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Global wellposedness of an inviscid 2D Boussinesq system

with nonlinear thermal diffusivity
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Abstract. We consider a two-dimensional inviscid Boussinesq system with
temperature-dependent thermal diffusivity. We prove global wellposedness of
strong solutions for arbitrarily large initial data in Sobolev spaces.
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1. Introduction

In this paper we consider the following two dimensional inviscid Boussinesq
system





∂tu + (u · ∇)u + ∇p = θe2, e2 = (0, 1),

∂tθ + (u · ∇)θ = ∇ · (κ(θ)∇θ), (t, x) ∈ (0,∞) × R2,

∇ · u = 0,

u(0, x) = u0, θ(0, x) = θ0(x), x ∈ R2,

(1.1)

where u = u(t, x) = (u1(t, x), u2(t, x)) : [0, ∞) × R2 → R2, denotes the velocity
field of a two-dimensional incompressible fluid. The term p = p(t, x) : [0, ∞) ×
R2 → R2 denotes the usual pressure which can be recovered from the first and the
third equation in ( 1.1) by taking the divergence and then inverting the Laplacian
operator. The scalar function θ = θ(t, x) quantifies the temperature variation in
a gravity field. It enters the first equation in (1.1) as θ e2 which represents the
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buoyancy force. In the second equation of (1.1), the parameter κ = κ(θ) represents
the thermal diffusivity, we shall assume κ is a smooth function satisfying

1

C0
≤ κ(z) ≤ C0, for any z ∈ R,

where C0 > 0 is some fixed positive constant.
The main purpose of this note is to investigate global wellposedness of smooth

solutions to (1.1) for arbitrarily large initial data.
The system (1.1) is a special case of the more general Boussinesq system which

takes the form




∂tu + (u · ∇)u + ∇p = ∇ · (ν(θ)∇u) + θe2, e2 = (0, 1),

∂tθ + (u · ∇)θ = ∇ · (κ(θ)∇θ), (t, x) ∈ R × R2,

∇ · u = 0,

u(0, x) = u0, θ(0, x) = θ0(x), x ∈ R2,

(1.2)

here ν ≥ 0 represents the viscosity which is allowed to depend on the temperature
in general.

There is by now an extensive literature on various cases of the general system
(1.1). If ν and κ are positive constants which do not depend the temperature, then
global wellposedness in 2-D can be established by classical methods (see Cannon
and DiBenedetto [3]). When both ν and κ depend on the temperature and satisfy
the constraint

1

C0
≤ ν(z) ≤ C0,

1

C0
≤ κ(z) ≤ C0, for any z ∈ R,(1.3)

for some C0 > 0, Lorca and Boldrini [13] obtained the global wellposedness for
small initial data. For the partially viscous Boussinesq system (1.2) (with constant
viscosity), that is,

ν > 0 is a positive constant, κ = 0;

or

κ > 0 is a positive constant, ν = 0,

Chae [4] and Hou-Li [8] independently settled global regularity for large initial
data. In both works, a key observation is the use of the following Brezis-Wainger
inequality [2] (to control ‖∇θ‖Lp + ‖∇2u‖Lp, for any p > 2)

‖f‖L∞(R2) ≤ C(1 + ‖∇f‖L2(R2))[1 + log(10 + ‖∇f‖Lp)]
1
2 + C‖f‖L2(R2),(1.4)

for f ∈ L2(R2) ∩ W 1, p(R2), p > 2. 1 In [10], Lai, Pan and Zhao settled the
solvability of the initial-boundary value problem for the two-dimensional viscous
Boussinesq equations in a bounded domain. In [9], Karch and Prioux constructed
a nontrival family of self-similar solutions to the two-dimensional viscous Boussinesq
system.

In a series of two papers [6] & [7], Hmidi, Keraani and Rousset used a novel
diagonalization approach and proved global wellposedness of fractional diffusion

1The inequality (1.4) can be easily proved using Littlewood-Paley decomposition and the L2

-summability of ‖∇PNf‖L2 .
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Boussinesq models with critical partial dissipation in either velocity equation or
temperature equation, i.e.





∂tu + (u · ∇)u + ∇p = θe2, e2 = (0, 1),

∂tθ + (u · ∇)θ + |∇|θ = 0, (t, x) ∈ R × R2,

∇ · u = 0,

u(0, x) = u0, θ(0, x) = θ0(x), x ∈ R2,

(1.5)

or




∂tu + (u · ∇)u + ∇p + |∇|u = θe2, e2 = (0, 1),

∂tθ + (u · ∇)θ = 0, (t, x) ∈ R × R2,

∇ · u = 0,

u(0, x) = u0, θ(0, x) = θ0(x), x ∈ R2.

