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Abstract. In this paper, we show the existence of real-analytic stationary
Navier-Stokes flows with isotropic streamlines in all latitudes in some simply-
connected flow region on a rotating round sphere. We also exclude the possi-
bility of having a Poiseuille’s flow profile to be one of these stationary Navier-
Stokes flows with isotropic streamlines. When the sphere is replaced by a

2-dimensional hyperbolic space, we also give the analog existence result for
stationary parallel laminar Navier-Stokes flows along a circular-arc boundary
portion of some compact obstacle in the 2-D hyperbolic space. The existence
of stationary parallel laminar Navier-Stokes flows along a straight boundary
of some obstacle in the 2-D hyperbolic space is also studied. In any one of
these cases, we show that a parallel laminar flow with a Poiseuille’s flow pro-
file ceases to be a stationary Navier-Stokes flow, due to the curvature of the
background manifold.
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1. Introduction: main results of this paper

Part I : About the study of stationary Navier-Stokes flow with isotropic
streamlines on a round sphere

Yoden and Yamada [10] studied a two dimensional flow on a rotating sphere
without any external force. They investigated the morphology of the stream-
function and the vorticity field at several rotation rates. As the rotation rate
increases, the temporal evolution of the flow field changes drastically. In particular,
they observed in [10] that an easterly circumpolar vortex starts to appear in high
latitudes, and that the flow field becomes anisotropic in all the latitudes. However,
to the best of our knowledge, it appears that these observations made in [10] have
not been investigated by means of a pure mathematical approach in the research
literature (see however a recent article [1] for a analytical study of time-dependent
solutions to the Euler equation on a rotating round sphere). In this paper we
investigate existence of solutions to the following 2-dimensional Stationary Navier-
Stokes equation on a rotating sphere, which is written in the language of differential
1-forms on the sphere.

ν((−△)u∗ − 2Ric(u∗)) + β cos(ar) ∗ u∗ + [∇uu]∗ + dP = 0,

d∗u∗ = 0.
(1.1)

In (1.1),∗ is the Hodge-star operator sending the space of differential 1-forms into
itself. Intuitively, the action u∗ → ∗u∗ should be interpreted as the rotational ac-
tion u → u⊥ by the angle π

2 in the anti-clockwise direction. So, it turns out that
the term β cos(ar)∗u∗ which appears in (1.1) represents the effect upon the velocity
field u due to the rotation of the sphere with some constant rotational speed β > 0.
The operator d∗ acting on the space of smooth differential 1-forms on the sphere
should be interpreted as the operator −div acting on the space of smooth vector
fields on the sphere. Notice also that the viscosity term of (1.1) is represented as
the linear combination of the standard Hodge Laplacian (−△) = dd∗ + d∗d acting
on the space of 1-forms on the sphere and −2Ric(u∗), with Ric to be the standard
Ricci tensor on the sphere in differential geometry. Notice that the multiplicative
constant ν > 0 stands for the viscosity coefficient for the stationary Navier-Stokes
flows governed by equation (1.1). Moreover, the symbol ∇ as appears in the non-
linear convection term of (1.1) is the Levi-Civita connection (which operates on the
space of smooth vector fields) induced by the intrinsic Riemannian geometry of the
sphere.

Remark 1.1. For the precise definitions of the operators (−△), d∗, ∗, and the
Levi-Civita connection ∇ in the general Riemannian manifold setting, we refer our
readers to Definitions 2.4, 2.5 , 3.1 in Section 2 and Definition 2.8 in Section
3 of this paper. For the intuitive meaning of these operators, we refer our readers
to Remarks 2.6, 2.7, and 2.10 in Section 2 of this paper.

Remark 1.2. Here, we would like to explain the meaning of the notation u∗

which appears in (1.1). In the case of a general N -dimensional Riemannian manifold
M equipped with a Riemannian metric g(·, ·), for any given smooth vector field u

on M , we can always construct its associated 1-form, namely u∗ ∈ C∞(T ∗M), in
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accordance with the following relation.

(1.2) u∗ = g(u, ·).

Since by definition, the Riemannian metric g(·, ·) on M is actually a smoothly
varying way of assigning to each p ∈ M the positive definite inner product gp(·, ·)
on the tangent space TpM of M at p, the above construction of the associated
1-form u∗ on M for each smooth vector field u on M actually provides a one-to-one
correspondence between the space of smooth vector fields and the space of smooth
1-forms on M .

Remark 1.3. The structure of (1.1) is based on the standard stationary Navier-
Stokes equation as given in (1.12) with an extra term β cos(ar)∗u∗ being included in
order to take the effect due to the rotational action of the sphere into our account.
The structure of the Navier-Stokes equation as specified in (1.12) first appeared in
the Historical work [3] by D. Ebin and J. Marsden. Since then, equation (1.12) (with
the extra term ∂tu

∗ in the time-dependent case) had been accepted as the standard
form of the Navier-Stokes equation being written on a general finite dimensional
Riemannian manifold M . Having a discussion about the research literature of the
Navier-Stokes equation on a general Riemannian manifold is out of the scope of
this paper. However, for further historical remarks, we refer our readers to the
textbook [9] by M. Taylor, and also some recent works on this subject matter such
as the work [2] by M. Dindos and M. Mitrea, the work [6] by the first author and
M. Czubak, and work [8] by B. Khesin and G. Misiolek for instance.

The first goal of our paper is to show that there exists a stationary Navier-Stokes
flow solving equation (1.1) (the same stationary flow for any rotation rates) with
isotropic streamlines in all the latitudes on a (rotating) sphere, and with given
boundary values near the north polar of the sphere. Moreover, we show that there
is no stationary flow composed by a quadratic profile (Poiseuille flow profile).

Here, we just mention that in the case when the background manifold is just
the standard Euclidean 2-dimensional space R2, the analog investigation of the
behavior of parallel laminar Navier-Stokes flows around a cicuclar arc boundary
portion of an obstacle in R2 has been carried out in a recent paper [11] by the
second author by means of elementary method.

Let us to be more precise. Consider the 2-dimensional space form S2(a2) of positive
sectional curvature a2, which can be realized as the standard sphere {(x1, x2, x3) :
x2

1 + x2
2 + x2

3 = 1
a2 } of radius 1

a
in R3. Consider the selected point O = (0, 0, 1) ∈

S2(a2), which can be regarded to be the North Pole of the sphere S2(a2), and in-
troduce the standard normal polar coordinate system (r, θ) about the based point
O on S2(a2) via the exponential map expO : TOS2(a2) → S2(a2) (See Definition
2.1 for the precise meaning of expO, and Definition 2.2 for the precise meaning
of (r, θ) on S2(a2) ).

The first goal of this paper is to study the existence and non-existence of locally
defined parallel laminar Stationary Navier-Stokes flow on some local exterior region
near the circular-arc boundary portion of some compact obstacle K in S2(a2). As a
preparation for the statement of Theorem 1.4, let K to be a compact set in S2(a2)
whose boundary ∂K has a circular-arc boundary portion. K will represent an
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obstacle around which stationary Navier-Stokes flows occur. We will study station-
ary Navier-Stokes flows in some simply-connected exterior region whose boundary
shares the same circular-arc boundary portion with ∂K. More precisely, suppose
that, for some positive numbers δ ∈ (0, π

a
) and τ ∈ (0, 2π), ∂K contains the follow-

ing circular-arc portion

(1.3) Cδ,τ = {p ∈ S2(a2) : d(p, O) = δ, 0 < θ(p) < τ}.

That is, we have Cδ,τ ⊂ ∂K. Here, the symbol d(p, O) stands for the geodesic
distance between p and O on the sphere S2(−a2). For convenience, we will assume

also that K is confined within the closed geodesic ball BO(δ) = {p ∈ S2(a2) :

d(p, O) 6 δ}. That is, we have K ⊂ BO(δ). Then, Consider the following sector-
shaped open region Rδ,τ,ǫ0 in S2(a2) − K

(1.4) Rδ,τ,ǫ0 = {p ∈ S2(a2) : δ < d(p, O) < δ + ǫ0, 0 < θ(p) < τ},

with ǫ0 to be any small positive number which satisfies δ + ǫ0 < π
a
. Let { ∂

∂r
, ∂

∂θ
}

to be the natural coordinate frame induced by the normal polar coordinate system
(r, θ) on S2(a2), see Definition 2.3 for the precise meaning of { ∂

∂r
, ∂

∂θ
} on S2(a2).

Then, the following assertion holds:

Theorem 1.4. Consider the simply-connected exterior region Rδ,τ,ǫ as defined
in (1.4). For the quadratic profile (Poiseuille flow profile) h(λ) = α1λ− α2

2 λ2, with
both α1 > 0 and α2 > 0, there does not exist any parallel laminar flow in the form
of u = −h(r − δ) a

sin(ar)
∂
∂θ

which solves the stationary Navier-Stokes equation (1.1)

in the region Rδ,τ,ǫ0 as specified in (1.4).

Remark 1.5. In the statement of Theorem 1.4, a velocity field in the form
of u = −h(r − δ) a

sin(ar)
∂
∂θ

is called a parallel laminar flow along the circular-arc

boundary portion Cδ,τ of the given obstacle K in S2(a2), exactly because each
streamline of such a velocity field u is by itself a circular arc which keeps a constant
geodesic distance from the boundary portion Cδ,τ . In general, a smooth velocity
field u as specified on some open flow region near some smooth boundary portion
Γ of some obstacle K in a 2-D manifold M is called a parallel laminar flow along
the smooth boundary portion Γ, if every single streamline of u keeps a constant
geodesic distance from Γ. This notion of parallel laminar flows as employed here is
consistence with the definition of parallel laminar flow as given in the recent work
[11] by the second author.

Here, let us say something about the idea of the proof of Theorem 1.4, which will
be given in Section 3 in details. The first step of the argument is to obtain an
explicit formula of the following expression, for u = −h(r − δ) a

sin(ar)
∂
∂θ

.

(1.5) d{ν((−△)u∗ − 2Ric(u∗)) + ∇uu∗},

In (1.5), the symbol u∗ stands for the associated 1-form of the vector field u, which
is defined by the relation u∗ = g(u, ·), with g(·, ·) to be the Riemannian metric of
the sphere S2(a2). Also, the symbol d stands for the exterior differential operator
d : C∞(T ∗M) → C∞(∧2T ∗M) sending smooth 1-forms to smooth 2-forms on a
Riemannian mainfold M , which in case of Theorem 1.4, is taken to be M = S2(a2).
So, Step 1 and Step 2 in Section 3 are carried out in order to compute the terms
(−△)u∗, and the nonlinear convection term ∇uu∗ involved in equation (1.1). These
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efforts eventually lead to the following representation formula of expression (1.5) in
step 3 of Section 3.

d
{

ν(−△u∗ − 2a2u∗) + ∇uu∗
}

= ν

{

h′′′(r − δ)
sin(ar)

a
+ 2h′′(r − δ) cos(ar)

+ ah′(r − δ)(sin(ar) −
1

sin(ar)
)

+ a2h(r − δ) cos(ar)(2 +
1

sin2(ar)
)

}

dr ∧ dθ.

(1.6)

Moreover, since β cos(ar) ∗ u∗ = βh(r − δ) cos(ar) sin(ar)
a

dr, we can easily get

(1.7) d{β cos r ∗ u∗} = 0.

Then, expressions (1.6) and (1.7) together will imply the following representation
formula for d{ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗}.

d
{

ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗
}

= ν

{

h′′′(r − δ)
sin(ar)

a
+ 2h′′(r − δ) cos(ar)

+ ah′(r − δ)(sin(ar) −
1

sin(ar)
)

+ a2h(r − δ) cos(ar)(2 +
1

sin2(ar)
)

}

dr ∧ dθ.

(1.8)

The representation formula (1.8) is valid for any smooth functions h defined on any
open interval around the point δ. So, the representation formula (1.8) is the key tool
which allows us to decide whether u = −h(r−δ) a

sin(ar)
∂
∂θ

is a solution to (1.1) or not.

This is because, in accordance with the basic knowledge in differential topology, the
vanishing of d{ν(−△u∗−2a2u∗)+β cos(ar)∗u∗+∇uu∗} over some simply-connected
open region (say for instance Rδ,τ,ǫ0 as specified in (1.4)) near the circular-arc por-
tion of the boundary of the obstacle K will immediately imply the existence of some
locally defined smooth pressure P which solves (1.1) on the same simply-connected
open region. In other words, this basic idea of d-closed implies d-exact on
simply-connected region in differential topology allows us to reduce our prob-
lem to the one of testing whether or not d{ν(−△u∗−2a2u∗)+β cos(ar)∗u∗+∇uu∗}
totally vanishes on some prescribed simply-connected open region near the circlar-
arc portion of ∂K. So, in Step 3 of Section 3, we finish the proof of Theorem
1.4 by showing, case by case, that for the quadratic function h(λ) = α1λ − α2

2 λ2,

the expression d{ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗} would never vanish
identically on the simply-connected region Rδ,τ,ǫ0 as specified in (1.4), no matter
how small the positive number ǫ0 would be. In this way, we get a neat and clean
argument showing that u = −h(r − δ) a

sin(ar)
∂
∂θ

is not a solution to (1.1), for any

quadratic profile h(λ) = α1λ − α2

2 λ2, with α1 > 0, and α2 > 0.

As a by product of this approach which we used in the proof of Theorem 1.4, we also
make another important observation that the function as appears in the right hand
side of (1.8) is a third order linear differential operator L acting on the unknown
function Y (r) = h(r − δ). In other words, for a general parallel laminar flow in the
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form of u = −Y (r) a
sin(ar)

∂
∂θ

, the vanishing of d{ν(−△u∗−2a2u∗)+β cos(ar)∗u∗ +

∇uu∗} over a certain simply-connected region near the circular-arc portion of ∂K

is equivalent to saying that the unknown function Y (r) = h(r − δ) will solve the
following 3-order linear ODE over some interval [δ, δ + ǫ).

0 = Y ′′′(r)
sin(ar)

a
+ 2Y ′′(r) cos(ar)

+ aY ′(r)(sin(ar) −
1

sin(ar)
) + a2Y (r) cos(ar)(2 +

1

sin2(ar)
).

(1.9)

Since all the coefficient functions involved in the above 3-order ODE are all real-
analytic over the interval (0, π

a
), the basic existence theorem (Theorem 3.3 in Sec-

tion 3) in the theory of linear ODE will ensure, for the prescribed initial data
Y (δ) = 0, Y ′(δ) = α1, and Y ′′(δ) = −α2, the existence of a unique smooth func-
tion Y (r) = h(r− δ) over [δ, π

a
) which solves equation (1.9) on (0, π

a
), and which at

the same time turns out to be real-analytic on [δ, π
a
). This basically leads to our

second basic theorem (Theorem 1.6), which says that, for any prescribed constants
α1 > 0, α2 > 0, there exists a unique smooth function Y ∈ C∞([δ, π

a
)) satisfying

Y (δ) = 0, Y ′(δ) = α1, and Y ′′(δ) = −α2, which turns out to be real-analytic
over [δ, π

a
), such that the associated parallel laminar flow u = −Y (r) a

sin(ar)
∂
∂θ

will

be a solution to (1.1) on some simply-connected open region near the circular-arc
portion of the boundary of the compact obstacle K.

Theorem 1.6. Consider the space form S2(a2) = {(x1, x2, x3) : x2
1 +x2

2 +x2
3 =

1
a2 }, with a > 0. Let O ∈ S2(a2) to be a selected based point, and let (r, θ) to be

the normal polar coordinate system on S2(a2) about the based point O, which is
introduced through the standard exponential map expO : {v ∈ TOS2(a2) : ‖v‖ <
π
a
} → S2(a2).

Consider a fixed positive number δ ∈ (0, π
a
), and let K to be some compact region

which is a subset of {p ∈ S2(a2) : d(p, O) ≤ δ}, and which plays the role of an
obstacle in S2(a2). Suppose further that for some positive number τ ∈ (0, 2π), the
circular arc Cδ,τ = {p ∈ S2(a2) : d(p, O) = δ, 0 < θ(p) < τ} constitutes a smooth
boundary portion of ∂K in that

(1.10) {p ∈ S2(a2) : d(p, O) = δ, 0 < θ(p) < τ} ⊂ ∂K.

Then, it follows that, for any prescribed positive numbers α1 > 0, α2 > 0, there
exists some unique smooth function Y : [δ, π

a
) → R satisfying Y (δ) = 0, Y ′(δ) = δ1,

Y ′′(δ) = −α2, such that the associated parallel laminar flow u = −Y (r) a
sin(ar)

∂
∂θ

will solve (1.1) in the following simply connected exterior region

(1.11) Ωδ,τ = {p ∈ S2(a2) : δ < d(p, O) <
π

a
, 0 < θ(p) < τ},

which shares the same circular-arc boundary portion Cδ,τ with the boundary of the
compact obstacle K. Moreover, such a unique smooth function Y : [δ, π

a
) → R

which we desire turns out to be actually real-analytic on [δ, π
a
).

Remark 1.7. Indeed, according to the basic existence theorem (Theorem 3.3)
in the O.D.E. theory, the conclusion of Theorem 1.6 will remain valid even if we
generalize h to h(λ) = α0 + α1λ − α2

2 λ2, with three prescribed parameters α0 ≥ 0,
α1 > 0, and α2 > 0.
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Indeed, Theorem 1.6 is a by-product which follows from an application of repre-
sentation formula (1.8) together with the use of the basic existence and uniqueness
Theorem (Theorem 3.3 in Section 3) for 3-order ODE with real-analytic coeffi-
cients. The very brief and easy proof of Theorem 1.6 will be given in Step 4 of
Section 3.

