǫ > 0 there exists a T∗ > t0 and an r2 > 0 such that

(3.20) ‖ug(n)(tn)‖L2(Ω\Ωr) <
ǫ

3
, ∀ tn > T∗, ∀ r > r2.
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Clearly, {ug(n)(tn)|Ωr
}∞n=1 is bounded in H

2(Ωr) for any given r > 0. Set r =

r1 + r2 + 1, then the embedding H
2(Ωr) →֒ L

2(Ωr) is compact and the sequence
{ug(n)(tn)|Ωr

}∞n=1 is pre-compact in L
2(Ωr). It is easy to see that {ug(n)(tn)|Ωr

}∞n=1

converges strongly to v|Ωr
in L

2(Ωr) and there exists an n0 > 0 such that

(3.21) ‖ug(n)(tn) − v‖L2(Ωr) <
ǫ

3
, ∀n > n0.

Therefore, we have when n is large enough that

‖ug(n)(tn) − v‖L2(Ω)

≤ ‖ug(n)(tn) − v‖L2(Ωr) + ‖ug(n)(tn) − v‖L2(Ω\Ωr)

≤ ‖ug(n)(tn) − v‖L2(Ωr) + ‖ug(n)(tn)‖L2(Ω\Ωr) + ‖v‖L2(Ω\Ωr)

≤
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ.(3.22)

Thus the sequence {ug(n)(tn)}∞n=1 converges strongly to v in H , which implies that
the family of processes {Ug(t, τ)}t≥τ,g∈H(g0) is asymptotically compact in space H .
The proof is complete. �

Lemma 3.6 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) is uniformly (w.r.t. g ∈ H(g0)) asymptoti-
cally compact in space H.

Proof. It suffices to prove that the family of processes {Ug(t, τ)}t≥τ,g∈H(g0)

possesses a compact uniformly (w.r.t. g ∈ H(g0)) attracting set in H . We claim
that the set

(3.23) ωτ,H(g0)(B
H
0 )

.
=

⋂

t≥τ

⋃

g∈H(g0)

⋃

s≥t

Ug(s, τ)BH
0

L
2(Ω)

for each τ ∈ R,

is a compact uniformly (w.r.t. g ∈ H(g0)) attracting set for {Ug(t, τ)}t≥τ,g∈H(g0) in

H . In fact, the set ωτ,H(g0)(B
H
0 ) defined by (3.23) can be characterized, similarly

to the semigroup case, as follows:














w ∈ ωτ,H(g0)(B
H
0 ) ⇐⇒

there exist {w(n)}∞n=1 ⊂ BH
0 , {g(n)}∞n=1 ⊂ H(g0),

and {tn} ⊂ Rτ with tn → +∞ as n → ∞

such that Ug(n)(tn, τ)w(n) −→ w strongly in H as n → ∞.

(3.24)

Indeed, (3.24) implies that ω0,H(g0)(B
H
0 ) = ωτ,H(g0)(B

H
0 ) for each τ ∈ R, in other

words, ωτ,H(g0)(B
H
0 ) is independent of τ . The rest proofs of this lemma are similar

to those of Proposition 4.1, 4.2 and 4.3(iii) in [19]. Here we only sketch the main
steps and omit the detailed proofs.

Step 1. ωτ,H(g0)(B
H
0 ) is a nonempty compact set in H . This assertion can be

established by the uniformly (w.r.t. g ∈ H(g0)) absorbing property (Lemma 3.1),
asymptotic compactness property (Lemma 3.5) of {Ug(t, τ)}t≥τ,g∈H(g0) in H and

the characterization of ωτ,H(g0)(B
H
0 ) described by (3.24).

Step 2. For ∀B ∈ B(H) and any fixed τ ∈ R,

(3.25) lim
t→+∞

sup
g∈H(g0)

distH

(

Ug(t, τ)B, ωτ,H(g0)(B
H
0 )

)

= 0.

(3.25) could be proved by contradiction and using of Lemma 3.5 and (3.24).
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Step 3. For ∀B ∈ B(H),

(3.26) ωτ,H(g0)(B) ⊆ ωτ,H(g0)(B
H
0 ).

(3.26) can be proved by using (3.4), (3.24) and Lemma 3.1. (3.25) and (3.26) imply
the uniformly (w.r.t. g ∈ H(g0)) attracting property of ωτ,H(g0)(B

H
0 ) in H . The

proof of Lemma 3.6 is complete. �

Combining Lemmas 3.1, 3.2, 3.6 and Theorem 5.1 of [7], we now can state the
main result of this section.

Theorem 3.1 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

possesses a compact uniform (w.r.t. g ∈ H(g0)) attractor AH
H(g0)

in space H, which

has the following structure

AH
H(g0)

=
⋃

g∈H(g0)

KH
g (s) = ωs,H(g0)(B

H
0 ), s ∈ R,(3.27)

where KH
g (s) is the kernel section at time moment t = s, KH

g is the kernel of the

process {Ug(t, τ)}t≥τ and KH
g is nonempty for all g ∈ H(g0), BH

0 is the bounded

uniformly (w.r.t. g ∈ H(g0)) absorbing set defined by (3.5) and ωs,H(g0)(B
H
0 ) is its

uniform (w.r.t. g ∈ H(g0)) ω-limit set.

4. Existence of the uniform attractor in space V

The aim of this section is to prove the existence of the uniform attractor for
the family of processes corresponding to problem (2.15)-(2.16) in space V . We will
establish the existence of the uniform (w.r.t. g ∈ H(g0)) absorbing set and the
(V ×H(g0), V )-continuity of the family of processes. Then we use the approach of
enstrophy equation to verify the asymptotic compactness of the processes, which
plays an important role when we establish the existence of the uniform (w.r.t.
g ∈ H(g0)) attractor in space V .