(1.6)

Here for any s > 0, |∇|s = (−∆)
s
2 is the fractional Laplacian operator defined by

|̂∇|sf(ξ) = |ξ|sf̂(ξ), ξ ∈ R
2.

Note that both systems (1.5)–(1.6) are much more degenerate than the partially vis-
cous Boussinesq system with full Laplacian dissipation considered by Chae [4] and
Hou-Li[8]. The deep observation of Hmidi-Keraani-Rousset is to utilize a maximum-
principle type structure hidden in (1.5) (resp. (1.6)). Namely, Let the vorticity
ω = ∂1u2 − ∂2u1 and one gets from (1.5) the system

{
∂tw = ∂1θ,

∂tθ = −|∇|θ.

Diagonalizing the above system gives the equation

∂t(ω + |∇|−1∂1θ) = 0

from which one can derive new a priori estimates. At present the super-critical
case where |∇| is replaced by |∇|s, s < 1 in (1.5) and (1.6) is still open. For the
Boussinesq system with partial vertical dissipation, we refer the interested readers
to [1] and references therein.

In a recent paper [14], Wang and Zhang considered the general system (1.2)
with non-degenerate viscosity and thermal diffusivity (i.e. (1.3) holds). Their main
result reads as follows:

Theorem 1.1. Let s > 2 and (u0, θ0) ∈ Hs(R2). Then the Boussinesq system
(1.2)-(1.3) has a unique global solution (u, θ) ∈ C0

t Hs ∩ L2
t, locH

s+1([0, ∞) × R2).

To prove Theorem 1.1, it suffices to establish the a priori estimate

∫ T

0

(
‖∇u(t)‖2

∞ + ‖∇θ(t)‖2
∞

)
dt < ∞, for any T > 0.(1.7)

By performing an L2-estimate on (1.2) and using the fact that the viscosity is
non-degenerate, one obtains u ∈ C0

t L2
x ∩ L2

t H
1([0, ∞) × R2). Interpolation then

gives u ∈ L4
t, x([0, T ]×R2). The key argument in Wang-Zhang [14] is the following

Hölder estimate on a (linear) transport equation:
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Proposition 1.2. Let u ∈ L4
t, x([0, T ] × R2) be a given divergence-free vector

field. Assume θ ∈ L∞
t L2

x ∩ L2
t H

1([0, T ] × R2) is a weak solution of the linear
equation

{
∂tθ + (u · ∇)θ = ∇ · (κ∇θ),

θ(0, x) = θ0(x).

Then there exists α > 0 such that θ ∈ Cα((0, T ] × R2) with

‖θ‖L∞

t (δ, T ; Cα(R2)) ≤ C(δ, ‖u‖L4
t,x((0,T )×R2), ‖θ0‖L2(R2)),

for any δ ∈ (0, T ).

The main advantage of Proposition 1.2 is that one can obtain the a priori
control of Hölder norm of θ which is in some sense a super-critical quantity. Using
this Cα estimate2, one can then3 perform a simple H1 estimate of (u, θ) and derive

‖(u, θ)‖L∞

t H1([0,T ]×R2) + ‖(∆u, ∆θ)‖L2
tx([0,T ]×R2) < ∞,

for any T > 0. We should point it out that in this H1 estimate, we utilized
the following identity which only holds for smooth two-dimensional incompressible
flows: ∫

R2

[(u · ∇)u] · ∆udx = 0.(1.8)

The identity (1.8) can be easily proved using the vorticity formulation, see (3.6).
Bootstrapping the H1-estimates then easily yields global wellposedness. The details
of the above simplified argument is given in Section 3.

Besides giving a simplified proof of Theorem 1.1, the main objective of this
paper is to prove global wellposedness of strong solutions with large initial data for
the degenerate system (1.1), i.e. the velocity equation has no dissipation on the
right hand side. In some sense this complements the analysis of Wang-Zhang. Our
main result is the following

Theorem 1.3 (Global regularity). Let the initial data (u0, θ0) ∈ Hs(R2) for
some s > 2. Then the Boussinesq system (1.1) has a unique global solution satis-
fying (u, θ) ∈ C0

t Hs([0,∞) × R2), θ ∈ L2
t, locH

s+1([0, T ]× R2) for any 0 < T < ∞.

