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Blow up on a curve for a nonlinear Schrödinger equation on

Riemannian surfaces
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Abstract. We consider the focusing quintic nonlinear Schrödinger equation
posed on a rotationally symmetric surface, typically the sphere S2 or the two
dimensional hyperbolic space H2. We prove the existence and the stability of
solutions blowing up on a suitable curve with the log log speed. The Euclidean
case is handled in [25] and our result shows that the log log rate persists in
other geometries with the assumption of a radial symmetry of the manifold.
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1. Introduction

We are interested in the focusing nonlinear Schrödinger equation

(1) i∂tu+ ∆u = −|u|4u, t ≥ 0, x ∈M,
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posed on a complete Riemannian surface M . This equation is invariant under some
transformations; if u is a solution of (1) then

phase transformation: (t, x) 7→ eiθu(t, x) is also a solution for every θ ∈ R,

translation in time: (t, x) 7→ u(t+ t0, x) is also a solution for every t0 ≥ 0,

isometry: (t, x) 7→ u(t, R(x)) is also a solution for every isometry R of M .

The equation (1) has some conserved quantities. The more useful are the mass
and the energy and are consequences of phase and translation in time invariance:
for every t,

M(u(t)) :=

∫

|u(t)|2 = M(u(0)),

E(u(t)) :=
1

2

∫

|∇u(t)|2 − 1

6

∫

|u(t)|6 = E(u(0)).

In this work, we will not use the invariance by isometries which will be useless
because of the radial symmetry that we will impose to our solutions.

Here, we investigate the problem of existence of blow up solutions for the equa-
tion (1) and in particular the location of singular points and the associated blow
up rate in H1.

Let us start by recalling some known facts in the Euclidean setting. In the case
M = Rd, for NLS with a L2-critical or L2-supercritical nonlinearity:

(2) i∂tu+ ∆u = −|u|p−1u, t ≥ 0, x ∈ R
d, p ∈

[

1 +
4

d
, 1 +

4

max(d− 2, 0)

)

,

we may prove existence of blow up solutions using the sign of the Virial identity: if
u0 is an initial data with negative energy and finite variance, then the corresponding
solution blows up in finite time. However, this argument does not describe exactly
what really happens at the blow up time; in particular the location of singular
points and estimate on the blow up rate are unknown. If we are interested in the
blow up rate, several regimes are known at this time. The first one in the L2-critical
case (p = 1 + 4/d) is characterized by the behavior

‖∇u(t)‖L2(Rn) ∼
1

(T − t)
, as t→ T,

and is known to be unstable by perturbation of the initial data. It is the easiest
to get since due to an additional symmetry in the case p = 1 + 4/d, the pseudo-
conformal transformation, we may explicitly give a family of solution having this
behavior. Unlike the first one, the second regime is stable, and has the blow up
rate:

(3) ‖∇u(t)‖L2(Rn) ∼
(

log | log(T − t)|
T − t

)
1
2

, as t → T.

It appears in the L2-critical setting p = 1 + 4/d for any d [16], [19] and also in
the L2-supercritical case d = 2, p = 5 [25]. Existence of solutions with this log log
behavior for p = 1 + 4/d was first predicted by numerics and heuristic arguments
[7], [13], [14] and proved rigorously by Perelman [22] with blow up in one point
and stability in a subspace of H1. Then Merle and Raphaël proved that this regime
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is the only one for initial data with negative energy and mass close to the mass of
the ground state, thus obtaining a stability in H1. They successively proved a non
sharp upper bound on the blow up rate [18] then the log log upper bound [16]
and a convergence result on the rest in the decomposition of the solution [17] and
then the log log lower bound [19]. As said before, these result allow to construct
solutions with log log speed for an L2-supercritical equation, and with an infinite
set of singularities. Indeed, in [25], it is shown that equation

i∂u+ ∆u = −|u|4u, t ≥ 0, x ∈ R
2.

is essentially driven for radial solutions by the one dimensionnal equation ((2) with
p = 5 and d = 1) for which we may apply the L2-critical theory and thus gives exis-
tence of solutions whose mass concentrates on a circle. In [10], using similar tech-
niques, the authors show the blow up on a 2-codimensional submanifold for the cu-
bic NLS in R3 (p = 3, d = 3). More recently [20], [21], two other regimes appeared
for slightly L2-supercritical nonlinearities (1 + 4/d < p < (1 + 4/d)(1 + ε), d ≤ 5).
The first one gives existence of solutions with self-similar behavior proving that
the lower bound on the blow up speed induced by the scaling transformation is
attained:

‖∇u(t)‖L2(Rd) ∼
C

(T − t)α
, α =

1

2
− d

4
+

1

p− 1
.

The second regime concerns the upper bound on the rate and is given by the
equivalent

‖∇u(t)‖L2(Rd) ∼
C

(T − t)β
, β =

(p− 1)(d− 1)

(p− 1)(d− 1) + 5 − p
.

If the equation is posed on a general manifold, with or without boundary, the
situation is much less clear. For instance, the classical Virial argument does not
work in all generality. However, it may be adapted in some particular manifolds like
a bounded domain [1], a star shaped domain [12], the two dimensional sphere [15]
or the hyperbolic space [2]. In a flat geometry, typically a domain of Rn or a torus,
we may localize the Euclidean constructions and prove a blow up result in the 1/t
and log log regime [4], [24] for the L2-critical equation. In a non flat geometry, the
only result concerning the blow up speed we know occurs in the setting of radial
and non compact manifolds with 1/t blow up speed ([3]); the compactness seeming
to be an obstruction in this regime in particular due to bad dispersives properties.

Here, we ask the question to know if solutions blowing up in a curve with the
log log rate (3) remains in non flat geometries. The localization of the Euclidean
construction in the case of a domain [24] seems to confirm the idea of geometric
stability of the log log rate. To prove our result, that is existence of a solution
in the log log regime with accumulation of mass on a curve of the manifold, we
will follow the approach used to treat the Euclidean case [25] by imposing a radial
symmetry on the curve and the solution. Thus, our geometrical setting will be
that of rotationally symmetric surfaces where we will prove the blow up on a one
codimensional submanifold.

From the work [5], Strichartz estimates with loss of derivatives hold on general
compact manifolds without assumption of symmetry from what we may prove a
local well posedness result in H1 for (1). Remark that in the noncompact case but
with the radial symmetry condition of the manifold, methods developped in [5] still
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apply and this handle the local theory in the energy space for (1). Thus, for every
u0 ∈ H1(M), there exists a maximal existence time T (u0) > 0 for the solution of
(1) with initial data u0. Moreover, we have the criteria: if an initial data u0 is such
that T (u0) <∞ then

‖∇u(t)‖L2(M) → ∞ as t→ T (u0).

For the sake of clarity, we now give a simplified but non complete statement of
our result, we refer to Theorem 2 for the detailed version.

Theorem 1. Let (M, g) be a rotationally symmetric surface satisfying a suit-
able growth condition in the non-compact case (see (5) below). Then there exists
an open set of initial data P ⊂ {u0 ∈ H2(M), u0 radial } such that if u0 ∈ P, then
the corresponding solution blows up on a curve of M with the log log blow up rate:
there exits T (u0) <∞ and C(u0) > 0 such that for all t ∈ [0, T (u0)),

1

C(u0)

(

log | log(T − t)|
T − t

)1/2

≤ ‖∇u(t)‖L2(M) ≤ C(u0)

(

log | log(T − t)|
T − t

)1/2

.

Let us give some possible extensions of the result.

Remark 1. A natural question is whether we can find other examples of two
dimensional manifolds with blow up on a curve. In some particular cases, it is easy
to construct and requires no other result than the L2-critical log log theorem in 1D.
Adapting the proof in [24] where the case of a boundary is handled, we may prove a
similar result (i.e. blow up in one point with log log rate) in the case M = S1. This
allows to prove the same result as Theorem 1 for M = R × S1 and M = S1 × S1.
Indeed, let v be a solution of the one dimensional quintic equation in S1 blowing
up in a point with log log rate and define u(t, x, y) = v(t, y). Then v is a solution
of the two dimensional quintic equation in M and blows up in a circle in the log
log regime.

Remark 2. Note that ifN = Mk withM rotationally symmetric endowed with
the product metric, we may construct directly a solution on N with the log log rate.
Just take a solution u on M of (1) given by Theorem 1 and set v(t, x1, . . . , xk) =
u(t, x1).

Remark 3. To avoid technicalities, we restrict ourselves to a two dimensional
manifold but our result is still true for any dimensions d ≥ 3 with the same method
but in this case the stability result is weaker since it occurs in Hd

rad instead of H2
rad.

Remark 4. Note that in this paper, manifolds we have considered are without
boundary. In the Euclidean case, it has been proved in [24] that the presence of a
boundary does not change the result of blow up in one point (with log log speed)
that we know in the Rn case. We may adapt this construction to prove a similar
result to Theorem 1 for instance for a disk in R2 with Dirichlet boundary conditions
and blow up on a circle.

2. Preliminaries

2.1. Geometrical setting. Let us now give the precise assumption on M
and what we call a rotationnaly symmetric manifold. We refer to [8] and [23] for
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proofs of the below results. In a first time, assume that (M, g) is either (R2, g) or
(S2, g) where g is a metric on M such that in polar coordonates:

(4) g = dr2 + h2(r)gS1 , r ∈ (0, ρ),

and

ρ =

{

π if M = S2,
+∞ if M = R2.

where h : [0, ρ] → R+ is a smooth function depending only on r and satisfying
h(0) = h(ρ) = 0 and h(r) > 0 if r ∈ (0, ρ). The smoothness of the metric at points
r = 0 and eventually r = ρ imposes the following conditions on h:

h(2k)(0) = h(2k)(ρ) = 0, k ≥ 0,

and

h′(0) = 1, h′(ρ) = −1.

Note that if ρ = ∞, all these conditions only concern the points r = 0 and in
particular h does not need to vanish at infinity. Recall that polar coordonates on
the sphere are defined for a point u = (x, y, z) ∈ S2 \ {(0, 0,−1), (0, 0, 1)} by

r = d((0, 0,−1), u), θ = arg((x, y)) ∈ S1.

We will call rotationally symmetric surface all surface isometric to one of these two
prototypes. We will make the assumption

(5) h′ ≤ Ch

for some C > 0. This condition on the metric essentially says that the volume of a
ball of radius r cannot grow more than exponentially in r. If M is compact, this
assertion is automatically satisfied. In the general case, it is not restrictive and
includes most of the usual cases and in particular the hyperbolic space.

Independently of the radial structure ofM , we may define the Laplace-Beltrami
operator as follow. For a function f : M → C, we define ∇f as the unique vector
field satisfying:

∀(x, h) ∈ TM, df(x)(h) = (∇f(x), h).

In local charts, ∇f writes:

(∇f(x))j =
∑

i

gij∂jf

where gij are the coefficients of g−1. The divergence of a vector field X of M is
defined for a volume form on M (that we assume oriented):

LXω = (divX)ω,

where LXω is the Lie derivative of ω along X . In local coordonates

divX = (detg)−
1
2

∑

j

∂j

(

(detg)
1
2Xj

)

.

The canonical measure on M writes in local charts

(6) dx :=
√

|detg|dx1dx2 = h(r)drdθ.

The Laplace operator is defined on smooth functions by

∆ = div ◦ ∇ = (detg)−
1
2

∑

i,j

∂i

(

gij(detg)
1
2 ∂jf

)
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that with the coordonates (r, θ) becomes

∆ = ∂2
rf +

h′

h
∂rf +

1

h2
∂2

θf.

Then one extends ∆ by duality to the space of distributions on M .
Let us give some examples of such manifolds. The simplest is the case of the

Euclidean space R2. Another example is given by compact revolution surfaces. It
consists in taking a suitable pattern and applying it a rotation. More precisely,
let c = (r, z) : [0, 1] → R+∗ × R a curve parametrized by arc length and such that
c([0, 1]) is a submanifold of R2. Then the set

{(r(t)cosθ, r(t)sinθ, z(t)), t ∈ [0, 1], θ ∈ R}
is a rotationally symmetric manifold. This includes the case of the 2 sphere. An
interresting example is that of the hyperbolic space H2:

H2 = {(x, y, z) ∈ R
3, x2 + y2 = z2 − 1, z > 0}

with the metric g = dx2 + dy2 − dz2. One may check that this example fits in our
framework with h(r) = sinh(r) and ρ = ∞.

2.2. A radial Sobolev embedding. The radial symmetry will be very useful
to enable us to work as if we were in a one dimensional space. In particular, Sobolev
embeddings are better than the usual two dimensional ones provided that we stay
away from poles ρ = 0 and eventually ρ = ∞ and that is what claim the following
proposition.

Proposition 1. Let (M, g) be a rotationally symmetric manifold satisfying the
growth condition (5)and Ω an open radial subset of M that does not contain pole
i.e. of the form {x ∈ M, r(x) ∈ (η, a − η)} for some η > 0. Let s ∈ (0, 1/2) and
p = 2

1−2s . Then we have the Sobolev type inequality; for all f ∈ Hs
r (M) 1 for the

definition satisfying Suppf ⊂ Ω,

‖f‖Lp(M) ≤ C‖f‖Hs(M).

Proof. The expression (6) of the measure dx on M , the control h
1
p ≤ h

1
2 and

the one dimensional Sobolev embedding Hs →֒ Lp allows us to write for f ∈ Hs(M)
with Suppf ⊂ Ω,

‖f‖p
Lp(dx) = C‖fh 1

p ‖p
Lp(dr) ≤ C‖fh 1

2 ‖p
Hs(dr).

Next, we show that for all s ∈ [0, 1], there exists a constant C > 0 such that for all
f ,

(7) ‖h 1
2 f‖Hs(dr) ≤ C‖f‖Hs(dx).

We only need to show (7) for s = 0 and s = 1. Indeed, by complex interpolation,
the map

Ts : Hs(dx) → Hs(dr)

f → h
1
2 f

is well defined and continuous for all s ∈ [0, 1] if and only if it is continuous for
s = 0 and s = 1. For s = 0, (7) is straightforward using the expression of the

1see section 3 for the definition of Hs

r (M)
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measure on M in radial coordinates. Let us show (7) for s = 1. We write with the
assumption h′ ≤ Ch,

‖∂r(h
1
2 f)‖L2(dr) = ‖1

2
h−

1
2 ∂rhf + h

1
2 ∂rf‖L2(dr)

≤ C‖h 1
2 f‖L2(dr) + C‖h 1

2 ∂rf‖L2(dr)

≤ C‖f‖L2(dx) + C‖∇f‖L2(dx) = C‖f‖H1(dx).

�

2.3. Self-similar profiles and spectral property. Before stating our re-
sult, we mention some notations and known results. In the whole paper, we will
often use the one dimensional differential operator

Λ =
1

2
+ y∂y,

which is essentially the generator of the scaling transformation for the quintic one
dimensional NLS. For η > 0, b 6= 0 and small, we note Rb =

√
1 − η 2

|b| and R−
b =

(1 − η) 2
|b| . The derivation of the exact log log law relies on the introduction of

self-similar profiles which show up when looking for self similar solutions. Let us
denote by Q the nonlinear ground state of the one dimensional focusing L2-critical
Schrödinger equation i.e. the unique positive, radial, smooth and exponentially
decaying solution to

−∂2
yQ+Q = Q5, y ∈ R.

In our setting, we know an explicit expression of Q:

Q(y) =
31/4

√

cosh(2y)
.

Following [16], let us now introduce modified ground states, approximations of
Q which allow to deduce the exact log log behavior.

Proposition 2 (Self similar profiles, [16]). There exist C > 0, η∗ > 0 such
that the following holds. For all 0 < η < η∗, there exists b∗(η) > 0 such that for all
|b| < b∗(η), there exists a unique radial solution Qb to











∂2
yQb −Qb + ibΛQb +Qb|Qb|4 = 0,

Pb = Qbe
i b|y|2

4 > 0 if y ∈ [−Rb, Rb],
Qb(Rb) = 0.

Moreover (see [11]), Qb is in Ḣ1 but not in L2 since we have the behaviour at
infinity

|Qb(y)| ≈
C(b)

|y| 12
as |y| → ∞.

Thus, we need to introduce a cut-off to remove this divergence. For b 6= 0, let φb

be a radial cut-off satisfying














φb(y) = 0 if |y| ≥ Rb,
φb(y) = 1 if |y| ≤ R−

b ,
0 ≤ φb ≤ 1,
‖∂yφb‖L∞ + ‖∆φb‖L∞ → 0 as b→ 0,

and Q̃b the new profile defined by Q̃b = Qbφb. We then have the following property.
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Proposition 3 ([16]). If we note Q̃b = Qbφb, then Q̃b is a solution to

∂2
yQ̃b − Q̃b + ibΛQ̃b + Q̃b|Q̃b|4 = −Ψb,

for some remainder Ψb:

Ψb = −2∂yφb∂yQb −Qbφ
′′
b − ibyQb∂yφb − (φ5

b − φb)Qb|Qb|5.
Moreover, we have:

closeness of Q̃b to Q: the function Q̃b(y) is derivable with respect to b for all y ∈ R

and there exists C > 0 such that

(8) ‖e(1−Cη) π
4 |y|(Q̃b −Q)‖C3 + ‖e(1−Cη) π

4 |y|

(

∂

∂b
Q̃b + i

|y|2
4
Q

)

‖C3 → 0 as b→ 0,

energy estimate:

(9) |E(Q̃b)| ≤ e(1+Cη) π
|b| ,

zero momentum:

(10) Im

∫

∂yQ̃bQ̃b = 0,

supercritical mass:

(11) d0 =
d

d(b2)

(∫

|Q̃b|2
)

|b2=0

∈ (0,∞).

The following lemma introduce the radiation ζb which enable to describe the
refined behavior of the rest ε in the decomposition (21).

Lemma 1. There exists C > 0, η∗ > 0 such that for η ∈ (0, η∗), there exists
b∗(η) > 0 such that for b ∈ (0, b∗(η)), there exists a unique radial solution ζb ∈
Ḣ1(R) to

∂2
yζb − ζb + ibΛζb = Ψb.

Moreover, if we note

(12) Γb = lim
|y|→∞

|y||ζb(y)|2,

then Γb is finite, strictly positive and exponentially decreasing in b: there exists
D > 0 such that

(13) Γb ∼
D

b
e−

π
b as b→ 0;

and we also have an estimate of the Ḣ1 norm of ζb:

(14)

∫

|∂yζb|2 ≤ Γ1−Cη
b .