By Lemma 2.2 (II), we see that for each g ∈ H(g0), the process {Ug(t, τ)}t≥τ :
Ug(t, τ)uτ = u(t), is well defined on V , where uτ ∈ V is arbitrarily given and
u(t) is the solution of problem (2.15)-(2.16) with initial value uτ and with symbol
g. Analogously, the family of processes {Ug(t, τ)}t≥τ,g∈H(g0) is well defined on V .
Moreover, the identities (3.2)-(3.4) also hold true in space V .

The definitions of the uniform (w.r.t. g ∈ H(g0)) absorbing set, (V ×H(g0), V )-
continuity, asymptotic compactness, uniform (w.r.t. g ∈ H(g0) asymptotic com-
pactness and uniform (w.r.t. g ∈ H(g0)) attractor for the family of processes
{Ug(t, τ)}t≥τ,g∈H(g0) in space V are similar with Definitions 3.1-3.5.

Lemma 4.1 Let g0 ∈ L2
b(R; H), then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) possesses a bounded uniformly (w.r.t. g ∈
H(g0)) absorbing set BV

0 ⊂ V , where

BV
0 =

{

u ∈ V : ‖u‖2
V ≤ Q

(

1, R2
0, ‖g0‖

2
L2

b

)

.
= R2

1

}

,(4.1)

and Q(·, ·, ·) is the function from Lemma 2.2 (II).
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Proof. Set

(4.2) BV
0 =

⋃

g∈H(g0)

⋃

τ∈R

Ug(τ + 1, τ)BH
0 .

Then we can derive from (3.5) that BV
0 is bounded in V . Precisely, we have by

(2.23) that

(4.3) ‖u‖2
V ≤ Q

(

1, R2
0, ‖g0‖

2
L2

b

)

.
= R2

1, ∀u ∈ BV
0 .

Clearly, BV
0 ⊂ V is the bounded uniformly (w.r.t. g ∈ H(g0)) absorbing set of

the family of processes {Ug(t, τ)}t≥τ,g∈H(g0), which uniformly (w.r.t. g ∈ H(g0))
absorbs any bounded sets of H (also of V ) in norm of V . The proof is complete. �

Lemma 4.2 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) is (V ×H(g0), V ) continuous.
Proof. Recall that if for any fixed t and τ , the mapping (u, g) 7→ Ug(t, τ)u is

continuous from V ×H(g0) to V , then the family of processes {Ug(t, τ)}t≥τ,g∈H(g0)

is said to be (V × H(g0), V )-continuous. Let {(u(n)
τ , g(n))}∞n=1 ⊂ V × H(g0) be a

sequence that converges strongly to some (uτ , g) ∈ V ×H(g0), {u
(n)(t)}∞n=1 and u(t)

be the corresponding solutions of equations (2.15)-(2.16) with symbols {g(n)}∞n=1

and g, and with initial data {u
(n)
τ }∞n=1 and uτ , respectively. Set

w(n)(t) = u(t) − u(n)(t) = Ug(t, τ)uτ − Ug(n)(t, τ)u(n)
τ , n = 1, 2, · · · .

For each n we see that w(n)(t) is a solution of the following problem:

∂w(n)

∂t
+ 2µ1Aw(n) + B(u) − B(u(n)) + N(u) − N(u(n)) = g − g(n),(4.4)

w(n)|t=τ = w(n)
τ = uτ − u(n)

τ , τ ∈ R.(4.5)

Multiplying (4.4) with Aw(n), we obtain

1

2

d

dt
(Aw(n), w(n)) + 2µ1‖Aw(n)‖2 + 〈B(u) − B(u(n)), Aw(n)〉

= (g − g(n), Aw(n)) − 〈N(u) − N(u(n)), Aw(n)〉.(4.6)

Now by the property of the operator B(·) = b(·, ·), (2.6), Cauchy inequality, Hölder
inequality and the embedding H

2(Ω) →֒ L
∞(Ω), we get

|〈B(u) − B(u(n)), Aw(n)〉|

= |b(u, u, Aw(n)) − b(u(n), u(n), Aw(n))|

= |b(u − u(n), u, Aw(n)) + b(u(n), u, Aw(n)) − b(u(n), u(n), Aw(n))|

= |b(w(n), u, Aw(n)) + b(u(n), w(n), Aw(n))|

≤ c‖u‖L∞(Ω)‖w
(n)‖‖Aw(n)‖ + c‖u(n)‖L∞(Ω))‖∇w(n)‖‖Aw(n)‖

≤ c(‖u‖V ‖w
(n)‖V + ‖u(n)‖V ‖w(n)‖V )‖Aw(n)‖

≤ c(‖u‖2
V + ‖u(n)‖2

V )‖w(n)‖2
V +

‖Aw(n)‖2

2µ1
.(4.7)
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Also, using the similar derivations of (3.11) in [37], we have

|〈N(u) − N(u(n)), Aw(n)〉| ≤ c‖w(n)‖V ‖Aw(n)‖

≤ c‖w(n)‖2
V +

‖Aw(n)‖2

2µ1
.(4.8)

Combining (4.6)-(4.8), Cauchy inequality and Lemma 2.1, we have

1

2

d

dt
(Aw(n), w(n))

≤ (c + ‖u‖2
V + ‖u(n)‖2

V )‖w(n)‖2
V +

‖g − g(n)‖2

4µ1

≤
1

c1
(c + ‖u‖2

V + ‖u(n)‖2
V )(Aw(n), w(n)) +

‖g − g(n)‖2

4µ1
.(4.9)

By Gronwall inequality and (2.20), we get for t ≥ τ that

(Aw(n)(t), w(n)(t))

≤



(Aw(n)
τ , w(n)