At a first glance, the conclusion in Theorem 1.6 seems to state a conclusion which
is opposite to that of Theorem 1.4. However, this is not true at all, since Theorem
1.4 only rules out the existence of stationary Navier-Stokes flow in the form of
u = −Y (r) a

sin(ar)
∂
∂θ

, with the quadratic profile (Poiseuille flow profile) Y (r) =

α1(r − δ) − α2

2 (r − δ)2. However, Theorem 1.6 says that, as long as higher order

terms beyond the quadratic power (r−δ)2 are allowed in the Taylor series expansion
of the unknown function Y (r), the basic existence and uniqueness theory for 3-order
linear ODE will ensure the existence of a unique real-analytic function Y for which
u = −Y (r) a

sin(ar)
∂
∂θ

will solve (1.1) in some simply-connected open region near the

circular-arc portion of ∂K. Before we leave Part I of the introduction, let us make
another interesting remark here which helps us to relate the result in Theorem 1.6
with the observations made in [10] by Yoden and Yamada.

Remark 1.8. It is worthwhile to notice that, in Theorem 1.6, the unique real-
analytic function Y on [δ, π

a
) which makes u = −Y (r) a

sin(ar)
∂
∂θ

become a solution

to (1.1) is independent of the constant rotational speed β > 0 of the round sphere
S2(a2). In other words, for the same real analytic function Y on [δ, π

a
) satisfying

equation (1.9) and the initial values Y (δ) = 0, Y ′(δ) = α1, and Y ′′(δ) = −α2, the
velocity field u = −Y (r) a

sin(ar)
∂
∂θ

can be realized as a stationary Navier-Stokes flow

on the rotating sphere S2(a2) with any prescribed rotational speed β > 0. This
remark seems to be even more interesting when one compares the existence result
as given in Theorem 1.6 with the Numerical experiment as carried out in the work
[10] by Yoden and Yamada, according to which easterly circumpolar vortex starts
to appear in high latitudes when the rotational speed β > 0 increases, and that the
flow field becomes anisotropic in all the latitudes. So, by combining the result as
given in Theorem 1.6 and the observation made by Yoden and Yamada in [10], it
is very tempting for one to speculate that a large rotational speed β of the rotation
of the sphere S2(a2) about the North-South poles axis may have some considerable
effect in stabilizing the flow pattern of the (real analytic) Stationary Navier-Stokes
flow u = −Y (r) a

sin(ar)
∂
∂θ

as ensured by Theorem 1.6.

Part II : About the study of stationary parallel laminar Navier-Stokes
flows around an obstacle in a hyperbolic manifold with constant negative
sectional curvature.

In the second part of the introduction, we will study the existence and non-existence
of Stationary Navier-Stokes flows with circular-arc streamlines around some com-
pact obstacle K in a 2-dimensional space-form H2(−a2) of constant negative sec-
tional curvature −a2. On such a 2-dimensional space-form H2(−a2) with constant
negative sectional curvature, which will also be called the 2-dimensional hyperbolic
space with constant sectional curvature −a2 < 0, we will study the following sta-
tionary Navier-Stokes equation on H

2(−a2), which again is formulated in terms of
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the language of differential 1-forms on H2(−a2) instead of that of smooth vector
fields (Again, see Remark 1.2).

ν((−△)u∗ − 2Ric(u∗)) + [∇uu]∗ + dP = 0,

d∗u∗ = 0.
(1.12)

In equation (1.12), ∇ stands for the standard Levi-Civita connection (covariant
derivative) acting on the space of smooth vector fields on H2(−a2). Again, the
operator d∗ sending smooth 1-forms into the space of smooth functions on H2(−a2)
is interpreted as −div. The viscosity term in (1.12) consists of two terms, namely
(−△)u∗ and −2Ric(u∗), where (−△) = dd∗ +d∗d is the standard Hodge Laplacian
acting on the space of 1-forms on H2(−a2) and Ric is the standard Ricci tensor
with respect to the Riemannian metric of the hyperbolic manifold H2(−a2).

Here, let us explain a little bit about why we would like to extend our study of
stationary parallel laminar flows around circular-arc boundary portion of some ob-
stacle to the case in which the background space is a hyperbolic manifold H2(−a2)
of constant negative sectional curvature −a2. Indeed, it is understandable that a
P.D.E. specialist with a more practical mind (or a scientist working in the area of
fluid dynamics in general) may find it difficult to comprehend or appreciate the
meaning or significance of studying Navier-Stokes flow on such a hyperbolic man-
ifold. This kind of negative attitude towards the study of Navier-stokes flows on
hyperbolic manifolds is understandable because a classical theorem due to Hilbert
[5] and Efimov [4] states that a complete 2-dimensional Riemannian manifold with
negative sectional curvature to be bounded above by a negative constant cannot be
isometrically embedded into the standard Euclidean space R3 equipped with the
standard Euclidean metric. However, if one looks at this issue from the view point
of pure mathematics, a hyperbolic space H2(−a2) with constant negative sectional
curvature −a2 < 0 is exactly the ”negative counterpart” of the sphere S2(a2) with
radius 1

a
, which is the space-form of constant positive sectional curvature a2. So,

methodically speaking, if a set of methods, such as those we used in Section 3,
works well in the study of parallel laminar flows around an obstacle in the round
sphere S2(a2), one expects that the same set of methods, once being adopted to the
setting of a hyperbolic space H2(−a2), should work equally well and should yield
equally interesting results analogical to those being obtained in the spherical case
S2(a2). Indeed, if one tries to compare the mathematical content of Section 3,
which contains the proofs of Theorems 1.4 and 1.6, with Section 5, which contains
the proof of Theorem 1.9, the similarities between the spherical case and the hyper-
bolic counterpart are striking. In order words, from the mathematical view-point,
it is completely natural to state and prove Theorem 1.9, which is analogical to the
results of Theorems 1.4 and Theorem 1.6 in the spherical case.

Theorem 1.9. Consider the 2-dimensional space form H2(−a2) of constant
negative sectional curvature −a2, with a > 0 to be given. Let O ∈ H2(−a2) to be
a selected based point, and let (r, θ) to be the normal polar coordinate system on
H2(a2) about the based point O, which is introduced through the standard exponential
map expO : TOH2(−a2) → H2(−a2) (see Definition 4.3 for the precise meaning
of expO, and also Definition 4.4 for the precise meaning of (r, θ) on H2(−a2) ).
Consider a fixed choice of positive number δ ∈ (0,∞), and let K to be some compact
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region which is a subset of {p ∈ H2(a2) : d(p, O) ≤ δ}, and which plays the role of
an obstacle in H2(−a2). Here, d(p, O) stands for the geodesic distance between O

and p in H2(a2). Suppose further that for some positive number τ ∈ (0, 2π), the
circular arc Cδ,τ = {p ∈ H2(−a2) : d(p, O) = δ, 0 < θ(p) < τ} constitutes a smooth
boundary portion of ∂K in that

(1.13) {p ∈ H
2(−a2) : d(p, O) = δ, 0 < θ(p) < τ} ⊂ ∂K.

Moreover, let ∂
∂r

, and ∂
∂θ

to be the two natural vector fields induced by the normal

polar system (r, θ) on H2(a2) about the based point O, which are defined in Def-
inition 4.5 of Section 4. Then, it follows that the following two assertions are
valid.

Assertion I For the quadratic profile h(λ) = α1λ − α2

2 λ2 with any prescribed

constants α1 > 0, and α2 > 0, the velocity field u = −h(r − δ) a
sinh(ar)

∂
∂θ

does not

satisfy equation (1.12) on any sector-shaped region Rδ,τ,ǫ0 of H2(−a2) specified as
follow, regardless of how small the positive number ǫ0 > 0 may be:

(1.14) Rδ,τ,ǫ0 = {p ∈ H
2(−a2) : δ < d(p, O) < δ + ǫ0, 0 < θ(p) < τ}.

Assertion II For any prescribed positive numbers α1 > 0, α2 > 0, there exists
some unique smooth function Y : [δ,∞) → R satisfying Y (δ) = 0, Y ′(δ) = α1,
Y ′′(δ) = −α2, such that the associated parallel laminar flow u = −Y (r) a

sinh(ar)
∂
∂θ

will satisfy equation (1.12) on the following simply connected exterior region:

(1.15) Ωδ,τ = {p ∈ H
2(a2) : d(p, O) > δ, 0 < θ(p) < τ},

which shares the same circular-arc boundary portion Cδ,τ with the boundary of the
compact obstacle K. Moreover, such a unique smooth function Y : [δ,∞) → R

which we desire turns out to be actually real-analytic on [δ,∞).

We just remark that the proof of Theorem 1.9 will be given in Section 5.
The last mathematical result which we are going to give concerns the existence

or non-existence of stationary parallel laminar Navier-Stokes flows along a geodesic
representing the ”straight edge”-boundary of some obstacle in H2(−a2). In order
to state this last mathematical result (Theorem 1.10) we need to consider another
pairs of vector fields ∂

∂τ
and ∂

∂s
on H2(−a2) as defined in expression (6.4) of Section

6.

Theorem 1.10. Let H2(−a2) to be the 2-dimensional space form with con-
stant negative sectional curvature −a2. Consider the ”Cartesian coordinate system”
Φ : R2 → H2(−a2) on H2(−a2), which is constructed in Section 6 of this paper,
with the two geodesics τ → c(τ) and s → γ(s) playing the roles of the ”x-axis”
and the ”y-axis” on H2(−a2) respectively (For the precise definition of Φ(τ, s) and
the roles played by the geodesics c and γ, see expression (6.2) and the discussion
in Section 6). Here, the geodesic γ playing the role the ”y-axis” of the coordinate
system Φ(τ, s) will also represent the ”straight-edge” boundary of the an obstacle K

occupying the infinite region lying on the ”left-hand side” of γ (see (7.1) in Section
6 for a precise definition of K). Let ∂

∂τ
and ∂

∂s
to be the natural vector fields on

H2(−a2), which we define in expression (6.4) of Section 6. Then, we claim that
the following two assertions hold.
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Assertion I For the quadratic function h(τ) = α1τ − α2

2 τ2, with any given con-

stants α1 > 0 and α2 > 0, the parallel laminar flow given by u = −h(τ) 1
cosh(aτ)

∂
∂s

does not satisfy equation (1.12) on any simply connected region Ωτ0
⊂ H2(−a2)−K

in the following form.

(1.16) Ωτ0
= {p ∈ H

2(−a2) : 0 < τ(p) < τ0} = Φ((0, τ0) × R),

with τ0 > 0 to be an arbitrary constant, and the coordinate system Φ(τ, s) on
H2(−a2) to be the one given in (6.2).

Assertion II For any prescribed positive numbers α1 > 0, and α2 > 0, there exists
a unique smooth function Y ∈ C∞

(

[0,∞)
)

satisfying Y (0) = 0, Y ′(0) = α1, and

Y ′′(0) = −α2 such that the associated parallel laminar flow u = −Y (τ) 1
cosh(aτ)

∂
∂s

will solve equation (1.12) in the whole exterior region H2(−a2)−K = Φ
(

(0,∞)×R
)

.
Moreover, such a unique smooth function Y : [0,∞) → R which we desire turns out
to be actually real-analytic on [0,∞).

The proof of Theorem 1.10 will be given in Section 7. We also point out that,
in the case when the background manifold is the round sphere S2(a2), the study
of Stationary parallel laminar Navier-Stokes flows along a geodesic representing
the boundary of some obstacle in S2(a2) is essentially covered by Theorem 1.4 and
Theorem 1.6, simply due to the fact that the great circle {p ∈ S2(a2) : d(p, O) = π

2a
}

is a geodesic on S2(a2) (and is the only possible type of geodesic on S2(a2) up to
the group of rotational isometries).

2. Some Basic Geometry and Geometric Construction on the Space
Form S2(a2) with Positive Constant Sectional Curvature a2

As a preparation for the proofs of Theorems 1.4 and 1.6 in Section 3, we will
discuss first the normal polar coordinate system and then the Hodge Laplacian on
the space form S2(a2) with positive sectional curvature a2, with a > 0 to be a given
constant. We would like to stress that all the material as presented in this section,
as well as those in Sections 4 and 6, pertains to the standard, fundamental work-
ing knowledge which is basic and well-known to researchers working in differential
geometry, geometric analysis, or differential topology. However, it seems to us that
many of our potential readers, including P.D.E. specialists working in the areas of
Navier-Stokes equations, may not be familiar with those basic geometric language
which we employ in this paper. Based on this consideration, we include some
necessary geometric background here as a preparation for the differential geomet-
ric computation being done in the proofs of Theorems 1.4 and 1.6 in the Section 3.

The normal polar coordinate system (r, θ) on S2(a2), with the induced
natural moving frame { ∂

∂r
, ∂

∂θ
} on S2(a2) .

Geometrically, the space form S2(a2) can be realized as the sphere in R3 with
radius 1

a
and centered at the origin (0, 0, 0) of R3. That is, we have the following

identification

(2.1) S2(a2) =

{

(x1, x2, x3) : x2
1 + x2

2 + x2
3 =

1

a2

}

,
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where the sphere {(x1, x2, x3) : x2
1 + x2

2 + x2
3 = 1

a2 } is understood to be a submani-

fold of R
3, equipped with the standard induced Riemannian metric g(·, ·) inherted

from the background Euclidean space R3. Before we introduce the normal polar
coordinate system on S2(a2), we choose the point O = (0, 0, 1

a
) ∈ S2(a2), which is

the North Pole of the sphere S2(a2), to be the reference point at which our normal
polar coordinate system will be based. Let TOS2(a2) to be the tangent space of
S2(a2) at O ∈ S2(a2). Intuitively, TOS2(a2) can be realized as the two dimensional
plane in R3 that passes through (0, 0, 1

a
) and that is parallel to {(x, y, 0) : x, y ∈ R}.

So, it is natural to identify TOS2(a2) with R2 = {(x, y) : x, y ∈ R}. Recall that the
tangent space TpM of a manifold M at p ∈ M is, by definition, a vector space of
the same dimension as that of the manifold M .

Here, we need to introduce the concept of exponential map expO : TOS2(a2) →
S2(a2).

Definition 2.1. The exponential map expO about the reference point
O ∈ S2(a2): For any vector v ∈ TOS2(a2), expO(v) is defined as

(2.2) expO(v) = γv(1),

where γv : [0,∞) → S2(a2) is the unique geodesic on S2(a2) which satisfies γ(0) =

O and dγ
dt
|t=0 = v.

Indeed, in accordance with (2.2), it is plain to see that the following relation holds
for any vector v ∈ TOS2(a2) with |v| = 1 and any t > 0.

(2.3) expO(tv) = γv(t).

It is a well known fact that the exponential map expO, once restricted on the open
disc D0(

π
a
) = {v ∈ TOS2(a2) : |v| < π

a
}, becomes a diffeomorphism of D0(

π
a
) onto

S2(a2) − {(0, 0,− 1
a
)}. This means that expO : D0(

π
a
) → S2(a2) − {(0, 0,− 1

a
)} is a

smooth bijective map with a smooth inverse map exp−1
O : S2(a2) − {(0, 0,− 1

a
)} →

D0(
π
a
). Since we have the natural identification of the space form S2(a2) with

{(x1, x2, x3) : x2
1+x2

2+x2
3 = 1

a2 }, expO : TOS2(a2) → S2(a2) can be given explicitly

as follow. Since TOS2(a2) is naturally identified with R2, any vector v ∈ TOS2(a2)
with |v| = 1 can be represented as v = (cosλ, sin λ), for some λ ∈ [0, 2π). Then,

the unique geodesic γv : [0,∞) → S2(a2) satisfying γv(0) = O, and dγv

dt
|t=0 = v is

given explicitly by

(2.4) γv(t) =
1

a
(sin(ta) cos λ, sin(ta) sin λ, cos(ta)).

Hence, expO : D0(
π
a
) → S2(a2) − {(0, 0,− 1

a
)} can be given explicitly as follow.

(2.5) expO(tv) =
1

a
(sin(ta) cos λ, sin(ta) sin λ, cos(ta)),

where v = (cosλ, sin λ) is a unit vector in TOS2(a2), and t ∈ [0, π
a
).

We can now introduce the normal polar coordinate system on S2(a2), through the
use of the exponential map expO as follow.
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Definition 2.2. The normal polar coordinate system on the sphere
S2(a2) : The normal polar coordinate system on S2(a2) about the based point O ∈
S2(a2) is the bijective smooth map (r, θ) : S2(a2)− {(x1, 0, x3) : x2

1 + x2
3 = 1

a2 , x1 >

0} → (0, π
a
) × (0, 2π) defined by

(2.6) (r, θ) = (r, θ) ◦ (exp−1
O ),

where (r, θ) stands for the standard polar coordinate system (r, θ) : R2 − {(x1, 0) :
x1 > 0} → (0,∞)× (0, 2π) on R2. In order words, the normal polar coordinate sys-
tem (r, θ) on S2(a2) is defined to be the composite of the standard polar coordinate
system (r, θ) on R2 with exp−1

O : S2(a2) − {(x1, 0, x3) : x2
1 + x2

3 = 1
a2 , x1 > 0} →

D0(
π
a
) − {(x1, 0) : 0 6 x1 < π

a
}.