Proof. We set Z(r) = ζb(r)e
i br2

4 for r ≥ 0 so that the equation in term of Z
is now

(15) Z ′′(r) − Z(r) +
b2r2

4
Z(r) = Ψ̂b(r), r ≥ 0,

where Ψ̂b(r) = Ψb(r)e
i br2

4 with the conditions Z ′(0) = 0 and Z(r)e−i br2

4 is in Ḣ1.
Let us now focus on the homogeneous version of (15):

(16) Z ′′(r) − Z(r) +
b2r2

4
Z(r) = 0.
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By a succession of changes of variables, we will show that this equation will be
reduced to a semiclassical equation in b with one turning point 2/b. Thus, the
problem enters in the framework of semiclassical methods but with a turning point
so that the usual WKB ansatz will be no longer valid (near 2/b).

After the change of variable x = 2−br, y(x) = Z(r), the equation is transformed
into

b2y′′(x) − xh2(x)y(x) = 0, x ∈ (−∞, 2],

where h is defined by

h(x) =

√

1 − x

4
.

We next apply the change of dependant and independant variables

s =











(

3
2

∫ x

0

√

|ξ|h(ξ)dξ
)

2
3

if x ∈ [0, 2]

−
(

− 3
2

∫ x

0

√

|ξ|h(ξ)dξ
)

2
3

if x ∈ (−∞, 0]
,

and w(s) = y(x)
√

s′(x) to the latter equation and this gives

b2
d2w

ds2
− sw(s) = b2g(s)w(s), s ∈ (−∞, s0]

where

s0 = s(2), g(s) =
s(3)(x)

2(s′(x))3
− 3(s′′(x))2

4(s′(x))4
.

Notice that we have the estimates on s for k ∈ {0, 1, 2, 3}:
|s(k)(x)| ∼ C|x| 43−k, as x→ −∞,

so that g decays like

g(s) ∼ C

s2
, as s→ −∞.

Finally the scaling s = b
2
3 t maps the latter equation onto a nonhomogeneous Airy

type equation:

(17) Y ′′(t) − tY (t) = b
4
3 g(b

2
3 t)Y (t), t ∈ (−∞, s0b

−2/3],

with Y (t) = w(s). Let us denote by Ai the solution of the Airy equation

Y ′′(t) − tY (t) = 0, t ∈ R,

with the following behavior at infinity:

Ai(t) ∼ 1√
π

1

t
1
4

exp

(

2

3
t

3
2

)

as t→ +∞,

Ai(t) ∼ i√
π

1

(−t) 1
4

exp

(

2i

3
(−t) 3

2

)

as t→ −∞.

Similar expansions hold for the derivatives of Ai. Note that with this choice, Ai
does not vanish on the real line (see [6] for details). Now we perform a fixed point
argument on the equation (17) to prove the existence of a solution near Ai. We are
looking for a solution of the equation (17) of the form Y (t) = Ai(t)(1 + R(t)) so
that R satisfies the integral formulation for t ∈ (−∞, s0b

−2/3]

(18) R(t) =

∫ t

−∞

Ai2(τ)(h0(τ) − h0(t))
(

b
4
3 g(b

2
3 τ)(1 +R(τ))

)

dτ,
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where

h0(τ) =

∫ ∞

τ

dα

Ai2(α)
.

We have that the source term

S(t) = b
4
3

∫ t

−∞

Ai2(τ)(h0(τ) − h0(t))g(b
2
3 τ)dτ

satisfies for b small and for all k ∈ {0, 1, 2}, t ∈ (−∞, s0b
−2/3],

|S(k)(t)| ≤ b1/6,

and for all t ∈ (−∞,−1],

|S(k)(t)| ≤ b1/6

|t|1/2
.

These estimates are consequences of the asymptotic behavior for t ≤ 0:

1

C

1

〈t〉1/4
≤ |Ai(t)| ≤ C

1

〈t〉1/4
, |h0(t)| ≤ C, |g(t)| ≤ C

〈t〉2 ,
|Ai′(t)|
|Ai(t)| ≤ C〈t〉1/2,

and for t ≥ 0,

|Ai2(t)h0(t)| ≤ C,

∫ t

0

|Ai2(τ)|dτ ≤ C|Ai2(t)|, 1 + t1/2

|Ai(t)2|

∫ t

0

|Ai(τ)2|
1 + τ1/2

dτ ≤ C,

|g(t)| ≤ C

〈t〉2 ,
|Ai′(t)|
|Ai(t)| ≤ C〈t〉1/2.

Indeed, for instance, for S(t), we may write for t ≤ 0:

|S(t)| ≤ Cb4/3

∫ t

−∞

|Ai2(τ)| dτ

1 + b2/3τ

≤ Cb4/3

∫ t

−∞

dτ

(1 +
√
τ)(1 + b2/3τ)

≤ Cb4/3

∫ t

−∞

dτ

1 + (b4/9τ)3/2

≤ C
b7/9

1 +
√

|t|
.

For t ≥ 0, we split the integral into two parts:

|S(t)| ≤ b4/3

∣

∣

∣

∣

∫ 0

−∞

Ai2(τ)(h0(τ) − h0(t))g(b
2/3τ)dτ

∣

∣

∣

∣

+b4/3

∣

∣

∣

∣

∫ t

0

Ai2(τ)(h0(τ) − h0(t))g(b
2/3τ)dτ

∣

∣

∣

∣

≤ A+B.

As for t ≤ 0, the A term is controlled using the behavior of Ai at −∞:

|A| ≤ Cb4/3

∫ 0

−∞

dτ

(1 +
√
τ)(1 + b2/3τ)

≤ b1/6.
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We bound B by B ≤ B1 +B2 and write for t ≥ 0 using estimates mentioned above:

B1 ≤ b4/3

∫ t

0

|Ai2(τ)||h0(τ)|
dτ

(1 + b2/3τ)3/2

≤ Cb4/3

∫ t

0

dτ

(1 + b2/3τ)3/2

≤ b1/6.

For the B2 term, we have:

B2 ≤ b4/3|h0(t)|
∫ t

0

|Ai2(τ)||g(b2/3τ)|dτ

≤ Cb4/3|h0(t)|
∫ t

0

|Ai2(τ)|dτ

≤ b1/6.

Summing the above estimates, we obtain the desired controls for S(t). The deriva-
tives of S are controlled in the same way. This suggests to perform the fixed point
in the metric space

E =
{

u ∈ C2(−∞, s0b
−2/3], ∀k ∈ {0, 1, 2}, ∀t ∈ (−∞, s0b

−2/3], |u(k)(t)| ≤ 2b1/6,

∀t ∈ (−∞,−1], |u(k)(t)| ≤ 2
b1/6

|t|1/2

}

,

with the natural distance

d(u, v) =

2
∑

k=0

(

sup
t≤s0b−2/3

(|u(k)(t) − v(k)(t)|) + sup
t≤−1

(

|t|1/2(|u(k)(t) − v(k)(t)|)
)

)

.

We set

Φ : R 7→
(

t 7→
∫ t

−∞

Ai(τ)(h0(τ) − h0(t))
(

b
4
3 g(b

4
3 τ)(1 +R(τ))

)

dτ

)

,

and remark that from the estimates on S(t), Φ maps E into itself and for b small
enough and u, v ∈ E,

d(Φ(u),Φ(v)) ≤ 1

2
d(u, v).

By the Banach fixed point theorem, we thus construct a solution of (17) writing
Y (t) = Ai(t)(1 +R(t)) with R ∈ E. In terms of variables r, Z, this gives a solution
of (15) which writes

(19) Z(r) =
1

√

s′(2 − br)
Ai

(

s(2 − br)

b2/3

)(

1 +R

(

s(2 − br)

b2/3

))

.

We obtain a fundamental system of solutions of (15) by adding the complex conju-
gate to the latter solution Z. Let us now define ζb. For this, we first introduce Z1

the solution satisfying Z1(0) = 1, Z ′
1(0) = 0. We set:

Z̃(r) =

(

∫ Rb

r

ZΨ̂b

Wr(Z,Z1)

)

Z1(r) +

(

∫ r

R−
b

Z1Ψ̂b

Wr(Z,Z1)

)

Z(r),

and check that ζb that we define as ζb(r) = Z̃(r)exp(−ibr2/4) satifies the conclusion
of the lemma. Note that Wr(Z,Z1) is the Wronskian of Z and Z1 and is constant
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in r. Let us verify that ζb satisfies the boundary conditions ζ′b(0) = 0, ζb ∈ Ḣ1 or

equivalently Z̃ ′(0) = 0, Z̃(r)exp(−ibr2/4) ∈ Ḣ1. Since Ψ̂b is supported in [R−
b , Rb],

for r ≥ Rb,

Z̃(r) = Z(r)

∫ Rb

R−
b

Z1Ψ̂b

Wr(Z,Z1)
.

From the asymptotic properties of Ai, there exists a real numberD 6= 0 independant
of b such that

|Z(r)|2 ∼ D

b
2
3 r
, as r → +∞,

so that by setting

Γb =
D

|Wr(Z,Z1)|2b
2
3

∣

∣

∣

∣

∣

∫ Rb

R−
b

Z1Ψ̂b

∣

∣

∣

∣

∣

2

,

we get

lim
|y|→∞

|y||ζb(y)|2 = lim
r→∞

r|Z̃(r)|2 = Γb.

Let us prove (13). We evaluate the Wronskian of Z,Z1 at 0 and remark that

2

3
(s(2))

3
2 =

π

2
,

to first deduce the equivalent for some C > 0,

(20) Z ′(0) ∼ Cb1/6e
π
2b ,

and then
|Wr(Z,Z1)| ∼ Cb

1
6 e

π
2b .

To estimate the inner product between Z1 and Ψ̂b, let us introduce the solution J
to J ′′ − J = 0, J(0) = 1, J ′(0) = 0 i.e. J(r) = cosh(r) which is formally the limit of

Z1 when b goes to 0. Using the expression of Ψ̃b and an integration by parts, the
quantity

∣

∣

∣

∣

∣

∫ Rb

Rb−

Z1Ψ̂b

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Z1

(

P̃ ′′
b − P̃b +

b2r2

4
P̃b − P̃ 5

b

)∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Z1P̃
5
b

∣

∣

∣

∣

converges by Lebesgue theorem to |(J,Q5)| > 0 since Q, J > 0 and this shows (13).
Now, let us prove the last point:

∫

∣

∣

∣∂r

(

Z̃(r)e−
ibr2

4

)∣

∣

∣

2

dr ≤ Γ1−Cη
b .

We write

∂r

(

Z̃(r)e−i br2

4

)

=

(

∫ Rb

r

ZΨ̂b

Wr(Z,Z1)

)

∂r

(

Z1e
−i br2

4

)

+

(

∫ r

R−
b

Z1Ψ̂b

Wr(Z,Z1)

)

∂r

(

Ze−i br2

4

)

= A(r) +B(r).

At this point, we need bounds on Z1 before the turning point. But Z1 may be
written as Z1 = 2Re(αZ) with

α =
Z ′(0)

Wr(Z,Z)
.
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Using the behavior of Ai and Ai′ at −∞, we get

Wr(Z,Z) = lim
r→+∞

Wr(Z,Z)(r)

= ib1/3 lim
r→+∞

Im Ai

(

s(2 − br)

b2/3

)

Ai′
(

s(2 − br)

b2/3

)

= iDb1/3,

for some real constant D 6= 0. This together with (20) and (19) allow us to deduce
for r ≤ 2/b:

|Z1(r)| + |Z ′
1(r)| + |Z ′′

1 (r)| ≤ Ce
π
2b (1+Cη).

These estimates with |Ψ̂b| ≤ exp(−(1 − Cη)π/2b) provide
∫

|A(r)|2dr ≤ e−
2π
b (1−Cη)

(

∫ Rb

0

|∂rZ1|2 +

∫

r≤Rb

b2r2|Z1|2
)

≤ e−
2π
b (1−Cη)

(

4

b2
e

π
b (1+Cη) + 4e

π
b (1+Cη)

)

≤ Γ1−Cη
b .

On the other hand,
∫

|B(r)|2dr ≤ e−
π
b (1−Cη)

∫ ∞

R−
b

∣

∣

∣

∣

∂rZ − ibr

2
Z

∣

∣

∣

∣

2

Computing with (19), we show that the above integral is finite with
∣

∣

∣

∣

∂rZ(r) − ibr

2
Z(r)

∣

∣

∣

∣

≤ C
bα

r3/2

for some α ∈ R so that we obtain
∫

|B(r)|2 ≤ Γ1−Cη
b

and this proves (14). For the uniqueness of ζb, taking a generic solution Ẑ of (15),
writing down the variation of constants formula for this solution and imposing the
boundary conditions Ẑ ′(0) = 0, Ẑ(r)exp(−ibr2/4) ∈ Ḣ1, we easily obtain Ẑ = Z̃.

�

Remark 5. In our case, we will only need the one dimensional version of
the lemma since from the assumption of radial symmetry, the problem will be
reduced to a one dimensional equation. For studying problems without assumption
of symmetry, we need to prove a multidimensional result; this is sketched in [17].
Here, we have only detailed the one dimensional result. Note that if the dimension
d is equal to 2, the equation

Z ′′(r) +
d− 1

r
Z ′(r) − Z(r) +

b2r2

4
Z(r) = 0,

which is the d-dimensional analogue of (16), has two turning points of order 1/2
and 2/b when b tends to 0. If the dimension is bigger than 2, the equation is similar
to the one dimensional one with only one turning point of order 2/b. These facts
may be seen by looking at the equation for W (r) = r(d−1)/2Z(r):

W ′′(r) + q(r)W (r) = 0, where q(r) =
b2r2

4
− 1 +

(

d− 1

2
− (d− 1)2

4

)

1

r2
,

and the study of the sign and vanishing points of q(r).
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Proposition 4 (Spectral property, [18] ). Let L1 and L2 be the one dimen-
sional Schrödinger operators defined by

L1 = −∂2
y + 10yQ3∂yQ, L2 = −∂2

y + 2yQ3∂yQ,

and H the quadratic form defined for ε ∈ H1 ,

H(ε, ε) = (L1ε1, ε1) + (L2ε2, ε2).

Then there exists a contant δ > 0 such that we have the property

∀ε ∈ H1(R), H(ε, ε) ≥ δ

(∫

|∂yε(y)|2dy +

∫

|ε|2e−|y|dy

)

−1

δ

(

(ε1, Q)2 + (ε1, y
2Q)2

+(ε1, yQ)2 + (ε2,ΛQ)2 + (ε2,Λ
2Q)2 + (ε2, ∂yQ)2

)

.

Remark 6. We may claim a similar property in all dimensions but this is
proved only in the case of the dimension 1 using the explicit formula of the ground
state Q. In this paper, we will only use the one dimensional version.

3. Precise statement of the result

3.1. Statement of the Theorem. In the sequel, we will often see a radial
function f(x) on M as a function f(r) on [0, ρ); in terms of Sobolev spaces, this
representation is not isometric and the function h measures this fact. We introduce
the Sobolev spaces for s > 0 :

Hs
r =

{

f ∈ L2(M), f radial, f ∈ Domain
(

(I − ∆)
s
2

)}

=
{

f ∈ D′((0,∞)), h
1
2 (I − ∆)

s
2 f ∈ L2(0, ρ)

}

.

Let us now give the precise statement of the result formulated in the introduc-
tion.

Theorem 2. Let (M, g) be a rotationally symmetric surface satisfying (5).
Then there exists an open subset P of H2

r (M) such that if u0 is in P, then the corre-
sponding solution u(t) blows up in finite time T <∞ on a set {x ∈M, r(x) = r(T )}
for some r(T ) ∈ (0, ρ) at the log log speed. More precisely, u satisfies the following
properties. There exist parameters λ(t) > 0, r(t) ∈ (0, a), γ(t) ∈ R, b(t) ∈ R, and
ũ(t) ∈ H2(M) radially symmetric and u∗ ∈ L2(M) such that

1) Decomposition of the solution:

u(t, r) =
1

√

λ(t)
Q̃b(t)

(

r − r(t)

λ(t)

)

eiγ(t) + ũ(t, r)

with the convergence

ũ(t) → u∗ in L2(M), as t goes to T.

2) u blows up on a curve: the function r(t) has a limit r(T ) ∈ (0, ρ) when t goes to
T and

|u(t)|2 → ‖Q‖2
L2(R)δr(T ) + |u∗|2, as t→ T in the sense of measures
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where δr(T ) is the normalized Riemannian measure on the curve {x ∈ M, r(x) =
r(T )}. 3) u blows up at the log log speed: there exists C > 0 such that for all
t ∈ [0, T ),

1

C

(

log | log(T − t)|
T − t

)1/2

≤ ‖∇u(t)‖L2(M) ≤ C

(

log | log(T − t)|
T − t

)1/2

.

3.2. Description of the set of blow up initial data. To prove our theorem
and without loss of generality, we will make the assumption that (M, g) is one of the
two model space (R2, g) or (S2, g). We also assume h(1) = 1 so that the singular
curve will be around r = 1 < ρ.

For convenience, we will note dµλ,r(y) or dµ(y) if the dependance in λ, r is
explicit the measure

dµ(y) = h(λy + r)1y≥− r
λ
dy.

For α∗ > 0, we introduce the set P(α∗) of initial data u0 ∈ H2
r (M) radially sym-

metric of the form

u0(r) =
1√
λ0

Q̃b0

(

r − r0
λ0

)

eiγ0 + ũ0(r),

with ũ0 ∈ H2
r (M) and with the following properties:

A1. Closeness of r0 to 1:

|r0 − 1| < α∗,

A2. Closeness of Q̃b0 to Q:

0 < b0 < α∗,

Orthogonality conditions:

(Re ε0, |y|2Σ) + (Im ε0, |y|2Θ) = 0,

(Re ε0, yΣ) + (Im ε0, yΘ) = 0,

(Re ε0,ΛΘ) − (Im ε0,ΛΣ) = 0,

(Re ε0,Λ
2Θ) − (Im ε0,Λ

2Σ) = 0,

where

ε0(y) =

{ √
λ0e

−iγ0u0(λ0y + r0) − Q̃b0(y) if y ≥ − r0

λ0
,

0 if y < − r0

λ0
,

and

Σ = Re(Q̃b), Θ = Im(Q̃b),

A3. Smallness of ε0 in a weighted norm:
∫

|∂yε0(y)|2 µλ0,r0(y)dy +

∫

|y|≤ 10
b0

|ε0(y)|2e−|y|dy < Γ
6
7

b0
,

A4. Control of the energy and localized momentum:

λ2
0|E0| + λ0

∣

∣

∣

∣

Im

∫

∇ψ · ∇u0u0

∣

∣

∣

∣

2

< Γ10
b0 ,

where

ψ(r) =

{

1 if 1
2 ≤ r ≤ 3

2 ,
0 if r ≤ 1

4 and r ≥ 2,
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A5. Log-Log regime:

0 < λ0 < exp

(

− exp

(

8π

9b0

))

,

A6. L2 smallness of ũ0:

‖ũ0‖L2 < α∗

A7. H
1
2 and H

k
2 estimates, k = 2, 3, 4, outside the singular curve:

‖u0‖
H

1
2 (|r−1|>1/2)

< (α∗)
1
4 ,

‖u0‖
H

k
2 (|r−1|>1/2)

<
1

λk−2
0

.