τ ) +
1

2µ1

t
∫

τ

‖g(s) − g(n)(s)‖2ds





× exp







t
∫

τ

1

c1
(c + ‖u‖2

V + ‖u(n)‖2
V )ds







≤



(Aw(n)
τ , w(n)

τ ) +
1

2µ1

t
∫

τ

‖g(s) − g(n)(s)‖2ds





× exp

{

1

c1
(c + ‖uτ‖

2 + ‖u(n)
τ ‖2 + ‖g0‖

2
L2

b
)(t − τ)

}

.(4.10)

Since {u
(n)
τ } converges strongly to uτ , ‖u

(n)
τ ‖ is bounded. Thus by Lemma 2.1 we

get

‖u(n)(t) − u(t)‖2
V ≤

1

c1
(Aw(n)(t), w(n)(t))

≤
1

c1



c2‖u
(n)
τ − uτ‖

2
V + 2µ1

t
∫

τ

‖g(s) − g(n)(s)‖2ds





× exp

{[

1

c1
(c + ‖uτ‖

2 + ‖u(n)
τ ‖2 + ‖g0‖

2
L2

b
)

]

(t − τ)

}

,(4.11)

from which we can obtain the (V ×H(g0), V )-continuity of the family of processes
{Ug(t, τ)}t≥τ,g∈H(g0). The proof is complete. �

Lemma 4.3 Let u
(n)
τ −→ uτ strongly in H and g(n) −→ g strongly in

L2
loc(R; H), u(t) = Ug(t, τ)uτ , u(n)(t) = Ug(n)(t, τ)u

(n)
τ be the corresponding so-

lutions. Then for ∀T > τ , we have

(4.12) u(n)(t) −→ u(t) strongly in L2(τ, T ; V ).

Proof. From (2.5) we obtain

(4.13) ‖u(n) − u‖2
V ≤ c‖u(n) − u‖ ‖A(u(n) − u)‖.
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Integrating (4.13) from τ to T , we have by Young inequality that

(4.14)

T
∫

τ

‖u(n) − u‖2
V dt ≤ c







T
∫

τ

‖u(n) − u‖2dt







1/2 





T
∫

τ

‖A(u(n) − u)‖2dt







1/2

.

From the (H ×H(g0), H)-continuity of {Ug(t, τ)}t≥τ (see Lemma 3.2), we see that

u(n) −→ u strongly in H . We also have from (2.25) that







T
∫

τ

‖A(u(n) − u)‖2dt







1/2

< +∞.

Therefore, we obtain from (4.14) that lim
n→∞

T
∫

τ

‖un − u‖2
V dt = 0, so u(n)(t) −→ u(t)

strongly in L2(τ, T ; V ). The proof is complete. �

Lemma 4.4 Let u
(n)
τ ⇀ uτ weakly in V and g(n) −→ g strongly in L2

loc(R; H).
Then

(4.15) Ug(n)(t, τ)u(n)
τ ⇀ Ug(t, τ)uτ weakly in V for ∀ t > τ,

and

(4.16) Ug(n)(·, τ)u(n)
τ ⇀ Ug(·, τ)uτ weakly in L2(τ, T ; D(A)) for ∀T > τ.

The proof of this lemma is very similar with that of Lemma 2.2 in [20] and it is
omitted here. We next use the idea of enstrophy equation to prove the asymptotic
compactness of the family of processes in space V .

Lemma 4.5 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) is asymptotically compact in space V .

Proof. Let {u
(n)
τ }∞n=1 be a bounded sequence in V , {g(n)}∞n=1 ⊂ H(g0) and

{tn}
∞
n=1 ⊂ Rτ with tn → +∞ as n → ∞. For any given τ ∈ R, we see from

Lemma 4.1 that there exists a time t1(τ, R) ≥ τ (where R is a constant satis-

fying ‖u
(n)
τ ‖V ≤ R) such that for all tn ≥ t1, {Ug(n)(tn, τ)u

(n)
τ } ⊂ BV

0 , where

BV
0 is the bounded uniformly (w.r.t. g ∈ H(g0)) absorbing set in V . Thus

{Ug(n)(tn, τ)u
(n)
τ }∞n=1 is weakly pre-compact in V and there is a subsequence (still

denote by {Ug(n)(tn, τ)u
(n)
τ }∞n=1) such that

(4.17) Ug(n)(tn, τ)u(n)
τ ⇀ u weakly in V as n → ∞

for some u ∈ V . Similarly for each T > 0 and tn ≥ t1 + T , we have

(4.18) u
(n)
T

.
= Ug(n)(tn − T, τ)u(n)

τ ∈ BV
0 .

Thus {u
(n)
T }∞n=1 is weakly pre-compact in V and there exists a subsequence (still

denote by {u
(n)
T }∞n=1) such that

(4.19) u
(n)
T ⇀ u

T
weakly in V as n → ∞
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for some u
T
∈ V . Using (3.2)-(3.4), we get

Ug(n)(tn, τ) = Ug(n)(tn, tn − T )Ug(n)(tn − T, τ)

= US(tn−T )g(n)(T, 0)Ug(n)(tn − T, τ), tn − T ≥ τ.(4.20)

Setting g(n)
T

= S(tn−T )g(n), we have by (4.18) and (4.20) for ∀T > 0 and tn−T ≥ τ

that,

(4.21) Ug(n)(tn, τ)u(n)
τ = U

g
(n)
T

(T, 0)Ug(n)(tn − T, τ)u(n)
τ = U

g
(n)
T

(T, 0)u
(n)
T .

Since {g(n)
T

}∞n=1 ⊂ H(g0) and H(g0) is compact in L2
loc(R; H), there exist a subse-

quence of {g(n)
T

}∞n=1 (still denote by {g(n)
T

}∞n=1) and some g
T
∈ H(g0) such that

(4.22) g(n)
T

−→ g
T

strongly in L2
loc(R; H) as n → ∞, for everyT > 0.