The proof of Theorem 1.3 relies heavily on certain parabolic estimates on the
temperature θ. To derive the bound (1.7), we carry out the estimate on a carefully
chosen quantity ‖∇ω‖2+ǫ + ‖∇θ‖2. The advantage of this approach is that one
can avoid completely dyadic-type estimates which is unnecessary to the matter.
Alternatively one could give a proof using Hmidi-Keraani-Rousset’s diagonalization
approach. We leave the details to interested readers.

2For example in the nonlinear estimates, instead of the usual interpolation inequality

‖∇θ‖L4(R2) . ‖θ‖
1
2

L∞(R2)
‖∆θ‖

1
2

L2(R2)
, one can use ‖∇θ‖L4(R2) . ‖θ‖2ǫ

2 · ‖θ‖
1
2
−ǫ

Cα(R2)
· ‖∆θ‖

1
2
−ǫ

L2(R2)

for some ǫ > 0. See (3.4) for the precise form and (3.3) where it is used. This is one of the key
steps to close the H1 estimate.

3The analysis in [14] proceeds in a different manner and is much more involved. Namely
the authors first prove the estimate ‖∇θ‖L2

t L∞

x
. 1 by working directly with the temperature

equation using the fact that u ∈ L2
t H1. This is done by a Littlewood-Paley analysis using a

Chemin-type space. See Proposition 5.1 therein for more details.
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The rest of this article is organized as follows. In the following section we give
the proof of Theorem 1.3. In the last section we give the details of the simplified
proof of Theorem 1.1.

Notations and Preliminaries.

• For any two quantities X and Y , we denote X . Y if X ≤ CY for some
harmless constant C > 0. Similarly X & Y if X ≥ CY for some C > 0.
We denote X ∼ Y if X . Y and Y . X . We shall write X .Z1,Z2,··· ,Zk

Y
if X ≤ CY and the constant C depends on the quantities (Z1, · · · , Zk).
Similarly we define &Z1,··· ,Zk

and ∼Z1,··· ,Zk
.

• Let Ω be an open set in Rd. For any 1 ≤ p ≤ ∞ we use ‖f‖p (when there
is no confusion), ‖f‖Lp(Ω), or ‖f‖L

p
x(Ω) to denote the Lebesgue norm on

Ω. We write f ∈ Lp
loc(Ω) if f ∈ Lp(K) for any compact K ⊂ Ω. The

Sobolev space H1(Rd) is defined in the usual way as the completion of
C∞

c functions under the norm ‖f‖H1 = ‖f‖2 + ‖∇f‖2. For any s ∈ R, we
define the homogeneous Sobolev norm

‖f‖Ḣs =
(∫

Rd

|ξ|2s|f̂(ξ)|2dξ
) 1

2

.

For any 0 < α ≤ 1, the Hölder norm ‖ · ‖Cα is defined as

‖f‖Cα(Rd) := ‖f‖∞ + sup
x 6=y∈Rd

|f(x) − f(y)|

|x − y|α
.

• We will occasionally need to use the Littlewood–Paley frequency projec-
tion operators. Let ϕ(ξ) be a smooth bump function supported in the
ball |ξ| ≤ 2 and equal to one on the ball |ξ| ≤ 1. For each dyadic number
N ∈ 2Z we define the Littlewood–Paley operators

P̂≤Nf(ξ) := ϕ(ξ/N)f̂(ξ),

P̂>Nf(ξ) := [1 − ϕ(ξ/N)]f̂ (ξ),

P̂Nf(ξ) := [ϕ(ξ/N) − ϕ(2ξ/N)]f̂(ξ).

Similarly we can define P<N , P≥N , and PM<·≤N := P≤N−P≤M , whenever
M and N are dyadic numbers.

• We recall the following Bernstein estimates: for any 1 ≤ p ≤ q ≤ ∞ and
dyadic N > 0,

‖PNf‖L
q
x(Rd) .d Nd( 1

p
− 1

q
)‖f‖L

p
x(Rd).

Similar inequalities also hold when PN is replaced by P<N or P≤N .
• We recall the following logarithmic Sobolev interpolation inequality:

For any f ∈ H1(R2) with ∇f ∈ Lp(R2) for some 2 < p < ∞, we have

2∑

i,j=1

‖∆−1∂i∂jf‖∞ . ‖f‖2 + ‖f‖∞ log(10 + ‖∇f‖p).(1.9)

We sketch the proof of (1.9) here for the sake of completeness.

