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Abstract. We study the time of existence of the solutions of the following
Schrödinger equation

iψt = (−∆)sψ + f(|ψ|2)ψ, x ∈ S
d , or x ∈ T

d

where (−∆)s stands for the spectrally defined fractional Laplacian with s >
1/2 and f a smooth function. We prove an almost global existence result for
almost all s > 1/2.
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1. Introduction and result

We consider the equation

(1) iψt = (−∆)sψ + f(|ψ|2)ψ, x ∈ S
d or x ∈ T

d ,

where (−∆)s is the spectrally defined fractional Laplacian, i.e. the s-th power of
the Laplace-Beltrami operator −∆ and f a function of class C∞ in a neighborhood
of 0.

We will study such an equation in high regularity Sobolev spaces. We denote
by Hr the Sobolev space of the L2 functions which admit r weak derivatives which
are square integrable. We will endow it with the norm

(2) ‖ψ‖2
Hr :=

∫

[

|ψ(x)|2 + ψ̄(x)(−∆)rψ(x)
]

dx .
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Our main result is the following theorem.

Theorem 1.1. Fix K ≥ 1, then there exists a set S ⊂ (1/2,+∞), having zero
measure, such that, for any s ∈ (1/2,+∞) − S there exists a positive rK and for
any r > rK there exist ǫr,K , Tr,K with the following property: if the initial datum
ψ0 fulfills

(3) ǫ := ‖ψ0‖Hr < ǫr,K ,

then one has

(4) ‖ψ(t)‖Hr < 2ǫ , ∀ |t| ≤
Tr,K

ǫK
.

We remark that our method is unable to deal with s ∈ (0, 1/2), due to the
fact that the growth of the frequencies is too slow and thus the differences between
couple of frequencies can accumulate on open sets.

The theorem is an application of Theorem 4.3 (and Proposition 4.1) of [Bam08],
which in turn is based on the Birkhoff normal form theory developed in [Bam03,

BG06, BDGS07, Gré07, Bam08]. Some care is needed in order to apply such
a theory, because in our case one of the frequencies vanishes and thus, a priori,
the normal form does not allow to control the motion of the corresponding mode.
Furthermore, one has to check that the frequencies fulfill the strong nonresonance
condition introduced in those papers. The first problem is solved exploiting the
Gauge invariance of the equation (more or less as in [BS07]), the second one by a
variant of the method used in [Bam03] for the wave equation.

We recall that such a theory has been recently extended by Delort to some
quasilinear equations [Del12, Del11], however we did not investigate the applica-
bility of his method to the present case.

Concerning existence of the dynamics of the fractional Schrödinger equation,
local existence of smooth solution is trivial. On the contrary, as far as the dimension
is larger then 1, very little is known on the time of existence of solutions, indeed,
to the knowledge of the authors, the only existing results are those of [GW] in R

d,
where dispersion is exploited in order to prove global-wellposedness and scattering
for small data. On the contrary nothing is known on compact manifold, where such
a mechanism clearly fails.

2. Proof of Theorem 1.1

To be determined we focus on the case of the sphere which is slightly more
difficult. The case of tori is almost identical.

We expand ψ in spherical harmonics

ψ =
∑

j,k

ξjkYjk(x)

and
ψ =

∑

j,k

ηjkYjk(x)

where Yjk are the spherical harmonics.
The Hamiltonian writes

(5) H(ξ, η) =
∑

j≥0

ωj

∑

k

ξjkηjk +Hp(ξ, η)
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where ωj = (j(j+ d− 1))s and Hp has a zero of order 3 at the origin. Then eq. (1)
is equivalent to the Hamilton equations

(6) ξ̇jk = −i
∂H

∂ηjk

, η̇jk = i
∂H

∂ξjk

.

We will also use the Poisson brackets of two functions F,G on the phase space,
which are defined by

(7) {F ;G} := i
∑

jk

[

∂F

∂ηjk

∂G

∂ξjk

−
∂F

∂ξjk

∂G

∂ηjk

]

.

The theory developed in [DS04, Bam03, BG06, BDGS07, Gré07, Bam08]
applies to Hamiltonians of the form (5) in which the nonlinear part belongs to a
suitable class (called functions with localized coefficients in [Bam08]). It was
proved in [Bam08] that in our case the nonlinearity belongs to such a class, so we
refer to that paper for the proof and the precise definition of such a property.

We come to the nonresonance property of the frequencies.

Definition 2.1. Fix K ≥ 3, then the frequencies (ω1, ..., ω∞) are said to fulfill
the property (K-NR) if there exist γ > 0, and α ∈ R such that for any N large
enough one has

∣

∣

∣

∣

∣

∣

∑

j≥1

ωjLj

∣

∣

∣

∣

∣

∣

≥
γ

Nα
,(8)

for any L ∈ Z
∞, fulfilling 0 6= |L| :=

∑

j |Lj | ≤ K + 2,
∑

j>N |Lj| ≤ 2.

We are going to prove that for almost all s in the considered interval such a
property is fulfilled.

Theorem 2.1. There exists a zero measure set S ⊂ (1/2,+∞) such that if
s ∈ (1/2,+∞)− S then the frequencies

(ω1, ..., ω∞, ...)

fulfill the property (K −NR)

The proof of such a theorem is a straightforward generalization of the proof of
Theorem 4.4 of [Bam08]. The only difference is given by the estimate from below
of the determinant of the matrix formed by the vectors of the derivatives of the
frequencies with respect to s. Such an estimate is done explicitly in the following
Lemma 2.2.