A8. H2 smallness outside the blow-up curve:

‖u0‖H2(|r−1|> 1
32 ) < α∗,

Remark 7. In rescaled variable, the Sobolev space H2
r (M) defined above is

transformed into a Sobolev space with weighted µ(y); if u0 ∈ P(α∗), then since
ũ0 ∈ H2

r , ε0 belongs to:

H2
r0,λ0

=

{

ε ∈ D′(− r0
λ0
,
ρ− r0
λ0

), ε, ∂yε, ∂
2
yε ∈ L2((− r0

λ0
,
ρ− r0
λ0

), dµ)

}

.

In particular, the first term in the left hand side of A3 is well defined. Moreover,
with A1, A2 and A5, the second term in A3 is also well defined.

Proposition 5. The set P(α∗) is nonempty and open in H2
r (M).

Proof. The fact that the set is non empty is similar to the flat case. It
consists in choosing (λ0, r0, b0) close to (0, 1, 0) so that A1,A2,A5 and next taking
ε0(y) = νf for a well localized even function f and a parameter ν small to choose so
that A3 and A4 hold. The support condition on f then implies that u is supported
near r = 1 and so A7,A8.
The fact that P(α∗) is open reflects the stability with respect to initial data of the
log log regime. Let us detail this point. Let u0 ∈ P(α∗) and u ∈ H2

r (M) such that
‖u0 − u‖H2 ≤ η, for some η > 0 to be chosen later. Then u0 and u write

u0(r) =
1√
λ0

eiγ0

(

Q̃b0

(

r − r0
λ0

)

+ ε0

(

r − r0
λ0

))

,

u(r) =
1√
λ0

eiγ0

(

Q̃b0

(

r − r0
λ0

)

+ ε

(

r − r0
λ0

))

,

for some ε and ε0, λ0, r0, γ0, b0 satisfying A1, A8 and the orthogonality conditions.
The function ε certainly does not satisfy the orthogonality conditions but by mod-
ulation theory, we can slightly modify the parameters λ0, r0, γ0, b0 to remove this
problem. This is state in the following lemma. First, we introduce a notation. For
δ > 0, let

Vδ = {v ∈ H1
r0,λ0

, ‖v −Q‖H1
r0,λ0

< δ}.

Lemma 2. There exist δ > 0, a neighboohood V of (1, 0, 0, 0) in (0,∞)×R3 and
a function (λ, r, γ, b) : Vδ → V such that for every v ∈ Vδ, the function ε defined by

ε(y) = λ
1
2 (v)e−iγ(v)v(λ(v)y + r(v)) −Qb(v)(y),
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satisfies the orthogonality conditions

(ε1, |y|2Σ) + (ε2, |y|2Θ) = 0,

(ε1, yΣ) + (ε2, yΘ) = 0,

(ε1,ΛΘ) − (ε2,ΛΣ) = 0,

(ε1,Λ
2Θ) − (ε2,Λ

2Σ) = 0,

where

ε1 = Reε, ε2 = Imε.

The proof of this lemma is classical and relies on a perturbation argument near
the point (λ, r, γ, b, v) = (1, 0, 0, 0, Q) using the implicit function theorem. See [16]
for details. Now, we apply the preceding lemma with the function

v(y) = λ
1
2
0 e

−iγ0u(λ0y + r0)

which is in Vδ (from A3, A6) for some δ > 0 if η, α∗ are small enough. Setting

λ̃ = λ(v)λ0, r̃ = r(v)λ0 + r0, γ̃ = γ0 + γ(v), b̃ = b(v),

we deduce that the function

ε̃(y) =
√

λ(v)e−iγ(v)v(λ(v)y + r(v)) − Q̃b(v)(y) =
√

λ̃e−iγ̃u(λ̃y + r̃) − Q̃b(y)

satisfies the orthogonality conditions (22)-(25). Moreover, by continuity of (λ, r, γ, b),

if η is small, the parameters (λ̃, r̃, γ̃, b̃) are close to (λ0, r0, γ0, 0) so that A1-A8 are
true. We deduce v ∈ P(α∗). Therefore, P(α∗) is open. �

Let u0 ∈ P(α∗) and u(t) the corresponding solution. Since P(α∗) is open in
H2

r and u is a continuous function of time, u(t) stays in P(α∗) at least for a small
time and in particular, we have the decomposition:

(21) u(t, r) =
1

√

λ(t)
Q̃b(t)

(

r − r(t)

λ(t)

)

eiγ(t) + ũ(t, r)

with

ũ(t, r) =
1

√

λ(t)
ε

(

t,

(

r − r(t)

λ(t)

))

eiγ(t).

As for ε0, we extend ε(t) by 0 for y < −λ(t)/r(t). Moreover, by the local theory,
the following weaker estimates hold: for δ > 0 to be chosen later,
B1.

|r(t) − 1| < (α∗)1/2,

B2.

0 < b(t) < (α∗)1/8,

Orthogonality conditions.

(22) (Re ε(t), |y|2Σ) + (Im ε(t), |y|2Θ) = 0,

(23) (Re ε(t), yΣ) + (Im ε(t), yΘ) = 0,

(24) (Re ε(t),ΛΘ) − (Im ε(t),ΛΣ) = 0,

(25) (Re ε(t),Λ2Θ) − (Im ε(t),Λ2Σ) = 0,
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B3.

E(t) :=

∫

|∂yε(t)|2µλ(t),r(t)dy +

∫

|y|≤ 10
b(t)

|ε(t)|2e−|y|dr < Γ
3/4
b(t),

B4.

λ2(t)|E0| < Γ2
b(t),

B4’.

λ(t)

∣

∣

∣

∣

Im

(∫

∇ψ · ∇u(t)u(t)
)∣

∣

∣

∣

< Γ2
b(t),

B5.

0 < λ(t) < e−e
π

10b(t)
,

B6.

‖ũ(t)‖L2 < (α∗)1/10,

B7. For k = 2, 3, 4,

‖u(t)‖
H

1
2 ({x,|r(x)−1|>1

2 )
< (α∗)

1
10 ,

‖u(t)‖
H

k
2 (x,|r(x)−1|>1

2 )
<

1

λ(t)k−2+(5−k)δ
.

We denote t1 = t1(δ) > 0 the maximal time for which the estimates B1-B7 hold.

Proposition 6. If δ is small enough then the estimates B1-B7 hold for all
time t ∈ [0, T ) i.e. t1 = T .

A big part of this paper is devoted to prove proposition 6. For this, we will show
that for t ∈ [0, t1), we can obtain better estimates than B1-B7 and so necessarily
t1 = T . More precisely, we will prove the following.
C1.

|r(t) − 1| ≤ (α∗)
2
3 ,

C2.

0 < b(t) ≤ (α∗)1/5,

C3.
∫

|∂yε(t)|2µλ(t),r(t)dy +

∫

|y|≤ 10
b(t)

|ε(t)|2e−|y|dy ≤ Γ
4/5
b(t),

C4.

λ2(t)|E0| ≤ Γ4
b(t),

C4’.

λ(t)

∣

∣

∣

∣

Im

(∫

∇ψ · ∇u(t)u(t)
)∣

∣

∣

∣

≤ Γ4
b(t),

C5.

0 < λ(t) ≤ e−e
π

5b(t)
,

C6.

‖ũ(t)‖L2 ≤ (α∗)1/5,

C7. For k = 2, 3, 4,

‖u(t)‖
H

1
2 (|r−1|> 1

2 )
≤ (α∗)

1
5 ,

‖u(t)‖
H

k
2 (|r−1|> 1

2 )
≤ 1

2λ(t)k−2+(5−k)δ
.
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Sketch of the proof. Let us sketch the proof of the theorem. Following the
work [25] in the Euclidean case, the idea is first to use the radial assumption of
the manifold and the functions to rewrite the equation in these coordonates (r, θ)
and see the new equation as a one dimensional equation and then use the log log
L2-critical theory. In the new variables, the Laplace operator is not exactly the
one dimensional Laplacian ∂2

r and there is an other term that we will treat as a
perturbation; for a radial function u,

∆Mu = ∂2
ru+

h′

h
∂ru.

The stability of the log log regime suggests that this term will be negligeable. Then
one may see the derivation of the log log speed as a consequence of modulation the-
ory and linearization of conservation laws or more generally remarquable identities
that solutions of Schrödinger equation satisfy. First, by modulation theory, we may
write our solution u(x) = u(r) as

u(x) =
1

√

λ(t)

(

Q̃b(
r − r(t)

λ(t)
) + ε(t,

r − r(t)

λ(t)
)

)

eiγ(t),

for some parameters λ(t), r(t), b(t), γ(t) and a rest ε small in some sense. The study
of the modulation parameters does not rely on conservation laws and consists in
multiplying the equation for u by some well chosen quantities to extract relations
between the parameters under differential forms and the rest ε. To exploit these
relations, we need dispersive properties of ε that are consequences of the lineariza-
tion of a virial type identity for the one dimensional equation (i.e. in r variable)
and conservation laws. The linearization of the virial will make appear a quadratic
form which is positive except for a finite number of negative directions. Two ar-
guments allow to treat these directions. First, from modulation, we may impose
a certain number of orthogonality conditions to vanish some order one in ε inner
products and by linearizing conservation laws, we deduce estimates on the other
negative directions. Note that the radial symmetry is an essential assumption to
see the two dimensional equation as a one dimensional one but we do not need
any other symmetry, except the classical ones: phase and translation in time. In
particular, no translation in space is required to have a momentum conservation
law. This approach is the same like for the study of stability of ground state for
NLS or solitary waves for KdV: we expand in ε a conservation law, vanish order one
inner products and use the positivity of the second order term to bound the rest
in the decomposition of the solution. When linearizing the energy, we will need a
smallness of the critical norm H1/2 of the rest ũ outside the location of singularities.
In the case where the manifold is non compact, we may use the good dispersive
behavior of the linear flow to see this smallness as a consequence of the H1/2 local
smoothing effect. In the general case, we use a strategy again based on (almost)
conservation laws and developped in [26]. It consists in introducing an H2 energy
and proving that it is in some sense subcritical and this allows to first deduce an
H2 estimate and then the H1/2 smallness.

The paper is organized as follow. In section 4, we linearize the equation around
the modulated ground state Q̃b and thus deduce the equation satisfied by the rest
ε. In the next section, we derive controls on some inner products using conservation
laws: conservation of mass, energy and momentum. The proof consists in linearizing
the conservation laws and deduce estimates on the dominant terms. Note that for
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this part, we need the smallness of the critical norm. In the section 6, we treat the
finite dimensional part and derive estimates on the parameters under differential
form. In section 7, we give the virial estimates which allow to treat the infinite
dimensional part ε. Combining the two previous sections, we may integrate the
differential inequalities to deduce the first estimates on the parameters. This is
done in section 8. In the next section, we proved the refined virial estimate to
obtain the lower bound on the blow up rate. In section 11, we prove the smallness
of the H1/2 norm outside the blow up curve. Once we have proved all the bootstrap
conclusions, we show that these estimates are sufficient to conclude the proof of the
theorem.

4. Linearization of the equation

In this section, we write the equation (1) in term of ε. We introduce the change
of time variable

(26) s = s0 +

∫ t

0

dτ

λ2(τ)
, , avec s0 = e

3π
4b0 .

The corresponding final time is s1 = s(t1). Remark that s1 may eventually be

infinite depending on the value of t1 and the behaviour of λ(t). Then, Q̃b satisfies

∂2
yQ̃b +

λ(s)

µ(y)
∂yQ̃b − Q̃b + ibΛQ̃b + Q̃b|Q̃b|4 = −Ψ̃b,

where

Ψ̃b = Ψb − wλ∂yQ̃b, w = w(t, y) =
h′(λ(t)y + r(t))

h(λ(t)y + r(t))

In the rest of the paper, we will often remove the b parameter and write for instance
Q̃ for Q̃b. Thus starting from (1), a direct computation gives

∂sΣ + ∂sε1 −M−(ε) + bΛε1 =

(

λs

λ
+ b

)

ΛΣ + γ̃sΘ +
rs
λ
∂yΣ(27)

+

(

λs

λ
+ b

)

Λε1 + γ̃sε2 +
rs
λ
∂yε1

+Im(Ψ̃) −R2(ε)

∂sΘ + ∂sε2 +M+(ε) + bΛε2 =

(

λs

λ
+ b

)

ΛΘ − γ̃sΣ +
rs
λ
∂yΘ(28)

+

(

λs

λ
+ b

)

Λε2 − γ̃sε1 +
rs
λ
∂yε2

−Re(Ψ̃) +R1(ε)

where we denote γ̃(s) = −s+ γ(s), M = (M+,M−) the operators:

M+(ε) = −∂2
yε1 − λw∂yε1 + ε1 −

(

4Σ2

|Q̃|2
+ 1

)

|Q̃|4ε1 − 4ΣΘ|Q̃|2ε2,

M−(ε) = −∂2
yε2 − λw∂yε2 + ε2 −

(

4Θ2

|Q̃|2
+ 1

)

|Q̃|4ε2 − 4ΣΘ|Q̃|2ε1,
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and R1, R2 the nonlinear terms defined by

R1(ε) = (ε1 + Σ)|ε+ Q̃|4 − Σ|Q̃|4 −
(

4Σ2

|Q̃|2
+ 1

)

|Q̃|4ε1 − 4ΣΘ|Q̃|2ε2,

R2(ε) = (ε2 + Θ)|ε+ Q̃|4 − Θ|Q̃|4 −
(

4Θ2

|Q̃|2
+ 1

)

|Q̃|4ε2 − 4ΣΘ|Q̃|2ε1.

Note that M is essentially the linearized operator close to the modified ground
state Q̃b for the quintic equation posed in R plus order one terms that we hope to
be negligeable. Formally, in the limit b → 0, M tends to the linearized operator
around Q, L = (L+, L−), of the quintic equation in R where

L+ = −∂2
y + 1 − 5Q4, L− = −∂2

y + 1 −Q4.

5. Linearization of the conservation laws

In the following proposition and in the rest of the paper, δ(α∗) is a quantity
that tends to 0 as α∗ goes to 0.

Proposition 7. For all s ∈ [s0, s1), we have the following controls

(i) Estimate induced by mass conservation:

(29) d0b
2(s) +

∫

|ũ(t)|2 ≤ (α∗)
1
2 .

(ii) Estimate induced by energy conservation:

(30)

∣

∣

∣

∣

∣

2(ε1,Σ) + 2(ε2,Θ) −
∫

|∂yε|2µ(y)dy + 5

∫

|y|≤ 10
b

Q4|ε1|2 +

∫

|y|≤ 10
b

Q4|ε2|2
∣

∣

∣

∣

∣

≤ Γ1−Cη
b + δ(α∗)E(t).

(iii) Estimate induced by the smallness of the localized momentum:

(31) |(ε2, ∂yΣ)| ≤ δ(α∗)E 1
2 (t) + Γ2

b .

Proof. (i) Conservation of the mass. The proof of the estimate (29)
consists in using the conservation of the mass and expanding in terms of α∗ the
equality ‖u(t)‖2

L2 = ‖u0‖2
L2. We write using polar coordonates and the change of

variable y = r−r(t)
λ(t) ,

‖u0‖2
L2 =

∫

|Q̃(y)|2µλ(t),r(t)(y)dy + 2Re

∫

Q̃(y)ε(t, y)µλ(t),r(t)(y)dy + ‖ũ‖2
L2 .

To treat the first term, we first use that the weight µ is close to h(1) = 1 if |y| ≤ 10/b.
From B1 and B5, we have if |y| ≤ 10/b, |λ(t)y + r(t) − 1| ≤ inf{(a − 1)/2, 1} so
that |h(λ(t)y + r(t)) − 1| ≤ C|λ(t)y + r(t) − 1| ≤ (α∗)1/2 and thus

∫

|Q̃(y)|2µ(y)dy =

∫

|Q̃(y)|2dy + O((α∗)
1
2 ).

Then, recall that the mass of Q̃ verifies

‖Q̃‖2
L2 = ‖Q‖2

L2 + d0b
2 + O(b4).
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From b ≤ (α∗)1/8, we deduce
∫

|Q̃(y)|2µ(y)dy = ‖Q‖2
L2 + b2(t) + O((α∗)

1
2 ).

The second term is estimated from Cauchy-Schwarz and the control on E(t) given

by B3. This gives using |Q̃(y)| ≤ Cexp(−|y|/2),
∣

∣

∣

∣

2Re

∫

Q̃(y)ε(t, y)µ(y)

∣

∣

∣

∣

≤ C

∫

|y|≤10/b

e−
|y|
2 |ε|dy ≤ C√

b
E(t) ≤ (α∗)

1
2 .

Summing all the above estimates, we obtain

‖u0‖2
L2 = ‖Q‖2

L2 + d0b
2(t) + ‖ũ‖2

L2 + O((α∗)1/2).

But since the mass of the initial data is close to the mass of Q:

0 ≤ ‖u0‖L2 − ‖Q‖L2 ≤ α∗,

we can conclude

d0b
2(t) + ‖ũ‖2

L2 ≤ (α∗)
1
2 .

In particular, this proves C2 and C6.

(ii) Conservation of the energy. We expand in ε the equality E(u(t)) =
E(u0). A direct computation gives

(32) E(u0) =
C

λ2(t)

6
∑

k=0

Ak

where

A0 =
1

2

∫

|∂yQ̃|2µ(y)dy − 1

6

∫

|Q̃|6µ(y)dy,

A1 = Re

∫

∂yQ̃∂yεµ(y)dy −
∫

|Q̃|4Re
(

Q̃ε
)

µ(y)dy,

A2 =
1

2

∫

|∂yε|2µ(y)dy − 1

2

∫

|Q̃|4|ε|2µ(y)dy − 2

∫

|Q̃|2Re2
(

Q̃ε
)

µ(y)dy,

A3 = −2

∫

|Q̃|2|ε|2Re
(

Q̃ε
)

µ(y)dy − 4

3

∫

Re3
(

Q̃ε
)

µ(y)dy,

A4 = −1

2

∫

|Q̃|2|ε|4µ(y)dy − 2

∫

|ε|2Re2
(

Q̃ε
)

µ(y)dy,

A5 = −
∫

|ε|4Re
(

Q̃ε
)

µ(y)dy,

A6 = −1

6

∫

|ε|6µ(y)dy.