With such a normal polar coordinate system (r, θ) on S2(a2), we now define two
natural, everywhere linearly independent vector fields ∂

∂r
, and ∂

∂θ
on S2(a2) as fol-

low.

Definition 2.3. Natural coordinate frame
{

∂
∂r

, ∂
∂θ

}

on the sphere S2(a2)

: For any point p ∈ S2(a2) − {(x1, 0, x3) : x2
1 + x2

3 = 1
a2 , x1 > 0}, the vectors ∂

∂r
|p,

∂
∂θ
|p in the tangent space Tp(S

2(a2)) can be regarded as linear functionals on the

space C∞(S2(a2)) of smooth functions on S2(a2), and hence, ∂
∂r
|p,

∂
∂θ
|p in TpS

2(a2)

can be defined through the following characterization, where f ∈ C∞(S2(a2)).

∂

∂r

∣

∣

∣

∣

p

f =
∂

∂r

∣

∣

∣

∣

(r,θ)(p)

[f ◦ (r, θ)−1] =
∂

∂r

∣

∣

∣

∣

(r,θ)(p)

[f ◦ expO ◦(r, θ)−1]

∂

∂θ

∣

∣

∣

∣

p

f =
∂

∂θ

∣

∣

∣

∣

(r,θ)(p)

[f ◦ (r, θ)−1] =
∂

∂θ

∣

∣

∣

∣

(r,θ)(p)

[f ◦ expO ◦(r, θ)−1].

(2.7)

The two vector fields ∂
∂r

, and ∂
∂θ

on S2(a2), which are characterized by relation (2.7),

are everywhere linearly independent on S2(a2), and they together constitutes the
natural moving frame induced by the normal polar coordinate system on S2(a2).
Now, by means of the identification S2(a2) = {(x1, x2, x3) ∈ R3 : x2

1+x2
2+x2

3 = 1
a2 },

we can express the vector fields ∂
∂r

, and ∂
∂θ

concretely as follow.

Since expO : {v ∈ TOS2(a2) : |v| < π
a
} → S2(a2)−{(0, 0,− 1

a
)} is a diffeomorphism,

any given p ∈ S2 − {(0, 0,− 1
a
)} which is away from the base point O can be

represented as p = expO(rv), with some uniquely determined unit vector v =
(cosλ, sin λ) ∈ TOS2(a2), and r ∈ (0, π

a
). It turns out that ∂

∂r
|p, and ∂

∂θ
|p can be

expressed concretely as follow, with γv; [0,∞) → S2(a2) to be the unique geodesic

satisfying γv(O) = 0 and dγv

dt
|t=0 = v, and v⊥ = (− sinλ, cos λ).

∂

∂r

∣

∣

∣

∣

p

=
dγv

dt

∣

∣

∣

∣

t=r

= cos(ar)(v, 0) − sin(at)(0, 0, 1) ∈ TpS
2(a2)

∂

∂θ

∣

∣

∣

∣

p

=
1

a
sin(ar)(v⊥, 0) =

1

a
sin(ar)(− sin λ, cos λ, 0) ∈ TpS

2(a2).

(2.8)

From (2.8), it follows at once that the vector fields e1 = ∂
∂r

, and e2 = a
sin(ar)

∂
∂θ

together constitute a moving frame on S2(a2) which is everywhere orthonormal on
S2(a2). That is, we know that |e1(p)| = 1, |e2(p)| = 1, and g(e1(p), e2(p)) = 0 holds
for all p ∈ S2(a2). Here, of course the symbol g(·, ·) denotes the Riemannian metric
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on S2(a2), with |v| = [g(v, v)]
1

2 . We also observe that the vector field e2 satisfies
the following relation, where v ∈ TOS2(a2) is a unit vector, and 0 < r < π

a
.

(2.9) e2|expO(rv) = (v⊥, 0),

which indicates that the vector field e2, once being restricted to the geodesic ray
γv starting from O, is a parallel along γv. So, it follows that ∇ dγ

dt
(e2) = 0, with

∇ : C∞(TS2(a2)) → C∞(T ∗S2(a2) ⊗ TS2(a2)) to be the Levi-Civita connection
induced by the Riemannian metric g(·, ·) of S2(a2) (See Definition 3.1 in Section
3 for a precise definition of the Levi-Civita connection as induced by the intrinsic
geometry of a Riemannian manifold). Upon this setting, we can now discuss the
Hodge-star operator and the Hodge Laplacian on S2(a2) in the following subsection.

The Hodge-star operator and Hodge Laplacian on S2(a2) in terms of the
normal polar coordinate on S2(a2).
The Hodge Laplacian (−△) = dd∗ + d∗d on a Riemannian manifold M is an op-
erator sending the space C∞(T ∗M) of all smooth 1-forms into C∞(T ∗M) itself.
So, the Hodge Laplacian (−△) on S2(a2) acts on differential 1-forms instead of
vector fields on S2(a2). This leads (actually forces) us to consider the natural
identification of the space C∞(TS2(a2)) of smooth vector fields on S2(a2) with
the space C∞(T ∗S2(a2)) of smooth 1-forms, which identifies a smooth vector field
v ∈ C∞(TS2(a2)) with the associated 1 form v∗ = g(v, ·) ∈ C∞(T ∗M). Here, g(·, ·)
is the Riemannian metric of the sphere S2(a2).

Based upon the polar normal coordinate system (r, θ) on S2(a2) as given in Defi-
nition 2.2, we have two smooth vector fields e1 = ∂

∂r
, and e2 = a

sin(ar)
∂
∂θ

, which

together constitute a positively oriented orthonormal moving frame on
S2(a2)−{(0, 0, 1

a
), (0, 0, −1

a
)} for the tangent bundle TS2(a2) on S2(a2). Then, the

associated 1-forms e∗1 = g(e1, ·), and e∗2 = g(e2, ·) together constitute a positively
oriented orthonormal moving co-frame on for the cotangent bundle T ∗S2(a2) on
S2(a2). Indeed, the 1 forms e∗1, and e∗2 can be expressed by

e∗1 = dr,

e∗2 =
sin ar

a
dθ.

(2.10)

Here, we first define the volume form on a general oriented 2-dimensional Riemann-
ian manifold M , which is a everywhere non-vanishing globally defined 2-form on
M induced by the intrinsic Riemannian geometry of M .

Definition 2.4. Volume form on a 2-dimensional oriented Riemann-
ian manifold : Given M to be an oriented 2-dimensional Riemannian manifold
equipped with a Riemannian metric g(·, ·). Consider two locally defined vector fields
e1, e2 on some open region U of M which together constitute an positively oriented
orthonormal moving frame {e1, e2} of the tangent bundle TM of M over U . Then,
the (locally defined) associated 1-forms e∗1 = g(e1, ·), e∗2 = g(e2, ·) will constitute the
so-called orthonormal co-frame for the cotangent bundle T ∗M over M . Then, the
volume form V olM can be locally defined through the relation

(2.11) V olM = e∗1 ∧ e∗2.
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It is an elementary fact in differential geometry that such a local definition of V olM
turns out to be independent of the choice of the locally defined positively oriented
orthonormal frame {e1, e2}. Hence, our local construction gives a globally-defined
Volume form V olM on the whole 2-dimensional manifold M (see Chapter 2 of [7]
for a more general discussion).

Hence, the globally defined volume form V olS2(a2) on S2(a2) is the 2-form which

can locally be expressed by V olS2(a2) = e∗1 ∧ e∗2 = sin ar
a

dr ∧ dθ ∈ C∞(∧2T ∗S2(a2)).

Here, the symbol C∞(∧2T ∗S2(a2)) stands for the space of all smooth 2-forms on
T ∗S2(a2).

Before we talk about the Hodge-star operator on S2(a2), we recall the general defi-
nition of the Hodge-Star operator on a given N -dimensional manifold (See Chapter
2 of Jost [7]).

Definition 2.5. The Hodge-Star operator : In the case of a general ori-
ented Riemannian manifold M of dimension N ,for each integer 0 6 k 6 N , the
Hodge-star operator ∗ : C∞(∧kT ∗M) → C∞(∧N−kT ∗M) sending the space of k

forms on M to the space of N − k forms on M is characterized by the following
relation: For any k-forms α, β, where g(·, ·) stands for the metric on the vector
bundle ∧kT ∗M induced by the Remannian metric g(·, ·) on M , and that V olM is
the volume form on M as defined in Definition 2.4.

(2.12) α ∧ ∗β = g(α, β)V olM .

Since the dimension of S2(a2) is just 2, in the case of M = S2(a2) the Hodge-
star operator ∗ can easily be described as follow. First, ∗ : C∞(T ∗S2(a2)) →
C∞(T ∗S2(a2)) is characterized by the following relation

∗e∗1 = e∗2

∗e∗2 = −e∗1.
(2.13)

Since ∗ : C∞(∧kT ∗M) → C∞(∧N−kT ∗M) is tensorial in that the relation ∗(fα) =
f ∗ (α) holds for any smooth function f ∈ C∞(M) and k-form α on a Riemannian
manifold M . It follows that in the case of M = S2(a2), we have

∗dr = e∗2 =
sin ar

a
dθ,

∗dθ = ∗[
a

sinar
e∗2] = −

a

sin ar
e∗1 = −

a

sinar
dr.

(2.14)

In the structure of the Hodge Laplacian sending C∞(T ∗S2(a2)) into itself, one also
encounters the Hodge-star operator ∗ : C∞(∧2T ∗S2(a2)) → C∞(S2(a2)) sending
smooth 2-forms to smooth functions on S2(a2), which can be characterized via the
following relation.

(2.15) ∗V olS2(a2) = ∗(e∗1 ∧ e∗2) = 1,

where we note that the 2-form e∗1 ∧ e∗2 is the volume form V olS2(a2) on S2(a2).
By using the tensorial property of ∗, it follows that ∗(dr ∧ dθ) = a

sin ar
. Now, we

can discuss the Hodge Laplacian (−△) = dd∗ + d∗d, where the exterior differential
operators d : C∞(∧kT ∗S2(a2)) → C∞(∧k+1T ∗S2(a2)) and their associated adjoint
operators d∗ : C∞(∧k+1T ∗S2(a2)) → C∞(∧kT ∗S2(a2)) are involved for k = 0, 1.
The operator d : C∞(S2(a2)) → C∞(T ∗S2(a2)) sends a smooth function f to the



ON THE STATIONARY NAVIER-STOKES FLOW 223

1-form df , which can locally be expressed, in terms of the natural co-frame {dr, dθ},
as follow.

(2.16) df =
∂f

∂r
dr +

∂f

∂θ
dθ,

where the smooth functions ∂f
∂r

and ∂f
∂θ

are defined via (2.7). It is an elementary
fact that df is independent of the choice of the coordinate frame being used in
its characterization. Here, we express df in terms of the normal polar coordinate
system (r, θ), since this will give us a quick and easy way in computing (−△)u∗,
with u∗ = g(u, ·) to be the associated 1-form of the vector field u representing a
parallel laminar flow near some arc-shaped boundary of some obstacle in the sphere
S2(a2).

Remark 2.6. On a general N -dimensional Riemannian manifold M , one should
interpret the 1-form df as the gradient field ∇f in the sense that the gradient of
f is the unique vector field ∇f on M characterized by the following relation, with
g(·, ·) to be the Riemannian metric on M .

(2.17) df = g(∇f, ·).

Next, one may characterize the operator d : C∞(T ∗S2(a2)) → C∞(∧2T ∗S2(a2))
sending smooth 1-forms to 2-forms in terms of the normal polar coordinate (r, θ)
as follow. Since every smooth 1-form α on S2(a2) can locally be expressed as

(2.18) α = αrdr + αθdθ,

with αr, and αθ to be some locally defined smooth functions on S2(a2). Then, the
2-form dα is locally expressed by

dα = dαr ∧ dr + dαθ ∧ dθ

=
∂αr

∂θ
dθ ∧ dr +

∂αθ

∂r
dr ∧ dθ

=
{∂αθ

∂r
−

∂αr

∂θ

}

dr ∧ dθ

=
a

sin(ar)

{∂αθ

∂r
−

∂αr

∂θ

}

V olS2(a2).

(2.19)

where in the above computation, we have implicity used the facts that dr∧ dr = 0,
dθ∧dθ = 0, and dθ∧dr = −dr∧dθ, each of these follows directly from the definition
α ∧ β = 1

2{α ⊗ β − β ⊗ α}, for two given smooth 1-forms α, and β on a smooth
manifold M .

Remark 2.7. We should think of the operator d sending the space of 1-forms
into the space of 2-forms on an oriented 2-dimensional Riemannian manifold M

to be the curl-operator which assigns sends each smooth vector field u to its
vorticity function ω on M . More precisely, consider u to be a smooth vector field
on an oriented 2-dimensional Riemannian manifold M with Riemannian metric
g(·, ·). Then, by taking the operator d on the associated 1-form u∗ = g(u, ·) of
the vector field u, we yield du∗ = ωV olM , with some uniquely determined smooth
function ω on M , which is exactly the vorticity of the vector field u. So, we should
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really think of the operator d sending 1-forms into 2-forms as the natural generation
of the curl-operator in the more general sense.

We can now easily characterize the co-adjoint operators d∗ : C∞(∧pT ∗S2(a2)) →
C∞(∧p−1T ∗S2(a2)), with p = 1, 2, by means of the following standard definition in
differential geometry (see for instance, Chapter 2 of [7]).

Definition 2.8. The co-adjoint operators d∗ : Given M to be a 2-dimensional
oriented manifold equipped with a Riemannian metric g(·, ·). For each p = 1, 2, the
coadjoint operator d∗ : C∞(∧pT ∗M) → C∞(∧p−1T ∗M) sending the space of p-
forms on M into the space of p − 1-forms on M is defined through the following
relation.

(2.20) d∗ = (−1)2(p+1)+1 ∗ d∗ = − ∗ d∗,

where the symbol ∗ stands for the Hodge-Star operators as defined in Definition
2.5.

Two remarks about Definition 2.8 are in order here.

Remark 2.9. We remark that, in the above formula for d∗, we have included
the extra index 2(p + 1) in the power of (−1), simply because for a general N -
dimensional Riemannian manifold M , the formula for d∗ acting on smooth p-forms
is exactly d∗ = (−1)N(p+1)+1 ∗ d∗.

Remark 2.10. On an oriented 2-dimensional Riemannian manifold M equipped
with Riemannian metric g(·, ·), the co-adjoint operator d∗ : C∞(T ∗M) → C∞(M),
which sends 1-forms into smooth functions, should be interpreted as the diver-
gence operator −div acting on smooth vector fields on M in the following sense:
If u is a smooth vector field on M , with associated 1-form u∗ = g(u, ·). Then, it is
a standard fact in Riemannian geometry that the following relation holds for any
smooth test function f ∈ C∞

c (M) (see Chapter 2 of [7], for instance).

(2.21)

∫

M

g(u,∇f)V olM =

∫

M

fd∗u∗V olM .

However, we know that −div(u) also satisfies the following integration by parts
formula, for any test function f ∈ C∞

c (M),

(2.22)

∫

M

g(u,∇f)V olM = −

∫

M

fdiv(u)V olM .

So, by comparing (2.21) with (2.22), we are forced to conclude that d∗u∗ = −div(u).

3. Proof of Theorem 1.4, and the proof of Theorem 1.6

To begin the proof of Theorem 1.4, let us consider the space form S2(a2) of con-
stant sectional curvature a2 > 0. Let O ∈ S2(a2) to be an selected reference
point on S2(a2), and let (r, θ) to be the normal polar coordinate on S2(a2) about
the base point O, which we introduce in the previous section. Here, let K to
be some compact region in S2(a2), which is contained in the closed geodesic ball

BO(δ) = {p ∈ S2(a2) : d(p, O) ≤ δ} for some positive radius 0 < δ < π
a
. As in

the hypothesis of Theorem 1.4, we assume that ∂K contains a circular-arc portion
in that, for some positive angle τ ∈ (0, 2π) the circular arc Cδ,τ = {p ∈ S2(a2) :
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r(p) = δ, 0 < θ(p) < τ} is contained in ∂K.

Now, let u to be some smooth vector field defined over the simply-connected open
region Rδ,τ,ǫ0 as specified in (1.4) of Section 1, with ǫ0 > 0 to be some positive
number. Again, remember that the exterior region Rδ,τ,ǫ0 shares the same circular-
arc boundary portion Cδ,τ with K. Suppose that u is a parallel laminar flow on
Rδ,τ,ǫ0 in the sense that u can be expressed as

(3.1) u = −h(r − δ)e2 = −h(r − δ)
a

sin ar

∂

∂θ
.

In the expression (3.1), r, which is the first component of the normal polar co-
ordinate (r, θ), measures the distance of a point p ∈ S2(a2) from the base point
O. That is, r(p) = d(p, O), with d(p, O) to be the Riemannian distance of p

from O in the Riemannian manifold S2(a2). Also, in (3.1), e2 = a
sin(ar)

∂
∂θ

is the

second vector field in the orthonormal moving frame e1 = ∂
∂r

, e2 = a
sin(ar)

∂
∂θ

.

Recall that from (2.10), the natural dual coframe of the moving frame {e1, e2}

is given by e∗1 = dr, and e∗2 = sin(ar)
a

dθ. Hence the volume form on S2(a2) is

V ols2(a2) = e∗1 ∧ e∗2 = sin ar
a

dr ∧ dθ.