Taking (4.17)-(4.19), (4.21)-(4.22), the (V × H(g0), V )-continuity and Lemma 4.4
into account, we obtain

(4.23) u = Ug
T
(T, 0)u

T
for every T > 0,

where we also used the uniqueness of the limit. Now it follows from (4.17)-(4.18),
(4.21) and the equivalence between the norm ‖·‖V and (A·, ·) (see Lemma 2.1) that

lim inf
n

(AUg(n)(tn, τ)u(n)
τ , Ug(n)(tn, τ)u(n)

τ )

= lim inf
n

(AU
g
(n)
T

(T, 0)u
(n)
T , U

g
(n)
T

(T, 0)u
(n)
T )

≥ (Au, u).(4.24)

Next we prove

lim inf
n

(AUg(n)(tn, τ)u(n)
τ , Ug(n)(tn, τ)u(n)

τ )

= lim inf
n

(AU
g
(n)
T

(T, 0)u
(n)
T , U

g
(n)
T

(T, 0)u
(n)
T )

≤ (Au, u).(4.25)

To this end, we use the argument of enstrophy equation of the non-Newtonian fluid
in space V . First we define a bilinear operator [[·, ·]] : D(A) × D(A) 7→ R as

[[u, v]] = 2µ1(Au, Av) − γ(Au, v), ∀u, v ∈ D(A).(4.26)

where γ =
c2
1µ1

c2
. Setting [[u, u]] = [[u]]2, we use Lemma 2.1 to obtain

µ1‖Au‖2 = 2µ1‖Au‖2 − µ1‖Au‖2 ≤ 2µ1‖Au‖2 − c2
1µ1‖u‖

2
V

≤ 2µ1‖Au‖2 −
c2
1µ1

c2
(Au, u)

= [[u]]2 ≤ 2µ1‖Au‖2.(4.27)

Then
√

[[·]]2 defines a norm in space D(A) which is equivalent to ‖A ·‖. Now for any
solution u(t) of problem (2.15)-(2.16) corresponding to initial data uτ and symbol
g, we use Au to multiply equation (2.15) and obtain

(4.28)
1

2

d

dt
〈Au, u〉 + 2µ1‖Au‖2 + 〈B(u), Au〉 + 〈N(u), Au〉 = (g, Au).

Thus we have

d

dt
〈Au, u〉 + 2γ〈Au, u〉 = 2(g, Au) − 2〈B(u), Au〉 − 2〈N(u), Au〉 − 2[[u]]2.
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By the formula of constant variation, we get the enstrophy equation of the non-
Newtonian fluid as

(Au(t), u(t)) = (Auτ , uτ )e−2γ(t−τ) +

t
∫

τ

e−2γ(t−s)G(g(s), u(s))ds, t ≥ τ,(4.29)

where G(g, u) = 2(g, Au) − 2〈B(u), Au〉 − 2〈N(u), Au〉 − 2[[u]]2. We now apply the
enstrophy equation to U

g
(n)
T

(T, 0)u(n)
T

to obtain

(AU
g
(n)
T

(T, 0)u(n)
T

, U
g
(n)
T

(T, 0)u(n)
T

)

= (Au(n)
T

, u(n)
T

)e−2γT

+2

T
∫

0

e−2γ(T−s)
(

(g(n)
T

(s), AU
g
(n)
T

(s, 0)u(n)
T

)

ds

−2

T
∫

0

e−2γ(T−s)
〈

B(U
g
(n)
T

(s, 0)u(n)
T

), AU
g
(n)
T

(s, 0)u(n)
T

〉

ds

−2

T
∫

0

e−2γ(T−s)
〈

N(U
g
(n)
T

(s, 0)u(n)
T

), AU
g
(n)
T

(s, 0)u(n)
T

〉

ds

−2

T
∫

0

e−2γ(T−s)[[U
g
(n)
T

(s, 0)u(n)
T

]]2ds.(4.30)

By (4.18), there exists a time T ∗ such that if tn − T > T ∗ then

(Au(n)
T

, u(n)
T

)e−2γT ≤ c2‖u
(n)
T

‖2
V ≤ c2R

2
1e

−2γT .(4.31)

By Lemma 4.4, we have

U
g
(n)
T

(·, 0)u(n)
T

⇀ Ug
T
(·, 0)u

T
weakly inL2(0, T ; D(A)),(4.32)

and

AU
g
(n)
T

(·, 0)u(n)
T

⇀ AUg
T
(·, 0)u

T
weakly inL2(0, T ; H),(4.33)

which, together with (4.22), gives

lim
n→∞

T
∫

0

e−2γ(T−s)
(

g(n)
T

(s), AU
g
(n)
T

(s, 0)u(n)
T

)

ds

=

T
∫

0

e−2γ(T−s)
(

g
T
(s), AUg

T
(s, 0)u

T

)

ds.(4.34)

Since
√

[[·]]2 defines a norm in space D(A) which is equivalent to ‖A · ‖ and 0 <

e−2γT ≤ e−2γ(T−s) ≤ 1 for any s ∈ [0, T ], we see that







T
∫

0

e−2γ(T−s)[[·]]2ds







1/2

is
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a norm in L2(0, T ; D(A)) equivalent to the usual norm. Thus by (4.32) we get

lim inf
n→∞

T
∫

0

e−2γ(T−s)[[U
g
(n)
T

(s, 0)u(n)
T

]]2ds ≥

T
∫

0

e−2γ(T−s)[[Ug
T
(s, 0)u

T
]]2ds.(4.35)