Now, we estimate each Ak. Remark that two of these terms are non localized in
space, in the sense that the integrande is not multiplied by a power of Q̃, namely

1

2

∫

|∂yε|2µ(y)dy, −1

6

∫

|ε|6µ(y)dy.

These terms will require a special treatment. For the other ones, we will use from
B5 the approximation µ(y) ≈ h(r(t)): for |y| ≤ 10/b,

|µ(y) − h(r(t))| ≤ CΓb.
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For A0, we find essentially the one dimensional energy of Q̃b. Indeed, by B1 and
B5,

A0 = E(Q̃b)(h(r(t)) + O(Γb))

= O(Γ1−Cη
b ).

For the linear term, using again µ(r) ≈ h(r(t)) and after integration by parts in
the first term, we get

A1 = − (h(r(t)) + O(Γb))

(

Re

∫

(

∂2
yyQ̃bε+ |Q̃b|4Q̃bε

)

dy

)

Using the equation on Q̃, we deduce

A1 = − (h(r(t)) + O(Γb))

(

Re

(∫

Q̃bεµ(y)dy

)

−b(t)Im
(
∫

ΛQ̃bε

)

+ Re

(
∫

Ψbεdy

))

.

The second term is zero by the orthogonality condition (24) so that

A1 = − (h(r(t)) + O(Γb))

(

(Σ, ε1) + (Θ, ε2) + Re

(∫

Ψεdy

))

.

At first sight, the third term is of size Γ
1/2
b E1/2(t) but in fact, we can improve

this bound. We state the general result in the following lemma which will be used
several times in the sequel.

Lemma 3. For every k, p ∈ N,
∣

∣

∣

∣

∫

εyp∂k
y Ψb

∣

∣

∣

∣

≤ δ(α∗)E(t) + Γ1−Cη
b .

Proof. We first prove by density that for all ε ∈ H1 and for all y ∈ [−2/b, 2/b],

(33) |ε(y)| ≤
(

∫ 2/b

−2/b

|ε(y)|2e−|y|dy

)1/2

+
C√
b

(

∫ 2
b

− 2
b

|∂yε(y)|2dy
)1/2

.

Let ε smooth and compactly supported and y0 ∈ [−2/b, 2/b] depending on b and ε
such that

|ε(y0)| ≤
(

∫ 2/b

−2/b

|ε(y)|2e−|y|dy

)1/2

.

By a contradiction argument, this point always exists since
∫

e−|y|dy > 1. Then by
writing for all y ∈ [−2/b, 2/b],

ε(y) = ε(y0) +

∫ y

y0

∂yε(y)dy,

we obtain (33) by Cauchy-Schwarz. We apply this to our situation: we reintroduce
the function µ since |y| ≤ 2/b to first have:

|ε(y)| ≤ E(t)1/2 +
C√
b

(

∫ 2
b

− 2
b

|∂yε|2dy
)1/2

≤
(

1 +
C√
b

)

E(t)1/2

and then the lemma is proved by integration and using |y|p|∂kΨb(y)| ≤ Γ
1/2
b . �
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In particular:
∣

∣

∣

∣

Re

∫

Ψbεdy

∣

∣

∣

∣

≤ δ(α∗)E(t) + Γ1−Cη
b ,

and then

|A1 + h(r(t)) ((Σ, ε1) + (Θ, ε2))| ≤ Γ1−Cη
b + E(t).

For the quadratic term, we use the uniform closeness of Q̃ to Q (8):

A2 =
1

2

∫

|∂yε|2µ(y)dy

+(h(r(t)) + O(Γb))

(

1

2

∫

Q4|ε|2dy + 2

∫

Q2Re2 (Qε) dy

)

,

so that
∣

∣

∣

∣

∣

A2 −
1

2

∫

|∂yε|2µ(y)dy − h(r(t))

(

5

2

∫

|y|≤ 10
b

Q4|ε1|2 +

∫

|y|≤ 10
b

Q4|ε2|2
)∣

∣

∣

∣

∣

≤ δ(α∗)E(t) + Γ1−Cη
b .

The terms A3, A4 are treated the same way. For instance, for A4, we may write

|A4| ≤ ‖ε‖2
L∞(|y|≤10/b)

∫

|y|≤ 10
b(t)

|Q̃|2|ε|2dy

≤ ‖ε‖2
L∞(|y|≤10/b)

∫

|y|≤ 10
b(t)

e−|y||ε|2dy.

Now, we have to control the L∞ norm of ε. For this, we apply the Sobolev inequality
to φ1ε where φ1 is a cut-off function satisfying

φ1(y) =

{

0 if y ≥ 1
2λ ,

1 if y ≤ 1
4λ ,

and the following bound on the derivative ‖∂yφ1‖L∞ ≤ λ,

‖ε‖L∞(|y|≤ 10
b ) ≤ ‖εφ1‖L∞

≤ ‖∂y(φ1ε)‖
1
2

L2‖φ1ε‖
1
2

L2

≤
(

∫

y≤ 1
2λ

|∂yε|2 + λ|ε|2
)

1
4
(

∫

y≤ 1
2λ

|ε|2
)

1
4

Reintroducing the measure µ(y) which is close to h(r(t)) if |y| ≤ 1/(2λ) and using
B3, B5, B6, we obtain the bound

‖ε‖L∞(|y|≤ 10
b ) ≤

(

∫

y≤ 1
2λ

(|∂yε|2 + λ|ε|2)µ(y)dy

)
1
2
(

∫

y≤ 1
2λ

|ε|2µ(y)dy

)
1
2

≤ δ(α∗)E1/4(t) + Γ1−Cη
b .

Therefore, A3 and A4 are negligible:

|A3| + |A4| ≤ δ(α∗)E(t) + Γ1−Ceta
b .
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For A5, we first write by Cauchy-Schwarz inequality and then the L∞ bound found
above :

|A5| ≤ (h(r(t))+O(Γb))

(

∫

|y|≤ 1
10b(t)

|ε|8dy
)

1
2 (∫

|Q̃|2|ε|2
)

1
2

≤ δ(α∗)E(t)+Γ1−Cη
b .

We now turn to the estimate of the non-localized term A6. We cannot proceed as
before since we have no control of the L∞ norm of ε on the whole space. We split
the space into two areas, one is localized near the singular curve r ≈ 1 and the
other one near 0 and infinity. This splitting writes

∫

|ũ|6 ≤
∫

|χ1ũ|6 +

∫

|χ2ũ|6,

where χ2 is a radial cut-off localized near r = 1 and χ1 outside:

χ1(r) =

{

0 if r ∈ [34 ,
5
4 ],

1 if r ∈ [0, 1
2 ] ∪ [32 , ρ)

, χ2(r) =

{

0 if r ∈ [0, 1
4 ] ∪ [ 74 , ρ),

1 if r ∈ [12 ,
3
2 ]

.

For the first integral, we use the 2D Gagliardo-Nirenberg inequality and the H1/2-
smallness estimate near the blow-up curve

∫

|χ1ũ|6 ≤ ‖∇(χ1ũ)‖2
L2‖χ1ũ‖4

H1/2 ≤ δ(α∗)
(

1 + ‖∇ũ‖2
L2

)

.

For the second integral, we use interpolation:
∫

|χ2ũ|6 ≤ ‖χ2ũ‖2
H1‖χ2ũ‖4

L2 ≤ δ(α∗)
(

1 + ‖∇ũ‖2
L2

)

.

We deduce from the last estimates that

|A6| ≤ δ(α∗)λ2(t)
(

1 + ‖∇ũ‖2
L2

)

≤ λ2(t) + δ(α∗)

∫

|∂yε|2µ(r)dr

≤ Γb + δ(α∗)E(t).

Summing and using B4 and |h(r(t))| ≤ 2, we conclude the proof of (30).

(iii) Estimate induced by the smallness of the localized momentum.
We expand in ε the local momentum

λ(t)Im

∫

∇ψ · ∇u(t)u(t).

Recall that ψ is such that

ψ(r) =

{

1 if 1
2 ≤ r ≤ 3

2 ,
0 if r ≤ 1

4 and r ≥ 2.

so that ∂yψ(λ(t)y + r(t)) = 1 if y ∈ Supp(Q̃). Using polar coordonates and change

of variables y = r−r(t)
λ(t) , this gives

λ(t)Im

∫

∇ψ · ∇u(t)u(t)

= CIm

∫

∂yQ̃Q̃µ(y)dy + CIm

∫

∂yQ̃εµ(y)dy

+CIm

∫

∂yεQ̃µ(y)dy + C

∫

∂yψ(λ(t)y + r(t))∂yεεµ(y)dy.
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Expanding µ(y) as before:

|µ(y) − h(r(t))| ≤ Γ2
b ,

and observing that Q̃ is even, we have that the first term is bounded by Γ2
b . Again

by splitting the function µ(y), the second term is such that
∣

∣

∣

∣

Im

∫

∂yQ̃εµ(y)dy − h(r(t)) ((∂yΣ, ε2) + (∂yΘ, ε1))

∣

∣

∣

∣

≤ Γ2
b .

Moreover, using (8) we also have

|(∂yΘ, ε1)| ≤ ‖∂yΘe
y
2 ‖L2‖ε1e−

y
2 ‖L2(−10/b,10/b) ≤ δ(α∗)E 1

2 (t),

and then
∣

∣

∣

∣

Im

∫

∂yQ̃εµ(y)dy − h(r(t)) (∂yΣ, ε2)

∣

∣

∣

∣

≤ δ(α∗)E1/2 + Γb.

The third term in the expansion of the localized momentum is estimated like the
second one. For the last one, using Cauchy-Schwarz and the control of E(t):

∣

∣

∣

∣

∫

∂yψ∂εεµ(y)dy

∣

∣

∣

∣

≤
(∫

|∂yε|2µ(y)dy

)
1
2
(∫

|ε|2µ(y)dy

)
1
2

≤ E 1
2 (t)‖ũ‖L2

≤ δ(α∗)E 1
2 (t).

Finally, we deduce from B4’:

|(∂yΣ, ε2)| ≤ δ(α∗)E 1
2 (t) + Γ2

b .

�

6. Estimates on the parameters under differential form

In this section, using our choice of orthogonality conditions (22)-(25), we deduce
estimates involving the geometrical parameters or more precisely their derivatives.

Proposition 8. For every s ∈ [s0, s1), we have the following estimates

(34)

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+ |bs| +
∣

∣

∣

rs
λ

∣

∣

∣ ≤ CE(t) + Γ1−Cη
b .

(35)

∣

∣

∣

∣

γ̃s −
(ε1, L+(Λ2Q))

‖ΛQ‖2
L2

∣

∣

∣

∣

≤ δ(α∗)E 1
2 (t) + Γ1−Cη

b .

Proof. Estimate for λs

λ + b. We take the inner product of (27) with |y|2Σ
and (28) with |y|2Θ and sum the two equalities. Next using the orthogonality
conditions (22)-(25) and several integrations by parts, we can group terms together
to obtain

(

λs

λ
+ b

)

‖yQ̃‖2
L2 = −1

2
∂s

(

‖yQ̃‖2
L2

)

− Im(λw∂yQ̃, y
2Q̃) + Im(ε, y2Ψ̃)

−
(

λs

λ
+ b

)

Re(ε,Λ(y2Q̃)) − rs
λ

Re(ε, ∂y(y2Q̃)) + bsRe(ε, y2∂bQ̃)

+γ̃sIm(ε, y2Q̃) − Im(λw∂yε, y
2Q̃) + (R1(ε), y

2Θ) − (R2(ε), y
2Σ).
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Now, we estimate each term. First, for the left hand side, we have the lower bound
∣

∣

∣

∣

(

λs

λ
+ b

)

‖yQ̃‖2
L2

∣

∣

∣

∣

≥ C

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

.

Next for the term ∂s‖yQ̃‖2
L2, we write

(36) ∂s‖yQ̃‖2
L2 = bsRe(∂bQ̃, y

2Q̃).

Using that ∂bQ̃ is close to i
4y

2Q and y2Q̃ is close to y2Q and Re( i
4y

2Q, y2Q) = 0,

we can bound (36) by δ(α∗)|bs|. For the term Im(ε, y2Ψ̃), we use Lemma 3 and the
smallness of λ B5 to deduce

|Im(ε, y2Ψ̃)| ≤ Γ1−Cη
b + E(t).

For terms appearing with the function w, namely

Im(λw∂yQ̃, y
2Q̃), Im(λw∂yε, y

2Q̃),

we use the bound B5 on λ and the lower bound for |y| ≤ 10/b:

(37) |w(y)| =

∣

∣

∣

∣

h′(λ(t)y + r(t))

h(λ(t)y + r(t))

∣

∣

∣

∣

≤ 2|h′(1)|
h(1)

to estimate the first of these terms by

|Im(λw∂yQ̃, y
2Q̃)| ≤ Γb.

For the second, using again (37) and also Cauchy-Schwarz, we have

|Im(λw∂yε, y
2Q̃)| ≤ ΓbE

1
2 (t) ≤ Γb.

Now, for terms

Re(ε,Λ(y2Q̃)), Re(ε, ∂y(y2Q̃)), Re(ε, y2∂bQ̃), Im(ε, y2Q̃),

we estimate by E 1
2 (t) using the exponential decay of Q̃ and (8). It remains to

consider the nonlinear in ε terms. These terms are treated exactly the same way
than Ak, k = 1, ..., 6 in the step of conservation of energy in the section 5. This
gives

|(R1(ε), y
2Θ)| + |(R2(ε), y

2Σ)| ≤ E(t).

Finally, putting together all these considerations, we obtain the first estimate

(38)

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

≤ E 1
2 (t)

(∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+
∣

∣

∣

rs
λ

∣

∣

∣
+ |γ̃s|

)

+ δ(α∗)|bs| + E(t) + Γ1−Cη
b .

Estimate for rs

λ . Taking the inner product of (27) with yΣ and (28) with yΘ and
sum the two equalities, we obtain

−‖Q̃‖2
L2

2

rs
λ

= Im(λw∂yQ̃, yQ̃) − Im(ε, yΨ̃) +
rs
λ

Re(ε, ∂y(yQ̃))

−γ̃sIm(ε, yQ̃) − bsRe(ε, y∂bQ̃) +

(

λs

λ
+ b

)

Re(ε,Λ(yQ̃))

+Im(λw∂yε, yQ̃) − (R1(ε), yΘ) + (R2(ε), yΣ).



126 NICOLAS GODET

As before, we estimate each term of this relation. The same type of consideration
than for λs/λ+ b yields the estimate

(39)
∣

∣

∣

rs
λ

∣

∣

∣ ≤ E 1
2 (t)

(∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+
∣

∣

∣

rs
λ

∣

∣

∣+ |γ̃s| + |bs|
)

+ E(t) + Γ1−Cη
b .

Estimate for bs. We take the inner product of (27) with −ΛΘ and (28) with ΛΣ
and sum the two equalities to obtain

bsIm(∂bQ̃,ΛQ̃) = 2Re(ε, Q̃− Ψ̃) − Re(Ψ̃,ΛQ̃) + Re(λw∂yε,ΛQ̃)(40)

+bsIm(ε,Λ∂bQ̃) −
(

λs

λ
+ b

)

Im(ε,Λ2Q̃) − rs
λ

Im(ε, ∂yΛQ̃)

+γ̃sRe(ε,ΛQ̃) + (R1(ε),ΛΣ) + (R2(ε),ΛΘ).

All terms are treated the same way than before except the term 2Re(ε, Q̃ − Ψ̃)
which needs a special treatment. Using the conservation of energy written in (32)

λ2E0

C
=

6
∑

k=0

Ak,

and the equality for A1:

2Re(ε, Ψ̃ − Q̃) = − 2

h(r(t))
A1 + O(Γb),

we may write

2Re(ε, Ψ̃ − Q̃) = − 2

h(r(t))





λ2E0

C
−
∑

k 6=1

Ak



+ O(Γb).

Therefore, using that h(r(t)) ≈ 1 > 0, the different estimates of the Ak established
in the proof of (30), and the equality

E(Q̃) = O(Γ1−Cη
b ),

which follows from (9), we successively have

∣

∣

∣2Re(ε, Ψ̃ − Q̃)
∣

∣

∣ ≤ λ2|E0| + E(Q̃) + E(t) + Γb

≤ λ2|E0| + E(t) + Γ1−Cη
b .

Moreover, the approximation ∂bQ̃b ∼ −iy2/4Q̃b gives after integration by parts:

(41) Im(∂bQ̃,ΛQ̃) =
1

4

∫

y2|Q̃b|2.

We thus have

(42) |bs| ≤ E 1
2 (t)

(∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+
∣

∣

∣

rs
λ

∣

∣

∣+ |bs| + |γ̃s|
)

+ λ2|E0| + E(t) + Γ1−Cη
b .
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Estimate for γ̃s. We take the inner product of (27) with Λ2Θ and (28) with
−Λ2Σ:

γ̃s‖ΛQ‖2
L2 − (ε1, L+(Λ2Q)) = bs

(

Im(∂bQ̃,Λ
2Q̃) − Im(ε, ∂bΛ

2Q̃)
)

+

(

λs

λ
+ b

)

Im(Λ2Q̃,ΛQ̃) + Re(Ψ̃b,Λ
2Q̃) − Re(λw∂yQ̃,Λ

2Q̃)

−rs
λ

Im(∂yQ̃,Λ
2Q̃) +

(

λs

λ
+ b

)

Im(ε,Λ3Q̃) + γ̃sRe(ε,Λ2Q̃)

+
rs
λ

Im(ε, ∂yΛ
2Q̃) − bIm(ε,Λ3Q̃) +

(

(M+(ε),Λ2Σ) − (ε1, L+Λ2Q)
)

+(M−(ε),Λ2Θ) − (R1(ε),Λ
2Σ) − (R2(ε),Λ

2Θ).