Against such a setting, the first step which we take is to compute (−△)u∗, with
u∗ = g(u, ·) to be the associated 1-form of the parallel laminar flow u.

Step 1 : The divergence free property d∗u∗ = 0 and the computation of
(−△)u∗, for u as given in (3.1)
Here, it follows from (3.1) that the associated 1-form u∗ = g(u, ·) is locally given
by

(3.2) u∗ = −h(r − δ)e∗2 = −h(r − δ)
sin(ar)

a
dθ.

First, we point out that the divergence free condition d∗u∗ = 0 is just a direct
consequence which follows from the following computation.

d∗u∗ = (−1)2(1+1)+1 ∗ d ∗ {−h(r − δ)
sin(ar)

a
dθ}

= ∗d ∗ [h(r − δ)e∗2]

= − ∗ d[h(r − δ)dr]

= − ∗ {d[h(r − δ)] ∧ dr}

= − ∗ {[
∂h(r − δ)

∂r
dr +

∂h(r − δ)

∂θ
dθ] ∧ dr}

= − ∗ {[
∂h(r − δ)

∂r
dr ∧ dr}

= 0.

(3.3)

In the above calculation, the third equality follows from (2.13), the sixth equal sign

follows from the fact that ∂h(r−δ)
∂θ

= 0, and the last equality is due to the fact that
dr ∧ dr = 0. Here, d∗u∗ = 0 means that the vector field u is divergence free, since
one thinks of d∗ as − div when the language of smooth 1-form is translated back to
the language of smooth vector field via the correspondence u∗ = g(u, ·), just as one
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thinks of the 1-form df as the gradient field ∇f in the language of vector fields.

Now, the divergence free property d∗u∗ = 0 implies that (−△)u∗ = (dd∗+d∗d)u∗ =
d∗du∗, since the term dd∗u∗ vanishes. Then we have

du∗ = −
∂

∂r
[h(r − δ)

sin(ar)

a
]dr ∧ dθ

= −
∂

∂r
[h(r − δ)

sin(ar)

a
] ·

a

sin(ar)
V olS2(a2).

(3.4)

As a result, we have the following direct computation, in accordance with the
definition of the operators d, and d∗ as discussed in the previous section.

d∗du∗ = (−1)2(2+1)+1 ∗ d ∗ {−
∂

∂r
[h(r − δ)

sin(ar)

a
] ·

a

sin(ar)
V olS2(a2)}

= ∗d{
∂

∂r
[h(r − δ)

sin(ar)

a
] ·

a

sin(ar)
}

= ∗
∂

∂r
{

∂

∂r
[h(r − δ)

sin(ar)

a
] ·

a

sin(ar)
}dr

=
∂

∂r
{

∂

∂r
[h(r − δ)

sin(ar)

a
] ·

a

sin(ar)
} ∗ e∗1

=
∂

∂r
{

∂

∂r
[h(r − δ)

sin(ar)

a
] ·

a

sin(ar)
}e∗2

=
∂

∂r
{
∂h(r − δ)

∂r
+ ah(r − δ)

cos(ar)

sin(ar)
}e∗2.

(3.5)

That is, we have the following local expression for (−△)u∗

(−△)u∗ =
∂

∂r
{
∂h(r − δ)

∂r
+ ah(r − δ)

cos(ar)

sin(ar)
}e∗2

=
∂

∂r
{
∂h(r − δ)

∂r
+ ah(r − δ)

cos(ar)

sin(ar)
} ·

sin(ar)

a
dθ

= {h′′(r − δ)
sin(ar)

a
+ h′(r − δ) cos(ar) −

a

sin(ar)
h(r − δ)}dθ.

(3.6)

Next, we need to compute the convection term [∇uu]∗, with ∇ : C∞(TS2(a2)) →
C∞(T ∗S2(a2) ⊗ TS2(a2)) to be the Levi-Civita connection (covariant derivative)
acting on the space of smooth vector fields on S2(a2) (See Definition 3.1 for the
precise meaning of ∇).

Step 2 : The computation of ∇uu∗, for u as given in (3.1).
For a N -dimensional Riemannian manifold M equipped with a Riemannian metric
g(·, ·) in general, the Levi-Civita connection ∇ : C∞(TM) → C∞(T ∗M ⊗ TM) is
uniquely characterized as follows.

Definition 3.1. The Levi Civita connection ∇ : C∞(TM) → C∞(T ∗M ⊗
TM) acting on the space of smooth vector fields on a N -dimensional Riemannian
manifold M ( equipped with a Riemannian metric g(·, ·) ) is uniquely determined
by the following characterizing properties:

• (1) (compatibility condition with the Riemannian metric g(·, ·) on M)
The relation X(g(Y, Z)) = g(∇XY, Z)+ g(Y,∇XZ), holds for any smooth
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vector fields X, Y , Z on M . (Here, the notation X(g(Y, Z)) stands for
the directional derivative of the function g(Y, Z) along the direction of X.
See also Remark 3.2.)

• (2) (torsion free property of the connection) ∇ is torsion free in that the
relation ∇XY −∇Y X − [X, Y ] = 0, holds for any smooth vector fields X,
Y on M . Here, [X, Y ] = XY − Y X is the Lie Bracket of X and Y .

• (3) (Leibniz rule of ∇ as a covariant derivative) For any smooth function
f on M , and any smooth vector fields X, Y on M , the relation ∇X

(

fX
)

=

X
(

f
)

· Y + f∇XY holds (here, the symbol X
(

f
)

stands for the derivative
of f along the direction of the vector field X).

• (4) (Tensorial property of ∇) For any smooth function f on M , and any
smooth vector fields X, Y on M , we always have ∇fXY = f∇XY .

Remark 3.2. In conditions (1), and (3) as given in Definition 3.1, we have
employed, for a given smooth vector field X and a smooth function f on M , the
notion Xf , which is the rate of change of f in the direction of X . More precisely,
for each p ∈ M , Xf |p is defined as Xf |p = d

dt
(f ◦ γ)|t=0, with γ : [0, ǫ) → M to be

some smooth path with γ(0) = p ∈ M , and dγ
dt
|t=0 = Xp.

Now, in the case of M = S2(a2), we again consider the locally defined parallel
laminar flow u = −h(r − δ)e2 near some circular arc portion of ∂Ω, as defined in
(3.1), and compute ∇uu, with ∇ : C∞(TS2(a2)) → C∞(T ∗S2(a2) ⊗ TS2(a2)) to
be the Levi-Civita connection with respect to the standard metric g(·, ·) on S2(a2).
As a first step in computing ∇uu, we set

(3.7) ∇uu = A
∂

∂r
+ Be2,

where A and B are some smooth functions on the simply-connected open region
Rδ,τ,ǫ0 as specified in (1.4). Notice that ∂

∂r
, and e2 = a

sin(ar)
∂
∂θ

constitute an

orthonormal moving frame on S2(a2), it follows that

A = g(∇uu,
∂

∂r
),

B = g(∇uu, e2).
(3.8)

Now, since |u|2 = g(u, u) = [h(r − δ)]2 is independent of the θ variable, it follows
from condition (1) of Definition 3.1 that we have

(3.9) 0 = e2(g(u, u)) = 2g(∇e2
u, u),

from which it follows that

B = g(∇uu, e2)

= −h(r − δ)g(∇e2
u, e2)

= g(∇e2
u,−h(r − δ)e2)

= g(∇e2
u, u)

= 0,

(3.10)

with the second equality follows from the tensorial property of ∇ as specified in
condition (4) in Definition 3.1. In the same way, we have
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A = g(∇uu,
∂

∂r
)

= −h(r − δ)
a

sin(ar)
g(∇ ∂

∂θ
u,

∂

∂r
)

= h(r − δ)
a

sin(ar)
g(u,∇ ∂

∂θ

∂

∂r
)

= h(r − δ)
a

sin(ar)
g(u,∇ ∂

∂r

∂

∂θ
).

(3.11)

In the above calculation, the fourth equal sign follows from the torsion-free property
of ∇ (condition (2) in Definition 3.1) which gives ∇ ∂

∂θ

∂
∂r

= ∇ ∂
∂r

∂
∂θ

. Yet the

validity of the third equal sign is based on the following observation, which on its
own is a direct consequence of condition (1) of Definition 3.1.

(3.12) 0 =
∂

∂θ
g(u,

∂

∂r
) = g(∇ ∂

∂θ
u,

∂

∂r
) + g(u,∇ ∂

∂θ

∂

∂r
).

Now, to compute the term ∇ ∂
∂r

∂
∂θ

, one recall that ∇ ∂
∂r

e2 = 0 holds, since the

restriction of e2 along each geodesic ray γ starting from O ∈ S2(a2) must be parallel
along γ. Hence, it follows from the Leibniz rule (condition (3) in Definition 3.1
) of the connection ∇ that the following relation holds.

(3.13) ∇ ∂
∂r

∂

∂θ
= ∇ ∂

∂r
(
sin(ar)

a
e2) = cos(ar)e2.

Hence, it follows from (3.11) that

A = h(r − δ)
a

sin(ar)
g(u, cos(ar)e2)

= h(r − δ)
a

sin(ar)
cos(ar)g(−h(r − δ)e2, e2)

= −[h(r − δ)]2
a cos(ar)

sin(ar)
.

(3.14)

So, finally, we have the following expression for ∇uu

(3.15) ∇uu = −[h(r − δ)]2
a cos(ar)

sin(ar)

∂

∂r
,

which immediately gives the following expression for [∇uu]∗,

(3.16) [∇uu]∗ = −[h(r − δ)]2
a cos(ar)

sin(ar)
dr.

Step 3 : The proof of Theorem 1.4.
With relations (3.6), and (3.16), we can now complete the proof of Theorem 1.4
here. Assume towards contradiction that there exits some sufficiently small positive
number ǫ0 < π

a
− δ, such that there exists some smooth function P defined on

the sector-shaped region Rδ,τ,ǫ0 as specified in (1.4) which solves the following
stationary Navier-Stokes equation on Rτ,ǫ0 , with β ∈ R to be a given positive
constant.

(3.17) ν(−△u∗ − 2Ric(u∗)) + β cos(ar) ∗ u∗ + ∇uu∗ + dP = 0.
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On the space form S2(a2), we have Ric(u∗) = (2 − 1)a2u∗ = a2u∗, and we can
rephrase equation (3.17) as follow.

(3.18) ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗ + dP = 0.

According to the well-known fact that d ◦ d = 0, the existence of a smooth function
P solving equation (3.18) on the simply-connected open region Rδ,τ,ǫ0 as specified
in (1.4) immediately implies that the following relation holds everywhere in the
region Rδ,τ,ǫ0,

(3.19) d
{

ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗
}

= 0.

Recall that u∗ = −h(r − δ) sin ar
a

dθ. Hence, we have, through direct computation,
that

(3.20) du∗ = −{h′(r − δ)
sin(ar)

a
+ h(r − δ) cos(ar)}dr ∧ dθ.

Moreover, we deduce from (3.16) that

(3.21) d(∇uu∗) = 0.

In addition, it is also obvious that we always have the following relation

(3.22) d
{

β cos(ar) ∗ u∗
}

= β
∂

∂θ

{

cos(ar)h(r − δ)
}

dθ ∧ dr = 0.

Now, in accordance with (3.6),(3.21) , (3.20), and (3.22), we have

d
{

ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗
}

= ν

{

h′′′(r − δ)
sin(ar)

a
+ 2h′′(r − δ) cos(ar) + ah′(r − δ)

(

sin(ar) −
1

sin(ar)

)

+ a2h(r − δ) cos(ar)

(

2 +
1

sin2(ar)

) }

dr ∧ dθ.

(3.23)

Now, recall that h(λ) is chosen to be h(λ) = α1λ − α2

2 λ2 in Theorem 1.4. So, we
have h′(λ) = α1 − α2λ, h′′(λ) = −α2, and eventually h′′′(λ) = 0, for every λ > 0.
In which case, (3.23) reduces down to

d
{

ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗
}

= ν

{

− 2α2 cos(ar) + a(α1 − α2(r − δ))

(

sin(ar) −
1

sin(ar)

)

+ a2(r − δ)

[

α1 −
α2(r − δ)

2

]

cos(ar)

(

2 +
1

sin2(ar)

) }

dr ∧ dθ.

(3.24)

For convenience, we will use the following abbreviation

Fα1,α2,δ(r) =

{

− 2α2 cos(ar)

+ a(α1 − α2(r − δ))

(

sin(ar) −
1

sin(ar)

)

+ a2(r − δ)

[

α1 −
α2(r − δ)

2

]

cos(ar)

(

2 +
1

sin2(ar)

) }

,

(3.25)

so that Fα1,α2,δ is a smooth function defined on (0, π
a
), and that we have

(3.26) d
{

ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗
}

= νFα1,α2,δ(r)dr ∧ dθ.
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Now, by insisting on the existence of a smooth P which solves (3.18) on the simply-
connected region Rδ,τ,ǫ0 as specified in (1.4), the validity of (3.19) on Rδ,τ,ǫ0 will
follow as a by-product, which in turns forces us to admit that the following relation
should hold for every r ∈ [δ, δ + ǫ0),

(3.27) Fα1,α2,δ(r) = 0.

That is, Fα1,α2,δ should identically vanish on r ∈ [δ, δ + ǫ0). In that which follows,
we will split our argument into three cases, namely the case of 0 < δ < π

2a
, then the

case of δ = π
2a

, and finally the case of π
2a

< δ < π
a
. In each of these cases, we will

derive a contradiction towards the validity of the vanishing property of Fα1,α2,δ on
[δ, δ + ǫ0).

Case One. We first discuss the case of 0 < δ < π
2a

. In this case, we simply

observe that we have cos(aδ) > 0, and 1
sin(aδ) − sin(aδ) > 0. Based upon such an

observation, we deduce at once that the following property holds as long as α1 > 0,
and α2 > 0,

(3.28) Fα1,α2,δ(δ) = −2α2 cos(aδ) − aα1

(

1

sin(aδ)
− sin(aδ)

)

< 0.

The validity of the above relation at once implies that, for some sufficiently small
ǫ1 ∈ (0, ǫ0), we will have the following property

• Fα1,α2,δ(r) < 0 holds, for all r ∈ [δ, δ + ǫ1),

which directly contradicts the everywhere vanishing property of Fα1,α2,δ(r) on [δ, δ+
ǫ0). So, in this case, a contradiction has been arrived, which ensures the non-
existence of a smooth P solving (3.18) on the sector-shaped region Rδ,τ,ǫ0 as spec-
ified in (1.4), regardless of how small its angle τ or thickness ǫ0 would be.

Case Two. We now deal with the case of δ = π
2a

. The problem involved here

is that Fα1,α2, π
2a

( π
2a

) = 0. So, we look at the quantity ∂
∂r

(sin2(ar)Fα1 ,α2, π
2a

)|r= π
2a

instead.
First, we have

sin2(ar)Fα1,α2, π
2a

(r) = −2α2 cos(ar) sin2(ar)

+ a
(

α1 − α2

(

r −
π

2a

))

(sin3(ar) − sin(ar))

+ a2
(

r −
π

2a

) [

α1 −
α2

2

(

r −
π

2a

)]

cos(ar)(2 sin2(ar) + 1).

(3.29)

Now, observe that

∂

∂r
{−2α2 cos(ar) sin2(ar)}

∣

∣

∣

∣

r= π
2a

= 2aα2,

∂

∂r

{

a
(

α1 − α2

(

r −
π

2a

))

(sin3(ar) − sin(ar))
}

∣

∣

∣

∣

r= π
2a

= 0,

∂

∂r

{

a2
(

r −
π

2a

) [

α1 −
α2

2

(

r −
π

2a

)]

cos(ar)(2 sin2(ar) + 1)
}

∣

∣

∣

∣

r= π
2a

= 0.

(3.30)
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Hence, it follows from (3.29), and (3.30) that we have

(3.31)
∂

∂r
(sin2(ar)Fα1,α2, π

2a
)|r= π

2a
= 2aα2 > 0,

which, together with Fα1,α2, π
2a

( π
2a

) = 0, imply that the following property holds for
some sufficiently small ǫ1 ∈ (0, ǫ0),

• sin2(ar)Fα1,α2, π
2a

> 0 holds for all r ∈ ( π
2a

, π
2a

+ ǫ1).

However, the above property is again in direct conflict with the fact that Fα1,α2, π
2a

should identically vanish on [ π
2a

, π
2a

+ ǫ0), should there be a smooth P solving equa-
tion (3.18) on the sector-shaped region Rδ,τ,ǫ0 as specified in (1.4). Again, this
contradiction ensures the non-existence of a smooth function P solving (3.18) on
Rδ,τ,ǫ0 as specified in (1.4).

Case Three. We now consider the case of π
2a

< δ < π
a
, which is the most delicate

one among the three cases. The delicate issue here is that cos(aδ) < 0. Here, we
will use the basic theory of second order linear ODE to treat this case. As in the
previous cases, by insisting on the existence of a smooth P solving (3.18) on Rδ,τ,ǫ0

as specified in (1.4), we will arrive at the consequence that the function Fα1,α2,δ

must identically vanish over [δ, δ + ǫ0). But this is the same as saying that the
quadratic function Y (r) = α1(r − δ) − α2

2 (r − δ)2 will be a local solution to the
following linear second order ODE on the interval [δ, δ + ǫ0).