We next prove

lim
n→∞

T
∫

0

e−2γ(T−s)
〈

B(U
g
(n)
T

(s, 0)u(n)
T

), AU
g
(n)
T

(s, 0)u(n)
T

〉

ds

=

T
∫

0

e−2γ(T−s)
〈

B(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds(4.36)

and

lim
n→∞

T
∫

0

e−2γ(T−s)
〈

N(U
g
(n)
T

(s, 0)u(n)
T

), AU
g
(n)
T

(s, 0)u(n)
T

〉

ds

=

T
∫

0

e−2γ(T−s)
〈

N(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds.(4.37)

To prove (4.36), we set

I
(n)
1 =

∣

∣

∣

∣

∣

∣

T
∫

0

e−2γ(T−s)b(U
g
(n)
T

(s, 0)u(n)
T

, U
g
(n)
T

(s, 0)u(n)
T

, AU
g
(n)
T

(s, 0)u(n)
T

)ds

−

T
∫

0

e−2γ(T−s)b(Ug
T
(s, 0)u

T
, U

g
(n)
T

(s, 0)u(n)
T

, AU
g
(n)
T

(s, 0)u(n)
T

)ds

∣

∣

∣

∣

∣

∣

,

I
(n)
2 =

∣

∣

∣

∣

∣

∣

T
∫

0

e−2γ(T−s)b(Ug
T
(s, 0)u

T
, U

g
(n)
T

(s, 0)u(n)
T

, AUg
T
(s, 0)u

T
)ds

−

T
∫

0

e−2γ(T−s)b(Ug
T
(s, 0)u

T
, Ug

T
(s, 0)u

T
, AUg

T
(s, 0)u

T
)ds

∣

∣

∣

∣

∣

∣

,

I
(n)
3 =

∣

∣

∣

∣

∣

∣

T
∫

0

e−2γ(T−s)b(Ug
T
(s, 0)u

T
, Ug

T
(s, 0)u

T
, AU

g
(n)
T

(s, 0)u(n)
T

)ds

−

T
∫

0

e−2γ(T−s)b(Ug
T
(s, 0)u

T
, Ug

T
(s, 0)u

T
, AUg

T
(s, 0)u

T
)ds

∣

∣

∣

∣

∣

∣

.
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Then we have

∣

∣

∣

∣

∣

∣

T
∫

0

e−2γ(T−s)
〈

B(U
g
(n)
T

(s, 0)u(n)
T

), AU
g
(n)
T

(s, 0)u(n)
T

〉

ds

−

T
∫

0

e−2γ(T−s)
〈

B(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds

∣

∣

∣

∣

∣

∣

≤ I
(n)
1 + I

(n)
2 + I

(n)
3 .(4.38)

Note H
2(Ω) →֒ L

∞(Ω) and L2(0, T ; V ) →֒ L2(0, T ; H), we obtain by using (2.24),
(2.25), (4.12) and Hölder inequality that

I
(n)
1 ≤ c

T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖

×‖U
g
(n)
T

(s, 0)u(n)
T

‖L∞(Ω)‖AU
g
(n)
T

(s, 0)u(n)
T

‖ds

≤ c

T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖

×‖U
g
(n)
T

(s, 0)u(n)
T

‖V ‖AU
g
(n)
T

(s, 0)u(n)
T

‖ds

≤ c







T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖2‖U

g
(n)
T

(s, 0)u(n)
T

‖2
H2(Ω)ds







1/2

×







T
∫

0

‖AU
g
(n)
T

(s, 0)u(n)
T

‖2ds







1/2

≤ c







T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖2ds







1/2

−→ 0, n → ∞.(4.39)

Similarly, we have

I
(n)
2 ≤ c







T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖2ds







1/2

−→ 0, n → ∞.(4.40)

Now from (2.24) and (2.25) we see that B(u) ∈ L2(0, T ; H) for ∀u ∈ D(A), this
fact together with (4.33) gives

lim
n→∞

I
(n)
3 =

∣

∣

∣

∣

∣

∣

lim
n→∞

T
∫

0

〈B(Ug
T
(s, 0)u

T
), A(U

g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
)〉ds

∣

∣

∣

∣

∣

∣

= 0.(4.41)
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Then (4.36) can be deduced from (4.38)-(4.41). To prove (4.37), we denote

I
(n)
4 =

T
∫

0

∫

Ω

e−2γ(T−s)
{

∇ ·
[

µ(U
g
(n)
T

(s, 0)u(n)
T

)e(U
g
(n)
T

(s, 0)u(n)
T

)

−µ(Ug
T
(s, 0)u

T
)e(Ug

T
(s, 0)u

T
)
]}

· AUg
T
(s, 0)u

T
dxds.(4.42)

I
(n)
5 =

T
∫

0

∫

Ω

e−2γ(T−s)
{

∇ ·
[

µ(U
g
(n)
T

(s, 0)u(n)
T

)e(U
g
(n)
T

(s, 0)u(n)
T

)
]}

·A
(

U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T

)

dxds.(4.43)

Then by (2.10), we have

T
∫

0

e−2γ(T−s)
〈

N(U
g
(n)
T

(s, 0)u(n)
T

), AU
g
(n)
T

(s, 0)u(n)
T

〉

ds

−

T
∫

0

e−2γ(T−s)
〈

N(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds

=

T
∫

0

∫

Ω

e−2γ(T−s)
{

∇ · [µ(U
g
(n)
T

(s, 0)u(n)
T

)e(U
g
(n)
T

(s, 0)u(n)
T

)]
}

·AU
g
(n)
T

(s, 0)u(n)
T

dxds

−

T
∫

0

∫

Ω

e−2γ(T−s)
{

∇ · [µ(Ug
T
(s, 0)u

T
)e(Ug

T
(s, 0)u

T
)]
}

· AUg
T
(s, 0)u

T
dxds

= I
(n)
4 + I

(n)
5 .(4.44)

To show the convergence of I
(n)
4 and I

(n)
5 , we set F (s) = 2µ0(ε + |s|2)−α/2s, where

s =

(

s1 s2

s3 s4

)