Proof of (1.9). Let N0 ≥ 4 be a dyadic number whose value will be
chosen later. Splitting the function f into low and high frequencies and
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using the Bernstein inequality, we have

LHS of (1.9) . ‖P<1f‖2 +
∑

1<N<N0

‖PNf‖∞ +
∑

N>N0

‖PNf‖∞

. ‖f‖2 + (log N0)‖f‖∞ +
∑

N>N0

N−1+ 2
p ‖PN∇f‖p

. ‖f‖2 + (log N0)‖f‖∞ + N
−1+ 2

p

0 ‖∇f‖p.

Choosing N0 ∼ (10 + ‖∇f‖p)
p

p−2 then yields the result. �

Acknowledgements. D. Li was supported in part by NSF under agreement
No. DMS-1128155. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. D. Li was also supported in part by
an NSERC discovery grant. X. Xu was partially supported by NSFC(No.11171026)
and BNSF(No.2112023).

2. Proof of Theorem 1.3

We begin with the local wellposedness and blowup/continuation criteria. Albeit
standard, we state it here for the sake of completeness.

Proposition 2.1. Let the initial data (u0, θ0) ∈ Hs(R2), s > 2. Then there
exists unique local solution such that (u, θ) ∈ C0

t Hs, θ ∈ L2
t, locH

s+1. Let the

maximal lifespan of (u, θ) be T ∗. If T ∗ < ∞, then

lim
tրT∗

∫ t

0

(
‖∇u(s)‖2

L∞ + ‖∇θ(s)‖2
L∞

)
ds = +∞.

We shall omit the proof of Proposition 2.1 since it is a simple exercise of the
standard energy method. One can refer to Theorem 3.1 in [14] or [5], [11] for the
construction of local solutions by various approximation schemes.

With Proposition 2.1 in hand, we are now ready to complete the

Proof of Theorem 1.3. By Proposition 2.1, we only need to control the
quantity

∫ T

0

(
‖∇u(t)‖2

L∞ + ‖∇θ(t)‖2
L∞

)
dt(2.1)

for any T > 0.
To simplify the notations, we shall use the letter C to denote a generic constant

which may vary from line to line. The dependence of C on other parameters is
usually clear from the context and we shall explicitly specify it whenever necessary.
For any quantity X = X(t), we shall write

X(t) . 1 or X . 1(2.2)

if

X(t) ≤ C(t, θ0, u0) < ∞, ∀ t ≥ 0.

Here C(t, θ0, u0) is some constant depending only on the initial data (θ0, u0), the
elliptic constant (in κ = κ(θ)) and the time t. It is of course possible to keep track
of the constants and obtain explicit growth rate of various Sobolev norms of (θ, u).
But we shall not dwell on this issue here for simplicity.
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Let the vorticity ω = ∂1u2 − ∂2u1. Taking the curl on the first equation of
(1.1), we obtain

{
∂tω + (u · ∇)ω = θx1 ,

∂tθ + (u · ∇)θ = ∇ · (κ∇θ).
(2.3)

An L2-estimate on (ω, θ) using div(u) = 0 then gives us

d

dt

(
‖ω(t)‖2

2 + ‖θ(t)‖2
2

)
=

∫

R2

θx1ωdx +

∫

R2

∇ · (κ∇θ)θdx

≤
1

100C0
‖θx1(t)‖

2
2 + 100C0‖ω(t)‖2

2 −
1

C0
‖∇θ(t)‖2

2

≤ 100C0‖ω(t)‖2
2.

Therefore we have

‖ω(t)‖2
2 + ‖θ(t)‖2

2 . 1, ∀ t ≥ 0.(2.4)

Consequently

‖u(t)‖H1 . 1, ∀ t ≥ 0.(2.5)

Now using (2.5) and a standard parabolic estimate on the second equation in
(2.3) (cf. Theorem 4.8 of [12]4), we have for some 0 < α < 1,

‖∇θ‖L∞

t Cα
x ([δ,T ]×R2) ≤ C(δ, u0, θ0) < ∞,

where 0 < δ < T is arbitrary. Consequently

‖∇θ(t)‖Cα
x

. 1, ∀ t ≥ 0.(2.6)

Hence we have already settled the ‖∇θ(t)‖∞-part in (2.1). It remains to control
‖∇u(t)‖∞. Plugging the estimate (2.6) into the first equation of (2.3), we obtain

‖ω(t)‖L∞

x
. 1, ∀ t ≥ 0.(2.7)