(3.32) y′′(r) + Q1(r)y
′(r) + Q2(r)y(r) = 0,

where Q1, Q2 are the real-analytic functions on ( π
2a

, π
a
) defined by

Q1(r) =
a

2 cos(ar)

(

sin(ar) −
1

sin(ar)

)

,

Q2(r) =
a2

2

(

2 +
1

sin2(ar)

)

.

(3.33)

In accordance with the basic existence and uniqueness theory for second order
ODE’s, the local solution Y on [δ, δ + ǫ0) as represented by the quadratic function
Y (r) = α1(r − δ) − α2

2 (r − δ)2 can be uniquely extended to a global solution Z

to equation (3.32) on the whole interval ( π
2a

, π
a
). In addition, since the coefficient

functions Q1(r), and Q2(r) are real-analytic on ( π
2a

, π
a
), such a global solution Z

must also be real analytic on ( π
2a

, π
a
). So, the power series representation Z(r) =

∑∞

k=0 ak(r − 3π
4a

)k of the real-analytic solution Z about the point 3π
4 should have

its radius of convergence to be at least π
4a

. That is, Z can be represented by
∑

∞

k=0 ak(r− 3π
4a

)k, which converges absolutely for all r ∈ ( π
2a

, π
a
). Now, we consider

the following two holomorphic functions, which are the complexifications of the real
analytic functions Y (r) = α1(r − δ) − α2

2 (r − δ)2 and Z(r) =
∑

∞

k=0 ak(r − 3π
4a

)k

respectively.

Y(w) = α1(w − δ) −
α2

2
(w − δ)2,

Z(w) =

∞
∑

k=0

ak

(

w −
3π

4a

)k

.
(3.34)

Since the radius of convergence of
∑∞

k=0 ak(r− 3π
4a

)k is at least π
4a

, the holomorphic

function Z(w) =
∑

∞

k=0 ak(w − 3π
4a

)k is well-defined at least on the open ball {w ∈
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C : |w − 3π
4a
| < π

4a
} in C. Recall that the real analytic solution Z to (3.32) arises as

the unique extension of the local solution Y (r) = h(r − δ) in that

(3.35) Z|[δ,δ+ǫ0) = Y,

which means the same as saying that the two holomorphic functions Z and Y
coincide on the line segment {r : δ < r < δ + ǫ0}, which by itself is included in
the open disc {w ∈ C : |w − 3π

4a
| < π

4a
}. So, it follows from the identity theorem

of the complex function theory that Z must be identical to the entire function Y
on C, which basically says that the power series

∑∞

k=0 ak(w − 3π
4a

)k is identical to

α1(r − δ) − α2

2 (r − δ)2, for all w ∈ C. So, we deduce that the global real-analytic

solution Z to (3.32) must be identical to the quadratic function α1(r−δ)− α2

2 (r−δ)2

over the whole interval ( π
2a

, π
a
), which is the same as saying that we have the

following identity for all r ∈ ( π
2a

, π
a
), with Y (r) to be the quadratic function Y (r) =

α1(r − δ) − α2

2 (r − δ)2,

(3.36) Y ′′(r) + Q1Y
′(r) + Q2(r)Y (r) = 0.

To finish the argument, we will derive a contradiction against identity (3.36) through
investigating the limiting behavior of Y ′′(r) + Q1(r)Y

′(r) + Q2(r)Y (r) as r → π
a
−.

Now, we will further split the discussion into two subcases subordinate to Case
Three. First, we consider the subcase when α1 − α2

2 (π
a
− δ) is not zero. In this

subcase, we have the following relations, which follow from direct computations.

lim
r→π

a
−

sin(ar)Y ′′(r) = 0,

lim
r→π

a
−

sin(ar)Q1(r)Y
′(r) =

a

2

[

α1 − α2

(π

a
− δ

)]

lim
r→π

a
−

sin(ar)Q2(r)Y (r) = ∞,

(3.37)

from which it follows at once that

(3.38) lim
r→π

a
−

sin(ar)[Y ′′(r) + Q1Y
′(r) + Q2(r)Y (r)] = ∞,

which is in direct conflict with identity (3.36), which is supposed to hold on the
whole interval ( π

2a
, π

a
). So, in this subcase, we can rule out the possibility of having

a smooth function P solving (3.18) on the simply-connected open region Rδ,τ,ǫ0 as
specified in (1.4).

Next, we deal with the remaining subcase when α1 = α2

2 (π
a
− δ). For this case, it

is immediate to see that

α1 −
α2

2
(r − δ) =

α2

2

(π

a
− r

)

,

α1 − α2(r − δ) =
α2

2

(π

a
− 2r + δ

)

.
(3.39)

Hence, it follows that

cos(ar)[Y ′′(r) + Q1(r)Y
′(r) + Q2(r)Y (r)]

= −2α2 cos(ar) +
aα2

2

(π

a
− 2r + δ

)

sin(ar) + a2α2(r − δ)
(π

a
− r

)

cos(ar)

+
aα2

2 sin2(ar)

{(

2r −
π

a
− δ

)

sin(ar) − a(r − δ)
(

r −
π

a

)

cos(ar)
}

(3.40)
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However, we see that the following relations follow from direct computation.

lim
r→π

a
−

{

− 2α2 cos(ar) +
aα2

2

(π

a
− 2r + δ

)

sin(ar)

+ a2α2(r − δ)
(π

a
− r

)

cos(ar)

}

= 2α2

lim
r→π

a
−

aα2

2 sin2(ar)

{(

2r −
π

a
− δ

)

sin(ar) − a(r − δ)
(

r −
π

a

)

cos(ar)
}

= −
α2

2
,

(3.41)

from which we deduce that

(3.42) lim
r→π

a
−

cos(ar)[Y ′′(r) + Q1(r)Y
′(r) + Q2(r)Y (r)] =

3α2

2
∈ R − {0},

which again is in direct conflict with identity (3.36), whose validity is supposed to
be on the whole interval ( π

2a
, π

a
). So, this contradiction rules out the possibility of

having a smooth P solving (3.18) on the sector-shaped region Rδ,τ,ǫ0 as specified
in (1.4). So, we have finished the proof for Theorem 1.4. In the proof of Theorem
1.4, we have already used the following basic existence and uniqueness theorem for
linear ODE with real analytic coefficients, which can be found in standard ODE
textbooks.

Theorem 3.3. Consider the following linear equation about the unknown so-
lution Y (t):

(3.43) Y (n)(t) + Qn−1(t)Y
(n−1)(t) + Qn−2(t)Y

(n−2)(t) + .... + Q0(t)Y (t) = 0,

where Qj are the prescribed real analytic coefficient functions defined on some open

interval (a, b). Here, the symbol Y (j)(t) stands for the j-order derivative of Y .
Let δ ∈ (a, b) to be some selected based point in (a, b). Then, for any prescribed
real numbers β0, β1, β2, ... βn−1, there exists a unique real analytic solution Y :
(a, b) → R to the linear ODE (3.43) which at the same time satisfies the initial
values Y (j)(δ) = βj, for every 0 ≤ j ≤ n − 1.

Now, with the help of Theorem 3.3, we can now give a very brief proof for Theorem
1.6 as follow.

Step 4 : The proof of Theorem 1.6.
To begin, we again consider the following representation formula, which we obtain
through the efforts spent in Step 1 and Step 2 of this Section, and which is valid
for any parallel laminar flow u = −Y (r) a

sin(ar)
∂
∂θ

, with Y (r) = h(r − δ) to be any

possible smooth function defined on some open interval about the based point δ.

d{ν(−△u∗ − 2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗}

= ν

{

Y ′′′(r)
sin(ar)

a
+ 2Y ′′(r) cos(ar) + aY ′(r)

(

sin(ar) −
1

sin(ar)

)

+ a2Y (r) cos(ar)

(

2 +
1

sin2(ar)

) }

dr ∧ dθ.

(3.44)

As we have already mentioned in the introduction, to see whether equation (3.18)
will admit a solution in the form of u = −Y (r) a

sin(ar)
∂
∂θ

on the simply-connected
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open region Ωδ,τ as specified in (1.11), with Y (r) = h(r − δ) to be some un-
known function, it is enough to check whether the smooth 2-form d

{

ν(−△u∗ −

2a2u∗) + β cos(ar) ∗ u∗ + ∇uu∗
}

will vanish identically over the same simply-

connected open region Ωδ,τ ⊂ S2(a2). This is because the d-closed property of

ν(−△u∗−2a2u∗)+β cos(ar)∗u∗ +∇uu∗ over any simply-connected open region in
S2(a2)−K will at once ensure the existence of a smooth pressure function P which
solves equation (3.18) on the same simply-connected open region. In order words,
u = −Y (r) a

sin(ar)
∂
∂θ

will solve equation (3.18) on the simply-connected open region

Ωδ,τ as specified in (1.11) if and only if the unknown function Y (r) = h(r − δ) will
satisfy the following 3-order linear ODE on [δ, π

a
).

Y ′′′(r) + 2aY ′′(r)
cos(ar)

sin(ar)
+ a2Y ′(r)

(

1 −
1

sin2(ar)

)

+a3Y (r)
cos(ar)

sin(ar)

(

2 +
1

sin2(ar)

)

= 0.(3.45)

However, it is quite obvious that all the coefficient functions appearing in the above
3-order linear ODE are all real-analytic functions on the open interval (0, π

a
). As

a result, Theorem 3.3 ensures that there exits a unique real analytic function Y

defined on the whole interval (0, π
a
) which solves the 3-order ODE (3.45), and which

satisfies the prescribed initial values Y (δ) = 0, Y ′(δ) = α1, and Y ′′(δ) = −α2, where
α1, α2 are some arbitrary given positive numbers. For such a unique analytic
solution Y : (0, π

a
) → R to equation (3.45), the associated parallel laminar flow

u = −Y (r) a
sin(ar)

∂
∂θ

will solve equation (3.18) on the simply-connected open region

Ωδ,τ as specified in (1.11). So, the proof of Theorem 1.6 is completed.

4. Basic geometry of H2(−a2) : The visualization of H2(−a2) through
the use of the hyperboloid model, and the geodesic normal polar

coordinate on H
2(−a2).

The objective of this section is to give a brief introduction to the geometry of the
space form H

2(−a2) of constant negative sectional curvature −a2 < 0. Again, all
the materials as presented in this section are standard facts well-known to differ-
ential geometers. The purpose of this section, however, is to spell out the basic
notions and geometric language which we will use in those differential-geometric
calculations in Section 5. We will first give a description of H2(−a2) through the
use of the so-called hyperboloid model.

In the following presentation, we closely follow the standard construction of the
hyperboloid model of H

2(−a2) as given in pages 201 to 202 of [7].

Definition 4.1. (The characterization of H
2(−a2) by means of the hy-

perboloid model). Consider the linear space V3 = {(x0, x1, x2) : x0, x1, x2 ∈ R}
which is equipped with the following quadratic form < ·, · >: V3 ⊗ V3 → R.

(4.1) < x, y >= −x0y0 + x1y1 + x2y2,

with x, y to be any two elements in the linear space V
3.
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Notice that V3 which is equipped with quadratic form (4.1) is not the same as the
Euclidean space R3. Then, we define H2(−a2) as follow.

(4.2) H
2(−a2) =

{

x ∈ V
3 :< x, x >=

−1

a2
, x0 > 0

}

.

Then, it is clear that H2(−a2) is represented as a branch of the hyperboloid <

x, x >= −1
a2 . Hence, topologically, H2(−a2), as a differentiable manifold on its own,

is diffeomorphic to R2 (Be careful, H2(−a2) as a Riemannian manifold is not the
same as the Euclidean space R

2). Next, we would like to construct the Riemannian
metric g(·, ·) on the 2-dimensional manifold H2(−a2) as follow. Here, for any point
p ∈ H2(−a2), we consider the symmetric bilinear form

(

− dx0 ⊗ dx0 + dx1 ⊗ dx1 +

dx2 ⊗ dx2

)∣

∣

p
acting on the tangent space TpV3 of V3 at p, which is described as

follow.

(4.3)
(

− dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2

)∣

∣

p
(v, w) = −v0w0 + v1w1 + v2w2,

where v, w ∈ TpV3. Then, for the point p ∈ H2(−a2), we consider the positive
definite inner product gp(·, ·) on the tangent space TpH2(−a2), which is defined to be
the restriction of the symmetric bilinear form

(

−dx0⊗dx0+dx1⊗dx1+dx2⊗dx2

)
∣

∣

p

onto the vector subspace TpH2(−a2) of TpV3. Then, this smoothly varying family
of positive definite inner products gp(·, ·) : TpH2(−a2) ⊗ TpH2(−a2) → R, for p ∈
H

2(−a2) constitutes the Riemannian metric g(·, ·) on H
2(−a2). In order to further

clarify the content of the above definition of H2(−a2), a few remarks are in order
here.

Remark 4.2. The 2-dimensional space form H2(−a2) with constant sectional
curvature −a2 < 0 is often called the 2-dimensional hyperbolic space (or hyperbolic
manifold) of constant sectional curvature −a2. If we consider the group O(2, 1)
which consists of all those linear maps on V3 which leave the quadratic form < ·, · >

as specified in (4.1) invariant, and which map the x0-axis onto itself, then this
group O(2, 1) will leave H2(−a2) invariant. Actually, O(2, 1) is exactly the group
of isometries which acts transitively on H2(−a2) (see discussions on page 202 of
the textbook [7]). So, it turns out that the geometric structure of the hyperbolic
space H2(−a2) around any selected point p ∈ H2(−a2) looks exactly the same,
regardless of where the selected point p of reference is. This just says that, for
any two points p, q in H2(−a2), the geometric structure of H2(−a2) around p is
identical to the geometric structure of H2(−a2) around q, up to an isometry T from
O(2, 1) sending p to T (p) = q. So, in the following discussion, we can just, without
the loss of generality, choose the preferred reference point O in H2(−a2) to be just
O = ( 1

a2 , 0, 0).

Here, for the clarity of our presentation, we just select our preferred based point
O in H2(−a2) to be O = ( 1

a2 , 0, 0). That is, O is located at the vertex of the

hyperboloid {x ∈ V3 :< x, x >= 1
a2 , x0 > 0}. We stress again that such a choice

of O is a choice without the loss of generality, due to the homogeneous structure
of the hyperbolic manifold H2(−a2). Now, we will give a concrete description of
the exponential map expO : TOH2(−a2) → H2(−a2) which maps the tangent space
TOH2(−a2) of H2(−a2) at O onto the manifold H2(−a2) itself. Recall that such an
exponential map is defined abstractly in the following manner.
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Definition 4.3. The exponential map on the hyperbolic space H2(−a2)
: For any v ∈ TOH2(−a2) with ‖v‖ = 1, we consider the uniquely determined (unit
speed) geodesic cv : [0,∞) → H2(−a2) which satisfies cv(0) = O, and ċ(0) = v.
Then, it follows that for any r > 0, expO(rv) is defined to be

(4.4) expO(rv) = cv(r).

It is a basic differential geometric fact that the exponential map expO : TOH
2(−a2) →

H2(−a2) as specified in Definition 4.3 is a smooth bijective map of the tan-
gent space TOH2(−a2) onto H2(−a2), whose inverse map exp−1 : H2(−a2) →
TOH2(−a2) is also smooth. That is, expO is a diffeomorphism from TOH2(−a2) =
R2 onto H2(−a2).

Now, by means of the concrete hyperboloid model of H2(−a2) as given in Def-
inition 4.1, for the reference point O = ( 1

a2 , 0, 0), the exponential map expO :

TOH2(−a2) → H2(−a2) can be expressed concretely as follow. Notice that the
tangent space TOH2(−a2) can naturally be identified with the plane {(0, v1, v2) :
v1, v2 ∈ R} in the linear space V3. So, for any vector v = (0, v1, v2) ∈ TOH2(−a2)
with ‖v‖ = 1, the geodesic cv : [0,∞) → H2(−a2) satisfying cv(0) = O, and
ċ(0) = v is expressed concretely as follow.

(4.5) cv(r) = cosh(ar)(
1

a
, 0, 0) +

sinh(ar)

a
(0, v1, v2).

Hence, for any unit vector v in TOH2(−a2), and any r > 0, the term expO(rv) is
given explicitly as follow.

(4.6) expO(rv) = cosh(ar)(
1

a
, 0, 0) +

sinh(ar)

a
(0, v1, v2).

We can now define the normal polar coordinate system (r, θ) on H(−a2) about the
reference point O as follow.

Definition 4.4. The normal polar coordinate system on H2(−a2) : The
normal polar coordinate system on H2(−a2) about the point O is the smooth map
(r, θ) : H2(−a2) → (0,∞) × (0, 2π) defined by

(4.7) (r, θ) = (r, θ) ◦ exp−1
O ,

in which (r, θ) is the standard polar coordinate system on the Euclidean 2-space R2

(here, we identify the tangent space TOH2(−a2) with R2).

By means of such a normal polar coordinate system (r, θ) on H2(−a2), we can define
two natural vector fields ∂

∂r
and ∂

∂θ
on H2(−a2) as follow.

Definition 4.5. Natural coordinate frame { ∂
∂r

, ∂
∂θ
} on H2(−a2) : For

each p ∈ H2(−a2), the vectors ∂
∂r

∣

∣

p
and ∂

∂θ

∣

∣

p
in TpH2(−a2) are defined as linear

derivations acting on the space C∞(H2(−a2)) of smooth functions on H2(−a2)
through the following relations.