∈ M2×2, |s|
2 =

4
∑

i=1

s2
i , si ∈ R, i = 1, 2, 3, 4,

and M2×2 is the matrix of order 2× 2. By some computations we see that the first
order and second order Fréchet derivatives of F (s) satisfy

(4.45) ‖DF (s)‖ + ‖D2F (s)‖ ≤ c, ∀ si ∈ R, i = 1, 2, 3, 4,

where c is a positive constant depending only on µ0, ε and α. For any a, b ∈ M2×2,
we have

F (b) − F (a) =

1
∫

0

DF (a + τ(b − a))(b − a) dτ.
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Taking a = (eij(Ug
(n)
T

(s, 0)u(n)
T

))2×2, b = (eij(Ug
T
(s, 0)u

T
))2×2, applying the inte-

gration by parts first and then the inequality (4.45), we get

|I
(n)
4 | =

∣

∣

∣

∣

∣

∣

T
∫

0

∫

Ω

e−2γ(T−s)
{

∇ ·
[

µ(U
g
(n)
T

(s, 0)u(n)
T

)e(U
g
(n)
T

(s, 0)u(n)
T

)

−µ(Ug
T
(s, 0)u

T
)e

(

Ug
T
(s, 0)u

T

)]}

· AUg
T
(s, 0)u

T
dxds

∣

∣

∣

≤ c

T
∫

0

(‖Ug
T
(s, 0)u

T
‖2

V + ‖U
g
(n)
T

(s, 0)u(n)
T

‖2
V )

×‖e
(

U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T

)

‖L∞(Ω)

×‖AUg
T
(s, 0)u

T
‖ds,(4.46)

where (2.24) is also used. By the Gagliardo-Nirenberg inequality, we have

‖e
(

U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T

)

‖L∞(Ω)‖AUg
T
(s, 0)u

T
‖

≤ c‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
)‖1/2

×(‖AU
g
(n)
T

(s, 0)u(n)
T

‖ + ‖AUg
T
(s, 0)u

T
‖)1/2‖AUg

T
(s, 0)u

T
‖

≤ c‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖1/2

×(‖AU
g
(n)
T

(s, 0)u(n)
T

‖ + ‖AUg
T
(s, 0)u

T
‖)3/2.(4.47)

Using (2.24), (2.25), (4.46), (4.47) and the Hölder inequality, we have

|I
(n)
4 | ≤ c

T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖1/2

×(‖AU
g
(n)
T

(s, 0)u(n)
T

‖ + ‖AUg
T
(s, 0)u

T
‖)3/2ds

≤ c





T
∫

0

‖U
g
(n)
T

(s, 0)u(n)
T

− Ug
T
(s, 0)u

T
‖2ds





1/2

×





T
∫

0

(‖AU
g
(n)
T

(s, 0)u(n)
T

‖ + ‖AUg
T
(s, 0)u

T
‖)2ds





3/4

−→ 0, n → ∞, ∀T > 0.(4.48)

Note that

e−2γ(T−s)
{

∇ ·
[

µ(Ug
T
(s, 0)u

T
)e(Ug

T
(s, 0)u

T
)
]}

∈ L2(0, T ; H).(4.49)

Then (4.33) and (4.49) imply that for any T > 0

I
(n)
5 =

T
∫

0

∫

Ω

e−2γ(T−s)
{

∇ ·
[

µ(U
g
(n)
T

(s, 0)u(n)
T

)e(U
g
(n)
T

(s, 0)u(n)
T

)
]}

·A
(

Ug
T
(s, 0)u(n)

T
− Ug

T
(s, 0)u

T

)

dxds −→ 0, n → ∞.(4.50)
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Thus (4.37) can be deduced from (4.44), (4.48) and (4.50). Now, we use (4.30),
(4.31) and (4.34)-(4.37) to obtain

lim inf
n→∞

(

AU
g
(n)
T

(T, 0)u(n)
T

, U
g
(n)
T

(T, 0)u(n)
T

)

≤ c2R
2
1e

−2γT + 2

T
∫

0

e−2γ(T−s)
(

g
T
(s), AUg

T
(s, 0)u

T

)

ds

−2

T
∫

0

e−2γ(T−s)
(

B(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

)

ds

−2

T
∫

0

e−2γ(T−s)
〈

N(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds

−2

T
∫

0

e−2γ(T−s)[[Ug
T
(s, 0)u

T
]]2ds.(4.51)

At the same time, we apply the enstrophy equation to u = Ug
T
(T, 0)u

T
and obtain

(

AUg
T
(T, 0)u

T
, Ug

T
(T, 0)u

T

)

= (Au
T
, u

T
)e−2γT

+2

T
∫

0

e−2γ(T−s)
(

g
T
(s), AUg

T
(s, 0)u

T

)

ds

−2

T
∫

0

e−2γ(T−s)
〈

B(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds

−2

T
∫

0

e−2γ(T−s)
〈

N(Ug
T
(s, 0)u

T
), AUg

T
(s, 0)u

T

〉

ds

−2

T
∫

0

e−2γ(T−s)[[Ug
T
(s, 0)u

T
]]2ds.(4.52)

(4.51) and (4.52) gives us for any T > 0 that

lim inf
n→∞

(

AU
g
(n)
T

(T, 0)u(n)
T

, U
g
(n)
T

(T, 0)u(n)
T

)

≤ (c2R
2
1 − (Au

T
, u

T
))e−2γT +

(

AUg
T
(T, 0)u

T
, Ug

T
(T, 0)u

T

)

.(4.53)

Recall that u
T
∈ BV

0 is bounded. Lemma 2.1 implies (Au
T
, u

T
) is bounded. Letting

T → +∞ in (4.53), we have

lim inf
n→∞

(

AU
g
(n)
T

(T, 0)u(n)
T

, U
g
(n)
T

(T, 0)u(n)
T

)

≤
(

AUg
T
(T, 0)u

T
, Ug

T
(T, 0)u

T

)

= (Au, u),(4.54)
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i.e. (4.25) holds. (4.24) and (4.25) immediately imply

lim
n→∞

(

AU
g
(n)
T

(T, 0)u(n)
T

, U
g
(n)
T

(T, 0)u(n)
T

)

= (Au, u) .(4.55)

Because V is a Hilbert space, we deduce from (4.17) and (4.55) that

lim
n→∞

‖U
g
(n)
T

(T, 0)u(n)
T

− u‖V = lim
n→∞

‖Ug(n)(tn, τ)u(n)
τ − u‖V = 0.