Therefore for any 2 < p < ∞, we have

‖∇u(t)‖L
p
x

. 1, ∀ t ≥ 0.(2.8)

Now let g = Dθ. Differentiating the second equation of (2.3), we obtain

∂tg + (u · ∇)g = ∇ · (κ∇g) − (Du · ∇)θ + ∇ · (κ′(θ)(Dθ)∇θ).(2.9)

By using (2.6), (2.8) and a parabolic estimate on (2.9), we then obtain

‖g‖L∞

t Cα
x ([δ,T ]×R2) ≤ C(δ, u0, θ0) < ∞, ∀ 0 < δ < T,

and consequently

2∑

i,j=1

‖∂i∂jθ(t)‖Cα
x

. 1, ∀ t ≥ 0.(2.10)

4Strictly speaking, to check the hypothesis of Theorem 4.8 therein, one needs to perform a
standard Cα-estimate first since the thermal diffusivity κ = κ(θ). For this one can invoke the
standard parabolic theory since the velocity u satisfies the strong estimate (2.5).
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Now take some p = 2 + ǫ, ǫ > 0 is sufficiently small such that Hs−1 →֒ W 1,p

(here s > 2 is the same exponent as in Theorem 1.3). Using (2.10) and the first
equation in (2.3), we estimate ‖∇ω(t)‖p as:

d

dt

(
‖∇ω(t)‖p

p

)
. ‖∇u(t)‖∞ · ‖∇ω(t)‖p

p +

∫

R2

|∇θx1 ||∇ω|p−1dx

. (‖∇u(t)‖∞ + 1)‖∇ω(t)‖p
p + ‖∆θ(t)‖p

p.(2.11)

To estimate ‖∆θ(t)‖p we proceed as follows. Let R > 0 be a dyadic number
which will be taken to be sufficiently large. Obviously

‖∆P≤Rθ(t)‖p . R2+2( 1
2−

1
p
)‖θ(t)‖2

.R 1.

On the other hand by (2.10),

‖∆P>Rθ(t)‖p ≤ ‖∆P>Rθ(t)‖
2
p

2 · ‖∆P>Rθ(t)‖
p−2

p
∞

. ‖∆θ(t)‖
2
p

2 · R−α( p−2
p

)‖∇2θ(t)‖
p−2

p

Cα

≤
( 1

100C0

) 1
p

· ‖∆θ(t)‖
2
p

2 ,

where in the last inequality we need to take R sufficiently large.
Plugging the last two estimates into (2.11), we obtain

d

dt

(
‖∇ω(t)‖p

p

)
≤ C · (‖∇u(t)‖∞ + 1)‖∇ω(t)‖p

p +
1

100C0
‖∆θ(t)‖2

2 + C.(2.12)

Now we perform an H1-estimate on the temperature θ in the second equation
of (2.3), and we get

d

dt

(
‖∇θ(t)‖2

2

)
≤ (‖∇u(t)‖∞ + 1)‖∇θ(t)‖2

2 −
1

C0
‖∆θ(t)‖2

2

+

∫

R2

|κ′(θ)| · |∇θ|2 · |∆θ|dx

≤ (‖∇u(t)‖∞ + 1)‖∇θ(t)‖2
2 −

1

2C0
‖∆θ(t)‖2

2 + C‖∇θ(t)‖4
4.(2.13)

By interpolation and (2.6), we have

‖∇θ(t)‖4
4 . ‖∇θ(t)‖2

2 · ‖∇θ(t)‖2
∞

. ‖∇θ(t)‖2
2, ∀ t ≥ 0.(2.14)

By the usual logarithmic Sobolev interpolation inequality (1.9) (note here that
p > 2!), (2.4) and (2.7), we have

‖∇u(t)‖∞ . ‖ω(t)‖∞ · log(‖∇ω(t)‖p + 10) + ‖ω(t)‖2

. log(‖∇ω(t)‖p
p + 10).(2.15)

Now adding together (2.12), (2.13) and using (2.14)–(2.15), we obtain

d

dt
X(t) . X(t) log X(t), ∀ t ≥ 0,

where

X(t) = ‖∇ω(t)‖p
p + ‖∇θ(t)‖2

2 + 10.
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A log-Gronwall argument then easily yields

‖∇ω(t)‖p
p + ‖∇θ(t)‖2

2 . 1, ∀ t ≥ 0.

Since p > 2, Sobolev embedding then gives (here ∇⊥ = (−∂2, ∂1))

‖∇u(t)‖∞ = ‖∆−1∇⊥∇ω(t)‖∞

. ‖∇ω(t)‖p + ‖ω(t)‖2

. 1, ∀ t ≥ 0.