We use the previous estimates together with
∣

∣(M+(ε),Λ2Σ) − (ε1, L+Λ2Q)
∣

∣+
∣

∣(M−(ε),Λ2Θ)
∣

∣ ≤ δ(α∗)E1/2(t)

to deduce
∣

∣γ̃s‖ΛQ‖2
L2 − (ε1, L+(Λ2Q))

∣

∣ ≤ C|bs| + δ(α∗)

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+ δ(α∗)
∣

∣

∣

rs
λ

∣

∣

∣

+

(∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+ |γ̃s| +
∣

∣

∣

rs
λ

∣

∣

∣

)

E 1
2 (t) + E 1

2 (t)δ(α∗) + Γ1−Cη
b

and that we can also rewrite to make appear the term γ̃s‖ΛQ‖2
L2 − (ε1, L+(Λ2Q))

as
∣

∣γ̃s‖ΛQ‖2
L2 − (ε1, L+(Λ2Q))

∣

∣ ≤ C|bs| + δ(α∗)
(

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+
∣

∣

∣

rs
λ

∣

∣

∣+
(

γ̃s‖ΛQ‖2
L2(43)

−(ε1, L+(Λ2Q)
)

)

+ δ(α∗)E 1
2 (t) + Γ1−Cη

b .

Now, summing (38), (39), (42) and ν(43) for ν small enough (to make the term
C|bs| in (43) go in the left side) and using that E(t) goes to 0 as α∗ tends to 0, we
first have

(44)

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+
∣

∣

∣

rs
λ

∣

∣

∣+ |bs| +
∣

∣γ̃s‖ΛQ‖2
L2 − (ε1, L+(Λ2Q))

∣

∣

≤ δ(α∗)E 1
2 (t) + Γ1−Cη

b + λ2|E0|,

and this gives (35). Next, by summing the estimates (38), (39), (42) that do not
involve the phase parameter γ̃s and injecting (35) in this new estimate, we get the
control of the other parameters (34). �

7. H1 virial estimate

In the spirit of [16], [25], to derive dispersive properties of the rest ε, we would
like to use the virial identity for the one dimensional Schrödinger equation. How-
ever, the classical virial identity is only defined in Σ := {u ∈ H1,

∫

d(N, x)2|u|2 <
∞} (where N is one of the pole) but an algebraic computation will show that we
may extend this identity to H1. The curvature of the manifold, which is reflected
in the additional term h′/h∂ru in the Laplace operator, is treated as a perturbation
due to the smallness of the parameter λ. Let us give the computation in the case
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u ∈ Σ. In this case, we see u as a function of r (that we extend to the rela line so
that u(r) is odd) and an almost solution of the Euclidean equation

i∂tu+ ∂2
ru ∼ −|u|4u,

for which we apply the classical virial identity

d

dt
Im

∫

∂ruurdr = 4E0.

Next, we expand in ε this relation and switch in (s, y) variables to obtain

A0 + A1 +A2 = 4λ2E0,

where

A0 =
d

ds

(

r(s)Im

∫

∂ruu+ Im

∫

y∂yQ̃bQ̃b

)

,

A1 = 2
d

ds
Im(ΛQ̃b, ε),

A2 =
d

ds
Im

∫

∂yεε.

But r(s) ∼ 1 and the momentum of u(r) is almost constant since u(r) is an almost
solution of the one dimesional equation so that after integration by parts in the

second term of A0, we get A0 = −Dbs +O(Γ1−Cη
b ) for a constant D > 0. A1 is zero

by orthogonality conditions. For the third term, we use the equation satisfied by
ε that we may see by the smallness of the parameters and removing the nonlinear
part as

i∂sε+ Lε = Ψ̃.

This gives

A2 = H(ε, ε) − 2Re

∫

εΛΨ̃ + O(Γ1−Cη
b ).

Summing A0, A1, A2 and using the smallness of Ψ̃ and the coercive property of H
modulo some negative directions that we control by orthogonality conditions and
conservation laws, we obtain the virial estimate:

Cbs ≥ E(t) − Γ1−Cη
b .

Since this estimate is well defined for u ∈ H1, we expect it to hold in the general
case. This is stated in the following proposition.

Proposition 9 (H1 virial estimate). There exist C > 0 and δ > 0 such that
for all s ≥ 0,

(45) bs ≥ δE(t) − Γ1−Cη
b .

Proof. We go back to the relation (40):

bsIm(∂bQ̃,ΛQ̃) = 2Re(ε, Q̃− Ψ̃) − Re(Ψ̃,ΛQ̃) + Re(λw∂yε,ΛQ̃)(46)

+bsIm(ε,Λ∂bQ̃) −
(

λs

λ
+ b

)

Im(ε,Λ2Q̃) − rs
λ

Im(ε, ∂yΛQ̃)

+γ̃sRe(ε,ΛQ̃) − +(R1(ε),ΛΣ) + (R2(ε),ΛΘ).

To prove (45), we need in particular to extract the quadratic in ε term in the right
hand side of the last equality that we write as

bsIm(∂bQ̃,ΛQ̃) = F +G,
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where

F = 2Re(ε, Q̃− Ψ̃) + ((R1(ε),ΛΣ) + (R2(ε),ΛΘ)) = F1 + F2.

First, the G term is easily estimated using the control of the parameters proved in
the previous section and estimates

|(ε, ∂αQ̃)| + |(ε, ∂bΛQ̃)| + |(Ψ̃,ΛQ̃)| ≤ E(t) + Γ1−Cη
b .

This gives that G is negligible:

|G| ≤ δ(α∗)E(t) + Γ1−Cη
b .

Now we focus on the F term where we want to extract the quadratic in ε term. Let
us first study the F1 term. We use the conservation of energy that we can write
according to (32):

λ2E0

C
=

6
∑

k=0

Ak.

Remark that we have already seen

A0 = O(Γ1−Cη
b ),

A1 = −h(r(t))Re(ε, Q̃− Ψ̃) + O(Γ1−Cη
b ),

and

A2 +A3 +A4 +A5 +A6 =
1

2

∫

|∂yε|2µ(y)dy − 5

2

∫

Q4ε21dy −
1

2

∫

Q4ε22

+O(Γ1−Cη
b ) + δ(α∗)E(t).

Therefore, we may write F1 as

F1 =
−2

h(r(t))

(

λ2E0

C
− 1

2

∫

|∂yε|2µ(y)dy +
5

2

∫

Q4ε21 +
1

2

∫

Q4ε22

)

+δ(α∗)E(t) + Γ1−Cη
b .

Next, by expanding R1(ε) and R2(ε) and replacing Q̃b by Q by (8), we obtain

F2 = (R1(ε),ΛΣ) + (R2(ε),ΛΘ) = (ε21, 5Q
4 + 10yQ3∂yQ) +

(ε22, Q
4 + 2yQ3∂yQ) + δ(α∗)E(t).

We sum and obtain

(47) F =

∫

|∂yε|2
µ(y)

h(r(t))
dy +

(

(L1ε1, ε1) + (L2ε2, ε2) −
∫

|∂yε|2
)

− 2
λ2E0

Ch(r(t))

+ O(Γ1−Cη
b ) + δ(α∗)E(t).

Remark that since the term |∂yε|2 is not localized in space, we cannot make the
approximation

µ(y) ∼ h(r(t))

with a good error. Moreover, we will need to control from below the quantity
(L1ε1, ε1) + (L2ε2, ε2) by E(t) plus some inner products. For this, we will need to
localize ε to reintroduce the measure µ(y). These two facts suggest to introduce φ3

a cut-off such that

φ3(t, y) =

{

1 if |y| ≤ Γ−5
b

0 if |y| ≥ 2Γ−5
b

,
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with 0 ≤ φ3 ≤ 1 and the bound |∂yφ3| ≤ Γ5
b . Then we write

∫

|∂yε|2µ(y)dy =

∫

|∂yε|2φ2
3µ(y)dy +

∫

|∂yε|2(1 − φ2
3)µ(y)dy.

The second term will not be a problem since it is positive. For the first term, we
write that the quantity

A :=

∣

∣

∣

∣

∫

φ2
3|∂yε|2µ(y)dy −

∫

|∂y(φ3ε)|2h(r(t))dy
∣

∣

∣

∣

is bounded by

A ≤
∣

∣

∣

∣

∫

φ2
3|∂yε|2h(r(t))dy −

∫

|∂y(φ3ε)|2h(r(t))dy
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

φ2
3|∂yε|2µ(y)dy −

∫

φ2
3|∂yε|2h(r(t))dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

φ2
3|∂yε|2 (h(λ(t)y + r(t)) − h(r(t))) dy

∣

∣

∣

∣

+ C‖∂yφ3‖2
L∞‖ε‖2

H1(−Γ−5
b ,Γ−5

b )

≤ δ(α∗)E(t) + Γb

since when |y| ≤ Γ−5
b , |h(λ(t)y + r(t)) − h(r(t))| ≤ δ(α∗) according to B5 and

1/2 ≤ µ(y). At this point, for the F term, we obtain

F ≥
∫

|∂y(φ3ε)|2 +

(

(L1ε1, ε1) + (L2ε2, ε2) −
∫

|∂yε|2
)

− λ2E0

h(r(t))
− δ(α∗)E(t) − Γ1−Cη

b .

We may also localize the expression in parenthesis with a good error. Indeed, let
us give the argument for the term yQ3∂yQε

2
1:

∣

∣

∣

∣

∫

yQ3(∂yQ)ε21 −
∫

yQ3(∂yQ)(φ3ε1)
2

∣

∣

∣

∣

≤
∫

|y|≥Γ−5
b

|y|Q3|∂yQ|ε21

≤ ΓbE(t) ≤ δ(α∗)E(t).

Thus with A4, we have:

F ≥ (L1(φ3ε1), φ3ε1) + (L2(φ3ε2), φ3ε2) − δ(α∗)E(t) − Γ1−Cη
b .

Here, we use the spectral property (4) to obtain a lower bound on H(φ3ε, φ3ε):

(48) H(φ3ε, φ3ε) ≥

δ

(∫

|∂y(φ3ε)|2dy +

∫

|φ3ε|2e−|y|dy

)

− 1

δ

(

(φ3ε1, Q)2 + (φ3ε1, y
2Q)2

+ (φ3ε1, yQ)2 + (φ3ε2,ΛQ)2 + (φ3ε2,Λ
2Q)2 + (φ3ε2, ∂yQ)

)

.

First, by the property of the support of φ3, we have
∫

|∂y(φ3ε)|2dy +

∫

|φ3ε|2e−|y|dy ≥ E(t) − Γb.

Secondly, using orthogonality conditions and the estimates (29), (30), (31) induced
by conservation laws, we can bound each of the six inner products in (48) by
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δ(α∗)E(t). Indeed, let us give the argument for the inner products (φ3ε1, Q) and
(φ3ε1, y

2Q). For the first, we use the conservation of energy (30) to write

|(φ3ε1, Q)| ≤ |(ε1, Q)| + |((1 − φ3)ε1, Q)|
≤ ≤ |(ε1, Q− Σ)| + |(ε1,Σ)| + Γb

≤ δ(α∗)E 1
2 (t) + δ(α∗)E 1

2 (t) + Γ1−Cη
b

≤ δ(α∗)E 1
2 (t) + Γ1−Cη

b .

For the second, we use the orthogonality condition (22). This yields

|(φ3ε1, y
2Q)| ≤ |(1 − φ3)ε1, y

2Q)| + |(ε1, y2Q)|
≤ δ(α∗)E 1

2 (t) + |(ε1, y2(Q− Σ))| + |(ε1, y2Σ)|
≤ δ(α∗)E 1

2 (t) + δ(α∗)E 1
2 (t) + |(ε2, y2Θ)|

≤ δ(α∗)E 1
2 (t).

All these considerations give

H(φ3ε, φ3ε) ≥ δE(t),

and then

F ≥ δE(t) − Γ1−Cη
b .

We obtain (40) by summing F and G for α∗ small enough and using the sign of the

quantity Im(∂bQ̃,ΛQ̃) proved in (41).
�

8. Estimates on geometrical parameters

In this section, we integrate estimates proved in the two previous sections. This
will give us informations on b, λ and r. Using the virial estimate:

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+ |bs| ≤ Γ
1/2
b ,

we get

d

ds
(λ2e5π/b) = 2λ2e5π/b

(

λs

λ
+ b− b− 5πbs

2b2

)

≤ −bλ2e
5π
b ≤ 0.

Therefore, λ2e5π/b is a decreasing function of s and so of t, which gives using A5:

λ2(t)|E0|
Γ4

b(t)
≤ |E0|λ2(t)e5π/b(t) ≤ |E0|λ2(0)e5π/b(0) < 1

and this proves C4.

Estimate for b. From the virial estimate (45), we obtain a differential in-
equality

bs ≥ −Γb.

that we solve by dividing by b2 and remarking that it implies

d

ds

(

e3π/4b
)

≤ 1.

Integrating this in time and using our choice for s0 (26), we get

e3π/4b ≤ s,
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and this gives the lower bound on b:

(49) b ≥ 3π

4 log s
.

Estimate for λ. Using the estimate (34) on the parameter λs/(λ+ b) and the
control on Γb, we get

∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

≤ Γ
1/2
b ≤ b

3
.

We deduce from the the lower bound on b

−λs

λ
≥ 2b

3
≥ π

2 log s
.

We integrate this inequality to deduce

− logλ(s) ≥ − logλ(s0) +

∫ s

s0

π

2 log θ
dθ,

and thus

− logλ(s) ≥ − logλ(s0) +
π

2

∫ s

s0

log θ − 1

log2 θ
dθ

≥ − logλ(s0) +
π

2

[

θ

log θ

]s

s0

≥ − logλ(s0) −
π

2

s0
log s0

+
π

2

s

log s
.

Using A5 and our choice of s0 (which is large if α∗ is small enough), this gives

(50) − logλ(s) ≥ −1

2
logλ(s0) +

π

2

s

log s

and this prove for all s ∈ [s0, s1),

(51) λ(s) ≤
√

λ0e
−π

2
s

log s .

The lower bound on b (49) implies in particular

b(s) ≥ π

5

1

log s− log log s

which is equivalent to
s

log s
≥ exp

π

5b(s)
.

This last inequality together with (51) yield:

λ ≤
√

λ0exp
(

−π
2

exp
( π

5b

))

and therefore from the smallness of λ0 given by A5, we obtain the upper bound on
λ C5. Estimate on r. The estimate (34) on rs/λ shows that if α∗ is small,

∣

∣

∣

rλ
λ

∣

∣

∣ ≤ 1.

And thus, using the upper bound on λ (34) and the estimate on λ0 A5, we get

|r(s) − r0| ≤
∫ s

s0

|rs|ds ≤
∫ s

s0

λ(θ)dθ ≤
√

λ0

∫ +∞

2

exp

(

−π
2

θ

log θ

)

dθ ≤ α∗.

And by A1,
|r(t) − 1| ≤ α∗,
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and we obtain C1.

9. Smallness of the localized momentum

The goal of this section is to show C4’:

λ(t)

∣

∣

∣

∣

Im

(∫

u(t)∇ψ · ∇u(t)dx
)∣

∣

∣

∣

≤ Γ4
b .

We first multiply the equation (1) by 1
2∆ψu+ ∇ψ · ∇u and take the real part and

then after several integration by parts

1

2
∂tIm

∫

u ∇ψ · ∇u =

∫

|∂ru|2∂2
rψhdrdθ −

1

4

∫

|u|2∆2ψ +
1

3

∫

|u|6∆ψ.

We use the boundedness of ψ and its derivative to control the two first terms in
the right hand side of the above equality and the Sobolev type inequality from
Proposition 1 to control the L6 norm of u. This gives

∣

∣

∣

∣

1

2
∂tIm

∫

u ∇ψ · ∇u
∣

∣

∣

∣

≤ ‖∇u‖2
L2 + ‖u‖2

L2 + ‖u‖6

H
1
3

≤ 2‖u‖2
H1 + ‖u‖3

L2‖u‖2
H1

≤ C‖u‖2
H1 .

Thus using the decomposition of u in term of Q̃ and ε to write ‖∇u‖L2 ≤ 1/λ, we
deduce

(52)

∣

∣

∣

∣

1

2
∂tIm

∫

u ∇ψ · ∇u
∣

∣

∣

∣

≤ 1

λ2(t)
.

We then integrate (52) in time between 0 and t and use
∫ t

0

dτ

λ2(τ)
=

∫ s

s0

dθ ≤ s,

to obtain for all t ∈ [0, t1),

(53) λ(t)

∣

∣

∣

∣

Im

∫

∇ψ · ∇uu
∣

∣

∣

∣

≤ λ(t)

∣

∣

∣

∣

Im

∫

∇ψ · ∇u0u0

∣

∣

∣

∣

+ λ(t)s(t).

But, λ(t)e6π/b(t) ≤ λ0e
6π/b0 . Indeed,

∂s(λe
6π/b) = λe6π/b

((

λs

λ
+ b

)

− b− 6πbs
b2

)

and the term in parenthese is negative (equivalent to −b) since by (34) and B3:
∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+

∣

∣

∣

∣

bs
b2

∣

∣

∣

∣

≤ Γ
1
2

b .

We deduce using the estimate of the localized momentum at time t = 0 A4:

λ(t)
∣

∣Im
∫

∇ψ · ∇u0u0

∣

∣

Γ5
b

≤ λ(t)

∣

∣

∣

∣

Im

∫

∇ψ · ∇u0u0

∣

∣

∣

∣

e
6π

b(t)

≤ λ0

∣

∣

∣

∣

Im

∫

∇ψ · ∇u0u0

∣

∣

∣

∣

e
6π
b0 < 1.(54)

Moreover from (49) and (50), we may show

s(t)λ(t) ≤ Γ5
b .
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Injecting the last inequality together with (54) into (53), we get C4’.

10. Refined Virial estimate

The virial estimate (45) allowed us to get the bound (49) on b(s)

b(s) ≥ 3π

4 log s
.

With this estimate, we will deduce the log log upper bound on the blow up rate

‖∇u(t)‖L2 ≤ C

(

log | log(T − t)|
T − t

)
1
2

.

If we want to prove the log log lower bound on the blow up rate, we need to have
the converse inequality in (49) and this requires to improve the virial estimate (45).
This refinement consists in finding an expansion at first order of the rest ε and this
term will be ζb or more precisely a troncated version of ζb. Therefore, we choose a
suitable parameter A > 0 such that in the area |y| ≤ A, the radiation is close to ε
and then get a virial type estimate for the new variable

ε̃ = ε− ζ̃b,

where ζ̃b is the troncated radiation:

ζ̃b = χAζb = ζ̃Re + iζ̃Im.

and where χA is a radial cut-off localized between 0 and 2A: χA(y) = χ(y/A) with

χ(y) =

{

1 if |y| ≤ 1
0 if |y| ≥ 2

.