We also remark that the condition s > 1/2 is needed in order to pass from
Lemma 6.8 of [Bam08] to Lemma 6.9 of the same paper, namely for passing from
the estimate of linear combinations of frequencies with index smaller then a fixed
K to linear combinations involving also a couple of arbitrary large indexes (as in
the second Melnikov condition of KAM theory).

Lemma 2.2. For any κ ≤ K, consider κ indexes 1 ≤ j1 ≤ · ≤ jκ ≤ K; consider
the matrix D given by











ωj1 · · · ωjκ

dωj1/ds · · · dωjκ
/ds

...
...

...
dκ−1ωj1/ds

κ−1 · · · dκ−1ωjκ
/dsκ−1
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Denote by D its determinant. Then there exists C > 0 s.t. the following estimate
holds

|D| ≥
C

Kκ2 .

Proof. Denote

λj = j(j + d− 1)

then one has
dkωj

dsk
= (lnλj)

kωj .

Therefore

D = ωj1 · · · ωjκ

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
xj1 · · · xjκ

...
...

...
xκ−1

j1
· · · xκ−1

jκ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ωj1 · · · ωjκ

∏

1≤l<k≤κ

(xjk
− xjl

) = ωj1 · · · ωjκ

∏

1≤l<k≤κ

ln
λjk

λjl

where xj := lnλj . To fix ideas take jk > jl, and let δ = λjk
− λjl

= (jk − jl)(jk +
jl + d− 1) > d. Then

ln
λjk

λjl

= ln(1 +
δ

λjl

) ≥ ln(1 +
d

λjl

) ≥
C

j2l
.

Thus
∏

1≤ℓ<k≤κ

ln
λjk

λjl

≥
∏ C

K2
≥

C

K2κ2 .

Since ωj ≥ 1 for all j the thesis follows. �

Thus, proceeding as in [Bam08] one gets that the frequencies fulfill the nonres-
onance condition and Theorem 4.15 of [Bam08] applies. Such a theorem ensures
that, defining

(9) Ij :=
∑

l

ξjlηjl ≡
∑

l

|ξjl|
2
,

the following holds.

Theorem 2.3. (Theorem 4.15 of [Bam08])Fix K ≥ 1, then there exists a

finite rK a neighborhood U
(K)
rK of the origin in HrK and a canonical transformation

TK : U
(K)
rK → HrK which puts the system in normal form up to order K+3, namely

s.t.

(10) H(K) := H ◦ TK = H0 + Z(K) + R(K)

where Z(K) and R(K) have smooth vector field

(i) Z(K) is a polynomial of degree K+2 which Poisson commutes with Ij for
all j 6= 0 (but not necessarily with I0;

(ii) R(K) has a small vector field, i.e.

(11) ‖XR(K)(ψ)‖HrK ≤ C ‖ψ‖
K+2
HrK , ∀ψ ∈ U (K)

rK
;
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(iii) one has

(12) ‖ψ − TK(ψ)‖HrK
≤ C ‖ψ‖

2
HrK

, ∀ψ ∈ U (K)
rK

.

An inequality identical to (12) is fulfilled by the inverse transformation
T −1

K .

(iv) For any r ≥ rK there exists a subset U
(K)
r ⊂ U

(K)
rK open in Hr such that

the restriction of the canonical transformation to U
(K)
r is analytic also as

a map from Hr → Hr and the inequalities (11) and (12) hold with r in
place of rK .

This theorem however is not enough to control the solution since as emphasized
at point (i), due to the fact that the zero mode has zero frequency, I0 ≡ ξ0η0 does
not commute with Z(K) and thus its modulus can a priori grow in an unbounded
way. However, as we are going to show in a while, this cannot happen due to the
Gauge invariance.

Remark 2.4. Due to Gauge invariance, the L2 norm is preserved for the orig-
inal nonlinear dynamics and since −∆ is self-adjoint on L2 one has

Γ(ξ, η) :=

∫

Sd

ψψ dx =
∑

jk

ηjkξjk =
∑

j,k

|ξjk|
2.

Remark 2.5. Expanding Hp is Taylor series one has

Hp(ξ, η) =
∑

J,L

HJLη
LξJ , ηL :=

∏

jk

η
Ljk

jk

and similarly for ξJ . Due to Gauge invariance HJL 6= 0 implies
{

Γ, ξLηJ
}

= i
∑

jk

(Ljk − Jjk)ξLηJ = 0 ,

which, in turn implies

(13)
∑

jk

(Ljk − Jjk) = 0

End of the proof of Theorem 1.1. The Gauge invariance is conserved after the
Birkhoff normal form transformation (see e.g. [BS07]). It follows that any mono-

mial ξLηJ which is present in the normal form Z(K) fulfills the property

(13). However, if a monomial is present in the normal form it must also commute
with all the Ij , j 6= 0. It follows that the indexes must fulfill

(14)
∑

l

(Ljk − Jjk) = 0 , ∀j 6= 0 ,

which together with (13) implies L0−J0 = 0, which in turn implies that
{

Z(K), I0
}

=
0. Then Theorem 1.1 follows exactly in the same way in which Proposition 4.1 of
[Bam08] follows from Theorem 4.3 of that paper. �
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