∂

∂r

∣

∣

∣

∣

p

f =
∂

∂r

∣

∣

∣

∣

(r,θ)(p)

[f ◦ (r, θ)−1] =
∂

∂r

∣

∣

∣

∣

(r,θ)(p)

[f ◦ expO ◦(r, θ)−1]

∂

∂θ

∣

∣

∣

∣

p

f =
∂

∂θ

∣

∣

∣

∣

(r,θ)(p)

[f ◦ (r, θ)−1] =
∂

∂θ

∣

∣

∣

∣

(r,θ)(p)

[f ◦ expO ◦(r, θ)−1],

(4.8)

where f can be any smooth function on H
2(−a2).
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Now, thanks to the concrete expression for the exponential map expO as given in
(4.6), we can give concrete expressions for the natural vector fields ∂

∂r
, and ∂

∂θ
on

H2(−a2) as follow.

∂

∂r

∣

∣

∣

∣

expO(rv)

=
d

dr

(

expO(rv)
)

= sinh(ar)(1, 0, 0) + cosh(ar)v,

∂

∂θ

∣

∣

∣

∣

expO(rv)

=
sinh(ar)

a
v⊥,

(4.9)

where v = (0, v1, v2) ∈ TOH2(−a2) is any unit vector in TOH2(−a2), with v⊥ =
(0,−v2, v1), and r > 0 is any positive number. Now if we consider the smooth
vector field e2 on H2(−a2) which is defined by

(4.10) e2 =
a

sinh(ar)

∂

∂θ
,

then the restriction of such a smooth vector field e2 along each geodesic cv must
be a parallel vector field along cv, simply because the second expression in (4.9)
informs us that

(4.11) e2

∣

∣

cv(r)
= e2

∣

∣

expO(rv)
= v⊥.

The above expression further informs us that we must have ∇ċv
e2 = 0, for any

direction indicated by the unit vector v = (0, v1, v2) ∈ TO(H2(−a2)). Here, the
symbol ∇ stands for the Levi-Civita connection acting on the space of smooth
vector fields on H2(−a2), which is naturally induced by the intrinsic Riemannian
geometry of H2(−a2). So, it turns out that the vector fields e1 = ∂

∂r
, e2 = a

sinh(ar)
∂
∂θ

constitute a positively oriented orthonormal moving frame {e1, e2} of the tangent
bundle TH2(−a2) of H2(−a2).

Due to the fact that we will work with differential operators, such as the Hodge’s
Laplacian (−△) = dd∗ + d∗d or the exterior differential operator d etc, which can
only naturally operate on differential 1-forms on H2(−a2), we will consider the
two associated 1-forms e∗1 = g(e1, ·), and e∗2 = g(e2, ·) of the vector fields e1, e2

respectively, which together constitute the orthnormal co-frame of the cotangent
bundle T ∗H2(−a2). Indeed, the associated 1-forms e∗1, and e∗2 on H2(−a2) are given
by

e∗1 = dr,

e∗2 =
sinh(ar)

a
dθ.

(4.12)

Then, the volume form V olH2(−a2) on the hyperbolic space H2(−a2) (see Definition
2.4) can be locally expressed by

(4.13) V olH2(−a2) = e∗1 ∧ e∗2 =
sinh(ar)

a
dr ∧ dθ.

In dealing with the Hodge Laplacian (−△) = dd∗ + d∗d, and the co-adjoint op-
erator d∗ of d, we will encounter the Hodge-star operator ∗ : C∞(T ∗H2(−a2)) →
C∞(T ∗H2(−a2)) which sends 1-forms into 1-forms on H2(−a2), and also the Hodge-
Star operator ∗ : C∞(∧2T ∗M) → C∞(M) which sends 2-forms into smooth func-
tions on H

2(−a2) (See Definition 2.5 for the precise definitions of these Hodge
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Star operators).

Indeed, the Hodge-Star operator ∗ : C∞(T ∗H2(−a2)) → C∞(T ∗H2(−a2)) can be
locally expressed in the following way, through the use of the orthonormal co-frame
{e1, e2} as specified in (4.12).

∗e∗1 = e∗2,

∗e∗2 = −e∗1.
(4.14)

Then, in accordance with the tensorial property ∗(fω) = f ∗ (ω), with f to be
a smooth function and ω to be a differential form on H

2(−a2), of the Hodge-

Star operator ∗, it is plain to see, from (4.14), that ∗dr = sinh(ar)
a

dθ, and that
∗dθ = a

sinh(ar) ∗ e∗2 = − a
sinh(ar)dr.

On the other hand, the Hodge-Star operator ∗ : C∞(∧2T ∗H2(−a2)) → C∞(H2(−a2))
sending smooth 2-forms into smooth functions on H2(−a2) can be expressed by
the following single relation, with V olH2(−a2) to be the standard volume form on

H2(−a2).

(4.15) ∗V olH2(−a2) = 1.

5. About stationary Navier-Stokes flows with circular-arc streamlines
around an obstacle in H

2(−a2) : The proof of Theorem 1.9

To begin the argument, let K to be a given compact region in H2(−a2) which is

entirely contained in BO(δ), where BO(δ) = {p ∈ H2(−a2) : d(p, O) < δ} is the
open geodesic ball centered at O, and with radius δ > 0 in the hyperbolic manifold
H2(−a2). Let (r, θ) to be the normal polar coordinate system on H2(−a2) about
the reference point O ∈ H2(−a2) which is specified in Definition 4.4. Suppose
further that ∂K contains a circular-arc portion Cδ,τ = {p ∈ H2(−a2) : r(p) =

d(p, O) = δ, 0 < θ(p) < τ}, with some angle τ ∈ (0, 2π). Let ∂
∂r

, ∂
∂θ

to be the two

natural vector fields on H2(−a2) induced by the normal polar coordinate system
(r, θ) (see Definition 4.5). Under such setting, we now consider a velocity field of
the following form, with h ∈ C∞([δ, δ + ǫ0)) to be some smooth function defined on
an interval [δ, δ + ǫ0) of length ǫ0 > 0.

(5.1) u = −h(r − δ)e2 = −h(r − δ)
a

sinh(ar)

∂

∂θ

Recall that e1 = ∂
∂r

, e2 = a
sinh(ar)

∂
∂θ

together constitute a positively oriented or-

thonormal moving frame {e1, e2} on H2(−a2), whose orthonormal coframe {e∗1, e
∗
2}

is constituted by the differential 1-forms e∗1 = dr, and e∗2 = sinh(ar)
a

dθ. So, the
associated 1-form u∗ of the velocity field u in (5.1) is just given by

(5.2) u∗ = −h(r − δ)e∗2 = −h(r − δ)
sinh(ar)

a
dθ.

Notice that under this setting, both the velocity field u as specified in (5.1) and its
associated 1-form u∗ are defined on the sector-shaped open region Rδ,τ,ǫ = {p ∈
H2(−a2) : δ < d(p, O) < δ + ǫ0, 0 < θ(p) < τ} (The same open region as the one
specified in (1.14)) whose boundary shares the same circular-arc boundary portion
Cδ,τ with ∂K.
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In accordance with expression (5.2) for u∗, we will compute (−△)u∗, and ∇uu

step by step, just as what we did in dealing with the spherical case.

Step 1 : Checking the divergence free property of the velocity field u

as specified in (5.1). For u as given in (5.1), in order to verify the divergence
property d∗u∗ = 0 on the sector-shaped open region Rδ,τ,ǫ of H2(−a2) as specified
in (1.14), we just carry out the following straightforward computation, which is
formally identical to those computations being done in (3.3).

(5.3) d∗u∗ = − ∗ d ∗
{

− h(r − δ)e∗2
}

= − ∗ d{h(r − δ)dr} = 0.

Step 2 : The computation of (−△)u∗, for u to be given in (5.1). Since
we have d∗u = 0 on the open region Rδ,τ,ǫ of H2(−a2) as specified in (1.14), it
follows that (−△)u∗ = (dd∗ + d∗d)u∗ = d∗du∗. So, as in the spherical case, we first
compute du∗, for the velocity field u given in (5.1), as follow.

du∗ = −
∂

∂r

{

sinh(ar)

a
h(r − δ)

}

dr ∧ dθ

= −
a

sinh(ar)

∂

∂r

{

sinh(ar)

a
h(r − δ)

}

V olH2(−a2)

= −

{

h′(r − δ) +
a cosh(ar)

sinh(ar)
h(r − δ)

}

V olH2(−a2),

(5.4)

where we recall that V olH2(−a2) = e∗1 ∧ e∗2 = sinh(ar)
a

dr ∧ dθ is the volume form on

H2(−a2). For u as given in (5.1), we now compute (−△)u∗ = d∗du∗ as follow.

(−△)u∗ = ∗d ∗

{

h′(r − δ) +
a cosh(ar)

sinh(ar)
h(r − δ)

}

V olH2(−a2)

= ∗d

{

h′(r − δ) +
a cosh(ar)

sinh(ar)
h(r − δ)

}

=

{

h′′(r − δ) +
a cosh(ar)

sinh(ar)
h′(r − δ) +

∂

∂r

(

a cosh(ar)

sinh(ar)

)

h(r − δ)

}

∗ dr

=

{

sinh(ar)

a
h′′(r − δ) + cosh(ar)h′(r − δ) −

a

sinh(ar)
h(r − δ)

}

dθ,

(5.5)

in which the second equal sign holds due to the fact that ∗V olH2(−a2) = 1, and

the last equal sign holds since ∗dr = e∗2 = sinh(ar)
a

dθ. To prepare for the proof

of Theorem 1.9, we will need the expression of d
{

(−△)u∗ − 2Ric(u∗)
}

, for u as

specified in (5.1). Since Ric(X∗) = −a2X∗ always holds for any smooth vector
field X on H2(−a2), it follows from (5.5) and a direct computation that we have
the following expression of d

{

(−△)u∗ − 2Ric(u∗)
}

, for u as specified in (5.1).

d
{

(−△)u∗ − 2Ric(u∗)
}

=

{

sinh(ar)

a
h′′′(r − δ) + 2 cosh(ar)h′′(r − δ)

− a

(

sinh(ar) +
1

sinh(ar)

)

h′(r − δ)

+ a2 cosh(ar)

(

1

sinh2(ar)
− 2

)

h(r − δ)

}

dr ∧ dθ.

(5.6)
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Step 3 : The computation of the nonlinear convection term ∇uu for u as
given in (5.1) .
To compute ∇uu for u as given in (5.1), we express ∇uu as follow.

(5.7) ∇uu = A
∂

∂r
+ B

∂

∂θ
,

with A, B to be the two component functions on H2(−a2). To compute B, we
take the inner product with ∂

∂θ
on both sides of (5.7), and carry out the following

computation.

B

(

sinh2(ar)

a2

)

= g(∇uu,
∂

∂θ
)

= −

(

sinh(ar)

a

)

1

h(r − δ)
g(∇uu, u)

= −

(

sinh(ar)

a

)

1

2h(r − δ)
u
(

|u|2
)

=
1

2

∂

∂θ

(

(h(r − δ))2
)

= 0.

(5.8)

In the above computation, the third equal sign follows from property (1) of the
Levi-Civita connection ∇ as stated in Definition 3.1. The symbol u

(

|u|2
)

stands

for the derivative of the function |u|2 along the direction of the vector field u.

Next, we compute the component A which appears in (5.7), by taking inner product
with ∂

∂r
on both sides of (5.7) and we get

A = g(∇uu,
∂

∂r
)

= −h(r − δ)
a

sinh(ar)
g(∇ ∂

∂θ
u,

∂

∂r
)

= h(r − δ)
a

sinh(ar)
g(u,∇ ∂

∂θ

∂

∂r
)

= h(r − δ)
a

sinh(ar)
g(u,∇ ∂

∂r

∂

∂θ
).

(5.9)

In the above computation, the second equal sign follows directly from the tensorial
property (property (4) in Definition 3.1) of ∇. The third equal sign follows from
a direct application of property (1) in Definition 3.1 of ∇. While the last equal
sign follows from the torsion free property (property (2) of Definition 3.1 ) of ∇.

Here, recall that e2 = a
sinh(ar)

∂
∂θ

, once being restricted on each geodesic ray starting

from the base point O ∈ H2(−a2) of the normal polar coordinate system (r, θ), is
parallel along that geodesic ray. This simply means that we have ∇ ∂

∂r
e2 = 0. Hence,

we can carry out the following computation in accordance with the Leibniz’s rule
of the connection ∇ (property (3) of Definition 3.1 ).

(5.10) ∇ ∂
∂r

∂

∂θ
=

∂

∂r

(

sinh(ar)

a

)

e2 = cosh(ar)e2.



ON THE STATIONARY NAVIER-STOKES FLOW 241

Hence, it follows that the component function A which appears in (5.7) is given by

(5.11) A = h(r − δ)
a

sinh(ar)
g(u, cosh(ar)e2) = −a

(

cosh(ar)

sinh(ar)

)

(

h(r − δ)
)2

.

So, it follows that for u as given in (5.1), the term ∇uu is given by

(5.12) ∇uu = −a

(

cosh(ar)

sinh(ar)

)

(

h(r − δ)
)2 ∂

∂r
,

whose associated 1-form [∇uu]∗ is given by

(5.13) [∇uu]∗ = −a

(

cosh(ar)

sinh(ar)

)

(

h(r − δ)
)2

dr.

So, by taking the operator d on both sides of (5.13), it follows that the following
relation holds on the sector-shaped region Rδ,τǫ0 of H

2(−a2) as specified in (1.14),
for u to be given by (5.1).

(5.14) d[∇uu]∗ = 0.

Step 4 : The proof of Assertion I in Theorem 1.9
Here, we will give a simple proof of Assertion I in Theorem 1.9, which states that
for any quadratic profile h(λ) = α1λ− α2

2 λ2, with prescribed constants α1 > 0, and
α2 > 0, the velocity field u as specified in (5.1) does not satisfies equation (1.12)
on the sector shaped region Rδ,τ,ǫ0 of H2(−a2) as specified in (1.14) , regardless of
how small ǫ0 > 0 is. Now, assume towards contradiction that for a certain choice of
constants α1 > 0, α2 > 0, the velocity field u as given in (5.1) does satisfy equation
(1.12) on the sector-shaped region Rδ,τ,ǫ0 of H2(−a2) as given in (1.14), for some
ǫ0 > 0. Then, for such a u as given in (5.1), we take the operator d on both sides of
the main equation in (1.12), and deduce the following vorticity equation from (5.4)
and (5.14).

0 = d

{

ν
(

(−△)u∗ − Ric(u∗)
)

+ [∇uu]∗ + dP

}

= νd

{

(

(−△)u∗ − Ric(u∗)
)

}

= ν

{

sinh(ar)

a
h′′′(r − δ) + 2 cosh(ar)h′′(r − δ)

− a

(

sinh(ar) +
1

sinh(ar)

)

h′(r − δ)

+ a2 cosh(ar)

(

1

sinh2(ar)
− 2

)

h(r − δ)

}

dr ∧ dθ.

(5.15)

For the quadratic profile h(λ) = α1λ − α2

2 λ2, the vorticity equation (5.15) reduces
to the following form

(5.16) 0 = Gα1,α2,δ(r)dr ∧ dθ,
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where the function Gα1,α2,δ(r) is given by the following expression.

Gα1,α2,δ(r) = −2α2 cosh(ar) − a

(

sinh(ar) +
1

sinh(ar)

)

(α1 − α2λ)

+ a2 cosh(ar)

(

1

sinh2(ar)
− 2

)

(

α1λ −
α2

2
λ2

)

.

(5.17)

So, if u = −h(r − δ) a
sinh(ar)

∂
∂θ

does satisfies equation (1.12) on the sector-shaped

region Rδ,τ,ǫ0 of H
2(−a2) as specified in (1.14), then, it must follow, in accordance

with (5.16), that the function Gα1,α2,δ(r) must totally vanish on the interval (δ, δ +
ǫ0). However, we observe that

(5.18) Gα1,α2,δ(δ) = −2α2 cosh(aδ) − aα1

(

sinh(aδ) +
1

sinh(aδ)

)

< 0.

Since Gα1,α2,δ(δ) is continuous on [δ,∞), (5.18) immediately implies that Gα1,α2,δ <

0 holds on some interval [δ, δ + ǫ1), for some 0 < ǫ1 < ǫ0, which directly violates
(5.16). A contradiction has been achieved, and we are done in proving Assertion
I of Theorem.

Step 5 : The proof of Assertion II in Theorem 1.9
Here, for any prescribed positive constants α1 > 0, and α2 > 0, we consider the
velocity field u = −Y (r) a

sinh(ar)
∂
∂θ

on the region Ωδ,τ as given in (1.15) of Theorem

1.9, with Y ∈ C∞([δ,∞)) to be a smooth function on [δ,∞) satisfying Y (δ) = 0,
Y ′(δ) = α1, and Y ′′(δ) = −α2. Since the sector-shaped region Ωδ,τ as given in

(1.15) is simply connected in H2(−a2), we know that such u = −Y (r) a
sinh(ar)

∂
∂θ

will satisfy equation (1.12) with some globally defined smooth pressure P on Ωδ,τ if
and only if the vorticity equation (5.15) holds on the simply-connected region Ωδ,τ

of H2(−a2). However, saying that the vorticity equation (5.15) holds on the simply
connected region Ωδ,τ as specified in (1.15) of Theorem 1.9 is equivalent to saying
that the smooth function Y ∈ C∞([δ,∞)) is a solution to the following third order
O.D.E. on [δ,∞) with initial values Y (δ) = 0, Y ′(δ) = α1, and Y ′′(δ) = −α2.