We choose A as

(55) A = e
a

πb(t) ,

where a > 0 is a small constant to be chosen later. Using that χA(y) = 1 if

|y| ≤ 2/b, we deduce the equation satisfied by the truncated radiation ζ̃b:

∂2
y ζ̃b − ζ̃b + ibΛζ̃b = Ψb + F,

where

F = (∂2
yχA)ζb + 2(∂yχA)(∂yζb) + iby(∂yχA)ζb.

Note that Supp F ⊂ {y, A ≤ |y| ≤ 2A}. Moreover, it is not difficult to see from

Lemma 1 that ζ̃b satisfies

(56)

∫

|∂y ζ̃b|2 ≤ Γ1−Cη
b ,

∫

|ζ̃b|2 ≤ Γ1−Cη
b .

As for the first virial estimate, we may predict what kind of estimate we may
hope for ε̃. Indeed, the equation for ε̃ is essentially:

i∂sε̃+ Lε̃ = F,

so that by rewriting the virial identity if it is defined, we obtain roughly:

bs ≥ H(ε̃, ε̃) + Re(ε̃,Λζ̃) + smaller terms.

In particular, we will need to estimate the inner product (ε̃,Λζ̃). Let us now state
the precise virial estimate for the variable ε̃.
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Lemma 4 (Refined virial estimate). There exist constants δ1 > 0, c > 0 such
that the following holds. There exist η∗, a∗ > 0 such that for all η ∈ (0, η∗), a ∈
(0, a∗), there exists b∗(η∗, a∗) > 0 such that for all |b| ≤ b∗(η∗, a∗), and for all
s ∈ [s0, s1),

(57)
d

ds
f1(s) ≥ δ1Ẽ(s) + cΓb(s) −

1

δ1

∫

A≤|y|≤2A

|ε|2,

where f1(s) ∼ Cb:

(58) f1(s) =
b

4
‖yQ̃b‖2

L2 +
1

2
Im

(∫

y∂y ζ̃ ζ̃

)

+ (ε2,Λζ̃re) − (ε1,Λζ̃Im),

and

Ẽ(t) =

∫

|∂y ε̃(t, y)|2µ(y)dy +

∫

|y|≤ 10
b(t)

|ε̃(t, y)|2e−|y|dy.

Proof. In a first step, as for the first virial estimate, the proof consists in
multiplying the ε-equation by some suitable quantities; namely (27) by −Λ(Θ+ζ̃Im)

and (28) by Λ(Σ + ζ̃Re) and summing. We do not rewrite this equality to avoid
surcharging the text. This relation is essentially the same as the one found to prove
the log log lower bound for the L2-critical equation (see this relation in [19]) plus
additionnal terms induced by the functions w and µ. Among these terms, there
is only one which is non localized and which enter in the quadratic form H . The
others are localized and are controled using (56) and for |y| ≤ 10/b, µ(y) ∼ 1 and
w(y) ≤ C. After estimating these terms and controlling the negative directions of
H as in the proof of the first virial estimate, we obtain

(59)
d

ds
f1(s) ≥ δ1

(

∫

|∂y ε̃|2µ(y)dy +

∫

|y|≤ 10
b

|ε̃|2e−|y|dy

)

− Γ2
b + Re(ε̃,ΛF ).

We have to estimate the inner product Re(ε̃,ΛF ). To deduce the first virial esti-
mate, we have used the bound

Re(ε,ΛΨ) ≥ −Γ1−Cη
b .

Here we may obtain a better estimate by showing for some c > 0,

(60) Re(ε̃,ΛF ) ≥ cΓb −
1

c

∫

A≤|y|≤2A

|ε|2.

The proof of (60) does not make appear the measure µ and therefore is the same
than the Euclidean L2-critical case [19]. Let us recall quickly the argument, for
details see [19]. It consists in splitting

(61) Re(ε̃,ΛF ) = Re(ε,ΛF ) − Re(ζ̃ ,ΛF ).

For the first term, we use Cauchy-Schwarz and the bound
∫ 2A

A

|ΛF |2 ≤ Γb

consequence of properties of ζb (Lemma 1) to deduce for all δ2 > 0,

|Re(ε,ΛF )| ≤ Γ
1
2

b

(

∫

A≤|y|≤2A

|ε|2
)

1
2

≤ δ2Γb +
1

δ2

∫

A≤|y|≤2A

|ε|2.
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The treatment of the second term consists in writing F for A ≤ |y| ≤ 2A as

F = ∂2
y ζ̃ − ζ̃ + ibΛζ̃,

and using polar coordonates and integration by parts. Then from (56):

−Re(ζ̃,ΛF ) ≥ cΓb.

Finally, by summing and taking δ2 small enough, we obtain the desired estimate:

d

ds
f1(s) ≥ δ1

(

∫

|∂y ε̃|2µ(y)dy +

∫

|y|≤ 10
b

|ε̃|2e−|y|

)

+ cΓb −
1

c

∫

A≤|y|≤2A

|ε|2.

�

Remark that f1(s) ∼ Cb so that the new virial estimate is almost an estimate
of the type:

bs ≥ δ1Ẽ(t) + cΓb −
1

δ

∫

A≤|y|≤2A

|ε|2,

and this inequality is an improvement of the first virial estimate if we are able to
have a good estimate on the localized L2-norm of ε. We denote by φ4 a smooth,
increasing and radial cut-off satisfying 0 ≤ φ4 ≤ 1 with φ′4(y) ≥ 1/2 if y ∈ [1, 2]
and:

φ4(y) =

{

0 if 0 ≤ y ≤ 1/2
1 if y ≥ 3

.

Lemma 5 (Localized L2-norm of ε). For all s ∈ [s0, s1),
(62)
d

ds

(

1

r(s)

∫

φ4

( y

A

)

|ε|2µ(y)dy

)

≥ b

8

∫

A≤|y|≤2A

|ε|2 − Γ
a
2

b

∫

|∂yε|2µ(y)dy − Γ2
b .

Proof. Let us denote by L the left hand side of the above inequality. Then

L = − rs
r(s)2

∫

φ4(
y

A
)|ε|2µ(y)dy +

1

r(s)

d

ds

(
∫

φ4(
y

A
)|ε|2µ(y)dy

)

.

Using that u satisfies the equation (1), we have after computations

d

dt

∫

φ4

(

r − r(t)

λA

)

|u|2dx

= − 1

λ2A

∫

|u|2φ′4
(

r − r(t)

λA

)(

rs
λ

+
r − r(t)

λ

(

λs

λ
+
As

A

))

hdrdθ

+
2

λA
Im

∫

u∂ruφ
′
4

(

r − r(t)

λA

)

hdrdθ.

Remark that with the definition of A and the support of Q̃b,

Q̃b

(

r − r(t)

λ(t)

)

= 0 if
r − r(t)

Aλ(t)
≥ 1

2
,

so that we can replace u by

1√
λ
ε

(

t,
r − r(t)

λ

)

eiγ
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in the above formula and coming back to the (s, y) variable, this gives after writing
λs

λ = (λs

λ + b) − b,

d

ds

∫

φ4(
y

A
)|ε|2µ(y)dy = − 1

A

∫

|ε|2φ′4(
y

A
)

(

rs
λ

+ y

(

λs

λ
+ b+

As

A

))

µ(y)dy

+
2

A
Im

∫

ε∂yεφ
′
4(
y

A
)µ(y)dy + b

∫

|ε|2φ′4(
y

A
)
y

A
µ(y)dy

= B1 +B2 +B3.

Using estimates on parameters (34), (35), and |As/A| ≤ |bs/b2| ≤ Γa
b , we have,

|B1| ≤ Γ
a
2

b

∫

φ′4(
y

A
)|ε|2µ(y)dy.

For B2, we write

|B2| ≤ 1

A

(∫

φ′4(
y

A
)|ε|2µ(y)dy +

∫

|∂yε|2φ′4(
y

A
)|µ(y)dy

)

≤ Γ
a
2

b

(∫

φ′4(
y

A
)|ε|2µ(y)dy +

∫

|∂yε|2µ(y)dy

)

≤ Γ
a/2
b

∫

φ′4(
y

A
)|ε|2µ(y)dy + Γ

a/2
b

∫

|∂yε|2µ(y)dy.

Remark that with our choice of φ4, y/A ≥ 1/2 and this provides a lower bound for
B3:

B3 ≥ b

2

∫

φ′4(
y

A
)|ε|2µ(y)dy.

Thus, we find using µ(y) ∼ 1 for α∗ small and φ′4(x) ≥ 1/2:

(63) B1 +B2 +B3 ≥ b

8

∫

A≤|y|≤2A

|ε|2dy.

Moreover from (34),
∣

∣

∣

∣

rs
r2

∫

φ4(
y

A
)|ε|2µ(y)dy

∣

∣

∣

∣

≤ λ

∫

|ũ|2 ≤ Γ2
b .

The estimate above and (63) conclude the proof of the lemma. �

Lemma 6 (Lyapunov functional). There exists a functional J and a constant
c > 0 such that for every s ∈ [s0, s1),

(64) ∂sJ ≤ −cb(s)
(

Γb(s) + Ẽ(s) +

∫

A≤|y|≤2A

|ε|2
)

,

and

(65) |J (s) − d0b
2| ≤ δ(α∗)b2,

where d0 > 0 is given by (11). Moreover, J is given by the following expression:

J (s) = − δ1
16

(

bf̃1 −
∫ b

0

f̃1 + bIm(ε,Λζ̃)

)

+
1

r(s)

∫

(

1 − Φ4(
y

A
)
)

|ε|2µ(y)dy

+
1

r(s)

(∫

|Q̃b|2 −
∫

|Q|2 + 2Re

∫

εQ̃bµ(y)dy

)

,
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where

f̃1(s) =
b

4
‖yQ̃b‖2

L2 +
1

2
Im

(∫

y∂y ζ̃ ζ̃

)

.

Proof. We multiply (57) by δ1b
16 and sum with (62) to obtain

(66)
δ1b

16
(f1)s +

(

1

r(s)

∫

φ4(
y

A
)|ε|2µ(y)dy

)

s

≥

δ21b

16
Ẽ +

Cδ1
16

bΓb − Γ
a
2

b

∫

|∂yε|2µ(y)dy

+
b

16

∫

A≤|y|≤2A

|ε|2 − Γ2
b .

We rearrange the left hand side to make appear the derivative of J ; this gives using
the product rule:

(

δ1
16

(

bf̃1 −
∫ b

0

f̃1 + bIm(ε,Λζ̃)

)

+
1

r(s)

∫

φ4(
y

A
)|ε|2µ(y)dy

)

s

− δ1
16
bsIm(ε,Λζ̃).(67)

We use the mass conservation:
∫

|ε|2µ(y)dy +

∫

|Q̃b|2µ(y)dy + 2Re

∫

εQ̃bµ(y)dy =

∫

|u0|2,

to write
∫

φ4(
y

A
)|ε|2µ(y)dy =

∫

|u0|2 −
∫

|Q̃b|2µ(y)dy − 2Re

∫

εQ̃bµ(y)dy

−
∫

(

1 − φ4(
y

A
)
)

|ε|2µ(y)dy;

so that (67) becomes

−Js −
δ1
16
bsIm(ε,Λζ̃) −

(

1

r(s)

(∫

|u0|2 −
∫

|Q̃b|2 +

∫

|Q|2
))

s

,

that we may rewrite according to (34), B3, B5, and ‖Λζ̃‖L2 ≤ Γ
3/8
b (see Lemma

1),

−Js + O(Γ
9/8
b ).

In the right hand side of (66), the only term that we need to control is

Γ
a
2

b

∫

|∂yε|2µ(y)dy;

that we may bound by (if a ≥ 4Cη),

Γ
a
2

b

∫

|∂yε|2µ(y)dy ≤ Γ
a
2

b

(∫

|∂y ζ̃|2 +

∫

|∂y ε̃|2µ(y)dy

)

≤ Γ
a
2

b

(

Γ1−Cη
b +

∫

|∂y ε̃|2µ(y)dy

)

≤ Γ
1+ a

4

b + Γ
a
2

b

∫

|∂y ε̃|2µ(y)dy.
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This shows (64). The last thing to do is to prove that J is of order b2 (65). We

use that Q̃b has a supercritical mass 11 so that

J (s) = d0b
2 + b2δ(α∗) +

1

r(s)

(

2Re

∫

εQ̃bµ(y)dy +

∫

(

1 − φ4(
y

A
)
)

|ε|2µ(y)dy.

)

− δ1
16

(

bf̃1 −
∫ b

0

f̃1 + bIm(ε,Λζ̃)

)

.

Now, we prove
∫

(

1 − φ4(
y

A
)
)

|ε|2µ(y)dy ≤ δ(α∗)b2.

Indeed, let us denote by C the ring {x ∈M,−2Aλ+ r(t) ≤ r(x) ≤ 2Aλ+ r(t)} and
φ a radial, smooth, positive cut-off such that φ(x) = 1 if x ∈ C, φ(x) = 0 if r(x) ≥
2Aλ+ (Aλ)1/2 + r(t) or r(x) ≤ −2Aλ− (Aλ)1/2 + r(t) with the bound ‖∇φ‖L∞ ≤
C/(λA)1/2. Then by Cauchy-Schwarz inequality, radial Sobolev embedding (see
Proposition 1) H1/4 →֒ L4 and interpolation, we have
∫

(

1 − φ4(
y

A
)
)

|ε|2µ(y)dy ≤
∫

|y|≤3A

|ε|2 ≤
∫

C

|ũ(x)|2dx

≤ Vol(C)
1
2 ‖φũ‖2

L4

≤
(

∫ 2Aλ+r(t)

−2Aλ+r(t)

h(r)dr

)
1
2

‖φũ‖2

H
1
4

≤ C(Aλ)
1
2 ‖φũ‖

3
2

L2‖∇(φũ)‖
1
2

L2

≤ C(Aλ)
1
2

(

‖∇φ‖
1
2

L∞‖ũ‖
1
2

L2 + ‖∇ũ‖
1
2

L2

)

.

But, using on the one hand the bound on the derivative of φ and on the other hand

‖∇ũ‖L2 =
1

λ

(∫

|ε|2µ(y)dy

)
1
2

≤ 1

λ
E 1

2 ,

we obtain from B3 and B5
∫

(

1 − φ4(
y

A
)
)

|ε|2µ(y)dy ≤ C(Aλ)
1
4 +A

1
2 E ≤ δ(α∗)b2.

Moreover, we have easily from (56):

|bIm(ε,Λζ̃)| +
∣

∣

∣

∣

Re

∫

εQ̃bµ(y)dy

∣

∣

∣

∣

≤ δ(α∗)b2.

The last term, namely

δ1
16

(

bf̃1 −
∫ b

0

f̃1

)

is also less than δ(α∗)b2 using the fact that we can choose δ1 arbitrarily small in
Lemma 4. This proves Lemma 6. �

The following lemma is a consequence of the previous Lemmas; it gives in
particular C3 and the upper bound on b which will allow us to prove the log log
lower bound.
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Lemma 7. There exists a constant C > 0 such that for all s ∈ [s0, s1),

(68) b(s) ≤ 4π

3 log s
,

(69) E(s) ≤ Γ
4
5

b(s),

(70)

∫ s

s0

(

Γb(σ) + Ẽ(σ)
)

dσ ≤ Cα∗.

Proof. The proof of the upper bound on b is a consequence of (64) and (65);
indeed it imply:

d

ds
e

5π
4

q

d0
J = −5π

8

√

d0JsJ− 3
2 e

5π
4

q

d0
J ≥ 1.

We integrate the last inequality in time between s and s0 = e
3π
4b0 and since J (s0) ∼

d0b
2(s0), we have

e
5π
4

q

d0
J ≥ s+ (e

5π
4

q

d0
J (s0) − s0) ≥ s;

or equivalently
√

J
d0

≤ 5π

4

1

log(s)
.

We conclude using again (65) and this proves the upper bound on b. Let us prove
(69). We will need to have a more precise error in the approximation J ∼ d0b

2.
Here the measure µ(y)dy does not play an significant role so that the improvement
of (65) is the same than the Euclidean case. One can show that (see [19] for a
detailed proof)

1

C
E − Γ1−Ca

b ≤ J (s) − f2(b(s)) ≤ CA2E + Γ1−Ca
b ,

where f2 is the function defined by

f2(b) =

(∫

|Q̃b| −
∫

Q2

)

− δ1
32

(

bf̃1(b) −
∫ b

0

f̃1(v)dv

)

and satisfying
df2
db2

(0) > 0.

Let s ∈ [s0, s1). If bs(s) ≤ 0 then by the virial estimate (45), (69) holds. If bs(s) > 0,
then by continuity, b increases on an interval [s2, s] for some s2 ≥ s0 and we choose
for s2 the smallest time for which b increases on [s2, s]. Using the decay of J and
the growth of f2 near b = 0, we have

1

C
E(s) ≤ J (s) − f2(b(s)) + Γ1−Ca

b(s)

≤ J(s2) − f2(b(s2)) + Γ1−Ca
b(s)

≤ CA2(s2)E(s2) + Γ1−Ca
b(s2) + Γ1−Ca

b(s)

But we will prove that

(71) E(s2) ≤ Γ
6
7

b(s2).
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Indeed, if s2 = s0, then (71) holds from A3 and if s2 > s0 then bs(s2) = 0 and (71)
follows from the virial estimate (45). Finally, using b(s2) ≤ b(s),

1

C
E(s) ≤ CA2(s2)Γ

6
7

b(s2) + Γ1−Ca
b(s2)

+ Γ1−Ca
b(s) ≤ Γ

5
6

b(s).

This proves (69). For (70), we divide by
√
J the inequality (64) and we integrate

between s0 and s; this yields in particular

c

∫ s

s0

b
(

Γb + Ẽ
)

≤
√

J (s0) −
√

J (s).

To conclude (70), we use J (s0) ≤ Cb2(s0) and A2. �

11. Smallness of the critical norm

We now prove that the critical norm of the solution is small outside the blow up
curve r ∼ 1. This is the last part to prove Proposition 6. This smallness has been
proved in [25] in the Euclidean case using Strichartz estimates and local smoothing
properties of the flow. Indeed, in R2 or more generally in RN , it is a classical
fact that the solutions of the linear Schrödinger equation have locally one half a
derivative more than the initial data. This smoothing effect relies on the good
dispersive behavior of the free equation in R

N . In the case a = ∞, the manifold
is non compact and we could use local smoothing properties for such manifolds.
However, if a <∞, the manifold is compact and this regularization is false because
of lack of dispersion due to the discrete spectrum of the Laplace operator. The
method we use to overcome this difficulty follows [26] where the use of an almost
conserved quantity at levelH2 allows to get estimate on the H2 norm of the solution
and then propagate this information to have estimates on Hs norms for s ≤ 2 and
so deduce the smallness for s = 1/2. The counterpart of this method is that it
requires more regularity on the solution and so the stability holds in H2

rad and no
longer in H1

rad where it is more natural.