Lemma 4.5 is eventually proved. �

Lemma 4.6 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

corresponding to problem (2.15)-(2.16) is uniform (w.r.t. g ∈ H(g0)) asymptotically
compact in space V .

The proof of Lemma 4.6 is almost the same as that as Lemma 3.6 with the
small modification that the space V replaces the space H .

Combining Lemmas 4.1, 4.2, 4.6 and Theorem 5.1 of [7], we now can state the
main result of this section as follows.

Theorem 4.1 Let g0 ∈ L2
c(R; H). Then the family of processes

{Ug(t, τ)}t≥τ,g∈H(g0)

possesses a compact uniform (w.r.t. g ∈ H(g0)) attractor AV
H(g0) in space V , which

has the following structure

AV
H(g0) =

⋃

g∈H(g0)

KV
g (s) = ωs,H(g0)(B

V
0 ) =

⋂

t≥τ

⋃

g∈H(g0)

⋃

s≥t

Ug(s, τ)BV
0

H
2(Ω)

,(4.56)

for ∀ s ∈ R, where KV
g (s) is the kernel section at time moment t = s, KV

g is the

kernel of the process {Ug(t, τ)}t≥τ in space V and KV
g is nonempty for all g ∈ H(g0);

BV
0 is the bounded uniformly (w.r.t. g ∈ H(g0)) absorbing set defined by (4.2) and

ωs,H(g0)(B
V
0 ) is its uniform (w.r.t. g ∈ H(g0)) ω-limit set.

5. Regularity of the uniform attractors

The purpose of this section is to prove AH
H(g0) = AV

H(g0) ⊂ V for inclusion

relation. To this end, we utilize the Uniform Gronwall Lemma to establish that the
solutions of (2.15)-(2.16) with initial values in any bounded set of H will enter a
bounded set of V after large enough time.

Lemma 5.1 (Uniform Gronwall Lemma [30]). Let Υ(t), Φ(t), Ψ(t) be three
positive locally integrable functions on Rτ such that Φ′ is locally integrable on Rτ

and
dΦ(t)

dt
≤ Υ(t)Φ(t) + Ψ(t) for t ≥ τ,

t+r
∫

t

Υ(s)ds ≤ a1,

t+r
∫

t

Ψ(s)ds ≤ a2,

t+r
∫

t

Φ(s)ds ≤ a3, for t ≥ τ,

where r, a1, a2 and a3 are positive constants. Then

Φ(t + r) ≤ (
a3

r
+ a2)e

a1 , ∀ t ≥ τ.

We next use Lemma 5.1 to prove the following lemma.
Lemma 5.2. Let g0 ∈ L2

c(R; H) and B ∈ B(H) be arbitrary. Let u(t) =
Ug(t, τ)uτ be the corresponding solution of problem (2.15)-(2.16) with any given
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uτ ∈ B and any given g ∈ H(g0). Then there is a time T0(τ,B) and a positive
constant K such that

(5.1) ‖u(t)‖V = ‖Ug(t, τ)uτ‖V ≤ K, ∀ t ≥ T0(τ,B).

Proof. Multiplying (2.15) by ut and then integrating the resulting equality
over Ω, we obtain

(5.2) ‖ut‖
2 + 2µ1a(u, ut) + 〈B(u), ut〉 + 〈N(u), ut〉 = (g, ut).

Set

Γ(|e(u)|2) =

|e(u)|2
∫

0

µ0(ε + s)−α/2ds,

then

dΓ

dt
= 2

2
∑

i,j=1

µ(u)eij(u)
∂eij(u)

∂t
= 2

2
∑

i,j=1

µ(u)eij(u)eij(ut).

Thus,

(5.3) 〈N(u), ut〉 =

2
∑

i,j=1

∫

Ω

µ(u)eij(u)eij(ut)dx =
1

2

d

dt





∫

Ω

Γ(|e(u)|2)dx



 .

Substituting (5.3) into (5.2), we obtain

‖ut‖
2 +

d

dt



µ1a(u, u) +
1

2

∫

Ω

Γ(|e(u)|2)dx





= −〈B(u), ut〉 + (g(t), ut)

≤

∣

∣

∣

∣

∣

∣

2
∑

i,j=1

∫

Ω

ui
∂uj

∂xi

∂uj

∂t
dx

∣

∣

∣

∣

∣

∣

+ ‖g(t)‖2 +
1

4
‖ut‖

2

≤ ‖u‖L4(Ω)‖∇u‖L4(Ω)‖ut‖ + ‖g(t)‖2 +
1

4
‖ut‖

2.(5.4)

By the Gagliardo-Nirenberg inequality, we get

‖u‖L4(Ω)‖∇u‖L4(Ω)‖ut‖ ≤ c‖∆u‖2‖ut‖ ≤ c‖u‖4
V +

1

4
‖ut‖

2.(5.5)

Inserting (5.5) into (5.4), we have by using Lemma 2.1 that

d

dt



µ1a(u, u) +
1

2

∫

Ω

Γ(|e(u)|2)dx



 ≤ c‖u‖4
V + ‖g(t)‖2

≤ c‖u‖2
V

µ1a(u, u)

c1µ1
+ ‖g(t)‖2.(5.6)

So we have

(5.7)
dΦ

dt
≤ Υ(t)Φ(t) + Ψ(t),
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where

Φ(t) = µ1a(u(t), u(t)) +
1

2

∫

Ω

Γ(|e(u)|2)dx,

Υ(t) =
c

c1µ1
‖u(t)‖2

V , Ψ(t) = ‖g(t)‖2.