0 =
sinh(ar)

a
Y ′′′(r) + 2 cosh(ar)Y ′′(r) − a

(

sinh(ar) +
1

sinh(ar)

)

Y ′(r)

+ a2 cosh(ar)

(

1

sinh2(ar)
− 2

)

Y (r).

(5.19)

However, in accordance with the basic existence theorem in the theory of linear
O.D.E.(i.e. Theorem 3.3) , we know that there exists a unique smooth solution
Y ∈ C∞([δ,∞)) to (5.19) satisfying initial values Y (δ) = 0, Y ′(δ) = α1, and
Y ′′(δ) = −α2. Moreover, since the coefficient functions involved in (5.19) are all
real analytic on [δ,∞), it follows that such a unique solution Y ∈ C∞([δ,∞))
must also be real-analytic on [δ,∞). So, according to these observations, we can
now deduce that, for any prescribed positive constants α1 > 0, and α2 > 0, there
exists a unique smooth function Y ∈ C∞([δ,∞)) with Y (δ) = 0, Y ′(δ) = α1, and
Y ′′(δ) = −α2 such that u = −Y (r) a

sinh(ar)
∂
∂θ

is a solution to equation (1.12) on

the simply connected region Ωδ,τ as specified in (1.15). Moreover, such a unique
smooth function Y ∈ C∞([δ,∞)) is further known to be real-analytic on [δ,∞).
So, we are done in proving Assertion II of Theorem 1.9.
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6. The ”Cartesian coordinate system” on the hyperbolic space H2(−a2)

The purpose of this section is to introduce a natural coordinate system Φ : R
2 →

H2(−a2) on the hyperbolic space H2(−a2), with R2 = {(τ, s) : τ, s ∈ (−∞,∞)} to
be the parameter space being used to parameterize the manifold H2(−a2). Since
this natural coordinate system Φ(τ, s) which we proceed to construct here is the
closest possible analog to the standard cartesian coordinate system of the Euclidean
space R2, we will just call Φ(τ, s) which we construct below to be a ”Cartesian co-
ordinate system” introduced on H2(−a2). Again, such a ”Cartesian coordinate
system” Φ(τ, s) on H2(−a2) which we are going to describe is also another piece
of standard knowledge in Riemannian Geometry. Indeed, our discussions in this
section can be viewed as a special case of the well-known procedure of constructing
Jacobi-fields along geodesics on a general Riemannian manifold, and we refer the
interested readers to pages 185-193 of the textbook by Jost [7].

To begin the construction, let O ∈ H2(−a2) to be any selected point in the hy-
perbolic space H2(−a2) of constant negative sectional curvature −a2. Recall that
H2(−a2) (just as R2, or S2(a2) ) is a symmetric space in that the its geometric
structure looks exactly the same at any selected reference point, up to isometries
preserving the Riemannian metric on H2(−a2). So, we can just select any refer-
ence point O ∈ H2(−a2), which will play the role of the origin of the Cartesian
coordinate system as introduced below.
With such a reference point O in H2(−a2) to be chosen and fixed, consider a ge-
odesic c : (−∞,∞) → H2(−a2) which passes through O in that c(0) = O, and
which travels towards the East-direction as the parameter τ ∈ (−∞,∞) increases.
Recall that a geodesic on a Riemannian manifold is really a straight line with re-
spect to the Riemannian structure of that manifold. Such a geodesic c(τ) which
we choose will play the role of the x-axis for our Cartesian coordinate system on
the hyperbolic space H2(−a2). In order to specify the appropriate y-axis, we will
regard H2(−a2) to be an oriented manifold with the orientation compatible with
the anti-clockwise rotation. Then, choose w ∈ TOH2(−a2) to be the unit vector
which, together with ċ(0) = d

dτ
c|τ=0 ∈ TOH2(−a2), constitute a positively oriented

orthonormal basis {ċ(0), w} of TOH2(−a2) compatible with the anti-clockwise rota-
tion on TOH2(−a2). Then, we just consider the geodesic γ : (−∞,∞) → H2(−a2)
which satisfies the properties that γ(0) = O and that γ̇(0) = d

ds
γ|s=0 = w. So,

γ will be a straight line (i.e. geodesic) which passes through O and which travels
towards the North-direction as the parameter s ∈ (−∞,∞) increases. So, the geo-
desic γ, which intersects the geodesic c at the reference point O in an orthogonal
manner, will play the proper role of the y-axis of our Cartesian coordinate system
on H

2(−a2). For a technical purpose, consider V (s) to be the parallel vector field
along the geodesic γ which satisfies V (0) = ċ(0) in the sense as specified in the
following Definition

Definition 6.1. Let γ : (a, b) → M to be a geodesic on a N -dimensional
Riemannian manifold M . A parallel vector field V (s) along γ is a smooth map
s ∈ (a, b) → V (s) ∈ Tγ(s)M for which the property ∇γ̇V = 0 holds on (a, b). Here,

∇ is the Levi-Civita connection (covariant derivative) acting on the space of smooth
vector fields on M .
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Now, with such a parallel vector field V (s) along the geodesic γ with V (0) =
ċ(0), we consider, for each real value s ∈ R, the geodesic cs : (−∞,∞) → H2(−a2)
which passes through the point γ(s) in that cs(0) = γ(s), and which satisfies
the condition ċs(0) = d

dτ
cs|τ=0 = V (s) ∈ Tγ(s)H

2(−a2). In accordance with
the definition of the exponential map about a reference point on a Riemann-
ian manifold, we can express the geodesic cs in terms of the exponential map
expγ(s) : Tγ(s)H

2(−a2) → H2(−a2) as follow, where τ ∈ (−∞,∞) is the parameter
of the geodesic cs,

(6.1) cs(τ) = expγ(s)(τV (s)).

We can now define the smooth bijective map Φ : R
2 → H

2(−a2) in accordance with
the following rule, where τ, s ∈ R are arbitrary real parameters.

(6.2) Φ(τ, s) = expγ(s)(τV (s)) = cs(τ).

Indeed, the smooth map Φ, which maps the parameter space R
2 bijectively onto

H2(−a2) with smooth inverse Φ−1, is exactly the coordinate system which we in-
troduced on the hyperbolic manifold H2(−a2). Next, by means of this natural
coordinate system Φ(τ, s), we will define two natural vector fields ∂

∂τ
, and ∂

∂s
on

the hyperbolic space H2(−a2) as follow.

Definition 6.2. (Natural vector fields ∂
∂τ

, and ∂
∂s

on H2(−a2) via the coordi-
nate system Φ(τ, s) as given in (6.2)).
For any point p ∈ H

2(−a2), the vectors ∂
∂τ

|p,
∂
∂s
|p in the tangent space TpH

2(−a2)

of H2(−a2) at p are characterized (as linear derivations acting on smooth functions)
by the following rules.

∂

∂τ

∣

∣

∣

∣

p

f =
∂

∂τ
(f ◦ Φ)

∣

∣

∣

∣

Φ−1(p)

,

∂

∂s

∣

∣

∣

∣

p

f =
∂

∂s
(f ◦ Φ)

∣

∣

∣

∣

Φ−1(p)

,

(6.3)

where f ∈ C∞(H2(−a2)) is any smooth function on H2(−a2). Here, we remark
that the same symbol ∂

∂τ
means totally different things on the two sides of relation

(6.3). The symbol ∂
∂τ

|p on the left stands for the vector in TpH2(−a2) which is

to be defined through the right hand side. While, the symbol ∂
∂τ

appearing on the
righthand-side is just the ordinary partial derivative acting on the Euclidean space
R2 at the point Φ−1(p) ∈ R2. The same remark also applies to the symbol ∂

∂s

appearing in the second line of (6.3).

In accordance with the above rigorous definition for the vector fields ∂
∂τ

, and ∂
∂s

on

H2(−a2), for each pair of parameters (τ, s) ∈ R2, we can think of the two vectors
∂
∂τ

|Φ(τ,s) and ∂
∂s
|Φ(τ,s) in TΦ(τ,s)H

2(−a2) in the following intuitive manner.

∂

∂τ

∣

∣

∣

∣

Φ(τ,s)

= ∂τ{expγ(s)(τV (s))} = ∂τ{cs(τ)},

∂

∂s

∣

∣

∣

∣

Φ(τ,s)

= ∂s{expγ(s)(τV (s))}

(6.4)

As a result of relation (6.4), it follows that for any point p ∈ H2(−a2), which is
parameterized by the pair (τ, s) ∈ R

2 (i.e. (τ, s) = Φ−1(p) ), we will have the
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following relation

(6.5)
∂

∂τ

∣

∣

∣

∣

p

= ċs(τ).

Notice that ċs(τ) itself is a tangential parallel vector field along the geodesic cs.
So, it turns out that ∂

∂τ
must be of unit length. That is, we have ‖ ∂

∂τ
‖ = 1 holds

everywhere on H2(−a2).

Next, in accordance with basic knowledge in Riemannian geometry, the vector
field ∂

∂s
, when being restricted to each geodesic cs, is the uniquely determined

Jacobi field W (s)(τ) along cs satisfying the initial conditions W (s)(0) = γ̇(s), and
∇ċs

W (s)|τ=0 = 0, in the sense of the following definition.

Definition 6.3. On a N -dimensional Riemannian manifold M , let c : (a, b) →
M to be a geodesic. A vector field X(τ) along the geodesic c(τ) is called a Jacobi
field along c if V satisfies the following Jacobi-field equation on τ ∈ (−∞,∞).

(6.6) ∇ċ∇ċX + R(X, ċ)ċ = 0,

in which the symbol ∇ is again the Levi-Civita connection acting on the space of
all smooth vector fields on M , and the symbol R(·, ·) stands for the Riemannian
curvature tensor which is defined in the following relation.

(6.7) R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

with X, Y , Z to be smooth vector fields on M , and [X, Y ] is the smooth vector field
given by [X, Y ] = XY − Y X.

The above definition of Jacobi-fields along geodesic on a given manifold may looks
strange to those readers who are not familiar with Riemannian geometry. Giving a
detailed discussion of the precise geometric meaning of the concept of Jacobi fields
on a Riemannian manifold is out the scope of this paper. Here, we just simply
mention that, on an intuitive level, the magnitude of a non-tangential Jacobi field
along a geodesic on a Riemannian manifold encodes the growth rate of the spatial
structure of the Riemannian manifold in the far range. But, fortunately, the very
special symmetric structure of H2(−a2) ensures that the Riemannian curvature
tensor R(·, ·) on H2(−a2) satisfies the following simple relation.

(6.8) R(X, ċ)ċ = −a2X,

where c : (−∞,∞) → H2(−a2) is a geodesic on H2(−a2), and X is a smooth vector
field along the geodesic c. So, in the case of the hyperbolic manifold H2(−a2), we
can just take relation (6.8) for granted and hence the Jacobi-field equation as in
Definition (6.3) will reduce down to the following one in the case of a smooth vector
field X defined along a geodesic c on H2(−a2).

(6.9) ∇ċ∇ċX − a2X = 0.

With the Jacobi-field equation as in (6.9), we can give a geometric description for

the vector field ∂
∂s

as follow. Here, For each fixed s ∈ (−∞,∞), let e
(s)
2 (τ) to be

the parallel vector field along the geodesic cs which satisfies the initial condition

e
(s)
2 (0) = d

ds
γ|s = γ̇(s). Recall that, from our construction, we have

(6.10) ċs(0) =
d

dτ
cs

∣

∣

∣

∣

τ=0

= V (s),
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Where V (s) is the parallel unit vector field along the geodesic γ which satisfies
V (0) = d

dτ
c|τ=0 = ċ(0). Since V (s), as a parallel vector field along a geodesic,

always preserves its inscribed angle with γ̇(s), ċs(0) = V (s) must be orthonormal

to γ̇(s) = e
(s)
2 (0) in the tangent space Tγ(s)H

2(−a2). That is, we have e
(s)
2 (0) ⊥

ċs(0). Then, e
(s)
2 (τ), as a parallel vector field along cs, must preserves the its

inscribed right-angle with ċs(τ). That is, the parallel vector field e
(s)
2 (τ) along

cs is everywhere orthogonal to the geodesic cs itself. Now, since the coordinate
system Φ : R

2 → H
2(−a2), as specified in (6.2), maps R

2 bijectively onto H
2(−a2),

we know that each point p ∈ H2(−a2) has to be passed through by exactly one
geodesic cs. So, we can define a global smooth vector field e2 on H2(−a2) by the
following relation, where τ , s are arbitrary parameters.

(6.11) e2(Φ(τ, s)) = e
(s)
2 (τ).

Again, the vector field e2 as defined above is everywhere orthonormal to ∂
∂τ

(just

recall that ∂
∂τ

|Φ(τ,s) = ċs(τ) ). Now, we claim that the vector field ∂
∂s

is related to
e2 through the following relation.

(6.12)
∂

∂s

∣

∣

∣

∣

Φ(τ,s)

= cosh(ar)e2(Φ(τ, s))

To justify the above relation, we just have to recall that, for each s ∈ (−∞,∞), the
restriction of ∂

∂s
on the geodesic cs is known to be the unique Jacobi field W (τ)

along cs which satisfies the following initial conditions

W (0) = γ̇(s),

(∇ċW )

∣

∣

∣

∣

τ=0

= 0.
(6.13)

So, we just have to show that the vector field W (s)(τ) along cs as defined by
W (s)(τ) = cosh(ar)e2(Φ(τ, s)) is also the Jacobi field satisfying the two initial
conditions specified in (6.13). Once this is done, the uniqueness property of Jacobi
field will immediately give the validity of relation (6.12). Now, observe that we must

have ∇ċs
e
(s)
2 = 0 holds everywhere on cs, simply because e

(s)
2 is a parallel vector

field along cs. So, by means of the product rule ∇X(fY ) = (Xf)Y +f∇XY , which
is one of the characteristic properties of any covariant derivative, it follows that

(6.14) ∇ċs
W (s) = a sinh(ar)e

(s)
2 ,

from which we immediately deduce that W (s) satisfies the second initial condition
as specified in (6.13). Of course W s clearly also satisfies the first condition in
(6.13). Now, by taking one more covariant derivative ∇ċ(s) on both sides of the

above equation and using the fact that ∇ċs
e
(s)
2 = 0, we immediately obtain

(6.15) ∇ċs
∇ċs

W (s) = a2 cosh(ar)e
(s)
2 = a2W (s),

from which we see immediately that W (s) clearly satisfies the Jacobi-field equation
(6.9). As a result, W (s) is really a Jacobi field along cs which satisfies the same
initial conditions as the Jacobi field ∂

∂s
along cs. Hence, by uniqueness, relation

(6.12) is true.
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7. The proof of Theorem 1.10: about parallel laminar flow along a
straight edge of an obstacle in H2(−a2)

The goal of this section is to study parallel laminar flows along a geodesic, which
represents the boundary (straight edge) of an obstacle, in the 2-dimensional space
form H2(−a2) with constant sectional curvature −a2.

Now, let us consider the ”Cartesian coordinate system” Φ : R2 → H2(−a2) as
given in (6.2), which we have just constructed in the previous section. For each
point p, τ(p) and s(p) stand for the first and second components of Φ−1(p) in R2

respectively. That is, we have Φ−1(p) = (τ(p), s(p)). Then, we will consider the
following solid region

(7.1) K = {p ∈ H
2(−a2) : τ(p) 6 0},

which will represent a solid obstacle with the straight edge ∂K along which we
study parallel laminar flow under the ”no-slip” condition. According to the setting
as given in Section 6, the straight edge ∂K is exactly the geodesic γ, which
represents the ”y-axis” of the ”Cartesian coordinate system” Φ(τ, s) on H2(−a2).
Now, we consider the following vector field as defined on H2(−a2) − K = {p ∈
H2(−a2)τ(p) > 0}.

(7.2) u(p) = −h(τ(p))e2(p) = −h(τ(p))
1

cosh(aτ(p))

∂

∂s

∣

∣

∣

∣

p

.

From now on, the two real-valued smooth functions p → τ(p), and p → s(p) on
H2(−a2) will simply be denoted by τ and s respectively. Here, we remind our
readers that, from now on, the symbols τ , and s stand for the first- and second-
component functions of the map Φ−1 : H

2(−a2) → R
2. (So, our readers should not

confuse them with the use of the same symbols ”τ”, and ”s” in R which represents
parameters of the geodesics cs, and γ as in the previous section). With this con-
vention for our notations, we can simply just write expression (7.2) in the following
”short-hand” form.

(7.3) u = h(τ)e2 = −h(τ)
1

cosh(aτ)

∂

∂s
.

Again, let e2 to be the globally defined smooth unit vector field on H2(−a2) which
we construct in Section 6. Recall, that, in terms of the notations as specified in
the previous section, e2 is everywhere orthonormal to the unit vector field ∂

∂τ
= ċs.

Now, let us denote the vector field ∂
∂τ

on H2(−a2) by the symbol e1. On the other

hand, we recall, form (6.12) of the previous section, that we have e2 = 1
cosh(aτ)

∂
∂s

.