To prove the smallness of the solution in the area |r−1| > 1/2, we will split the
problem into two parts: firstly, the smallness in the region r ∈ [1/4, 1/2]∪ [3/2, 7/4]
and secondly the smallness for |r−1| > 3/4. In the first area, we will constantly use
radial Sobolev inequalities reflecting the fact that in this area, the equation looks
like the one dimensional L2-critical equation. In the second area, the point is the
introduction of the H2 pseudo energy.

Let us recall that we have the bootstrap assumptions B7: for all t ∈ [0, t1)

‖u(t)‖
H

1
2 (|r−1|>1

2 )
≤ (α∗)

1
10 ,(72)

‖u(t)‖H1(|r−1|>1
2 ) ≤ 1

λ(t)3δ
,(73)

‖u(t)‖
H

3
2 (|r−1|>1

2 )
≤ 1

λ(t)1+2δ
,(74)

‖u(t)‖H2(|r−1|>1
2 ) ≤ 1

λ(t)2+δ
.(75)

and we want to prove the improved bounds C7: for all t ∈ [0, t1)



142 NICOLAS GODET

‖u(t)‖
H

1
2 (|r−1|> 1

2 )
≤ (α∗)

1
5 ,(76)

‖u(t)‖H1(|r−1|> 1
2 ) ≤ 1

2λ(t)3δ
,(77)

‖u(t)‖
H

3
2 (|r−1|> 1

2 )
≤ 1

2λ(t)1+2δ
,(78)

‖u(t)‖H2(|r−1|> 1
2 ) ≤ 1

2λ(t)2+δ
.(79)

The main points to prove the H1/2 smallness outside the curve is the L2H1

integrability of the solution outside r ∼ 1 and an almost monotonicity property of
the parameter λ. These two properties are stated in the following lemmas.

Lemma 8. The parameter λ is almost decreasing in the sense that:

(80) for all s2, s3 ∈ [s0, s1) with s2 < s3, λ(s3) ≤ 3λ(s2).

Proof. This is a consequence of the first virial estimate (45) and (34); indeed,
combining these two inequalities, we deduce:

λs

λ
+ b ≤ CΓ1−Cη

b + bs.

Using the sign and the smallness of b (49) and B2; we find by integrating the last
inequality
∫ s3

s2

λs

λ
≤ b(s3) − b(s2) + C

∫ s3

s2

(

−b+ Γ1−Cη
b

)

≤ b(s3) − b(s2) −
C

2

∫ s3

s2

b ≤ 1.

Computing the left hand side, we get (80). �

Let us now state the second lemma. Let χ be a positive and smooth cut-off
function such that χ = 1 on [2/32, 30/32] and χ = 0 outside [1/32, 31/32]. Then
the following lemma holds.

Lemma 9. There exists a constant C > 0 such that for all t ∈ [0, t1),
∫ t

0

‖χu‖2
H1 ≤ Cα∗.

Proof. This lemma is a consequence of (70). Indeed, switching in polar coor-
donates and in s variable, we obtain for t < t1,

(81)

∫ t

0

‖χu‖2
H1 ≤

∫ t

0

‖ũ‖2
H1 ≤ t‖ũ‖2

L∞L2 +

∫ s

s0

∫

|∂yε|2µ(y)dy.

But on the one hand, from the upper bound on λ (51) and since s0 can be made
arbitrary large ,

(82) t =

∫ s

s0

λ2(τ)dτ ≤ λ0

∫ ∞

2

e−
2π
3

s
log s ≤ α∗,

and in particular t1 ≤ α∗ < ∞. On the other hand, from (70), the second term
in the right hand side of (81) is less than Cα∗. We conlude thanks to the L2

boundedness of ũ. �
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Let us now introduce the H2 pseudo-energy. An important fact, that we will
prove later, is that this energy is controled from below by theH2 norm and therefore
it allows us to get estimates on this norm.

Lemma 10 (H2 pseudo-energy). Let E2 be the following functional

E2(u) =

∫

|∆u|2 − 3

∫

|∇u|2|u|4 − 2Re

∫

(∇u)2|u|2u2.

then E2 is an almost conserved quantity in the sense that there exists a constant
C > 0 such that for all t ∈ [0, t1),

(83)
d

dt
E2(u) ≤

C

λ(t)
6+ 3δ

2

.

Proof. We first apply the operator ∇ to the equation (1). Then we multiply
by ∇∆u+ ∇(|u|4u), integrate and take the imaginary part to obtain

0 = Re

∫

∇ut∇∆u+ Re

∫

∇ut∇(|u|4u) = A+B.

We integrate by part the A term:

A = −Re

∫

ut∆
2u = −1

2

d

dt

∫

|∆u|2.

Using the identity

∇(|u|4u) = ∇(u3u2) = 3u2∇uu2 + 2u∇uu3,

we split B into two terms B1 and B2 with

B1 = 3Re

∫

∇ut∇u|u|4,

that we rewrite as

B1 =
3

2

(

d

dt

∫

|∇u|2|u|4 −
∫

|∇u|2 d
dt
|u|4
)

.

Using the expression of ut in (1), we get ∂t|u|4 = −4|u|2Im(u∆u) and thus

B1 =
3

2

d

dt

∫

|∇u|2|u|4 + 6

∫

|∇u|2|u|2Im(u∆u).

With the same method, we obtain for B2,

B2 =
d

dt
Re

∫

(∇u)2|u|2u2 + 3Re

∫

(∇u)2u2u(i∆u+ i|u|4u)

−Re

∫

(∇u)2u3(i∆u+ i|u|4u).

Summing A,B1 and B2, we get the identity:

d

dt
E2(u(t)) = 12

∫

|∇u|2|u|2Im(u∆u) + 6Re

∫

(∇u)2u2u(i∆u+ i|u|4u)

−2Re

∫

(∇u)2u3(i∆u+ iu|u|4),

so that we deduce

(84)
d

dt
E2(u) ≤ C

(∫

|∇u|2|u|3|∆u| +
∫

|∇u|2|u|8
)

.
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Let us now estimate the right hand side of (84).

Outside poles. We start by the region outside poles where we may use radial
Sobolev embeddings of Proposition 1 as in a one dimensional setting. First we
prove

(85)

∫

1
4<r< 7

4

|∇u|2|u|3|∆u| +
∫

1
4<r< 7

4

|∇u|2|u|8 ≤ C

λ6+ 3δ
2

.

Indeed, using Cauchy-Schwarz, radial Sobolev inequality, we have successively for
the first term

∫

1
4 <r< 7

4

|∇u|2|u|3|∆u| ≤ ‖∇u‖L2‖∆u‖L2‖∇u‖L∞( 1
4<r< 7

4
)‖u‖3

L∞( 1
4<r< 7

4 )

≤ ‖∇u‖L2‖∆u‖L2‖∆u‖
1
2

L2‖∇u‖
1
2

L2‖u‖
3
2

L2‖∇u‖
3
2

L2.

Using mass conservation, control of the H1 norm of the solution ‖∇u‖L2 ≤ λ−1

and the bootstrap assumption (75) on the H2 norm, we get
∫

1
4<r< 7

4

|∇u|2|u|3|∆u| ≤ 1

λ6+ 3δ
2

.

The second term is treated in the same way; we find
∫

1
4<r< 7

4

|∇u|2|u|8 ≤ ‖∇u‖2
L2‖u‖4

L2‖∇u‖4
L2 ≤ 1

λ6
.

Summing the two above estimate, we obtain (85).

Near poles. We now prove that near poles, the estimate is better:

(86)

∫

|r−1|> 3
4

|∇u|2|u|3|∆u| +
∫

|r−1|> 3
4

|∇u|2|u|8 ≤ C

λ4+46δ
.

By Cauchy-Schwarz, 2D Sobolev embeddings H1+δ →֒ L∞, H
1
2 →֒ L4 and inter-

polation between (73) and (75), the left hand side in (86) is bounded by

‖∇u‖2
L4(|r−1|>3

4 )‖∆u‖L2‖u‖3
L∞(|r−1|> 3

4 ) + ‖∇u‖2
L2(|r−1|>3

4 )‖u‖
8
L∞(|r−1|>3

4 )

≤ 1

λ2+δ
‖u‖2

H
3
2 (|r−1|> 3

4 )
‖u‖3

H1+δ(|r−1|>3
4 ) +

1

λ6δ
‖u‖8

H1+δ(|r−1|> 3
4 )

≤ 1

λ2+δ

1

λ2+4δ

(

1

λ3δ(1−δ)

1

λδ(2+δ)

)3

+
1

λ6δ

(

1

λ3δ(1−δ)

1

λδ(2+δ)

)8

≤ 1

λ4+46δ
.

Summing (85) and (86), we obtain (83). �

Now we prove that the E2 pseudo energy is essentially the square of the H2

norm. Indeed, first near poles, again by interpolation
∫

|r−1|> 3
4

|∇u|2|u|4 ≤ ‖∇u‖2
L2(|r−1|>3

4 )‖u‖4
H1+δ(|r−1|>3

4 ) ≤
1

λCδ
,

for some C > 0. In the area outside poles but including the blow up curve, we have
from the radial Sobolev embeddings

(87)

∫

1
4<r< 7

4

|∇u|2|u|4 ≤ ‖∇u‖4
L2( 1

4<r< 7
4 )‖u‖2

L2( 1
4<r< 7

4 ) ≤
1

λ4
.
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Therefore, summing the two above inequalities and from (83):

(88) ‖u‖2
Ḣ2 ≤

∫

|∆u|2 ≤ |E2(u)| +
1

λ4
≤ |E2(u0)| +

∫ t

0

dτ

λ(τ)6+
3δ
2

+
1

λ4

The energy at time t = 0 is controlled using the previous estimates on E2, A7 and
the monotonicity of λ (80):

|E2(u0)| ≤
∫

|∆u0|2 +
1

λ4
0

≤ 2

λ0
4 ≤ C

λ4
.

To treat the L1 norm in time in the right hand side of (88), we will need the
following lemma which basically say that when integrating, λ−1 behaves like the
self similar rate.

Lemma 11. Let α > 0. Then for all t ∈ [0, t1),

(89)

∫ t

0

dτ

λ(τ)
α ≤

{

α∗ if α < 2
| log λ|14

λα−2 if α ≥ 2
.

Proof. If α < 2, we use the uniform smallness in α∗ of λ, λ ≤ exp(−1/α∗)

from B5, B2 and the smallness in time from B5 and (68), λ ≤ exp(−s 3
40 ) and this

gives:
∫ t

0

dτ

λα
=

∫ s

s0

λ2−αdτ ≤ e−
2−α
2α∗

∫ s

s0

e−
2−α

2 s
3
40 ≤ α∗.

If α ≥ 2, we use the monotonicity of λ (80) and λ ≤ exp(−s 3
40 ) to write

∫ t

0

dτ

λα
=

∫ s

s0

dτ

λα−2
≤ C

s− s0
λα−2

≤ | logλ|14
λα−2

.

This concludes the proof of the Lemma. �

Thus, Lemma 11 allows us to write:

‖u‖2
Ḣ2 ≤ C

λ4
+

| logλ|14

λ4+ 3δ
2

+
1

λ4
≤ 1

2λ4+2δ
.

This proves (79).

Now we prove (76), (77), 78). These estimates rely on the following lemma.

Lemma 12. Let 0 < a2 < a1 < b1 < b2 and χ a positive smooth cut-off function
such that χ = 1 on [a1, b1] and χ = 0 outside [a2, b2]. Let v = χu and s ∈ (0, 3

2 ].
Then there exists a constant C > 0 such that for all t ∈ [0, t1),
(90)

‖Dsv‖L∞
[0,t)

L2 ≤ C

(

‖Dsv(0)‖L2 + ‖u‖
L2

[0,t)
Hmax(1,s+ 1

2
)(a2,b2)

+ ‖Ds(v|u|4)‖L1
[0,t)

L2

)

.

where Ds is the operator Ds = (I − ∆)s/2.

Proof. The function v satisfies the equation

i∂tv + ∆v − u∆χ− 2∇u · ∇χ = −v|u|4

so that

1

2

d

dt
‖Dsv‖2

L2 = Re

∫

DsvDsvt = Im

∫

Dsv Ds(u∆χ+ 2∇u · ∇χ− v|u|4).
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For the first two terms, if s ≥ 1
2 , we write using an integration by parts in the

second one and distributing the derivatives
∣

∣

∣

∣

∫

Dsv Ds(u∆χ+ 2∇u · ∇χ)

∣

∣

∣

∣

≤ ‖Dsv‖L2‖u‖Hs(a2,b2) + ‖Ds+ 1
2 v‖L2‖u‖

Hs+1
2 (a2,b2)

≤ ‖u‖2

Hs+1
2 (a2,b2)

.

If s < 1
2 , we directly write

∣

∣

∣

∣

∫

Dsv Ds(u∆χ+ 2∇u · ∇χ)

∣

∣

∣

∣

≤ ‖Dsv‖L2‖u‖Hs(a2,b2) + ‖Dsv‖L2‖u‖
Hs+1

2 (a2,b2)

≤ ‖u‖2
H1(a2,b2).

For the third term, we have easily
∣

∣

∣

∣

∫

DsvDs(v|u|4)
∣

∣

∣

∣

≤ ‖Dsv‖L2‖Ds(v|u|4)‖L2

Finally, summing the above estimates, we have

1

2

d

dt
‖Dsv‖2

L2 ≤ ‖u‖2

Hmax(1,s+ 1
2
)(a2,b2)

+ ‖Dsv‖L2‖Ds(v|u|4)‖L2 .

We integrate the above estimate and use a basic inequality for a, b ≥ 0 and ε > 0,

ab ≤ εa2 +
1

ε
b2,

to get,

‖Dsv‖2
L∞L2 ≤ ‖Dsv(0)‖2

L2+‖u‖2

L2Hmax(1,s+ 1
2
)(a2,b2)

+ε‖Dsv‖2
L∞L2+

1

ε
‖Ds(v|u|4)‖2

L1L2 .

The result follows if we choose ε small enough.
�

Bootstrap outside poles. Here we prove the estimates (76), (77), (78) in the
regions 1/4 ≤ r ≤ 1/2 and 3/2 ≤ r ≤ 7/4.

H
1
2 estimate. To prove the H

1
2 smallness outside poles, we first prove the Hσ

smallness for all σ < 1
2 . We begin by the area 1/4 < r < 1/2, the other region will

be treated in the same way. We apply Lemma 12 with s = σ, [a1, b1] = [ 4
32 ,

28
32 ] and

[a2, b2] = [ 3
32 ,

29
32 ] and χ1 = 1 on [a1, a2], χ1 = 0 outside [a2, b2] and v1 = χ1u:

‖Dσv1‖L∞L2 ≤ ‖Dσv1(0)‖L2 + ‖u‖L2H1( 3
32 , 29

32 ) + ‖Dσ(v1|u|4)‖L1L2 .

For the linear term, we use the L2H1 smallness of ũ outside the blow up curve to
get from Lemma 9:

‖u‖L2H1( 3
32 , 29

32 ) ≤ ‖χũ‖L2H1 ≤ C(α∗)
1
2 .

For the nonlinear term, we use fractional product rule to distrubute the σ-derivative
on the product and Hölder inequality with exponents (p, q) such that

p =
2

1 − 2σ
, q =

1

σ
,

1

p
+

1

q
=

1

2
.
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Let χ̃ be a cut-off such that χ̃ = 1 on [3/32, 29/32] and χ̃ = 0 outside [2/32, 30/32].
Then using χ̃4χ1 = χ1, we obtain

‖Dσ(v1|u|4)‖L2 ≤ ‖Dσ(v1|χ̃ũ|4)‖L2 ≤ ‖Dσv1‖L2‖χ̃ũ‖4
L∞

+‖χ̃ũ‖3
L∞‖Dσ(χ̃ũ)‖Lq‖v1‖Lp .

Next, we apply the radial Sobolev inequality

‖χ̃ũ‖L∞ ≤ ‖χ̃ũ‖
1
2

L2‖∇(χ̃ũ)‖
1
2

L2 ≤ C‖ũ‖
1
2

H1( 2
32 , 3032 )

,

and the embeddings Ḣ
1
2−σ →֒ Lq, Ḣσ →֒ Lp which are allowed since σ < 1

2 and
this gives

‖Dσ(v1|u|4)‖L2 ≤ ‖Dσv1‖L2‖ũ‖2
H1( 2

32 , 30
32 ) + ‖ũ‖

3
2

H1( 2
32 , 30

32 )
‖D 1

2 (χ̃ũ)‖L2‖Dσv1‖L2

≤ ‖Dσv1‖L2‖ũ‖2
H1( 2

32 , 30
32 ).

Finally, we obtain the Gronwall type inequality

(91) ‖Dσv1‖L∞L2 ≤ ‖Dσv1(0)‖L2 + ‖ũ‖L2H1( 2
32 , 30

32 ) +

∫ t1

0

‖ũ‖2
H1( 2

32 , 30
32 )‖D

σv1‖L2 ,

that we may rewrite as

‖Dσv1‖L∞L2 ≤ ‖Dσv1(0)‖L2 + ‖ũ‖L2H1( 2
32 , 3032 ) + ‖Dσv1‖L∞L2‖ũ‖2

L2H1( 2
32 , 30

32 ).

Since ‖ũ‖L2H1(2/32,30/32) ≤ C(α∗)1/2 again from Lemma 9, we deduce from A8:

‖Dσv1‖L∞L2 ≤ C
(

‖Dσv1(0)‖L2 + ‖ũ‖L2H1( 2
32 , 30

32 )

)

≤ C,

Now, we can prove the H
1
2 -smallness of u outside the blow up curve. We repeat the

proof of the Hσ smallness for σ < 1/2 but we treat the nonlinear term differently.
We reduce the support of χ1 by introducing a smooth cut-off χ2 with 0 ≤ χ2 ≤ 1
and

χ2 =

{

1 on [ 5
32 ,

27
32 ]

0 outside [ 4
32 ,

28
32 ]

.

Let v2 = χ2u, then we apply Lemma 12 with σ = 1/2,

‖D 1
2 v2‖L∞L2 ≤ ‖D 1

2 v2(0)‖L2 + ‖u‖L2H1( 4
32 , 28

32 ) + ‖D 1
2 (v2|u|4)‖L1L2 .