Now taking the inner product (·, ·) of (2.15) with u and integrating the resulting
equality over [t, t+1], we obtain by using the facts 〈B(u), u〉 = 0 and 〈N(u), u〉 ≥ 0
that

t+1
∫

t

2µ1a(u(s), u(s))ds ≤

t+1
∫

t

‖u(s)‖‖g(s)‖ds +
1

2
‖u(t)‖2

≤

t+1
∫

t

(‖u(s)‖2 + ‖g(s)‖2)ds +
1

2
‖u(t)‖2.(5.8)

Let t ≥ t0(τ,B) (see Lemma 3.1), then from (5.8) it follows

2c1µ1

t+1
∫

t

‖u(s)‖2
V dt ≤

3

2
R2

0 +

t+1
∫

t

‖g(s)‖2ds.(5.9)

Hence, by Lemma 2.1,

t+1
∫

t

Υ(s)ds =

t+1
∫

t

c

c1µ1
‖u(s)‖2

V ds ≤
c

2c2
1µ

2
1





t+1
∫

t

‖g(s)‖2ds +
3

2
R2

0





≤
c

2c2
1µ

2
1

(

‖g0‖
2
L2

b
+

3

2
R2

0

)

.
= a1, ∀ t ≥ t0(τ,B).

Clearly, we have

t+1
∫

t

Ψ(s)ds =

t+1
∫

t

‖g(s)‖2ds ≤ ‖g0‖
2
L2

b

.
= a2. ∀ t ≥ t0(τ,B).(5.10)

where a1, a2 are positive constants. We next show that there exists a positive
constant a3 such that

t+1
∫

t

Φ(s)ds ≤ a3, ∀ t ≥ t0(τ,B).

From (5.9) and Lemma 2.1 we obtain

t+1
∫

t

µ1a(u(s), u(s))ds ≤
c2

2c1





t+1
∫

t

‖g(s)‖2ds +
3

2
R2

0





≤
c2

2c1
(‖g0‖

2
L2

b
+

3

2
R2

0), ∀ t ≥ t0(τ,B).(5.11)
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At the same time, we have 0 < (ε + s)−α/2 ≤ ε−α/2 with s ≥ 0 and 0 < α < 1.
Thus

Γ(|e(u)|2) =

|e(u)|2
∫

0

µ0(ε + s)−α/2ds ≤ µ0ε
−α/2|e(u)|2,

from which and (5.11) we get

t+1
∫

t

∫

Ω

Γ(|e(u)|2)dxds

≤ µ0ε
−α/2

t+1
∫

t

∫

Ω

|e(u)|2dxds ≤ 4µ0ε
−α/2

t+1
∫

t

‖u(s)‖2
V ds

≤ 4µ0ε
−α/2

t+1
∫

t

µ1a(u(s), u(s))

c1µ1
ds

≤
2c2µ0ε

−α/2

c2
1µ1

(‖g0‖
2
L2

b
+

3

2
R2

0), ∀ t ≥ t0(τ,B),(5.12)

where we have used the fact that

∫

Ω

|e(u)|2dx ≤ 4‖u‖2
V . It follows from (5.11) and

(5.12) that

(5.13)

t+1
∫

t

Φ(s)ds ≤

(

c2

2c1
+

2c2µ0ε
−α/2

c2
1µ1

) (

‖g0‖
2
L2

b
+

3

2
R2

0

)

.
= a3, ∀ t ≥ t0(τ,B).

Taking Lemma 5.1, (5.7), (5.10), (5.11) and (5.13) into account, we obtain

Φ(t) ≤ (a3 + a2)e
a1 , ∀ t ≥ t0(τ,B) + 1.

Therefore,

‖u(t)‖2
V ≤

1

c1
a(u(t), u(t)) ≤

Φ(t)

c1µ1
≤

(a3 + a2)e
a1

c1µ1

.
= K, t ≥ t0(τ,B) + 1.

The proof of Lemma 5.2 is complete. �

Theorem 5.1. Let g0 ∈ L2
c(R; H), then

(5.14) AH
H(g0) = AV

H(g0) ⊂ V.

Proof. On the one hand, AV
H(g0) ⊂ V →֒ H is clear, and by Lemma 4.1 we

see that BV
H(g0)

uniformly (w.r.t. g ∈ H(g0)) absorbs any bounded sets of H in the

norm of V (also in the norm of H). Thus AV
H(g0) can be regarded as the uniform

(w.r.t. g ∈ H(g0)) attractor for the family of processes {Ug(t, τ)}t≥τ,g∈H(g0) in
space H . By the minimality and thus the uniqueness of the uniform attractor, we
get AV

H(g0) = AH
H(g0) ⊂ H.

On the other hand, the kernel KH
g of the process {Ug(t, τ)}t≥τ in space H

consists of all bounded complete trajectories of equation (2.15) with time symbol
g ∈ H(g0). In fact,

KH
g = {u(·) : u(t) = Ug(t, τ)u(τ), distH(u(t), u(0)) ≤ Cu, ∀t ≥ τ, ∀ τ ∈ R}.
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From Lemma 5.2, we see that AH
H(g0) is indeed a bounded set of V . Therefore, we

get AV
H(g0) = AH

H(g0) ⊂ V. The proof is complete. �
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