Then, in accordance with our construction in the previous section, we know that

• e1 = ∂
∂τ

and e2 = 1
cosh(aτ)

∂
∂s

constitute a positively oriented orthonormal

moving frame on H2(−a2).

Then, it follows that the associated 1-forms e∗1 = dτ , and e∗2 = cosh(aτ)ds will con-
stitute an orthonormal coframe with respect to the induced Riemannian metric on
the cotangent bundle T ∗H2(−a2) of H2(−a2). Then, the volume form on H2(−a2)
can be expressed as

(7.4) V olH2(−a2) = e∗1 ∧ e∗2 = cosh(aτ)dτ ∧ ds.
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Then, the Hodge-Star operator ∗ : C∞(∧2T ∗H2(−a2)) → C∞(H2(−a2)) sending
2-forms back to the space of smooth functions is characterized by the defining
relation ∗V olH2(−a2) = 1, and the tensorial property ∗(fω) = f ∗ ω, with f to be a
smooth function and ω to be a differential form. We also recall that the Hodge-star
operator ∗C∞(T ∗

H
2(−a2)) → C∞(T ∗

H
2(−a2)) sending 1-forms back to the space

of 1-forms can now be represented by the following rules.

∗(dτ) = ∗e∗1 = e∗2 = cosh(aτ)ds

∗e∗2 = −e∗1 = −dτ.
(7.5)

Now, we can proceed to compute (−△)u∗, where u∗ = g(u, ·) is the associated
1-form of the vector field u as specified in (7.3).
Step 1: Checking the divergence free property d∗u∗ = 0 for u as given in
(7.3). Recall that the operator d∗ = − ∗ d∗ which sends 1-forms on H2(−a2) to
the space of smooth functions on H2(−a2) is just the operator −div acting on the
space of smooth vector fields on H2(−a2). So, the desired divergence free property
for u as given in (7.3) is expressed in the form of d∗u∗ = 0, which can easily be
obtained through the following computation.

d∗u∗ = ∗d[h(τ) ∗ e∗2]

= − ∗ d[h(τ)dτ ]

= − ∗

{

∂

∂s
(h(τ))ds ∧ dτ

}

= 0.

(7.6)

Step 2: The computation of (−△)u∗ for the velocity field u given by (7.3).
Recall that the Hodge Laplacian (−△), which sends the space of smooth 1-forms
into itself, is given by (−△) = dd∗ +d∗d. Since the velocity field u as given in (7.3)
satisfies the divergence free property d∗u∗ = 0 on H2(−a2) − K, with K to be the
solid obstacle with a straight edge boundary as specified in (7.1), it follows that we
have the following relation.

(7.7) (−△)u∗ = d∗du.

Now, we first carry out the following computation for the 2-form du∗, which repre-
sents the vorticity of u on H

2(−a2) − K.

du∗ = d{−h(τ) cosh(aτ)ds}

= −
∂

∂τ
[h(τ) cosh(aτ)]dτ ∧ ds

= −
1

cosh(aτ)

∂

∂τ
[h(τ) cosh(aτ)]V olH2(−a2),

(7.8)
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where V olH2(−a2) is the volume-form on H2(−a2) as described in (7.4). Since
∗V olH2(−a2) = 1, it follows that

(−△)u∗ = d∗du∗

= − ∗ d ∗

{

−
1

cosh(aτ)

∂

∂τ
[h(τ) cosh(aτ)]V olH2(−a2)

}

= ∗d

{

1

cosh(aτ)

∂

∂τ
[h(τ) cosh(aτ)]

}

= ∗d

{

h′(τ) + ah(τ) ·
sinh(aτ)

cosh(aτ)

}

= ∗
∂

∂τ

{

h′(τ) + ah(τ) ·
sinh(aτ)

cosh(aτ)

}

dτ

=
∂

∂τ

{

h′(τ) + ah(τ) ·
sinh(aτ)

cosh(aτ)

}

∗ dτ

=
∂

∂τ

{

h′(τ) + ah(τ) ·
sinh(aτ)

cosh(aτ)

}

cosh(aτ)ds

=

{

h′′(τ) cosh(aτ) + a sinh(aτ)h′(τ) +
a2

cosh(aτ)
h(τ)

}

ds.

(7.9)

In the above computation, the symbol h′(τ) stands for h′(τ) = ∂h
∂τ

. In the same way,

h′′(τ) and h′′′(τ) mean h′′(τ) =
(

∂
∂τ

)2
h and h′′′(τ) =

(

∂
∂τ

)3
h respectively. In the

sixth equality of the above calculation, we have used the basic tensorial property
∗(fω) = f ∗ (ω) of the Hodge-Star operator ∗, with f to be a smooth function and
ω to be a smooth 1-form.
Step 3: the computation of the nonlinear convection term (∇uu)∗, for u

to be given in (7.3).
In the computation for the nonlinear convection term (∇uu)∗, it is convenient for us
to work directly with the computation of ∇uu at the level of smooth vector fields.
Recall that the natural vector fields ∂

∂τ
and ∂

∂s
are everywhere orthogonal to each

other on H2(−a2). So, we now express the vector field ∇uu in terms of the linear
combination of ∂

∂τ
and ∂

∂s
as follow.

(7.10) ∇uu = A
∂

∂τ
+ B

∂

∂s
,

where A, and B are some smooth functions on H2(−a2) which we will figure out in
a minute. First, by taking the inner product with ∂

∂s
on both sides of (7.10), we

deduce that

cosh2(aτ)B = g(∇uu,
∂

∂s
)

= −
cosh(aτ)

h(τ)
g(∇uu, u)

= −
cosh(aτ)

h(τ)
·
1

2
u
(

|u|2
)

=
1

2

∂

∂s

[

(h(τ))2
]

= 0,

(7.11)
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from which we immediately get B = 0 on H2(−a2) − K. We remark that in the
above computation, the symbol u

(

|u|2
)

stands for the derivative of the function

|u|2 along the direction of the vector field u. On the other hand, by taking inner
product with ∂

∂τ
on both sides of (7.10), we can compute the smooth function A

as follow.

(7.12) A = g(∇uu,
∂

∂τ
) =

−h(τ)

cosh(aτ)
g(∇ ∂

∂s
u,

∂

∂τ
)

However, since 0 = g(u, ∂
∂τ

) holds on H2(−a2) − K, it follows that we have

(7.13) 0 =
∂

∂s
g(u,

∂

∂τ
) = g(∇ ∂

∂s
u,

∂

∂τ
) + g(u,∇ ∂

∂s

∂

∂τ
).

Hence, we can resume the calculation for A as follow.
(7.14)

A =
−h(τ)

cosh(aτ)
g(∇ ∂

∂s
u,

∂

∂τ
) =

h(τ)

cosh(aτ)
g(u,∇ ∂

∂s

∂

∂τ
) =

h(τ)

cosh(aτ)
g(u,∇ ∂

∂τ

∂

∂s
),

where in the last equality sign, we have used the property ∇ ∂
∂s

∂
∂τ

= ∇ ∂
∂τ

∂
∂s

, which

follows from the torsion free property of the Levi-Civita connection. Also, according
with the Leibniz’s rule satisfied by the Levi-Civita connection, we can carry out
the following computation for ∇ ∂

∂τ

∂
∂s

, with ∇ ∂
∂τ

e2 = 0 (which is true since e2 is

parallel along each geodesic cs) being taken into account in the calculation.

(7.15) ∇ ∂
∂τ

∂

∂s
= ∇ ∂

∂τ

[

cosh(aτ)e2

]

= a sinh(aτ)e2 =
a sinh(aτ)

cosh(aτ)

∂

∂s
.

Hence, it follows from (7.14), and (7.15) that

(7.16) A =
h(τ)

cosh(aτ)
g
(

− h(τ)e2, a sinh(aτ)e2

)

=
−a sinh(aτ)

cosh(aτ)
(h(τ))2.

As a result, we finally conclude that

(7.17) ∇uu =
−a sinh(aτ)

cosh(aτ)
(h(τ))2

∂

∂τ
,

with associated 1-form
(

∇uu
)∗

to be given by

(7.18)
(

∇uu
)∗

=
−a sinh(aτ)

cosh(aτ)
(h(τ))2dτ.

Now, for our forthcoming applications of these calculations in the proof of Theorem
1.10, we will need concrete expressions of d

(

(−△)u∗ − 2Ric(u∗)
)

and d
(

∇uu
)∗

.
Indeed, by taking into account of the basic fact in Riemannian Geometry that
Ric(X∗) = −a2X∗ always holds for any smooth vector fields X on H

2(−a2), we
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can use expression (7.9) to derive the following expression for d
(

(−△)u∗−2Ric(u∗)
)

.

d
{

(−△)u∗ − 2Ric(u∗)
}

= d

{

h′′(τ) cosh(aτ) + a sinh(aτ)h′(τ) + a2

(

1

cosh(aτ)
− 2 cosh(aτ)

)

h(τ)

}

∧ ds

=

{

h′′′(τ) cosh(aτ) + 2a sinh(aτ)h′′(τ) −
a2 sinh2(aτ)

cosh(aτ)
h′(τ)

− a3 sinh(aτ)

(

2 +
1

cosh2(aτ)

)

h(τ)

}

dτ ∧ ds.

(7.19)

Also, by taking the operator d on both sides of (7.18), we immediately obtain the
following relation,

(7.20) d
(

∇uu
)∗

=
∂

∂s

{

−a sinh(aτ)

cosh(aτ)
(h(τ))2

}

ds ∧ dτ = 0.

Step 4 : The proof of Assertion I in Theorem 1.10

With the preparations in the previous steps of this section, we are now ready to
give a proof for Assertion I in Theorem 1.10 as follow.
To begin the argument, assume towards contradiction that the parallel laminar flow
u = −h(τ) 1

cosh(aτ)
∂
∂s

, with the quadratic profile h(τ) = α1τ − α2

2 τ2, does satisfy

equation (1.12) on the simply connected region Ωτ0
= Φ

(

(0, τ0)×R
)

of H2(−a2), for
certain positive constants τ0 > 0, α1 > 0, and α2 > 0. That is, the associated one
form u∗ = −h(τ) cosh(aτ)ds will satisfies the following Stationary Navier-Stokes
equation on Ωτ0

= Φ
(

(0, τ0) × R
)

.

(7.21) ν((−△)u∗ − 2Ric(u∗)) + ∇uu∗ + dP = 0.

Now, by taking the exterior differential operator d on both sides of (7.21), we
deduce from (7.19) and (7.20) that the following vorticity equation would hold on
Ωτ0

= Φ
(

(0, τ0) × R
)

.

0 = d
{

(−△)u∗ − 2Ric(u∗)
}

=

{

h′′′(τ) cosh(aτ) + 2a sinh(aτ)h′′(τ)

−
a2 sinh2(aτ)

cosh(aτ)
h′(τ) − a3 sinh(aτ)

(

2 +
1

cosh2(aτ)

)

h(τ)

}

dτ ∧ ds.

(7.22)

For convenience, we will consider the following smooth function

F (τ) =

{

2a sinh(aτ)h′′(τ) −
a2 sinh2(aτ)

cosh(aτ)
h′(τ) − a3 sinh(aτ)

(

2 +
1

cosh2(aτ)

)

h(τ)

}

.

(7.23)

Since for h(τ) = α1τ−
α2

2 τ2, we have h′′′(τ) = 0 for all τ ∈ R, it follows that, for the

velocity field u = −h(τ) 1
cosh(aτ)

∂
∂s

, with the quadratic profile h(τ) = α1τ − α2

2 τ2,

equation (7.22) on Ωτ0
= Φ

(

(0, τ0) × R
)

should be equivalent to the following

equation, which would hold on Ωτ0
= Φ

(

(0, τ0) × R
)

.

(7.24) 0 = F (τ)dτ ∧ ds,
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where F (τ) is the real-analytic function as given in (7.23). Since the differential
2-form dτ ∧ ds is everywhere non-vanishing on H2(−a2), the validity of equation
(7.24) on Ωτ0

= Φ
(

(0, τ0) × R
)

is equivalent to saying that

• The real-analytic function F (τ) as given in (7.23) should totally vanish
over Ωτ0

= Φ
(

(0, τ0) × R
)

. That is, we should have F (τ) = 0, for all
τ ∈ [0, τ0).

So, to finish the proof for Assertion I of Theorem 1.10, we just need to arrive at
a contradiction against the everywhere vanishing property of F (τ) over the interval
[0, τ0). To achieve this, we simply just compute the term ∂F

∂τ

∣

∣

τ=0
= F ′(0) as follow.

Indeed, for the quadratic profile h(τ) = α1τ − α2

2 τ2, we can carry out the following
straightforward computations.

∂

∂τ

{

2a sinh(aτ)h′′(τ)

}∣

∣

∣

∣

τ=0

= 2a2h′′(0) = −2a2α2,

∂

∂τ

{

−
a2 sinh2(aτ)

cosh(aτ)
h′(τ)

}∣

∣

∣

∣

τ=0

= 0,

∂

∂τ

{

− a3 sinh(aτ)

(

2 +
1

cosh2(aτ)

)

h(τ)

}∣

∣

∣

∣

τ=0

= 0,

(7.25)

where in the above computation, we have taken the information h(0) = 0, h′′(0) =
−α2, into account. So, in light of (7.25), we can easily deduce from (7.23) that we
must have

(7.26)
∂F

∂τ

∣

∣

τ=0
= F ′(0) = −2a2α2 < 0,

since α2 > 0 by our hypothesis. The above relation clearly indicates that the
function F (τ) must be a strictly decreasing function in some small open interval
(−ǫ0, ǫ0) around the point τ = 0. This fact, together with F (0) = 0, will imply
that the function F (τ) must be strictly negative, for all τ ∈ (0, ǫ0). This clearly vi-
olates the everywhere vanishing property: F (τ) = 0, for all τ ∈ [0, τ0). So, we have
derive a contradiction against the validity of the vorticity equation (7.24). Hence,
we conclude that the velocity field u = −h(τ) 1

cosh(aτ)
∂
∂s

, with the quadratic profile

h(τ) = α1τ − α2

2 τ2 is not a solution to equation (1.12) on Ωτ0
= Φ

(

(0, τ0)×R
)

, no
matter which positive constants τ0, α1 > 0, α2 > 0 we take.

Step 5: The proof of Assertion II in Theorem 1.10

To begin the proof of Assertion II in Theorem 1.10, recall that all the computa-
tions in Section 7 up to (7.19) are valid for a velocity field u = −Y (τ) 1

cosh(aτ)
∂
∂s

,

with Y (τ) to be any smooth function on [0,∞). Now, we are interested in the
question of whether a velocity field of the form u = −Y (τ) 1

cosh(aτ)
∂
∂s

, with Y :

[0,∞) → R to be a smooth function, is a solution to equation (1.12) on the whole
exterior region H2(−a2)−K = {Φ(τ, s) ∈ H2(−a2) : τ > 0, s ∈ R}, with the obsta-
cle K = {Φ(τ, s) ∈ H2(−a2) : τ 6 0, s ∈ R}. Since H2(−a2) − K = Φ

(

(0,∞) × R
)

is clearly simply-connected, there exists a globally defined smooth function P

on H
2(−a2) − K which satisfies equation 1.12 on H

2(−a2) − K if and only if
u = −Y (τ) 1

cosh(aτ)
∂
∂s

satisfies the following vorticity equation on H2(−a2) − K.

(7.27) d
{

ν
(

(−△)u∗ − 2Ric(u∗)
)

+ ∇uu∗
}

= 0,
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which, in accordance with (7.19) and (7.20), is equivalent to the following third-
order O.D.E. with real-analytic coefficients in the variable τ ∈ R.

0 = Y ′′′(τ) cosh(aτ) + 2a sinh(aτ)Y ′′(τ)

−
a2 sinh2(aτ)

cosh(aτ)
Y ′(τ) − a3 sinh(aτ)

(

2 +
1

cosh2(aτ)

)

Y (τ).
(7.28)

In other words, u = −Y (τ) 1
cosh(aτ)

∂
∂s

will satisfy equation (1.12) on the simply-

connected region H2(−a2)−K with some globally defined pressure P on H2(−a2)−
K if and only if the smooth function Y ∈ C∞

(

[0,∞)
)

is a solution to the third-
order ODE (7.28). However, in accordance with the basic existence theorem in
the theory of linear O.D.E. (i.e. Theorem 3.3), we deduce that for any prescribed
positive constants α1 > 0, and α2 > 0, there exists a unique smooth solution
Y ∈ C∞

(

[0,∞)
)

to (7.28), which satisfies the initial values Y (0) = 0, Y ′(0) = α1,
and Y ′′(0) = −α2. Since the coefficients in the third-order O.D.E. (7.28) are all
real analytic on R, it turns out that such a unique solution Y ∈ C∞

(

[0,∞)
)

to
(7.28) must itself also be real-analytic on [0,∞). With such a real-analytic solution
Y to (7.28) to be available to us, we can now conclude that: for any given α1 > 0,
and α2 > 0, the real-analytic solution Y : [0,∞) → R to (7.28), satisfying the
initial values Y (0) = 0, Y ′(0) = α1, Y ′′(0) = −α2, is the one and only one smooth
function on [0,∞) for which the velocity field u = −Y (τ) 1

cosh(aτ)
∂
∂s

will satisfy

equation (1.12) (with some globally defined pressure function P ) on the simply-
connected open region H2(−a2) − K = Φ

(

(0,∞) × R
)

. So, we are done in proving
Assertion II of Theorem 1.10.
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