The nonlinear term is again controled with Hölder inequality with exponents p =
q = 4 and radial Sobolev embeddings H5/8 →֒ L∞ and Ḣ1/4 →֒ L4. Note that
χ2χ

4
1 = χ2 so that

‖D 1
2 (v2|u|4)‖L2 ≤ ‖D 1

2 (v2|χ1u|4)‖L2 ≤ ‖D 1
2 v2‖L2‖χ1u‖4

L∞

+‖χ1u‖3
L∞‖v2‖L4‖D 1

2 (χ1u)‖L4

≤ ‖D 1
2 v2‖L2‖ũ‖2

H1( 3
32 , 29

32 ) + ‖χ1u‖3

H
5
8
‖D 1

4 v2‖L2‖D 3
4 (χ1u)‖L2 .

By interpolation and using the smallness of the Hσ norm of v1 = χ1u for σ =
1/8, 3/8, we have

‖χ1u‖3

H
5
8
‖D 3

4 (χ1u)‖L2 ≤
(

‖χ1u‖
8
15

H
1
8
‖χ1u‖

7
15

H1

)3

‖D 3
8 (χ1u)‖

2
5

L2‖∇(χ1u)‖
3
5

L2 ≤ C‖ũ‖2
H1( 3

32 , 29
32 ),
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so that the nonlinear term is now estimated by

‖D 1
2 (v2|u|4)‖L2 ≤ ‖D 1

2 v2‖L2‖ũ‖2
H1( 3

32 , 29
32 ).

Thus, we obtain the same type of estimate as (91):

‖D 1
2 v2‖L∞L2 ≤ ‖D 1

2 v2(0)‖L2 + ‖ũ‖L2H1( 3
32 , 29

32 ) +

∫ t1

0

‖ũ‖L2H1( 3
32 , 2932 )‖D

1
2 v2‖L2 ,

that we solve identically to find

‖D 1
2 v2‖L2 ≤ ‖D 1

2 v2(0)‖L2 + ‖∇ũ‖L2H1( 3
32 , 2932 ) ≤ (α∗)

1
5 .

In particular, this proves the bootstrap conclusion (76) in [14 ,
1
2 ]. Using the same

treatment, the same estimate still holds in the region [32 ,
7
4 ].

H
3
2 estimate. We reduce again the support of the cut-off functions with

χ3 =

{

1 on [ 6
32 ,

26
32 ]

0 outside [ 5
32 ,

27
32 ]

.

and we go back to Lemma 12 to estimate the H
3
2 norm of v3 = χ3u:

‖D 3
2 v3‖L∞L2 ≤ ‖D 3

2 v3(0)‖L2 + ‖D2u‖L2L2 + ‖D 3
2 (v3|u|4)‖L1L2 .

The linear term is known by (79) and Lemma 11:

‖D2u‖L2L2 ≤
(∫ t1

0

1

λ4+2δ

)

1
2

≤ | logλ|7
λ1+δ

.

For the nonlinear term, we write by distributing the derivative and since χ4
2χ3 = χ3,

‖D 3
2 (v3|u|4)‖L2 ≤ ‖χ2u‖

H
3
2
‖χ2u‖4

L∞.

The L∞-norm is bounded from theH
1
2 smallness of v2 = χ2u proved before. Indeed,

by interpolation

(92) ‖χ2u‖L∞ ≤ ‖χ2u‖
H

1
2
+ δ

2
≤ ‖χ2u‖1−δ

H
1
2
‖∇(χ2u)‖δ

L2 ≤ 1

λδ
.

Moreover,

‖χ2u‖
H

3
2
≤ ‖u‖

1
2

H1‖u‖
1
2

H2 ≤ 1

λ
3
2+ δ

2

.

Therefore, we can conclude

‖D 3
2 v3‖L∞L2 ≤ ‖D 3

2 v3(0)‖L2 +
| logλ|7
λ1+δ

+

∫ t1

0

1

λ
3
2+ 3δ

2

≤ 1

2λ1+2δ
,

and this proves the bootstrap conclusion (78) in [1/4, 1/2] and as before the same
treatment gives the result in [3/2, 7/4].

H1 estimate. Let χ4 be a positive and smooth cut-off satisfying

χ4 =

{

1 on [ 7
32 ,

25
32 ]

0 outside [ 6
32 ,

26
32 ]

and v4 = uχ4. Again with Lemma 12 , we have

‖Dv4‖L∞L2 ≤ ‖Dv4(0)‖L2 + ‖u‖
L2H

3
2 ( 6

32 , 26
32 )

+ ‖D(v4|u|4)‖L1L2 .
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Using the previous estimate on v3 = χ3u, we deduce

‖u‖
L2H

3
2 ( 6

32 , 26
32 )

≤ ‖χ3u‖
L2H

3
2
≤ C

(∫ t1

0

1

λ2(1+2δ)

)

1
2

≤ | logλ|7
λ2δ

.

Injecting the L∞ bound (92) in the nonlinear term, we obtain

‖D(v4|u|4)‖L1L2 ≤
∥

∥‖χ3u‖4
L∞‖χ3u‖H1

∥

∥

L1 ≤
∫ t1

0

1

λ4δ+1
≤ α∗.

We sum the above estimates and get the desired control on the H1 norm:

‖Dv4‖L∞L2 ≤ ‖Dv4(0)‖L2 +
| logλ|7
λ2δ

+ α∗ ≤ 1

2λ3δ
.

This proves (77) on [1/4, 1/2] and as before also in [3/2, 7/4].

Bootstrap near poles. Using again Lemma 12, we have for k = 1, 2, 3,
(93)

‖D k
2 u‖L2(|r−1|> 3

4 ) ≤ α∗+‖u‖
L2H

k+1
2 (|r−1|> 1

2 )
+
∥

∥

∥‖D k
2 u‖L2(|r−1|> 1

2 )‖u‖4
L∞(|r−1|> 1

2 )

∥

∥

∥

L1

We now inject the bootstrap assumptions (72), (73) and (74) into the estimate
(93) and this will give the bootstrap conclusions (76), (77) and (78). Indeed, first
from (72), (73), (74) and Lemma 11,
(94)

‖D k+1
2 u‖L2L2(|r−1|>1

2 ) ≤
∥

∥

∥

∥

1

λk−1+(4−k)δ

∥

∥

∥

∥

L2

≤
{

α∗ if k = 1,
| log λ|7

λk−2+(4−k)δ if k = 2, 3.

Moreover, by interpolation between (73) and (75), we have for some D > 0,

‖u‖4
L∞(|r−1|> 1

2 ) ≤ ‖u‖4
H1+δ(|r−1|> 1

2 ) ≤
1

λDδ
,

and therefore the nonlinear term is bounded as follow:

(95)
∥

∥

∥‖D k
2 u‖L2(|r−1|> 1

2 )‖u‖4
L∞(|r−1|>1

2 )

∥

∥

∥

L1
≤
∥

∥

∥

∥

1

λ1+Cδ

∥

∥

∥

∥

L1

≤ α∗.

Summing (95) and (94), we obtain

‖D k
2 u‖L2(|r−1|> 3

4 ) ≤
{

(α∗)
1
5 if k = 1,

1
2λk−2+(5−k)δ if k = 2, 3,

and this proves (76), (77) and (78) in the region |r − 1| > 3/4.

This finishes the proof of the bootstrap conclusions (76), (77) and (78).

12. Conclusion

Thus, we have shown that C1-C7 are true until t1 and then we deduce t1 = T
and this proves Proposition 6. In particular, the solution blows up since by (82)
t1 <∞. Let us now deduce from the Bi’s the theorem 2.

Proof of the log log speed. Let us begin by proving the log log blow up
speed. This relies on the integration of the differential equivalences

bs ∼ −e− 1
b , −λs

λ
∼ b.
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We first prove the existence of C > 0 such that

(96)
1

C
(T − t) ≤ λ2(t) log | logλ(t)| ≤ C(T − t).

To prove this, it is sufficient to show

1

C
≤ − d

dt
(λ2 log | logλ|) ≤ C.

Derivating this expression, using the smallness of λ as α∗ goes to 0 and the equality
λs/λ = λλt, it is sufficient to prove

1

C
≤ −λs

λ
log | logλ| ≤ C,

or since C−1b ≤ −λs/λ ≤ Cb,

(97)
1

C
≤ b log | logλ| ≤ C,

First, the lower bound is a consequence of C5. For the upper bound, integrating
the inequality

−λs

λ
≤ 2b ≤ C

log(s)
,

between s0 and s, we deduce for s large

| logλ(s)| ≤ | logλ(s0)| +
∫ s

s0

C

log(τ)
dτ ≤ C

s

log(s)
.

Taking the log and using again the equivalence b ∼ (log s)−1, we obtain for s large

log | logλ| ≤ log s− log log s ≤ C log s ≤ C

b(s)
,

and this prove the upper bound in (97). Then, the log log speed is deduced from
(96) by remarking that the function f : λ 7→ λ2 log | logλ| is monotone near 0 and
that

1

C
(T − t) ≤ f

(

(

log | log(T − t)|
T − t

)
1
2

)

≤ C(T − t).

Proof of the blow up on a curve. Now we prove that the location of
singularity is a curve. We verify that r(t) has a limit when t goes to T . Indeed, for
t1, t2 ∈ [0, T ) with t1 < t2, since from log log behavior of λ proved straight above,
1/λ is integrable near T and from (34) , we have

|r(t1) − r(t2)| ≤
∫ t2

t1

∣

∣

∣

∣

dr

dt
dt

∣

∣

∣

∣

≤
∫ t2

t1

1

λ2

∣

∣

∣

∣

dr

ds

∣

∣

∣

∣

dt ≤ δ(α∗)

∫ t2

t1

dt

λ
,

and thus r(t) satisfies the Cauchy criterion near T and therefore has a limit r(T ) ∈
[1 − α∗, 1 + α∗] ⊂ (0, a) as stated in 2) of Theorem 2.

Proof of the convergence of u(t) to u∗. Let us prove the convergence of
ũ(t) to u∗ in L2(M). This convergence does not depend on the metric and for the
sake of completeness, we give the proof which is similar to the Euclidean case [25].
This is a consequence of two things: first outside the blow up curve, we have

∫ T

0

∫

|r−r(T )|>R

|u|6 ≈
∫ T

0

∫

|r−r(T )|>R

|ũ|6 <∞.
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This will allow us to extend ũ until the time T in L2(|r − r(T )| > R). The second
fact in that the limit u∗ of ũ is in L2(M) and we have conservation of the mass at
the limit i.e. ‖ũ(t)‖L2(M) → ‖u∗‖L2(M) when t goes to T . Equivalently, this means

that the weak convergence in L2(M) is in fact strong.

As in Lemma 9, we may prove an L2H1 bound on u: for R > 0 small enough
∫ T

0

‖∇u‖2
L2(|r−r(T )|>R) ≤ C(R).

Moreover, we have

‖ũ‖H1/2(|r−r(T )|>R) ≤ C(R).

Indeed, we have already proved such a bound in the regions |r − 1| > 1/2 (see
bootstrap conclusion B7). Near the blow up curve, we may perform the same type
of argument as in the proof of the H1/2 smallness of ũ outside poles in the section
smallness of the critical norm. This allows to get the boundedness as close to the
blow up curve as we want.

Now, let R > 0 and χ be a smooth cut-off function such that χ(r) = 0 if
|r − r(T )| ≤ R and χ(r) = 1 if |r − r(T )| ≥ 2R. Let t ∈ [0, T ) and s such that
t+ s < T . We set vs(t) = u(t+ s) − u(t) and ε > 0. We introduce t0 such that for
all s > 0 small enough:

∫

|vs(t0)|2 ≤ ε.

Then

d

dt
‖χ6vs(t)‖2

L2 = −2Im

∫

χ6vs(t)

(

(|u(t+ s)|4u(t+ s)

−|u(t)|4u(t)) + (∆u(t+ s) − ∆u(t))

)

= A+B.

We bound the A term as follow:

|A| ≤
∫

χ6|u(t+ s) − u(t)|
∣

∣|u(t+ s)|4u(t+ s) − |u(t)|4u(t)
∣

∣

≤
∫

χ6(|u(t+ s)|6 + |u(t)|6).

But for all τ ∈ [0, T ), from Gagliardo-Niremberg inequality:
∫

χ6|u(τ)|6 ≤ ‖χu(τ)‖4
H1/2‖∇(χu(τ))‖2

L2 .

Therefore, with the H1/2 boundedness and conservation of the L2 norm, we get

|A| ≤ C
(

1 + ‖∇u(t+ s)‖2
L2(|r−r(T )|>R) + ‖∇u(t)‖2

L2(|r−r(T )|>R)

)

.

By integration by parts, mass conservation and ab ≤ a2 + b2, we have for the B
term,

|B| ≤
∣

∣

∣

∣

∫

(∇u(t+ s) −∇u(t))
(

∇(χ6)vs + χ6∇vs

)

∣

∣

∣

∣

≤ C
(

1 + ‖∇u(t+ s)‖2
L2(|r−r(T )|>R) + ‖∇u(t)‖2

L2(|r−r(T )|>R)

)

.
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Finally, we have

d

dt
‖χ6vs(t)‖2

L2 ≤ C
(

1 + ‖∇u(t+ s)‖2
L2(|r−r(T )|>R) + C‖∇u(t)‖2

L2(|r−r(T )|>R)

)

.

We integrate this inequality in time between t0 and t to deduce:

‖χ6vs(t)‖2
L2 ≤

∫

|vs(t0)|2 + C(T − t0) + C

∫ T

t0

‖∇u(τ)‖2
L2(|r−r(T )|>R)

+C

∫ T

t0+s

‖∇u(τ)‖2
L2(|r−r(T )|>R)

≤ 2ε,

if t0 is close enough to T . Thus u(t) satisfies the Cauchy criteria in the area
|r − r(T )| > 2R so that it converges. Since

1
√

λ(t)
Q̃b

(

r − r(t)

λ(t)

)

eiγ(t) → 0 in L2(|r − r(t)| > 2R),

ũ(t) also converges to an element u∗ ∈ L2(|r − r(T )| > 2R) for all R > 0. In
particular since ũ(t) is uniformly bounded in L2, we deduce u∗ ∈ L2(M) and ũ(t)
converges weakly to u∗ in L2(M). Moreover let R(t) = λ(t)A(t) where A(t) is
defined in (55 so that R(t) → 0 as t→ T . Let also Φ be a smooth cut-off such that
Φ(r) = 1 if r ≥ 1 and Φ(r) = 0 if r ≤ 1/2 and 0 ≤ Φ ≤ 1. Then for a fixed time t,
after using the equation for u and integration by parts,

∣

∣

∣

∣

d

dτ

∫

Φ

(

r − r(t)

R(t)

)

|u(τ)|2
∣

∣

∣

∣

=

∣

∣

∣

∣

2

R(t)
Im

∫

∇u(τ)u(τ)∇Φ

(

r − r(t)

R(t)

)∣

∣

∣

∣

≤ C

R(t)
‖∇u(τ)‖L2(M).

We integrate this inequality between t and T to have
∣

∣

∣

∣

∫

Φ

(

r − r(t)

R(t)

)

|u∗|2 −
∫

Φ

(

r − r(t)

R(t)

)

|u(t)|2
∣

∣

∣

∣

≤ C

R(t)

∫ T

t

dτ

λ(τ)
.(98)

But the right hand side of the above inequality goes to 0. Indeed, we know the log
log behavior of λ and since

b(s) ≥ C

log(s)
, s =

∫ t

0

1

λ2
,

we deduce

b(t) ≥ C

log|log(T − t)| ,

so that for some α > 0, A(t) ≥ |log(T − t)|α. Reinjecting this and the decay of λ(t),
we conclude to the convergence to 0. But by Lebesgue theorem,

∫

Φ

(

r − r(t)

R(t)

)

|u∗|2 →
∫

|u∗|2 as t→ T,

so that with (98),
∫

Φ

(

r − r(t)

R(t)

)

|u(t)|2 →
∫

|u∗|2 as t→ T,
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or equivalently since outside u− ũ is negligeable outside the blow up curve,

(99)

∫

Φ

(

r − r(t)

R(t)

)

|ũ(t)|2 →
∫

|u∗|2 as t→ T.

Now, we treat the part near the blow up curve. Writing ũ in term of ε, we get
∫ (

1 − Φ

(

r − r(t)

R(t)

))

|ũ|2 ≤
∫

|r−r(t)|≤R(t)

|ũ|2

≤ C

∫

|y|≤A(t)

|ε(t, y)|2dy,

where in the last line we used the boundedness of µ(y) for |y| ≤ A(t). But the right
hand side may be controlled by E(t). Indeed, we use the inequality: for all M ≥ 1,

∫

|y|≤M

|ε(y)|2dy ≤ CM2

(

∫

|y|≤2M

|∂yε|2dy +

∫

|y|≤1

|ε(y)|2e−|y|

)

.

We refer to [17] for the proof. Therefore,
∫
(

1 − Φ

(

r − r(t)

R(t)

))

|ũ|2

≤ CA2(t)

(

∫

|y|≤2A(t)

|∂yε|2dy +

∫

|y|≤1

|ε(y)|2e−|y|dy

)

≤ e
a

b(t) E(t) ≤ e
a

b(t) Γ
4/5
b → 0.

This together with (99) gives the convergence
∫

|ũ(t)|2 →
∫

|u∗|2,

and therefore we obtain the convergence of ũ to u∗ in L2(M).

Proof of the convergence in the sense of measures. Let φ be a continuous
with compact support function on M . Then using polar coordonates and change
of variable

∫

|u(t, x)|2φ(x)dx =

∫ 2π

0

∫

|Q̃b(y)|2µ(y)φ(λ(t)y + r(t), θ)dydθ

+

∫

|ũ(t, x)|2φ(x)dx + 2Re

(∫ ∫

Q̃b(y)ε(t, y)φ(λ(t)y + r(t), θ)µ(y)dydθ

)

= A1 +A2 +A3.

Since b(t) tends to 0, r(t) tends to r(T ), λ(t) is much smaller than b(t) and using

the support of Q̃b, by Lebesgue theorem, the first term tends to

A1 → ‖Q‖2
L2h(r(t))

∫ 2π

0

φ(r(T ), θ)dθ = ‖Q‖2
L2

∫

φdδr(T ).

The second term converges to
∫

|u∗(x)|2φ(x)dx. For the third term, since E(t) is
exponentially small in b, by Cauchy-Schwarz

|A3| ≤ CE(t)
1√
b(t)

→ 0 as t→ T.

This proves the second point of Theoreme 2 and the proof is finished.
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[23] P. Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer,

New York, second edition, 2006.
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