This concludes the estimate of ‖∇u(t)‖∞. �

3. A Simplified Proof of Theorem 1.1

We shall adopt the same notation ”.” as in the proof of Theorem 1.3 (See
(2.2)).

By Proposition 1.2, we have

‖θ(t)‖Cα(R2) . 1, for any t ≥ 0.(3.1)

Multiplying the second equation in (1.2) by −∆θ and integrating by parts, we
obtain

d

dt

(
‖∇θ(t)‖2

2

)
≤ C

∫

R2

|u| |∇θ| |∆θ| dx −
1

C0
‖∆θ‖2

2 + C

∫

R2

|∇θ|2| |∆θ| dx

≤ C‖u‖4
4 + C‖∇θ‖4

4 −
1

100C0
‖∆θ‖2

2.(3.2)

Let N0 ≥ 1 be a parameter whose value will be chosen momentarily. By
splitting into low and high frequencies, the Bernstein inequality, (3.1) and the
Hölder inequality, we have

‖∇θ‖4 . ‖P<N0θ‖4 +
∑

N≥N0

N‖PNθ‖
1
2
2 ‖PNθ‖

1
2
∞

. N
1
2
0 ‖θ‖2 + (‖∆θ‖2‖θ‖Cα)

1
2

∑

N≥N0

N−α
2

. N
1
2
0 ‖θ‖2 + (‖∆θ‖2‖θ‖Cα)

1
2 N

−α
2

0 .

By choosing N0 sufficiently large, we then obtain

‖∇θ(t)‖4
4 ≤ C +

1

200C0
‖∆θ‖2

2.(3.3)

In fact, it is not difficult to check that the calculation preceding (3.3) gives a
proof of the inequality

‖∇θ‖4 . ‖θ‖
1

2(1+α)

Cα ‖∆θ‖
1

2(1+α)

2 ‖θ‖
α

1+α

2 .(3.4)

It is also possible to replace the RHS norms by weaker Besov norms but we shall
not need this generality here.

Plugging (3.3) into (3.2) and using the fact that ‖u‖L4
t,x([0, T ]×R2) . 1 for any

T > 0, we obtain

‖θ(t)‖L∞

t H1([0, T ]×R2) + ‖∇θ‖L4
t,x([0, T ]×R2) + ‖∆θ‖L2

t,x([0, T ]×R2) . 1, for all T > 0.

(3.5)
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Now multiplying the first equation in (1.2) by −∆u and integrating by parts,
we obtain

1

2

d

dt
(‖∇u(t)‖2

2) ≤

∫

R2

[(u · ∇)u] · ∆u dx −

∫

R2

ν(θ)|∆u|2 dx

+

∫

R2

|ν′(θ)| |∇θ| |∇u| |∆u| dx.

Note that in 2D, by using the fact that ∆u = ∇⊥ω (recall ∇⊥ = (−∂2, ∂1))
and

∇⊥ · ((u · ∇)u) = (u · ∇)ω,

we have ∫

R2

[(u · ∇)u] · ∆u dx =

∫

R2

[(u · ∇)u] · ∇⊥ω dx

= −

∫

R2

(u · ∇)ω · ω dx

= −

∫

R2

(u · ∇)(
1

2
ω2) dx = 0.(3.6)

By the above fact and the interpolation inequality ‖∇u‖4 . ‖∇u‖
1
2
2 ‖∆u‖

1
2
2 , we have

d

dt
(‖∇u(t)‖2

2) ≤−
1

2C0
‖∆u(t)‖2

2 + C

∫

R2

|∇θ(t, x)|2|∇u(t, x)|2 dx

≤−
1

2C0
‖∆u(t)‖2

2 + C‖∇θ(t)‖2
4‖∇u(t)‖2‖∆u(t)‖2

≤−
1

4C0
‖∆u(t)‖2

2 + C‖∇θ(t)‖4
4‖∇u(t)‖2

2.(3.7)

By (3.5) and integrating (3.7) in time, we obtain

‖∇u‖L∞

t L2
x([0, T ]×R2) + ‖∆u‖L2

t,x([0, T ]×R2) . 1, for any T > 0.(3.8)

The strong estimate (3.8) is enough to yield the ‖∇θ‖Cα(R2) estimate. The rest
of the proof now proceeds in a very similar spirit as in the proof of Theorem 1.3.
We omit further details.
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